42
Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics A Short Course by Reza Toossi, Ph.D., P.E. California State University, Long Beach 1

Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

  • Upload
    istas

  • View
    24

  • Download
    0

Embed Size (px)

DESCRIPTION

A Short Course by Reza Toossi, Ph.D., P.E. California State University, Long Beach. Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics. Outline. Atomic and Molecular Bonds Energy Carriers Specific Heat Thermal Conductivity Discussions. History. - PowerPoint PPT Presentation

Citation preview

Page 1: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

1

Heat Transfer MaterialsStorage, Transport, and TransformationPart I: Physics

A Short Course byReza Toossi, Ph.D., P.E.California State University, Long Beach

Page 2: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

2

Outline

Atomic and Molecular Bonds Energy Carriers

Specific Heat Thermal Conductivity

Discussions

Page 3: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

3

History Aristotle (384 BC–323 BC) Antoine Lavoisier (1743-1794) John Dalton (1766 - 1844) Benjamin Thompson (Count Rumford) (1753-1814) Robert Mayer (1814-1878) William Thompson (Lord Kelvin) (1824-1907) Gustav Boltzmann (1844-1906) James Maxwell (1831–1879) Max Planck (1858 –1947) Neil Bohr (1855–1962) Wolfgang Pauli (1900–1958) Erwin Schrodinger (1887–1961) Enrico Fermi (1901–1954)

Page 4: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

4

Heat Transfer Medium

Gases▪ Vapors, ideal gases, and plasmas

Liquids▪ Organics▪ Inorganics

▪ Metals and Nonmetals

Solids▪ Conductors (metals)▪ Insulators (nonmetals)▪ Semiconductors

Composites ▪ Layered and non-layered

▪ Liquid-gas (aerosol spray)▪ Liquid-Liquid (emulsion)▪ Solid-solid (wood, resin-filled fiberglass)▪ Solid-gas (coal, membrane)▪ Solid-liquid-gas (nucleate boiling on a solid surface)

Page 5: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

5

Thermochemical and Thermophysical Properties

Page 6: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

6

Microscopic Heat Transfer

Page 7: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

7

Microscopic Energy Carriers

Particles Waves Quasi-Particles

▪ Phonon ▪ Acoustic▪ Optical

▪ Photon▪ Electron (and Hole)

Page 8: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

8

Strong and Weak Bonds

Strong Bonds Ionic Covalent Metallic

Weak Bonds (~kcal/mole)

Van der Waals▪ Hydrogen▪ Electrostatic

(ionic)

Page 9: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

9

Strong (Primary) Bonds

Ionic (metal to nonmetal) NaCl

Covalent (nonmetal to nonmetal) Diamond, organic matters

Metallic bonding (metal to metal) Silver

Page 10: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

10

Weak (Secondary) Bonds Hydrogen Forces (H2O, NH3)

Van der Waals Dipole-Dipole Forces (HCl-HCl)

London Dispersion Forces (Xe-Xe)

Ion-Dipole Forces

Page 11: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

11

Bond Strength

Page 12: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

12

Bonding Between Neutral Atoms

Attractive force @ large distances (van der Waals) Repulsive force @ short distances (Pauli repulsion) Models▪ Quantum mechanical (Dipole-dipole and London forces)▪ Classical (LJ)

V is the energy potential Is the equilibrium distancee is the energy of interaction (depth of the potential well)r is the distance of separation

Page 13: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

13

Cohesion and Adhesion

Cohesion: Intermolecular attraction between molecules of the same kind or phase (viscosity in fluid)

Adhesion: Intermolecular attraction between molecules of different kind or phase (water wetting of a glass, oil droplets in a hot skillet)

Page 14: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

14

Transport Phenomena

Conduction Macroscale (> 1 mm, Fourier’s Law ) Microscale (1-100 μm, Thermalization) Nanoscale (1-100 nm, Non-equilibrium)

Surface Tension Macroscale Microscale

Page 15: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

15

Continuum Approach Continuity

Species

Momentum (Navier-Stokes)

Energy

Page 16: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

16

Continuum Flow Limitations

Continuum regime (Kn < 0.01)Slip flow regime (0.01 < Kn <

0.1)Transition regime (0.1 < Kn < 3)Free molecular flow regime (Kn

> 3)

Knudsen Number:

Page 17: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

17

Statistical Approach

Boltzmann Transport Equation

Page 18: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

18

Nanoscale Considerations Nonequilibrium Phenomenon

Ultra small dimensions Ultrafast processes

Different conduction equations for electrons and the lattice Nucleation

Page 19: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

Laser Irradiation

19

Page 20: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

20

Example: Laser Processing of Material

Melting of Gold Films Short-pulsed laser melting of thin films

involves two non-equilibrium processes. (1) Deposition of laser energy (2) Energy transfer between electrons and lattice (3) Melting

One –Step Model

Two –Step Model

Electron:

Lattice: Kuo, L.S., and Qui, T.Q., 1996, “Microscale Energy Transfer During Picosecond Laser Melting of Metal Films,” ASME HTD-Vol. 323, Vol. 1, pp.149-157.

Page 21: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

21

Results (Gold film with L = 1000 nm, tp =20 ps)

Page 22: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

22

Specific Heat of Various Substances

Page 23: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

23

Heat Storage

Specific Heat Capacities: Cp and Cv Gases

▪ Translational▪ Rotational▪ Vibrational▪ Electronic

Solids (metals, dielectrics, and semiconductors)▪ Lattice vibration (phonons)▪ Free electrons

Liquids▪ Near critical point (behaves like a gas)▪ Away from critical point (behaves like a solid)

Page 24: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

24

Modes of Energy Storage (H2)

Page 25: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

25

Cp 0 to ∞

Page 26: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

26

Cp for GasesSpecific Heat of Selected gases at 300 K

Page 27: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

27

Cp for solids

Einstein (Classic) Model cv = 3 k (per molecule), 3R (per mole)

Debye Model cv increases until TD

Page 28: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

28

Cp for liquids

Page 29: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

29

Cp for Water

Page 30: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

30

Thermal Conductivity

Thermal Conductivity (k) Gases Solids

▪ Metals (Drude classical theory)▪ Nonmetals (Debye model)▪ Semiconductors

Liquids Composites

▪ Effective conductivity

Page 31: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

31

Contributions from Heat Carriers

Page 32: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

32

Equilibrium vs. Transport

Page 33: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

33

Mechanism of Heat Conduction in Gases

Page 34: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

34

Mechanism of Heat Conduction in Solids Roles of the conduction electrons and the thermal

lattice vibration are significant Conduction electrons (Drude Model)

Lattice (phonons) vibration (Callaway Model)▪ Amorphous (non-periodic)▪ Crystalline (Periodic)

Page 35: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

35

k = km+ ke + kp

Molecular For an ideal monatomic gas For an ideal polyatomic gas

Electronic Contribution to thermal

conductivity

Contribution to electrical conductivity

Phonons

Page 36: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

36

Metals, Nonmetals, and Semiconductors

Metals Excellent heat conductor Excellent electrical conductor

Nonmetals Poor heat conductor Poor electrical conductor

Semiconductors Fair heat conductor Good electrical conductor

Page 37: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

37

Thermal Conductivities of Solids

Page 38: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

38

Thermal Materials:From Ideal Insulators to Perfect Conductors

Page 39: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

39

Thermal Conductivity of Liquids

Page 40: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

40

Thermal Conductivity of Composites

Page 41: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

41

Part V- Q/A

For additional questions, Please email [email protected].

Page 42: Heat Transfer Materials Storage, Transport, and Transformation Part I: Physics

42

Further Readings Lee, J., Sears, F. W, and Turcotte, D. L., “Statistical

Thermodynamics,” Addison-Wesley, 1963. Tien, C. L., and Lienhard, J. H., “Statistical

Thermodynamics,” Holt, Rinehart and Winston, 1971.

Kaviany, M., “Principal of Heat Transfer,” Wiley, 2002.

Atkins, P. W., “Molecular Quantum Mechanics,” Clarendon Press, 1970.

Siegal, R., and Howell, J. R., “Thermal Radiation Heat Transfer,” Hemisphere Publishing Corporation, 3rd Ed., 1992