35
1 Hidden Markov Model Hidden Markov Model Observation : O1,O2, . . . Observation : O1,O2, . . . States in time : q1, q2, . . . States in time : q1, q2, . . . All states : s1, s2, . . . All states : s1, s2, . . . t O O O O , , , , 3 2 1 t q q q q , , , , 3 2 1 Si S j ji a ij a

Hidden Markov Model

Embed Size (px)

DESCRIPTION

Hidden Markov Model. Observation : O1,O2, . . . States in time : q1, q2, . . . All states : s1, s2,. Sj. Si. Hidden Markov Model (Cont’d). Discrete Markov Model. Degree 1 Markov Model. Hidden Markov Model (Cont’d). : Transition Probability from Si to Sj ,. Hidden Markov Model Example. - PowerPoint PPT Presentation

Citation preview

11

Hidden Markov ModelHidden Markov Model

Observation : O1,O2, . . . Observation : O1,O2, . . .

States in time : q1, q2, . . .States in time : q1, q2, . . .

All states : s1, s2, . . .All states : s1, s2, . . .

tOOOO ,,,, 321

tqqqq ,,,, 321

Si Sjjiaija

22

Hidden Markov Model (Cont’d)Hidden Markov Model (Cont’d)

Discrete Markov ModelDiscrete Markov Model

)|(

),,,|(

1

121

itjt

zktitjt

sqsqP

sqsqsqsqP

Degree 1 Markov Model

33

Hidden Markov Model (Cont’d)Hidden Markov Model (Cont’d)

)|( 1, itjtji sqsqPa

ija : Transition Probability from Si to Sj ,

Nji ,1

44

Hidden Markov Model Hidden Markov Model ExampleExample

S1 : The weather is rainyS2 : The weather is cloudyS3 : The weather is sunny

8.01.01.0

2.06.02.0

3.03.04.0

}{ ijaA

rainy cloudy sunnyrainy

cloudy

sunny

55

Hidden Markov Model Example Hidden Markov Model Example (Cont’d)(Cont’d)

Question 1:How much is this probability:Sunny-Sunny-Sunny-Rainy-Rainy-Sunny-Cloudy-Cloudy

22311333 ssssssss

22321311313333 aaaaaaa

87654321 qqqqqqqq410536.1

66

Hidden Markov Model Example Hidden Markov Model Example (Cont’d)(Cont’d)

Question 2:The probability of staying in a state for d days if we are in state Si?

NisqP ii 1),( 1The probability of being in state i in time t=1

)()1()( 1 dPaassssP iiidiiijiii

d Days

77

HMM ComponentsHMM Components

N : Number Of StatesN : Number Of States

M : Number Of OutputsM : Number Of Outputs

A : State Transition Probability MatrixA : State Transition Probability Matrix

B : Output Occurrence Probability in B : Output Occurrence Probability in each stateeach state

: Primary Occurrence Probability: Primary Occurrence Probability),,( BA : Set of HMM Parameters

88

Three Basic HMM ProblemsThree Basic HMM Problems

Given an HMM Given an HMM and a sequence of and a sequence of observations observations O,O,what is the probability what is the probability ? ?

Given a model and a sequence of Given a model and a sequence of observations observations OO, what is the most likely , what is the most likely state sequence in the model that produced state sequence in the model that produced the observations?the observations?

Given a model Given a model and a sequence of and a sequence of observationsobservations O, O, how should we adjust how should we adjust model parameters in order to maximize model parameters in order to maximize ? ?

)|( OP

)|( OP

99

First Problem SolutionFirst Problem Solution

)(),|(),|(11

tq

T

ttt

T

tobqoPqoP

t

TT qqqqqqq aaaqP132211

)|(

)()|(),( yPyxPyxP

)|(),|()|,( zyPzyxPzyxP We Know That:

And

1010

First Problem Solution (Cont’d)First Problem Solution (Cont’d)

)|(),|()|,( qPqoPqoP

)()()(

)|,(

122111 21 Tqqqqqqqq obaobaob

qoP

TTT

T

TTTqqq

Tqqqqqqqq

q

obaobaob

qoPoP

21

122111)()()(

)|,()|(

21

Account Order : )2( TTNO

1111

Forward Backward ApproachForward Backward Approach

)|,,,,()( 21 iqoooPi ttt

Niobi ii 1),()( 11

Computing )(it

1) Initialization

1212

Forward Backward Approach Forward Backward Approach (Cont’d)(Cont’d)

NjTt

obaij tjij

N

itt

1,11

)(])([)( 11

1 2) Induction :

3) Termination :

N

iT ioP

1

)()|(

Account Order : )( 2TNO

1313

Backward Variable ApproachBackward Variable Approach

),|,,,()( 21 iqoooPi tTttt

NiiT 1,1)(1) Initialization

2)Induction

NjAndTTt

jobaiN

jttjijt

11,,2,1

)()()(1

11

1414

Second Problem SolutionSecond Problem Solution

Finding the most likely state sequenceFinding the most likely state sequence

N

itt

ttN

it

t

ttt

ii

ii

iqoP

iqoP

oP

iqoPoiqPi

11

)()(

)()(

)|,(

)|,(

)|(

)|,(),|()(

Individually most likely state :

NntTtiq tt 1,1)],(max[arg*

1515

Viterbi AlgorithmViterbi Algorithm

Define : Define :

Ni

qqq

oooiqqqqP

i

t

ttt

t

1

,,,

]|,,,,,,,,[max

)(

121

21121

P is the most likely state sequence with this conditions : state i , time t and observation o

1616

Viterbi Algorithm (Cont’d)Viterbi Algorithm (Cont’d)

)(].)(max[)( 11 tjijti

t obaij

1) Initialization

0)(

1),()(

1

11

i

Niobi ii

)(it Is the most likely state before state i at time t-1

1717

Viterbi Algorithm (Cont’d)Viterbi Algorithm (Cont’d)

NjTt

aij

obaij

ijtNi

t

tjijtNi

t

1,2

])([maxarg)(

)(])([max)(

11

11

2) Recursion

1818

Viterbi Algorithm (Cont’d)Viterbi Algorithm (Cont’d)

)]([maxarg

)]([max

1

*

1

*

iq

ip

TNi

T

TNi

3) Termination:

4)Backtracking:

1,,2,1),( *11

* TTtqq ttt

1919

Third Problem SolutionThird Problem Solution

Parameters Estimation using Baum-Parameters Estimation using Baum-Welch Or Expectation Maximization Welch Or Expectation Maximization (EM) Approach(EM) Approach

Define:

N

i

N

jttjijt

ttjijt

tt

ttt

jobai

jobai

oP

jqiqoP

ojqiqPji

1 111

11

1

1

)()()(

)()()(

)|(

)|,,(

),|,(),(

2020

Third Problem Solution Third Problem Solution (Cont’d)(Cont’d)

N

jtt jii

1

),()(

1

1

)(T

tt i

T

tt ji

1

),(

: Expectation value of the number of jumps from state i

: Expectation value of the number of jumps from state i to state j

2121

Third Problem Solution Third Problem Solution (Cont’d)(Cont’d)

)(1 ii

T

tt

T

tt

ij

i

jia

1

1

)(

),(

T

tt

Vo

T

tt

j

j

j

kb kt

1

1

)(

)(

)(

2222

Baum Auxiliary FunctionBaum Auxiliary Function

q

qoPqoPQ )|,(log)'|,()|( '

)|()|(

)',(),(: ''

oPoP

QQif

By this approach we will reach to a local optimum

2323

Restrictions Of Restrictions Of Reestimation FormulasReestimation Formulas

11

N

ii

NiaN

jij

1,11

NjkbM

kj

1,1)(1

2424

Continuous Observation Continuous Observation DensityDensity

We have amounts of a PDF instead of We have amounts of a PDF instead of

We haveWe have

)|()( jqVoPkb tktj

1)(,),,()(1

dooboCob j

M

kjkjkjkj

Mixture Coefficients

Average Variance

2525

Continuous Observation Continuous Observation DensityDensity

Mixture in HMMMixture in HMM

),,()( jkjkjkk

j oCMaxob

M2|1M1|1

M4|1M3|1

M2|3M1|3

M4|3M3|3

M2|2M1|2

M4|2M3|2

S1 S2 S3Dominant Mixture:

2626

Continuous Observation Continuous Observation Density (Cont’d)Density (Cont’d)

Model Parameters:Model Parameters:

),,,,( CA

N×N N×M×K×KN×M×KN×M1×N

N : Number Of StatesM : Number Of Mixtures In Each StateK : Dimension Of Observation Vector

2727

Continuous Observation Continuous Observation Density (Cont’d)Density (Cont’d)

T

t

M

kt

T

tt

jk

kj

kjC

1 1

1

),(

),(

T

tt

t

T

tt

jk

kj

okj

1

1

),(

),(

2828

Continuous Observation Continuous Observation Density (Cont’d)Density (Cont’d)

T

tt

jktjkt

T

tt

jk

kj

ookj

1

1

),(

)()(),(

),( kjt Probability of event j’th state and k’th mixture at time t

2929

State Duration ModelingState Duration Modeling

Si Sj

Probability of staying d times in state i :

)1()( 1ii

diii aadP

jia

ija

3030

State Duration Modeling State Duration Modeling (Cont’d)(Cont’d)

Si Sjjia

……. …….

HMM With clear duration

ija )(dPj)(dPi

3131

State Duration Modeling State Duration Modeling (Cont’d)(Cont’d)

HMM consideration with State Duration :HMM consideration with State Duration :– Selecting using ‘sSelecting using ‘s– Selecting usingSelecting using– Selecting Observation Sequence Selecting Observation Sequence

using using in practice we assume the following in practice we assume the following

independence:independence:

– Selecting next state using transition probabilities Selecting next state using transition probabilities . We also have an additional constraint: . We also have an additional constraint:

),(),,,(1

1

11 121 tq

d

tdq OtbOOOb

iiq 1

dOOO ,,, 21 )(

1dPq1d

21qqa

),,,(11 21 dq OOOb

jq 2

011qqa

3232

Training In HMMTraining In HMM

Maximum Likelihood (ML)Maximum Likelihood (ML)

Maximum Mutual Information (MMI)Maximum Mutual Information (MMI)

Minimum Discrimination Information (MDI)Minimum Discrimination Information (MDI)

3333

Training In HMMTraining In HMM

Maximum Likelihood (ML)Maximum Likelihood (ML)

)|( 1oP

)|( 2oP)|( 3oP

)|( noP

.

.

.

)]|([*V

rOPMaximumP

ObservationSequence

3434

Training In HMM (Cont’d)Training In HMM (Cont’d)

Maximum Mutual Information (MMI)Maximum Mutual Information (MMI)

)()(

)|,(log),(

POP

OPOI

v

ww

v

wPwOP

OPOI

1

)(),|(log

)|(log),(

Mutual Information

}{, v

3535

Training In HMM (Cont’d)Training In HMM (Cont’d)

Minimum Discrimination Information Minimum Discrimination Information (MDI)(MDI)

dooP

oqoqPQI )|(

)(log)():(

),,,( 21 TOOOO

),,,( 21 tRRRR Observation :

Auto correlation :

):(inf),( PQIPR )(RQ