2
EN 16430 Thermal outputs and cooling capacities finally comparable! Until now there has been no uniform standard for determining the performance of heating/cooling trenches. The EN 16430 valid as from March 2015 provides common standards which apply with immediate effect. New EN standard for trench heating/cooling The EN 16430 defines details for measuring performance data for heating/cooling trenches under real-life conditions and puts an end to uncertainties in the design and in comparing performance data of different manufacturers. Thermal outputs and cooling capacities The standard defines details for measuring performance data for heating/cooling trenches based on EN 442. Three parts of EN 16430 specify the measurements. kampmann.de Test set-up, cooling test Non short-cut optimised air outlet Short-cut optimised air outlet Comparison of air flow patterns The diagram shows the major differences of the air flow of short-cut optimised and non short-cut optimised heating/cooling trenches in cooling mode. With the short-circuit optimised model the air at the façade rises significantly higher, blends and penetrates deeper into the room at a higher temperature. The result is a more even temperature distribution and higher comfort in the occupied zone. Heating/cooling trenches with a high short-cut percentage only provide part of the performance to the room. Performance data based on the entering air temperature are especially misleading as this can be significantly lower than the reference air temperature (room air temperature). The development and design of the Katherm HK have been optimised to minimise the short-cut as far as technically possible. All performance data refer to the reference air temperature measured at a distance of 2 m from the façade, the area in the room occupied by people. Part 1 Technical specifications and requirements Part 2 Test method and rating for thermal output Part 3 Test method and rating for cooling capacity The EN 16430 part 3 considers the special requirements for cooling mode. The reference air temperature is measured in the centre of the test booth at a distance of 2 m from the façade at a height of 0.75 m above FFL. The reference air temperature must not be mixed up with the entering air temperature into the coil which may deviate due to the inevitable short-cut between leaving air and entering air. Kampmann has been measuring and publishing the thermal outputs and cooling capacities of convectors in compliance with this standard! The following trench heaters have been designed according to EN 16430 and therefore correspond to the technical standard: Katherm NK Katherm QK Katherm HK Katherm NX Katherm QX EN 16430 March 2015 Tested acc. to: Kampmann 0lU] '(876&+(1250 ,&6 ',1(1 *HEOlVHXQWHUVWW]WH+HL]N|USHU.RQYHNWRUHQXQG 8QWHUIOXUNRQYHNWRUHQ± 7HLO7HFKQLVFKH6SH]LILNDWLRQHQXQG$QIRUGHUXQJHQ 'HXWVFKH)DVVXQJ(1 )DQDVVLVWHGUDGLDWRUVFRQYHFWRUVDQGWUHQFKFRQYHFWRUV± 3DUW7HFKQLFDOVSHFLILFDWLRQVDQGUHTXLUHPHQWV *HUPDQYHUVLRQ(1 5DGLDWHXUVDVVLVWpVSDUYHQWLODWHXUFRQYHFWHXUVHWFRQYHFWHXUVGHFDQLYHDX[± 3DUWLH6SpFLILFDWLRQVWHFKQLTXHVHWH[LJHQFHV 9HUVLRQDOOHPDQGH(1 14 °C 23 °C 18 °C CHW 6/12 °C Reference air temperature 24 °C ca. 150 - 300 mm 750 mm 700 mm 2 m Façade surface temperature 28 °C Reference air temperature 24 °C 17 °C 26 °C 25 °C CHW 6/12 °C ca. 500 - 800 mm 1800 mm (1500 - 2100 mm) 750 mm 2 m Façade surface temperature 28 °C

*HEOlVHXQWHUVW W]WH +HL]N|USHU .RQYHNWRUHQ XQG ... · VDI 2078. Grundlagen Kühlleistungen Die Kühlleistungen der Unterflurkonvektoren Ascotherm eco wurden nach E DIN EN 16430 „Gebläseunterstützte

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • EN 16430

    Thermal outputs and cooling capacities finally comparable!

    Until now there has been no uniform standard for determining the performance of heating/cooling trenches. The EN 16430 valid as from March 2015 provides common standards which apply with immediate effect.

    New EN standard for trench heating/cooling

    The EN 16430 defines details for measuring performance data for heating/cooling trenches under real-life conditions and puts an end to uncertainties in the design and in comparing performance data of different manufacturers.

    Thermal outputs and cooling capacitiesThe standard defines details for measuring performance data for heating/cooling trenches based on EN 442.Three parts of EN 16430 specify the measurements.

    kampmann.de

    Test set-up, cooling test

    Non short-cut optimised air outlet Short-cut optimised air outlet

    Comparison of air flow patternsThe diagram shows the major differences of the air flow of short-cut optimised and non short-cut optimised heating/cooling trenches in cooling mode. With the short-circuit optimised model the air at the façade rises significantly higher, blends and penetrates deeper into the room at a higher temperature. The result is a more even temperature distribution and higher comfort in the occupied zone.

    Heating/cooling trenches with a high short-cut percentage only provide part of the performance to the room. Performance data based on the entering air temperature are especially misleading as this can be significantly lower than the reference air temperature (room air temperature).

    The development and design of the Katherm HK have been optimised to minimise the short-cut as far as technically possible. All performance data refer to the reference air temperature measured at a distance of 2 m from the façade, the area in the room occupied by people.

    Part 1 Technical specifications and requirements Part 2 Test method and rating for thermal outputPart 3 Test method and rating for cooling capacity

    The EN 16430 part 3 considers the special requirements for cooling mode. The reference air temperature is measured in the centre of the test booth at a distance of 2 m from the façade at a height of 0.75 m above FFL. The reference air temperature must not be mixed up with the entering air temperature into the coil which may deviate due to the inevitable short-cut between leaving air and entering air.

    Kampmann has been measuring and publishing the thermal outputs and cooling capacities of convectors in compliance with this standard!

    The following trench heaters have been designed according to EN 16430 and therefore correspond to the technical standard:

    Katherm NK Katherm QK Katherm HK

    Katherm NX Katherm QX

    EN 16430March 2015

    Tested acc. to:

    Kampmann

    Nor

    men

    -Dow

    nloa

    d-B

    euth

    -Kam

    pman

    n G

    mbH

    -KdN

    r.503

    659-

    LfN

    r.696

    0538

    001-

    2015

    -02-

    25 1

    3:03

    Reference air temperature24 °C

    17 °C

    26 °C

    25 °CCHW 6/12 °C

    ca. 5

    00 -

    800

    mm

    1800

    mm

    (15

    00 -

    210

    0 m

    m)

    750

    mm

    2 m

    14 °C

    23 °C

    18 °CCHW 6/12 °C

    Reference air temperature24 °C

    ca. 1

    50 -

    300

    mm

    750

    mm

    700

    mm

    2 m

    Façade surface temperature28 °C

    Façade surface temperature28 °C

    Reference air temperature24 °C

    17 °C

    26 °C

    25 °CCHW 6/12 °C

    ca. 5

    00 -

    800

    mm

    1800

    mm

    (15

    00 -

    210

    0 m

    m)

    750

    mm

    2 m

    14 °C

    23 °C

    18 °CCHW 6/12 °C

    Reference air temperature24 °C

    ca. 1

    50 -

    300

    mm

    750

    mm

    700

    mm

    2 m

    Façade surface temperature28 °C

    Façade surface temperature28 °C

    www.kampmann.de

  • Details of different manufacturers on the calculation of cooling capacities

    Comparison of measured data and literature data of an alternative manufacturer. Measuring conditions: Cooling CHW 7/12 °C, tr = 25 °C, 50 % r. H.; Heating LPHW 75/65 °C, tr = 20 °C

    1. The performance data of trench heating/cooling is to be measured according to EN 16430. This especially applies to the cooling capacity. Only then can you be sure that the required design data will be achieved in your projects.

    2. Fan-assisted heating/cooling trenches should always be dimensioned on the basis of the sound power data. A selection based on the fan speed or fan stage is not recommended. Only then it can be guaranteed that the necessary thermal outputs or cooling capacities will be

    reached within the sound level limits.

    Please keep in mind when selecting trench heating/cooling:

    94 Preise und Technik 2014-D/A Preise ohne gesetzliche Mehrwertsteuer. Technische Änderungen vorbehalten.

    Wei

    tere

    In

    form

    atio

    nen

    Planungs-, Montage- und Installationshinweise, Kühlleistungen

    Ascotherm® ecoWeitere Informationen

    Berechnung allgemeine InformationenDie Berechnung der Kühllast von Gebäuden erfolgt nach VDI 2078.

    Grundlagen KühlleistungenDie Kühlleistungen der Unterflurkonvektoren Ascotherm eco wurden nach E DIN EN 16430 „Gebläseunterstützte Heizkörper, Konvektoren und Unterflurkonvektoren“ Teil 1: „Technische Spezifikationen und Anforderungen“ sowie Teil 3 „Prüfverfahren und Bewertung der Kühlleistung“ gemessen und ermittelt.

    Norm-Kühlleistung PKN (ΔT = 10 K)Als Norm-Kühlleistung gesamt PKN in Watt eines Ascotherm eco wird der Kältestrom bezeichnet, der unter folgenden Bedin-gungen abgegeben wird:

    t1 [°C] = Kaltwassereintritt t1 = 16 °C

    t2 [°C] = Kaltwasseraustritt t2 = 18 °C

    tr [°C] = Raumtemperatur tr = 27 °C

    Luftdruck p = 1013 hPa

    Relative Luftfeuchtgkeit ϕ

    Daraus ergibt sich die mittlere Kühlwassertemperatur tm in °C.

    tm =t1 + t2

    =16 + 18

    = 17 °C2 2

    Berechnung

    Kühlleistung PK (von ΔT = 10 K abweichend)Bei Untertemperaturen ΔT, die von ΔT = 10 K abweichen, errech-net sich die Kühlleistung wie folgt:

    PK = PKN xΔT

    n

    oder PK = PKN x CKΔTn

    wobei n = Exponent und CK = Korrekturfaktor der Leistungscha-rakteristik ist (siehe technische Daten). Die Temperaturdifferenz ΔT ist logarithmisch wie folgt zu rechnen:

    ΔT =(t1 - tr) - (t2 - tr)

    =(t1 - t2 )

    ln(t1 - tr)

    ln(t1 - tr)

    (t2 - tr) (t2 - tr)

    Die Untertemperatur ΔT bei Normbedingungen (16 / 18 / 27 °C) beträgt als logarithmische Untertemperatur:

    ΔTn =16- 18

    = 9,97 K

    ln16 - 2718 - 27

    Berechnungs-Beispiel

    KC281 mit L = 2000 mm; H = 130 mm; T = 310 mm

    Ascotherm eco:

    - Norm-Kühlleistung gesamt PKN = 882 Watt

    - Exponent n = 1,00

    - Ansteuerspannung 5 V

    Betriebsbedingungen:

    - Vorlauftemperatur t1 = 17 °C

    - Rücklauftemperatur t2 = 19 °C

    - Raumlufttemperatur tr = 26 °C

    ΔT =17 - 19

    =2

    =2

    =2

    = 7,96 K

    ln17 - 26

    ln9 ln1,29 0,2513

    19 - 26 7

    PK = PKN x CK = 882 x7,96

    1,00

    = 882 x 0,7984 = 704 W9,97

    Manufacturer A (catalogue extract)

    Manufacturer B (catalogue extract)

    Manufacturer C (catalogue extract)

    0,0 db(A) 10,0 db(A) 20,0 db(A) 30,0 db(A) 40,0 db(A) 50,0 db(A) 60,0 db(A)0 W

    500 W

    1000 W

    1500 W

    2000 W

    2500 W

    3000 W

    3500 W

    4000 W

    4500 W

    Actual Heat output, measured

    Deviation in percentageapprox. 30 %

    Heat outputs as per literature

    Actual cooling capacities, measured

    Cooling capacities as per literature

    Ther

    mal

    out

    puts

    /Coo

    ling

    capa

    citie

    s [W

    ]

    Sound power level [dB(A)]

    Details on the cooling capacity diagramsThe total cooling capacity in condensing mode may deviate within the admissible standard tolerances due to the simplified reference to the medium heat exchanger undertemperature.

    An air inlet temperature range of 22 – 30 °C at a relative humidity of 50 % is assumed in this case.

    Thermal output tested in compliance with EN 442 or 470445199910 resp.

    Cooling capacity following EN 14518

    CalculationCooling output PK (deviating from ∆T = 10 K)

    For undertemperatures ∆T deviating from ∆T = 10 K the cooling output is calculated as follows:

    t1 [°C] = CHW Flow t1 = 16 °Ct2 [°C] = CHW Return t2 = 18 °Ctr [°C] = Room temperature tr = 27 °CAmbient pressure p = 1013 hPaRelative humidity φ = 50 %

    + ca. 10 dB(A) at identical thermal outputs

    + ca. 15 dB(A) at identical cooling capacities

    Deviation in percentageapprox. 50 %