38
Plasma Arc Welding Simulation with OpenFOAM MARGARITA SASS-TISOVSKAYA Supervisor : Isabelle Choquet, Co-supervisor : Håkan Nilsson* Examiner : Lars Davidson* Dept. of Engineering Science Högskolan Väst *Dept. of Applied Mechanics, Chalmers University of Technology Licentiate : 17 December 2009 Volvo Construction Equipment HÖGSKOLAN VÄST

HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Embed Size (px)

Citation preview

Page 1: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Plasma Arc Welding Simulation with OpenFOAM

MARGARITA SASS-TISOVSKAYA

Supervisor : Isabelle Choquet, Co-supervisor : Håkan Nilsson*Examiner : Lars Davidson*

Dept. of Engineering ScienceHögskolan Väst

*Dept. of Applied Mechanics, Chalmers University of Technology

Licentiate : 17 December 2009

Volvo Construction Equipment

HÖGSKOLAN VÄST

Page 2: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Outline:

Introduction and motivation

Problem description and main assumptions

Mathematical model

Implementation

Results and discussions

Summary and future work

Page 3: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Introduction:

Glowdischarge

Arc discharge

V (Volt)

I (Ampere)

500

1010− 510− 1 100

10

Page 4: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Motivation: tandem arc welding

Figure : Tandem arc welding in operation (ESAB)

Two heat sources

High deposition efficiency

Stability issue

Extreme operating conditions

Difficult experimental investigation

Need for numerical simulations

Page 5: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Aim of this study:

Develop a 3D simulation tool valid within the frame of tandem arcs.

Methodology used:

Implementation in the open-source CFD software OpenFOAM Well documented welding arc test case:

single arc Tungsten Inert Gas (TIG) welding

Page 6: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Outline:

Introduction and motivation

Problem description and main assumptions

Mathematical model

Implementation

Results and discussions

Summary and future work

Page 7: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Problem description: Tungsten Inert Gas welding

CER

AM

IC N

OZZLE

CER

AM

IC N

OZZLE

ARC

SHIELDINGGAS

ANODE

CATHODE

Page 8: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Problem description: arc plasma flow

Newtonian fluid, laminar and incompressible

Thermally expansible fluid

Local thermodynamic equilibrium (LTE) , Te=Th.

Negligible heat dissipation due to viscous effects

Optically thin media, i.e. no radiative absorption

Local electrical neutrality

Steady electromagnetic phenomena

Negligible magnetic convection compared to the magnetic diffusion

Page 9: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Outline:

Introduction and motivation

Problem description and main assumptions

Mathematical model

Implementation

Results and discussions

Summary and future work

Page 10: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Governing equations: thermal fluid

Continuity equation

Where is the density and is the velocity.)(Tρρ = U

( ) 0=⋅∇+∂∂ U

tρρ

Momentum equations

where is the effective viscosity

( ) ( ) ( ) Bjp=IUμU+UμUUUt

T ×+∇−

⋅∇−∇∇⋅∇−⋅∇+

∂∂

32)(ρρ

)(Tµµ =

Viscous friction for Newtonian fluidLorenz Force

Enthalpy equation

( ) er S+SEj+pU=hαhρUht

−⋅∇⋅∇⋅∇−⋅∇+∂∂ )(ρ

Joule heating

Radiation loss

Transport of electron enthalpy

Page 11: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Governing equations: electromagnetism

Electric potential equation

is the electric potential, is the electric conductivity

Magnetic potential equation

where is permeability of vacuum, the magnetic potential vector

( ) 0=φσ∇⋅∇

φσμ=A 0∇∇2

ϕ

A

)(Tσσ =

Page 12: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Governing equations

The magnetic field can be derived in 2 ways: B

1st : for general 3D case

2nd : only for axisymmetric case

AB ×∇= where magnetic potential vectorA

xjrB

0µ−=∂∂ Θ where a cylindrical coordinate system is used ),,( xr Θ

No need to solve the magnetic potential equation

Page 13: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Outline:

Introduction and motivation

Problem description and main assumptions

Mathematical model

Implementation

Results and discussions

Summary and future work

Page 14: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

buoyantSimpleFoam solver

The buoyantSimpleFoam solver is a standard, steady-state solver for buoyant, turbulent flow of compressible fluids used for ventilation and heat transfer.

arcFoam solver

The simulation tool developed for arc welding problem

Page 15: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Continuity equation:

)(Tρρ =

( ) 0=⋅∇+∂∂ U

tρρ

Governing equations

( ) 0=ρU⋅∇

buoyantSimpleFOAM solver arcFOAM solver

ρ= pRTwhere where

Page 16: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Momentum equations :

Governing equations

buoyantSimpleFOAM solver arcFOAM solver

( )

( ) ( ) Bjp=IUμU+Uμ

UUUt

T ×+∇−

⋅∇−∇∇⋅∇

−⋅∇+∂∂

32

)(ρρ

( ) ( ) p=IUμU+Uμ

UU

T −∇

⋅∇−∇∇⋅∇

−⋅∇

32

)(ρ

Page 17: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Enthalpy equation:

Governing equations

buoyantSimpleFOAM solverarcFOAM solver

( )

er S+SEj+pU=

hαhρUht

−⋅∇⋅

∇⋅∇−⋅∇+∂∂ )(ρ( ) pU=hαhρU ∇⋅∇⋅∇−⋅∇

pCρκα =where

pCρκα =where

Page 18: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

buoyantSimpleFOAM solver arcFOAM solver

Governing equations

( ) 0=φσ∇⋅∇

φσμ=A 0∇∇2

Electric potential and magnetic potential equations:

Page 19: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Outline:

Introduction and motivation

Problem description and main assumptions

Mathematical model

Implementation

Results and discussions

Electromagnetic test case

TIG test case

Summary and future work

Page 20: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Validation of the electromagnetic part

( ) 0=φσ∇⋅∇

φσμ=A 0∇∇2

Figure: Electric rod

I

][51 11 −− Ω−= meσ

][2700 11 −− Ω= mσ

Governing equations

Page 21: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Validation of the electromagnetic part

0=∂∂

nA

0=∂∂

707=ϕFigure: Computational domain

0=A

0=ϕ

Elsewhere B.C.:

Boundary conditions

Page 22: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Validation of the results [T

esla

m] I

x

R

Page 23: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Validation of the results

ΘB

[Tesla]

Page 24: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

A0

B0

B1

B4B3

B2

A1A2

A4

A3

Block 0

Block 1

Test of boundary conditions

Rtop

Rside

Case 1: 0=A Case 2: at Rtop0=A

Case 3: at Rside0=A

Case 4: 0=AB0

Page 25: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Validation of the results [T

esla

m] 0=A Case 4:

Case 3: at Rside0=A

Others

Page 26: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Validation of the results [T

esla

]

0=A Case 4:

Case 3: at Rside0=A

Case 3: at Rside0=A

0=A Case 4:

Others

ΘB

[Tesla]

Page 27: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Conclusion on the rod test cases

Test with a known solution:

Analytical solution for magnetic potential vector and magnetic field are available

good agreement between the numerical and analytical solutions

Tests on various boundary conditions for the magnetic potentials:

4 boundary conditions were tested

boundary condition of case 1 retained for TIG test case

Page 28: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Outline:

Introduction and motivation

Problem description and main assumptions

Mathematical model

Implementation

Results and discussions

Electromagnetic test case

TIG test case

Summary and future work

Page 29: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

TIG test case:

Anode surface is considered to be flat

Axi-symmetric geometry

Argon shielding gas

200 A electric current

Page 30: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

TIG test case:

Cathode tip at 20 000K

Linear temperature distribution on cathode sides

anode surface temperature distribution set using experimental measurements

Boundary conditions

Page 31: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Results. Velocity vectors without electromagnetism

2.9 m/s

Page 32: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

ANODE

Results. Velocity vectors with electromagnetic

70 m/s 160 m/s

AB ×∇=xjr

B0µ−=∂

∂ Θ

Page 33: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Results. Velocity evaluated along the symmetry axis for both cases.

AB ×∇=

xjrB

0µ−=∂∂ Θ

x

Case 1:

Case 2:

Page 34: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Results. Radial distribution of the x-velocity for both cases evaluated x=1 mm.

xjrB

0µ−=∂∂ Θ

AB ×∇=

yX=1

Case 1:

Case 2:

Page 35: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Results. Temperature profile

From large radius to small radius, the isotherms correspond to 10000,

12000, 14000, 16000, 18000, 20000 and 22000 K.

AB ×∇= xjrB

0µ−=∂∂ Θ

Page 36: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Conclusion on TIG test case

Two methods have been tested for computing the magnetic field

based on the electric potential (2D½)

based on the magnetic potentials (3D)

Qualitatively, similar behavior was observed:

bell-shaped temperature profile

high velocity plasma jet

Quantitative analysis showed a visible disagreement

50% difference in the maximum velocity value

different distributions of the isotherms

Method based on the electric potential yields better agreement with the results found in the literature

Page 37: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Conclusion:

The electromagnetic part of the simulation tool:

Tested separately using a problem with a known analytical solution.

Tests of various boundary conditions for the electromagnetic potential have been done.

A simulation tool that is valid within the field of tandem arc welding:

Fully three dimensional tool

Coupled thermal fluid flow and electromagnetic fields

Includes thermodynamic properties suited to a plasma arc

The complete simulation tool :

A tungsten inert gas single arc problem (TIG)

Two methods for computing the magnetic field have been tested

Page 38: HÖGSKOLAN VÄST Plasma A rc Welding Simulation …hani/pdf_files/MargaritaLic.pdfPlasma A rc Welding Simulation with OpenFOAM. ... Local thermodynamic equilibrium (LTE) , Te=Th

Future work :

Investigation of the disagreement in the results for two representations of the magnetic field.

Supplement for tandem arc welding:

Implement thermophysical data tables for CO2

Test case with tilted cathode geometry

Implement heat and electromagnetic equations inside the electrodes

Introduce the dynamics of the droplet and welding pool