39
vy elements and reddening in Gamma Ray Bur Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)

Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome

Embed Size (px)

Citation preview

Heavy elements and reddening in Gamma Ray Bursts

Sandra SavaglioJohns Hopkins University

In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)

Heavy elements and reddening in Gamma Ray Bursts

Sandra SavaglioJohns Hopkins University

In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)

Optical spectra of GRB afterglows GRB–DLAs vs. QSO–DLAs Heavy elements and dust

Outline

Heavy elements and reddening in Gamma Ray Bursts

Acknowledgements

Daniela Calzetti – STScIFiona Harrison – CalTechTim Heckman – JHUJulian Krolik – JHUNicola Masetti – CNR, BolognaEliana Palazzi – CNR BolognaNino Panagia – STScI James Rhoads – STScI Ken Sembach – STScI

Introduction

GRB GRB X-ray position Error Instrument X-ray Afterglow Optical Transient Radio Afterglow z

020405 13h58m10s -31° 23' 15'*5' Uly/MO/SAX   y y 0.69

011211 11h15m16s -21° 56' 1' SAX/WFC y y   2.14

011121 11h34m25s -76° 02' 2' SAX/WFC y y y 0.36

010921 22h55m35s +40° 56' 20*15' HE/Uly/SAX   y   0.45

010222 14h52m12s +43° 01' 2.5' SAX/WFC y y y 1.477

000926 17h04m15s +51° 46' 3'*10' Uly/Ko/NE y y y 2.066

000418 12h25m21s +20° 05' 4'*8' Uly/KO/NE   y y 1.118

000301C 16h20m22s +29° 25' 6'*8' ASM/Uly   y y 2.03

000131 06h13m33s -51° 56' 3.5'*16' Uly/KO/NE   y   4.5

991208 16h33m55s +46° 26' 14*1' Uly/KO/NE   y y 0.706

990712 22h31m50s -73° 24' 2' SAX/WFC   y n 0.434

990705 05h09m32s -72° 09' 6' SAX/WFC y y n 0.86

990510 13h38m06s -80° 30' 3' SAX/WFC y y y 1.619

990506 11h54m41s -26° 45' 7' BAT/PCA y   y 1.3

990123 15h25m29s +44° 45' 2' SAX/WFC y y y 1.60

980703 23h59m07s +08° 35.6' 4' RXTE/ASM y y y 0.966

980613 10h17m46s +71° 29.9' 4' SAX/WFC y y n 1.096

980425 19h34m54s -52° 49.9' 8' SAX/WFC y SN y 0.0085

971214 11h56m30s +65° 12.0' 4' SAX/WFC y y n 3.42

970828 18h08m29s +59° 18.0' 2.5'*1' RXTE/ASM y n y 0.9578

970508 06h53m28s +79° 17.4' 3' SAX/WFC y y y 0.835

970228 05h01m57s +11° 46.4' 3' SAX/WFC y y n 0.695

This list URL: http://www.aip.de/ jcg/grbgen.html

Introduction

GRBs vs. QSOs redshift distribution

Introduction

0.5 daysmR=20.32

1.5 daysmR=21.11

0.7 daysmR=20.65

GRB 990712 zGRB=1.475

(Vreeswijk et al., 2001)

IntroductionThis list URL: http://www.aip.de/ jcg/grbgen.html

GRB GRB X-ray position Error Instrument X-ray Afterglow Optical Transient Radio Afterglow z

020405 13h58m10s -31° 23' 15'*5' Uly/MO/SAX   y y 0.69

011211 11h15m16s -21° 56' 1' SAX/WFC y y   2.14

011121 11h34m25s -76° 02' 2' SAX/WFC y y y 0.36

010921 22h55m35s +40° 56' 20*15' HE/Uly/SAX   y   0.45

010222 14h52m12s +43° 01' 2.5' SAX/WFC y y y 1.477

000926 17h04m15s +51° 46' 3'*10' Uly/Ko/NE y y y 2.066

000418 12h25m21s +20° 05' 4'*8' Uly/KO/NE   y y 1.118

000301C 16h20m22s +29° 25' 6'*8' ASM/Uly   y y 2.03

000131 06h13m33s -51° 56' 3.5'*16' Uly/KO/NE   y   4.5

991208 16h33m55s +46° 26' 14*1' Uly/KO/NE   y y 0.706

990712 22h31m50s -73° 24' 2' SAX/WFC   y n 0.434

990705 05h09m32s -72° 09' 6' SAX/WFC y y n 0.86

990510 13h38m06s -80° 30' 3' SAX/WFC y y y 1.619

990506 11h54m41s -26° 45' 7' BAT/PCA y   y 1.3

990123 15h25m29s +44° 45' 2' SAX/WFC y y y 1.60

980703 23h59m07s +08° 35.6' 4' RXTE/ASM y y y 0.966

980613 10h17m46s +71° 29.9' 4' SAX/WFC y y n 1.096

980425 19h34m54s -52° 49.9' 8' SAX/WFC y SN y 0.0085

971214 11h56m30s +65° 12.0' 4' SAX/WFC y y n 3.42

970828 18h08m29s +59° 18.0' 2.5'*1' RXTE/ASM y n y 0.9578

970508 06h53m28s +79° 17.4' 3' SAX/WFC y y y 0.835

970228 05h01m57s +11° 46.4' 3' SAX/WFC y y n 0.695

Introduction

Redshift FWHM (Ǻ) References

GRB 990123 1.6004 11.6 Kulkarni et al., 1999

GRB 990510 1.619 30 Vreeswijk, et al., 2001

GRB 000926 2.038 1.12 Castro et al., 2001

GRB 010222 1.475 6 / 4.8 / 3.3–5.8 Jha et al., 2001

Masetti et al 2001

Salamanca et al., 2001

GRB010222 zGRB = 1.475 mV 20.2

Introduction

(Masetti et al., 2001)

Introduction

GRB 000926 zGRB = 2.0379

(Castro et al., 2001)

Introduction

GRB 000926 zGRB = 2.0379

NHI 21021 cm–2

(Fynbo et al., 2001)

Introduction

Ly

NHI=2.3x10²º cmˉ ²

5”

Z QSO = 1.41

Wavelength (Å)

QSO Damped Lyman Alpha (DLA) systems

QSO EX0302-223 zDLA = 1.01mV 16.4

(Le Brun et al., 1998)

[X/H] = log (NXi /NHI)– log (X/H)

(Pettini et al., 2000)

Ion log N [X/H]

HI 20.67±0.03 ….

ZnII 12.33±0.11 – 0.99±0.11

SiII 15.45±0.11 – 0.77±0.11

CrII 13.49±0.04 – 0.89±0.05

FeII 15.17±0.04 – 1.01±0.05

MnII 12.91±0.04 – 1.15±0.05

Introduction

IntroductionMetallicity redshift evolution QSO DLAs

(Savaglio, 2000)

QSO–DLA 0454+39 z = 0.8591FWHM = 7 km s–1

GRB–DLA 010222 zGRB = 1.475FWHM = 200 – 400 km s–1

velocity (km s–1 )velocity (km s–1 )

GRB–DLAs and QSO–DLAs

1.4 minutes

14.4 minutes

2.4 hours

(Fruchter et al., 1999)

GRB 990123 zGRB = 1.6004

GRB–DLAs and QSO–DLAs

760 km s–1

(Castro et al., 2001)

GRB000926zGRB = 2.0379Keck/ESIFWHM 80 km s–1

GRB–DLAs and QSO–DLAs

Heavy element column densities in GRB–DLAs

Equivalent Widths of absorption lines

Heavy element column densities in GRB–DLAs

Curve of growth (Spitzer, 1978)

Linear part: log Wr / = log (N f ) – 4.053

Heavy element column densities in GRB–DLAs

Heavy element column densities in GRB–DLAs

Curve of growth (Spitzer, 1978)

Heavy element column densities in GRB–DLAs

Heavy element column densities in GRB–DLAs

Comparison with QSO–DLAs

Heavy element column densities in GRB–DLAs

Comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs

Relative abundances and comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs

Relative abundances and comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs

Relative abundances and comparison with QSO–DLAs

Heavy element abundances in GRB–DLAs

Relative abundances and comparison with QSO–DLAs

Dust depletion correction

Heavy element abundances in the Galactic ISM

(Savage & Sembach 1996)

Dust depletion correction

(Savaglio 2000)

Dust depletion correction

GRB 000926

Dust depletion correction

GRB 010222 GRB 990123

Dust extinction

Optical extinction in solar neighborhood

Dust extinction

Optical extinction in solar neighborhood

Dust extinction

AV

GRB 990123 1.1

GRB 000926 0.9

GRB 010222 0.6

Dust extinction

GRB 000926 zGRB = 2.0379

(Fynbo et al., 2001)

UK

AV=0.270.12AV=0.180.06

Dust extinction

Grey dust extinction in Active Nuclei

(Maiolino, Marconi & Oliva, 2001)

Dust extinction

(Fruchter, Krolik & Rohads, 2001)

Large dust grains might be destroyed first

• Absorption lines in 3 GRB –DLAs indicate column densities of metals are larger than in QSO–DLAs

• [Fe/Zn] indicates high dust depletion

• Low observed reddening in GRBs can be explained if grey extinction is assumed

• High extinction might party explain low fraction (30 – 35 %) of optical GRB afterglow detections

This talk URL: http://www.pha.jhu/˜savaglio/grb/grb.ppt

Conclusions