22
Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018

Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Singularity formation in black hole interiors

Grigorios Fournodavlos

DPMMS, University of Cambridge

Heraklion, Crete, 16 May 2018

Page 2: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Outline

The Einstein equationsExamplesInitial value problem

Large time behaviourGlobal existence vs blow upCosmic censorship hypothesis

Spherical symmetryResolution of the scalar field model

Beyond spherical symmetry ‘near’ SchwarzschildConstruction of singular solutionsNon-linear dynamics in polarized axisymmetry

Page 3: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

1. The Einstein equations

Page 4: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

The Einstein equations

Geometric background: A Lorentzian manifold (M1+3, g) ofsignature (−,+,+,+), endowed with the topologyM1+3 ∼= R× Σ3.

Σ

γ∂t

γ̇

LX

g(X,X) > 0g(L,L) = 0g(γ̇, γ̇) < 0

Page 5: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

The Einstein equations

The Einstein equations (EE) stipulate that g satisfies:

Rab(g)− 1

2gabR(g) = 8πTab, a, b = 0, 1, 2, 3,

where Rab(g) is the Ricci curvature of g , R(g) its scalar curvatureand Tab the energy-momentum tensor of a matter field(electromagnetic, fluid etc.), satisfying the conservation laws:1

∇aTab = 0, b = 0, 1, 2, 3.

In vacuum, Tab = 0, the EE reduce to

Rab(g) = 0, a, b = 0, 1, 2, 3. (EVE)

1By virtue of the second Bianchi identity.

Page 6: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

The Einstein equationsExamples

I The flat solution: Minkowski (R1+3,m),m = −dt2 + dx21 + dx22 + dx23

t

r = 0

i+

i0

I+

I−{(t− t0)

2 =∑3

i=1(xi − pi)2}

(t0, p1, p2, p3)

i−

Page 7: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

The Einstein equationsExamples

I The Schwarzschild solution (M1+3, g),M1+3 ∼= R× R+ × S2: (vacuum & spherically symmetric)2

g = −(1− 2M

r)dt2 + (1− 2M

r)−1dr2 + r2dS2, M > 0,

r = 0

r = 0

I+

i+

i0

H+

I−I−

I+

H+

H−H−t = 0

i0

H± = {r = 2M}

BH

BH :=M1+3 \ J−(I+)|Riem| ∼ r−3γ1

γ2

i+

i−i−

2Rigidity, Birkhoff’s theorem.

Page 8: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

The Einstein equationsInitial value problem

I In wave coordinates (x0, x1, x2, x3):

�gxi = 0, �g = (g−1)ab(∂ab − Γkab∂k)

Γi := (g−1)abΓiab = 0

the EVE take the hyperbolic form

�ggab = Q(g−1, ∂g)

Theorem (Choquet-Bruhat & Geroch ’69)

Any asymptotically fact initial data set (Σ, g ,K ) for the EVE,gives rise to a unique maximal development.

Page 9: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

The Einstein equationsInitial data sets

I Minkowski: Σ = R3, g = dx21 + dx22 + dx23 , K = 0.

I Schwarzschild: Σ = R× S2, g = (1− 2Mr )−1dr2 + r2dS2,

K = 0.

I Constraint equations (in vacuum):{R(g)− |K |2 + (trgK )2 = 0

∇aKab −∇btrgK = 0, b = 1, 2, 3

Page 10: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

2. Large time behaviour

Page 11: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Large time behaviourGlobal existence vs Blow up

I The flat solution is stable: Christodoulou-Klainerman ’93,Lindblad-Rodnianski ’10,. . .

I The Schwarzschild exterior is linearly stableDafermos-Holzegel-Rodnianski ’16, within the Kerr family ofsolutions, K(a,M), |a| < M.

Σ

I+

H+H+

r = 0

I+

i+i+

i0 i0

CH+CH+

K(a,M), 0 < |a| < M

a = 0, Schwarzschild

Page 12: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Large time behaviourGlobal existence vs blow up

I No general blow up mechanism.

I Inside a black hole region, the space-time “breaks down”(Penrose ’65). However, the nature of the breakdown is notgiven (geodesically incomplete). The presence of such aregion is a stable phenomenon.

Page 13: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Large time behaviourCosmic censorship hypothesis

Theoretical tests of GR proposed by Penrose ’69:

I Strong cosmic censorship hypothesis: Einsteinian maximaldevelopments, for reasonable matter models, arising fromgeneric, asymptotically flat initial data are inextendible assuitably regular Lorentzian manifolds.

I Weak cosmic censorship hypothesis: All future singularitiesshould be contained in black holes (no naked singularities). Inother words, future null infinity I+ should be complete.

I Examples: The Minkowski and Schwarzschild solutions satisfyboth weak and strong cosmic censorship, while Kerr satisfiesweak cosmic censorship, but violates strong cosmic censorship.

Page 14: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

3. Spherical symmetry

Page 15: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Spherical symmetryResolution of the scalar field model

Consider the energy-momentum tensor of a massless-scalar field:

Tab = ∂aϕ∂bϕ−1

2gab∂

kϕ∂kϕ

The Einstein equations are complemented with the equations ofmotion ∇aTab = 0:

Rab(g)− 1

2gabR(g) = 8π(∂aϕ∂bϕ−

1

2gab∂

kϕ∂kϕ)

�gϕ = 0

Page 16: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Spherical symmetryResolution of the scalar field model

Theorem (Christodoulou 90’s)

Spherically symmetric solutions to the Einstein-scalar fieldequations, arising from asymptotically flat, 1-ended initial data fallin either of the three cases:

r = 0r = 0

I+I+

ΣΣ

i+ i+

i0 i0

r = 0

H+

I. Small data II. Large data

Page 17: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Spherical symmetryResolution of the scalar field model

and

I+

r = 0

Σ

III. Naked singularity

However, the third case is unstable (non-generic).

Page 18: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

4. Beyond spherical symmetry ‘near’-Schwarzschild

Page 19: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Beyond spherical symmetry ‘near’ Schwarzschild

I Exterior region: Conjecturally stable, within the Kerr family ofsolutions. Only linearised stability has been proven.

I Interior region: Conjectural picture is unknown. Singularityformation or violation of strong cosmic censorship (as inKerr)? Spacelike or null inner boundary? Monotonic blow upor chaotic? (BKL)

Page 20: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Beyond spherical symmetry ‘near’ SchwarzschildConstruction of singular solutions

Idea: Prescribe initial data for the EVE at Σ0, such that

g = gS + rαh, K = KS + rαu, h, u smooth, α > 0,

and solve backwards-in-time, without any symmetry assumptions.

r = 0

Σ0

Σ1

Theorem (F. ’16)

For α� 1, such a construction is possible, generating solutions tothe EVE which exhibit a Schwarzschild type singularity at acollapsed sphere.

Page 21: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Beyond spherical symmetry ‘near’ SchwarzschildNon-linear dynamics in polarized axisymmetry

Assume g admits a spacelike Killing vector field ∂ϕ with S1 orbits,which is also hypersurface orthogonal:

g =∑

a,b=0,1,2

habdxadxb + e2γdϕ2

In this symmetry class, the EVE reduce to the system (Weinstein’90):

�gγ = 0

Rab(h) =∇abγ +∇aγ∇bγ

Note: Under the additional conformal change h̃ := e2γh, the aboveequations transform into the Einstein-scalar field model.

Page 22: Heraklion, Crete, 16 May 2018users.tem.uoc.gr/~komineas/PDEs2018/Talks/Fournodavlos.pdf · Beyond spherical symmetry ‘near’ Schwarzschild Non-linear dynamics in polarized axisymmetry

Beyond spherical symmetry ‘near’ SchwarzschildNon-linear dynamics in polarized axisymmetry

The Schwarzschild solution:

hS = − (2M

r− 1)−1dr2 + (

2M

r− 1)dt2 + r2dθ2,

γS = log r + log sin θ

On the other hand, the Kerr metric is axisymmetric, but notpolarized. Restricting to polarized axisymmetric perturbations ofSchwarzschild:

I Exterior region: Conjectural asymptotic convergence toSchwarzschild (possibly of different M), seeKlainerman-Szeftel ’17.

I Interior region: (work on progress w/ Alexakis) Strongevidence for stable spacelike singularity formation, where|Riem| ∼ r−3.