77
7/23/2019 High Order OA-RC Filters Design x ELE3 http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 1/77 Prof. D. Manstretta AA2012-13 LEZIONI DI FILTRI ANALOGICI Danilo Manstretta  AA 2012-13

High Order OA-RC Filters Design x ELE3

  • Upload
    sam

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 1/77

Prof. D. ManstrettaAA2012-13

LEZIONI DI

FILTRI ANALOGICIDanilo Manstretta

 AA 2012-13

Page 2: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 2/77

Prof. D. ManstrettaAA2012-13 2

High Order OA-RC Filters

The goal of this lecture is to learn how to design high order

OA-RC filters using real OTAs.

1 2

1 2 1 0

1 2

1 2 1 0

...( )

...

n

n

n n

n

a s a s a s a H s

 s b s b s b s b

Page 3: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 3/77

Prof. D. ManstrettaAA2012-13

Ideal Operational Amplifier

3

In an ideal op-amp we assume:

input resistance R i  approaches infinity, thus i 1 = 0

output resistance R o approaches zero

amplifier gain A approaches infinity

R i 

R o

 A(e+

-e-)

e+

e-

e2

i 1

equivalent circuitsymbol

e+

e-

e2

Page 4: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 4/77

Prof. D. ManstrettaAA2012-13

Operational Transconductance Amplifier

4

In a real Operational Transconductance Amplifier (OTA) we assume:

input resistance R i  approaches infinity, thus i 1 = 0

Finite DC gain (A0=GmR o )

Finite gain-bandwidth product (Gm/C0)

Gm has a finite value

R oGm(e+-e-)

e+

e-

e2

i 1

C o

equivalent circuitsymbol

e+

e-

e2

Page 5: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 5/77

Prof. D. ManstrettaAA2012-13 5

Cacaded Biquads Implementation

 H ( s) ( s  s z ,1)( s s z ,1

*)

( s  s p,1)( s s

 p ,1

* )( s  s z  ,2)( s s z ,2

*)

( s  s p ,2

)( s s p ,2

* )( s  s z  ,3)( s s z ,3

*)

( s  s p ,3

)( s s p ,3

* )

s or 1/s 

B1 B2 B3

biquads

Page 6: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 6/77

Prof. D. ManstrettaAA2012-13

SINGLE-OTA BIQUADSSallen-Key, Rauch

Page 7: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 7/77

Prof. D. ManstrettaAA2012-13 7

Low-Pass Rauch Filter

Q   C 1

C 2

1

 R2 R3

 R1

  R3

 R2

  R2

 R3

   0 1

 R2 R3C 1C 2

  G   R2

 R1

() = −2 11 + 2 2 + 3 +

231 + 21223

 

Page 8: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 8/77

Prof. D. ManstrettaAA2012-13

Rauch Low-Pass with Real OTA

8

• In order to simplify the equations,

consider a specific implementation:

• C1=4C2=4C 

• R1=R2=2R3=2R

• What is the effect of the real OTA

on the transfer function?

() =−1

1 + 4 + 2822 

G = -1Q=1/√20  =1

2 2 

Ideal transfer function:

Page 9: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 9/77

Prof. D. ManstrettaAA2012-13

Rauch Low-Pass with Real OTA (ii)

9

Page 10: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 10/77

Prof. D. ManstrettaAA2012-13

Rauch Low-Pass with Real OTA (iii)

10

Zero  is located in the right half-plane (RHP) zero

close to gm /C

Complex poles frequency is shifted and Q is

modified: limited gm and GBW lead to poles Q

enhancement, finite gain leads to Q degradation

Additional (real) pole: around the OTA unity gain

frequency (- gm/C0)

Page 11: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 11/77

Prof. D. ManstrettaAA2012-13 11

Sallen-Key Biquad (ii)

 0 

1

 R1 R

2C 

1C 

2

1

 R1 R

2C 

1C 

2

1

 R1C 1

1

 R2C 11   

 R2C 2

G    () = 121211212

+   111

+  121

+1 − 22

+ 2 

02+s0/Q+s2

C1 

C2 

VIN R1  R2 

Rb 

Ra 

Page 12: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 12/77

Prof. D. ManstrettaAA2012-13

Sallen-Key Design Strategies

12

Design 1. R1=R2=R, C1=C2=C

0=1/(RC)

G=3-1/Q

Note: Q is independent of R,C

Design 2. G=2 (Ra=Rb), C1=C2=C

02=1/(R1R2C

2)

R1=Q/0C

Note: R 1 /R 2 =Q2

Design 3. G=1, R1=R

2=R

02=1/(R2C1C2)

C1=2Q/0C ; C2=1/2Q0C

Note: C 1 /C 2 =4Q2  

 0 

1

 R1 R

2C 

1C 

2

1

 R1 R

2C 

1C 

2

1

 R1C 1

1

 R2C 1

1   

 R2C 2

G    

Five design elements, two

main properties (G is less

important): several design

degrees of freedom

Page 13: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 13/77

Prof. D. ManstrettaAA2012-13 13

Sallen-Key: finite op-amp gain

• The inverting and non-inverting terminals are not virtually shorted

C1 

C2 

R1  R2 

Rb Ra 

E1 E2 

E3 E4 

E2=A0(E4-V-)

 E 4   E 

2

 Ra  R

b

 Ra  E 

2

 A0

 =0

1 +0

 0

 

0   = 1 +    

4 2

0 0

1 1 E E 

 A 

2 4 E E  

1 /   

Page 14: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 14/77

Prof. D. ManstrettaAA2012-13 14

Sallen-Key with OTA

• In order to simplify the equations, consider a specificimplementation:

• C1=2C2=2C 

• R1=R2=R 

•  =1

2C

C

R RE1  E2 

E3 E4 

0  =1

 2 

G=1Q=1/√2

() =1

1 + 2 + 2222 

Page 15: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 15/77

Prof. D. ManstrettaAA2012-13 15

Sallen-Key with real op-amp (OTA)

1  =2  

2  =2

 

() = 1 + 1 + 22

0 + 1 + 22 + 33 

 2 zeros and 3 poles

0  = 1 +1

 0

 

1  = 40 − 2 +2 + 0

 

2  = 2022 + 4 + 20  

3  = 220

2

 

Page 16: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 16/77

Prof. D. ManstrettaAA2012-13 16

Sallen-Key with real op-amp (OTA) (ii)

• The complex zeros have Q=(gmR) ½/2 >>1

• zeros are close to being pure imaginary: notch in H(s) at the zero

frequency!

• The frequency of the zeros is

•  Assuming the OTA DC gain gmR0>>1 and isolating the terms

corresponding to the ideal transfer function from the parasitic

pole, the denominator can be approximated as:

• The complex poles change in frequency and Q

•  A parasitic real pole has appeared around gm/C0

    2  

1 + 2  +

1

+ 22

2

2

1 +

2

1 +

0

 

1

Page 17: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 17/77

Prof. D. ManstrettaAA2012-13

TWO-OTA BIQUADSFleisher-Tow, KHN, Tow-Thomas

17

P f D M t ttAA2012 13

Page 18: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 18/77

Prof. D. ManstrettaAA2012-13

Fleischer-Tow Biquad

2   1

5 1 1 5 4 3 6 1 22

21

1 1 2 3 1 2

1

1

 R R s R s

 R R C R R R R C C  E 

 s E  s

 R C R R C C 

2

6

 RG

 R

0

2 3 1 2

1

 R R C C   

1 1

22 3

 R C Q C  R R

P f D M t ttAA2012 13 19

Page 19: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 19/77

Prof. D. ManstrettaAA2012-13

Kerwin-Huelsman-Newcomb (KHN)

19

21215

60

1

C C  R R R

 R 

22

11

5

6

65

43

3

5

C  R

C  R

 R

 R

 R R

 R R

 R

 RQ

43

65

6

4

 R R

 R R

 R

 RG

C

E2

R5

C

R3E1

R4

R6

R1 R2

2

02

2 2010

G E 

 E  s s

Q

 

  

P f D M t ttAA2012 13 20

Page 20: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 20/77

Prof. D. ManstrettaAA2012-13 20

Two-Integrators Biquad Design

S  -1/s 

b 1 

-1/s S 

-b0 

a0 E 1  E 2 

02

2

1 1 0

a E 

 E s b s b

C

RE2

Rb0

C

Ra0E1

R

Rb1

R

01

 P 

bQ

 

  2

0 0 0a b    

P f D M t ttAA2012 13 21

Page 21: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 21/77

Prof. D. ManstrettaAA2012-13 21

Tow-Thomas

C

E2

C

R1

R4

E1

R3

R

R

R2

2

02

2 2010

G E 

 E  s s

Q

 

  

2

2 42

212

1 2 3

1

1

 R R C  E 

 s E  s

 R C R R C 

3

4

 RG

 R

  0

2 3

1

 R R C      1

2 3

 RQ

 R R

Prof D ManstrettaAA2012 13 22

Page 22: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 22/77

Prof. D. ManstrettaAA2012-13

Filter Design Using Real OPAMP

22

What happens if we replace the ideal OPAMP with a real

circuit?

Let’s consider the impact of circuit limitations on the active

integrator , the basic building block of high order filters

designs.

Prof D ManstrettaAA2012 13 23

Page 23: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 23/77

Prof. D. ManstrettaAA2012-13

OTA-RC Integrator

23

Ideal integrator:VIN VO

C

R

gm(V--V+)   RO   CO

• What happens if the ideal OA is replaced with a real OTA?

• Compute the transfer function as a function of the OTA

parameters

• Derive design guidelines for the OTA

0 IN v

v sRC 

Prof D ManstrettaAA2012 13 24

Page 24: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 24/77

Prof. D. ManstrettaAA2012-13

OTA-RC Integrator Analysis

24

To keep equations simple lets consider different effects

separately:

• Finite DC gain

• Finite gm

• Output capacitance

Study effect on poles Q:• define Integrator quality factor (QINT)

Prof D ManstrettaAA2012 13 25

Page 25: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 25/77

Prof. D. ManstrettaAA2012-13

Finite DC Gain

25

Neglect output/load capacitance (C0=0), Gm is very large

but the DC gain (GmR0) is finite and equal to A0.

R oGm(e+-e-)

e+   v 0

i IN

v IN

R

C

 IN O IN O m

O

v v vi v v sC G v

 R R

1

O m

O

v sC G sC v

 R

 

1m

OOG

O m O

 sC vv v

 A G A  

   

11 IN 

O

vv v

 sRC sRC 

0

01 1O

 IN 

v A

v sRC A

Prof D ManstrettaAA2012-13 26

Page 26: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 26/77

Prof. D. ManstrettaAA2012-13

Finite DC Gain (2)

26

The effect of a finite OTA DC gain is to move the pole from

the origin to = 0 /(1+A0).

0

01 1

O

 IN 

v Av sRC A

AMPLITUDE PHASE

Prof D ManstrettaAA2012-13 27

Page 27: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 27/77

Prof. D. ManstrettaAA2012-13

Finite DC Gain (3)

27

The effect of a finite OTA DC gain is to move the pole from

the origin to = 0 /(1+A0). The phase shift at 0 is slightly

larger than 90° ( phase lead )

0

01 1

O

 IN 

v A

v sRC A

0

0

180 arctan 1O

 IN 

v A

v

 

 

Prof D ManstrettaAA2012-13 28

Page 28: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 28/77

Prof. D. ManstrettaAA2012-13

Finite Gm

28

Neglect output/load capacitance (C0=0) and conductance:

DC gain is infinite but Gm has a finite value.

 IN  IN O m

v vi v v sC G v

 R

O mv sC G sC v

1   mO

Gv v

 sC 

1 IN 

m

vv G

 R R

1

1

mO

 IN m

 sC Gv

v sC R G

Gm(e+-e-)

e+   v 0

i IN

v IN

R

C

Prof D ManstrettaAA2012-13 29

Page 29: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 29/77

Prof. D. ManstrettaAA2012 13

Finite Gm (2)

29

The effect of a finite Gm is to introduce a RHP zero at Gm /C

and to move the unity gain frequency from 1/RC to

1/(R+1/Gm)C.

AMPLITUDE PHASE

11

mO

 IN m

 sC Gvv sC R G

z = 100 0

Prof. D. ManstrettaAA2012-13 30

Page 30: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 30/77

Prof. D. ManstrettaAA2012 13

Finite Gm (3)

30

The zero must be at a much higher frequency than 0 . The

phase shift at 0 is slightly smaller than 90° ( phase lag )

90 arctanO

 IN z 

v

v

 

 

 

1

1

 z O

 IN m

 sv

v sC R G

 

z = Gm/C

z = 100 0

Prof. D. ManstrettaAA2012-13 31

Page 31: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 31/77

Prof. D. ManstrettaAA2012 13

Finite Gain-Bandwidth Product (GBW)

31

Now consider a finite output/load capacitance C0 and a

finite Gm (GBW= GmC0). Neglect output conductance

(infinite DC gain).

 IN  IN O m O O

v vi v v sC G v v sC  

 R

O TOT mv sC G sC v

11 IN 

O

vv v

 sRC sRC 

1 1 /

1 /O m

 IN O m

v sC G

v sR C sC G  

C oGm(e+-e-)

e+   v 0

i IN

v IN

R

C  TOT OC C C 

11

 IN TOT O

m

v C sRC  v

 sRC G sC sRC 

1 /1   O

m

C C 

G R

 

Prof. D. ManstrettaAA2012-13 32

Page 32: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 32/77

Prof. D. ManstrettaAA2012 13

Finite GBW (2)

The effect of a finite GBW is to introduce an additional

pole at approximately -Gm /CO. The unity gain frequency

is also slightly increased.

AMPLITUDE PHASE 1 1 /

1 /O m

 IN O m

v sC Gv sR C sC G  

z = 100 0

p = 500 0

Prof. D. ManstrettaAA2012-13 33

Page 33: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 33/77

Finite GBW (3)

The phase shift at 0 is slightly smaller than 90° ( phase lag ).

The pole and the RHP zero both contribute a phase lag

90 arctan arctanO

 IN z p

v

v

 

 

   

 

z = Gm/C

1 1 /

1 /O z 

 IN p

v s

v sR C s

 

 

p = Gm/CO

z = 100 0

p = 500 0

Prof. D. ManstrettaAA2012-13 34

Page 34: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 34/77

Integrator Quality Factor (QINT)

The cumulative effect of integrator non-idealities on the

poles can be summarized in a single number: QINT

QINT is a measure of the integrator phase deviations from

90° at the unity gain frequency.

DEFINITION

1tan

tan 90 INT Q  

0 H j 

H. Khorramabadi and P. R. Gray, “High-frequency CMOS continuous time filters,” JSSC  Dec 1984.

Prof. D. ManstrettaAA2012-13 35

Page 35: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 35/77

Integrator Quality Factor: QINT 

Ideal integrator

0

1 H j

 j 

 

 INT Q

1 H j

 R jX  

 

 

0

0

1tantan 90

 

 

 INT 

 X Q R

   j H j H j e

     

 

arctan

 X 

 R

  

 

 

Real integrator

  2  

This alternative definition may be easier to remember.

Prof. D. ManstrettaAA2012-13 36

Page 36: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 36/77

Summary 

0

0

0

1 INT 

 X Q A

 R

 

 

0

01 1

O

 IN 

v A

v sRC A

• Finite DC Gain

• Finite Gm (RHP zero z=Gm/C)

• Finite GBW (additional pole)

0

0 z 

 INT Q   

 

1

1

 z O

 IN m

 sv

v sC R G

 

0   0

0

1 /

1 /  z 

 X 

 R

     

 

0   1

1 /

O

 IN p

v

v s s

 

 

0

0 0

1

/  p

 X 

 R

 

 

  0

0 p

 INT Q 

 

Prof. D. ManstrettaAA2012-13 37

Page 37: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 37/77

Summary (2) 

0 0

0

1

1

1

 INT 

 z p

Q

 A

 

 

• Finite DC Gain gives a positive Q. Right half-plane zero

(such as introduced by the finite Gm) and additional poles

(such as introduced by load capacitance) introduce a

negative Q.

• The two effects partially cancel each other but ensuringcomplete cancellation across process variations is not

trivial.

• Design guidelines: large DC gain, ensure that zeros and

poles are well above the poles frequency

Prof. D. ManstrettaAA2012-13 38

Page 38: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 38/77

Biquad with Finite Integrator Q

• If a biquad is realized using integrators having finite QINT, the poles QP will be modified as follows:

'2

1

INT 

QQ

Q

Q

Re(s)

Im(s)

Re(s)

Im(s)

QINT >0 QINT <0

QINT must be much higher than the poles Q to preserve

the filter shape

Prof. D. ManstrettaAA2012-13 39

Page 39: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 39/77

Biquad with Finite Integrator Q (2)

• If a biquad is realized using integrators having finite QINT, the biquadtransfer function will be modified as follows:

• If the error on the gain of the biquad at the pole frequency is to be

lower than ERR , a specification on the minimum QINT is derived:

• Notice that the above considerations apply to any pair of po les of the filter

transfer function, independent of the f i l ter imp lementat ion (i.e. even if the

filter is implemented as a ladder )

  0

0'2

1

LP 

LP 

INT 

H H 

Q

Q

    

,  20

2

10 1ERR dB

INT 

QQ

 

W.J.A. De Heij, E. Seevinck, and K. Hoen, “Practical Formulation of the Relation Between

Filter Specifications and the Requirements for Integrator Circuits,” TCAS Aug 1989.

Prof. D. ManstrettaAA2012-13 40

Page 40: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 40/77

Two-Integrators Biquad Design

S  -1/s 

b 1 

-1/s S 

-b0 

a0 E 1  E 2 

02

2

1 1 0

a E 

 E s b s b

C

RE2

Rb0

C

Ra0E1

R

Rb1

R

01

 P 

bQ

 

  2

0 0 0a b    

Prof. D. ManstrettaAA2012-13 41

Page 41: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 41/77

Integrator Non-Idealitities

S  HINT(s) 

b 1 

HINT(s) S 

-b0 

a0 E 1  E 2 

The effect of integrator non-idealities will be evaluated using the modified

integrator transfer function HINT(s)

HINT(s) 

• Finite DC Gain

• RHP zero

• Finite GBW

(additional pole)

1

1 z 

 s s

 

0

0

1

1 s

 A

 

1 1

1 / p

 s s    

 

2

0

2

1 01

 INT 

 INT INT 

a H s H s

b H s b H s

2

0 0 0a b    

01

 P 

bQ

 

Prof. D. ManstrettaAA2012-13 42

Page 42: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 42/77

Finite DC Gain

 

2

0

21 01

 INT 

 INT INT 

a H s H s

b H s b H s

2

0 0b    01

 P 

bQ

 

  2 20 0

0   2

0 0   0

1

2 1 11

1 1   1 P P 

 H s

 s sQ A Q A   A

  

   

 

00 0   2

0   0

0

1 1' 1

11   1 1

2 1

 P 

 P 

Q A   A

Q A

   

 

 Assuming A0 >>1 

0

'2 2

1 11

 P P  P 

 P P 

 INT 

Q QQ

Q Q

 A Q

0

1 INT 

Q A

0 0

1

1 / 1 / INT 

 H  A s    

Prof. D. ManstrettaAA2012-13 43

Page 43: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 43/77

RHP Zero

1

1 INT z 

 H s s s

 

 

2

0

21 01

 INT 

 INT INT 

a H s H s

b H s b H s

2

0 0b    01

 P 

bQ

 

 

22

0

2 22 20 0 0 002

1 /

1 2

 z 

 P z z P z 

 s H s

 s sQ Q

 

  

 

0 00 2

00 0

2

'

11 2 P z 

 P z z QQ

  

   

   

 Assuming

z >>0

0

'2 2

1 1

 P P  P 

 P P 

 z INT 

Q QQ

Q Q

Q

 

 

  0

 z  INT Q

   

 

Prof. D. ManstrettaAA2012-13 44

Page 44: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 44/77

Finite GBW

 

2

02

1 01

 INT 

 INT INT 

a H s H s

b H s b H s

2

0 0b    01

 P 

bQ

 

0

 p

 INT Q 

 

 Assuming

p >>0

1

1 INT 

 p

 H s s s    

2

02

2 200

1

1 /'

 p

 P 

 H s s   s s

Q

 

    

 

0

'2 2

1 1

 P P  P 

 P P 

 p INT 

Q QQ

Q Q

Q

 

 

Prof. D. ManstrettaAA2012-13 45

Page 45: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 45/77

Summary

S  HINT

(s) 

b 1 

HINT(s) S 

-b0 

a0 E 1  E 2 

The effect of integrator non-idealities on the poles Q is:

• Finite DC Gain

• Finite Gm (RHP zero)

• Finite GBW (additional pole)

1

1 INT 

 p

 H s s s    

1

1 INT z  H s s s

 

'2

1

 P  P 

 P 

 INT 

QQ

Q

Q

0

 p

 INT Q 

 

0

 z  INT Q

   

 

0 0

1

1 / 1 / INT  H 

 A s    

  01 INT Q A

Prof. D. ManstrettaAA2012-13 46

Page 46: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 46/77

HIGHER ORDER

OPAMP-RC FILTERSCanonic Synthesis

Prof. D. ManstrettaAA2012-13 47

Page 47: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 47/77

Multiple-Loop Feedback Architectures

• As the filter order increases, the Q of the poles increases

and biquad based implementations become too sensitive

to components variations and mismatches.

• Multiple-loop feedback architectures are to be

preferred due to lower sensitivity

• The state-variable synthesis method allows the

synthesis of an nth order filter (low-pass, band-pass or

high-pass) in the form

1 2

1 2 1 0

1 2

1 1 2 1 0

...

...

n

n n

n n

n

 E a s a s a s a

 E s b s b s b s b

Prof. D. ManstrettaAA2012-13 48

Page 48: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 48/77

State-Variable Method:

 All-pole filters

E1  E2 

E1 E

2 E3 

a0

E3 

E2 E4 

0

1 2

1 1 2 1 0...

n

n n

n

 E a

 E s b s b s b s b

1 2

1 2 1 0 2 0 1...n n

n s b s b s b s b E a E 

1 2

1 2 1 2 0 2 3...n n

n s b s b s b s E b E E 

1 2

1 2 1 2 3 0 2...

n n

n s b s b s b s E E b E 

-b0 

1 0

1

...n s b s b

1 2

1 2 1 2 4...n n

n s s b s b s b E E 

1 2

1 2 1 0 2 3...n n

n s b s b s b s b E E 

1

1

1n s b

1

 s

Prof. D. ManstrettaAA2012-13 49

Page 49: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 49/77

Controller Canonic Form Realization

E1s

1

s

1

s

1

-bn-1

-bn-2

-b1

-b0

E2

a0

sE2s

n-2E2s

n-1E2s

nE2

0

1 2

1 1 2 1 0...

n

n n

n

 E a

 E s b s b s b s b

Follow-the-leader feedback architecture

K. Laker, M. Ghausi, "Synthesis of a low-sensitivity multiloop feedback active RC

filter," IEEE Transactions on Circuits and Systems, Mar 1974

Prof. D. ManstrettaAA2012-13

Page 50: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 50/77

Inverting Integrators Realization

E1

bn-1

-bn-2

(+/-) b1

(+/-) b0

E2

a0

-sE2(-s)n-2

E2(-s)n-1

E2(-s)nE2

s

1

s

1

s

1

0

1 2

1 1 2 1 0...

n

n n

n

 E a

 E s b s b s b s b

Prof. D. ManstrettaAA2012-13 51

Page 51: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 51/77

Inverse Follow-the-Leader Feedback

Prof. D. ManstrettaAA2012-13

Page 52: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 52/77

Circuit Realization Example

E1

b3

b1

E2

a0

s

1

s

1

s

1

s

1

b0

b2

-1

2

4 3 2

1

0.2756

0.9528 1.4539 0.7426 0.2756

 E 

 E s s s s

Prof. D. ManstrettaAA2012-13

Page 53: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 53/77

Circuit Realization Example (ii)

Ri=1/bi

2

4 3 2

1

0.2756

0.9528 1.4539 0.7426 0.2756

 E 

 E s s s s

E1

b3

b1

E2

a0

s

1

s

1

s

1

s

1

b0

b2

-1 The feedback resistors are

inversely proportional to the

corresponding coefficient:

Prof. D. ManstrettaAA2012-13

Page 54: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 54/77

General Realization

• Realization of a generic transfer function with number of zerosstrictly lower than the number of poles

• The realization with equal number of poles and zeros is only slightly

more complicated

1 2

1 2 1 0

1 2

1 1 2 1 0

...

...

n

n n

n n

n

 E a s a s a s a

 E s b s b s b s b

Prof. D. ManstrettaAA2012-13 55

Page 55: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 55/77

Filter Design Steps

Designspecification

Normalization

 Approximation

Network

Function

Realization

Denormalizati

on

p

 A0

PASS-BAND

STOP-BAND

 

|H| 

s

IN-BAND

RIPPLE

Min

ATTEN

.

FILTER MASK

Prof. D. ManstrettaAA2012-13 56

Page 56: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 56/77

Example 3

• Design a 5th order all-pole low-pass filter using follow-the-

leader feedback architecture

• DC gain = 0dB

• Chebyshev, 5th order, e=0.509, 0=1MHz

0

5 4 3 2

4 3 2 1 0

OUT 

 IN 

V a

V s b s b s b s b s b

Prof. D. ManstrettaAA2012-13 57

Page 57: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 57/77

Design Example of a Chebyshev Filter

• 5th order, e=0.5088

•   n = (1/5) sinh-1(1/0.5088) = 0.2856

• Sinh n = 0.2895 ; Cosh n = 1.041• Normalized poles:

• k=1 s1= sin(/10) x 0.2895 = 0.0895; 1= cos(/10) x 1.041 = 0.99

•  P1 = (s12+ 1

2)1/2 =0.994; Q1 = P1 /(2 s1) = 5.556

• k=2 s2= sin(3/10) x 0.2895 = 0.234; 1= cos(3/10) x 1.041 = 0.612

•  P2 = (s22

+ 22

)1/2

 =0.655; Q2 = P2 /(2 s2) = 1.4• k=3 s1= sin(5/10) x 0.2895 = 0.2895; 1= cos(5/10) x 1.041 = 0

•  P3 = 0.2894

u (2k 1) 

2nv 

1

nsinh

1 1

 sk   s k     j k   sin

(2k  1) 

2n

sinh v   j cos

(2k 1) 

2n

cosh v

2 2 2 21 21 2 3

1 2

( )   P P  P P P 

 P P 

 s s D s s s s

Q Q

   

Prof. D. ManstrettaAA2012-13 58

Page 58: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 58/77

Design Example of a Chebyshev Filter

• Calculate the normalized polynomial coefficients:

5 4 3 24 3 2 1 0( ) D s s b s b s b s b s b

1 24 3

1 2

 P P  P 

 P P 

bQ Q

  

2 2   1 2 3 1 3 23 1 2

1 2 1 2

 P P P P P P  P P 

 P P P P 

bQ Q Q Q

   

2 22 2   1 2 2 1 1 2

2 3 1 2

1 2 2 1

 P P P P P P  P P P 

 P P P P 

bQ Q Q Q

   

2 22 21 2 2 1

1 3 1 2

1 2

 P P P P  P P P 

 P P 

bQ Q

   

2 2

0 3 1 2 P P P b    

2 2 2 21 21 2 3

1 2

( )   P P  P P P 

 P P 

 s s D s s s sQ Q

   

Prof. D. ManstrettaAA2012-13 59

Page 59: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 59/77

Flowgraph

E1

b4

b2

a0

s

1

s

1

s

1

s

1

b0

b3

-1

E2s

1

b1

To de-normalize the coefficients:

b’k= bk 05-k 

If we substitute the integrators with 1/(sRC), the feedback

coefficients are changed as follows: b’’k=bk(RC0)5-k

Prof. D. ManstrettaAA2012-13 60

Page 60: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 60/77

Circuit Implementation

R

VOUT

Rb4

Rb0

VIN

Rb2

CC

R

C

R

C

R

C

R

R

Rb1   Rb0Rb3

0

1

 RC      bk 

 R R

b''k k b b

Prof. D. ManstrettaAA2012-13 61

Page 61: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 61/77

BACKUP SLIDESMATERIALE INTEGRATIVO

Prof. D. ManstrettaAA2012-13 62

Page 62: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 62/77

Pole Quality Factor

0

sP

P

Im(s)

Re(s)

The solutions of D(s)=0 (i.e. the poles of thenetwork function) are complex numbers,

typically represented in the S plane.

sp = sp+jp

Solutions sk can be real or complex.Complex solutions always appear in

conjugate pairs.

 A very important design parameter is the

pole quality factor Q.

The pole quality factor is given by the ratio

between the pole frequency (distance fromthe origin in the s-plane) and the real part

(distance from the imaginary axis in the s-

plane)

S1

S2

  =0

−2  

Prof. D. ManstrettaAA2012-13 63

Page 63: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 63/77

Biquad Magnitude Response

H(j0)=-jQ

 =1

1 + 0   + 0 2 

Frequency response at 0

Two conjugate poles at0

Notice how the network function has been written, with explicit reference to 0 

and Q. This is usually done in biquad-based filter design since it greatly

simplifies the design procedure. 

Prof. D. ManstrettaAA2012-13 64

Page 64: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 64/77

Biquad Phase Response

 =1

1 + 0   + 0 2 

  = − 002 −2 

f(j0)=-/2

Notice how, in low Q poles, the phase starts to move about a decade before the

pole (i.e. much earlier than the magnitude response.

 As we shall see, low Q poles are desirable to lower power consumption and to

minimize the sensitivity of the filter reponse to parameter variations.

Prof. D. ManstrettaAA2012-13 65

Page 65: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 65/77

 Appendix material (use only if needed)

• Poles and poles Q

• Multi-loop feedback architectures (summary)

• Ladder filter synthesis (summary)

• Frequency normalization and de-normalization

Prof. D. ManstrettaAA2012-13 66

Page 66: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 66/77

Example 1

Design of a low-pass biquad:

• DC gain=1

•   0=1MHz

• QP=0.7

2 0

21 1 0

 E a

 E s b s b

2

0 0 0a b       0

1 P b Q

 

Prof. D. ManstrettaAA2012-13 67

Page 67: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 67/77

Flowgraph Implementation

S  -1/s 

b 1 

-1/s S 

b0 

a0 E 1  E 2 

-1

S S  E 2 1

 sRC 

  1

 sRC 

2

0b RC 

1b RC 

2

0a RC 

E1 E3 E

Modify flowgraph using flowgraph rules to simplify circuit

implementation: divide and multiply by RC.

Prof. D. ManstrettaAA2012-13 68

Page 68: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 68/77

Flowgraph (2)

S S  E 2 1

 sRC    1 sRC E1 

E3 E4 

1

-1

1/QP

0

1

 RC 

   To get a 1:1 equivalence with the circuit, let:

C

E2

QPR

RE1

R

R

R

R

C

Circuit

implementation:

bk 

 R R

b

2 E 3 E 

2 E 

Prof. D. ManstrettaAA2012-13 69

Page 69: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 69/77

Generic Biquad Implementation

2

2 1 02

2

1 1 0

a s a s a E 

 E s b s b

'2

2

1 1 0

1 E  E s b s b

' 2

2 2 2 1 0 E E a s a s a

2 '

6 2

 E s E 

+a2 -a1 

a0

 

'

3 2 E sE 

Low-pass output

Band-pass

output

High-pass

output

6 E 

Prof. D. ManstrettaAA2012-13 70

Page 70: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 70/77

Example 2

Design of a low-pass biquad with transmission zero

• DC gain=1

•   0=1MHz

• Q=0.7

•   z=2MHz

22 2 0

2

1 1 0

 E a s a

 E s b s b

2

0 0 0a b       01

 P 

bQ

 

2

0

2   2

 z 

a   

 

Prof. D. ManstrettaAA2012-13 71

Page 71: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 71/77

Flowgraph

+a2 a0 

E2 

2

2 0 2

2

5 1 0

 E a a s

 E s b s b

Prof. D. ManstrettaAA2012-13 72

Page 72: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 72/77

Example 2

S S  E 2 1

 sRC 

  1

 sRC 

02

2

1 1 0

a E 

 E s b s b

2

0b RC 

1b RC 

Start with the poles.Modify flowgraph using flowgraph rules to simplify circuit

implementation: divide and multiply by RC

2

0 0 0a b       01

 P 

bQ

 

2

0a RC 

E1 

E3 E4 

Prof. D. ManstrettaAA2012-13 73

Page 73: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 73/77

Example 2

S S  E 2 1

 sRC 

  1

 sRC 

If we let 0

1

 RC    the flowgraph is simply:

E1 

E3 E4 

1

-1

1/QP

Prof. D. ManstrettaAA2012-13 74

Page 74: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 74/77

Example 2

 Adder circuit implementation:3

4 1 2 P 

 E 

 E E E  Q

RGE1

R

E4

E2

E3

Rb1

Rb0

4

3 1 0

1G

b G b

 E R R

 E R R R

 

4

2 0b

 E R

 E R

1

1 2 G

 P b G

 R

Q R R

1   2 1b P G R Q R

4

1

24

 P 

 E 

 E Q

0b R R

With this implementation we cannot set

the gain independent of the poles Q!

Prof. D. ManstrettaAA2012-13 75

Page 75: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 75/77

Zeros Implementation

The zeros are now implemented with another adder:

2 2

0   z   

2

02 42OUT 

 z 

V E E  

 

S S  E 2 1 sRC 

  1 sRC 

E1 E3 E4 

1

-1

1/QP

VOUT

1

Prof. D. ManstrettaAA2012-13 76

Page 76: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 76/77

Circuit Implementation

E2

R

Ra2

VOUT

R

E4

2

2   2

0

 z a R R

 

 

2

0

2 42OUT  z 

V E E 

 

 

Prof. D. ManstrettaAA2012-13 77

Page 77: High Order OA-RC Filters Design x ELE3

7/23/2019 High Order OA-RC Filters Design x ELE3

http://slidepdf.com/reader/full/high-order-oa-rc-filters-design-x-ele3 77/77

Final Circuit Implementation

E2

R

C

RE1

R

R R

C

R

VOUT

R

E3

E4

2 1 P Q R

2

2

0

 z  R