18
HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through a 1000 m long pipe of 0.25 m inside diameter. a) Determine the pressure drop over the pipe length and the corresponding pump power requirement, if the pipe surface s smooth b) If the pipe is made of cast iron and its surface is clean, determine the pressure drop and pump power requirement PROBLEM 2 An engine oil flows through a bundle of 25 smooth tubes each length L=2.5 m and diameter D=10 mm. a) If oil at 300 K and a total flow rate of 24 kg/s is in fully developed flow through the tubes, what is the pressure drop and pump power requirement b) Compute and plot pressure drop an pump power requirement as a function of flow rate for 10<m<30 kg/s Additional information on presure drop equations: Java solution Darcy_friction.java import java.io.*; public class Darcy_friction { public static double f_Haaland(double Re,double eod) { //Haaland equation double f1=-1.8*Math.log10(Math.pow((eod/3.7),1.11)+6.9/ Re); f1=1.0/(f1*f1); return f1; }

HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

  • Upload
    dothu

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

HEAT TRANSFER II WEEK 2 2017

PROBLEM 1

Water at 27 C flows with a mean velocity of 1 m/s through a 1000 m long pipe of 0.25 m inside

diameter.

a) Determine the pressure drop over the pipe length and the corresponding pump power

requirement, if the pipe surface s smooth

b) If the pipe is made of cast iron and its surface is clean, determine the pressure drop and pump

power requirement

PROBLEM 2

An engine oil flows through a bundle of 25 smooth tubes each length L=2.5 m and diameter D=10

mm.

a) If oil at 300 K and a total flow rate of 24 kg/s is in fully developed flow through the tubes,

what is the pressure drop and pump power requirement

b) Compute and plot pressure drop an pump power requirement as a function of flow rate for

10<m<30 kg/s

Additional information on presure drop equations:

Java solution Darcy_friction.java

import java.io.*;

public class Darcy_friction

{

public static double f_Haaland(double Re,double eod)

{

//Haaland equation

double f1=-1.8*Math.log10(Math.pow((eod/3.7),1.11)+6.9/ Re);

f1=1.0/(f1*f1);

return f1;

}

Page 2: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

public static double f_Moody(double Re,double eod)

{

// Moody equation

// 4000<Re<107 and e/D <0.01

double f1=5.5e-3*(1+Math.pow((2e4*eod+1e6/Re),(1.0/3.0)));

return f1;

}

public static double f_Wood(double Re,double eod)

{

// Wood equation

// Re>10000 and any e/D

double a=0.52*eod+0.094*Math.pow(eod,0.225);

double b=88.0*Math.pow(eod,0.44);

double C=1.62*Math.pow(eod,0.134);

double f1=a+b*Math.pow(Re,-C);

return f1;

}

public static double f_Churchill(double Re,double eod)

{

// Churchill equation

// for all values of Re and e/D

double A=Math.pow((-2.457*Math.log(Math.pow((7.0/Re),0.9)+0.27*eod)),16);

double B=Math.pow((37530.0/Re),16);

double f1=8.0*Math.pow((Math.pow((8.0/Re),12)+1.0/Math.pow((A+B),1.5)),(1.0/12.0));

return f1;

}

public static double f_Chen(double Re,double eod)

{

// Chen equation

// for all values of Re and e/D

double A = Math.log10(Math.pow(eod,1.1098)/2.8257 + (5.8506/Math.pow(Re,0.8981)));

double f1=-2.0*Math.log10(eod/3.7065-5.0452*A/Re);

f1=1.0/(f1*f1);

return f1;

}

public static double f_Swamee(double Re,double eod)

{

//Swamee-Jain equation

double A=Math.log10(eod/3.7+5.74/Math.pow(Re,0.9));

double f1=0.25/(A*A);

return f1;

}

public static double f_Zigrand(double Re,double eod)

{

//Zigrang and Sylvester Equation

// for 4000<Re<108 and 0.00004<e/D<0.05

double A=Math.log10(eod/3.7-5.02/Re*Math.log10(eod/3.7+13/Re));

double f1=-2.0*Math.log10((eod)/3.7-5.02*A/Re);

f1=1.0/(f1*f1);

Page 3: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

return f1;

}

public static double f_Romeo(double Re,double eod)

{

// Romeo - Royo - Monzon Equation (2002)

double A=Math.log10(eod/3.827-

4.567/Re*Math.log10(Math.pow((eod/7.7918),0.9924)+Math.pow(5.3326/(208.815+Re),0.9345)));

double f1=-2.0*Math.log10((eod)/3.7065-5.0272*A/Re);

f1=1.0/(f1*f1);

return f1;

}

public static double f_Serghides(double Re,double eod)

{

//Serghides equation

// for Re>2100 and any e/D

double A1=-2.0*Math.log10(eod/3.7+12.0/Re);

double B1=-2.0*Math.log10(eod/3.7+2.51*A1/Re);

double C1=-2.0*Math.log10(eod/3.7+2.51*B1/Re);

double f1=A1-((B1-A1)*(B1-A1))/(C1-2.0*B1+A1);

f1=1.0/(f1*f1);

return f1;

}

public static double f_Goudar(double Re,double eod)

{

//Goudar Sonnad equation

// for Re>2100 and any e/D

double a=2/Math.log(10);

double b=eod/3.7;

double d=Math.log(10.0)/5.02*Re;

double s=b*d+Math.log(d);

double q=Math.pow(s,(s/(s+1)));

double g=b*d+Math.log(d/q);

double z=Math.log(q/g);

double dLA=(g/(g+1))*z;

double dCFA=dLA*(1+z/2.0/((g+1)*(g+1)+(z/3)*(2.0*g-1)));

double f1=a*(Math.log(d/q)+dCFA);

f1=1.0/(f1*f1);

return f1;

}

public static double f_turhan(double Re,double eod)

{

//Turhan equation

double ai[]={-0.522742801770317,

-0.862597376548066,

0.623145107999888,

-0.090643514190191,

-0.312237235469110,

0.627834486425472,

3.304936649648337};

Page 4: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

double f1=ai[0]*Math.log10(Math.pow(eod,ai[1]))+

ai[2]*Math.log10(Math.pow(Re,ai[3] ))+

ai[4]*Math.log10(Math.pow(eod,ai[5])*Math.pow(Re,ai[6] ));

f1=1.0/(f1*f1);

return f1;

}

public static double fx(double X,double Re,double eod)

{

// colebrook equation to solve

// friction factor for turbulent flow 2000 < Re

double xx=2.0*Math.log10(eod/3.7+2.51/Re*X)+X;

return xx;

}

public static double dfx(double X,double Re,double eod)

{

//derivative of colebrook equation

double xx;

xx = 1+2.0/(eod/3.7+2.51/Re*X)/Math.log(10.0)*2.51/Re;

return xx;

}

public static double f_colebrook(double Re,double eod)

{

// solution of the colebrook equation

// by using newton method

double fi=f_Goudar(Re,eod);

double xx=1.0/ Math.pow(fi,0.5);

int nmax=50;

double tolerance=1.0e-20;

for(int i=0;i<nmax;i++)

{

double fx1=fx(xx,Re,eod);

double dfx1=dfx(xx,Re,eod);

xx-=fx1/dfx1;

if(Math.abs(fx1)<tolerance)

{double ff=1.0/(xx*xx);

return ff;}

}

double ff=1.0/(xx*xx);

return ff;

}

public static double[][][] calculate()

{ double eod[]={1e-8,1e-6,1e-4,1e-2,1e-1};

double Re[]=new double[51];

double dx1=(10000.0-2100)/10.0;

double dx2=(100000.0-10000.0)/10.0;

double dx3=(1e6-1e5)/10.0;

double dx4=(1e7-1e6)/10.0;

double dx5=(1e7-1e6)/10.0;

double dx[]={dx1,dx2,dx3,dx4,dx5,dx5};

double xx=0;

int i=0,j=0,k=0,l=0;

Page 5: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

int n=eod.length;

double a[][][]=new double[12][n][51];

double x[]=new double[51];

xx=2100.0;

for(i=0;i<51;i++)

{ l=i/10;

x[i]=xx;

xx+=dx[l];

//System.out.println("i="+i+"dx="+dx[l]+"x="+x[i]);

}

//System.out.println("x=\n"+Matrix.toStringT(x));

for(k=0;k<12;k++)

{

for(j=0;j<n;j++)

{

for(i=0;i<51;i++)

{

if(k==0) a[k][j][i]=f_colebrook(x[i],eod[j]);

else if(k==1) a[k][j][i]=f_Haaland(x[i],eod[j]);

else if(k==2) a[k][j][i]=f_Moody(x[i],eod[j]);

else if(k==3) a[k][j][i]=f_Wood(x[i],eod[j]);

else if(k==4) a[k][j][i]=f_Churchill(x[i],eod[j]);

else if(k==5) a[k][j][i]=f_Chen(x[i],eod[j]);

else if(k==6) a[k][j][i]=f_Swamee(x[i],eod[j]);

else if(k==7) a[k][j][i]=f_Zigrand(x[i],eod[j]);

else if(k==8) a[k][j][i]=f_Serghides(x[i],eod[j]);

else if(k==9) a[k][j][i]=f_Goudar(x[i],eod[j]);

else if(k==10) a[k][j][i]= f_Romeo(x[i],eod[j]);

else if(k==11) a[k][j][i]= f_turhan(x[i],eod[j]);

}//end of i Re

}//end of j eod

}//end of k(equation)

return a;

}

public static double[][][] error()

{

double eod[]={1e-8,1e-6,1e-4,1e-2,1e-1};

int n=eod.length;

double a[][][]=calculate();

double error[][][]=new double[12][n+1][52];

int i=0,j=0,k=0,l=0;

double xx=0;

double x[]=new double[51];

double dx1=(10000.0-2100)/10.0;

double dx2=(100000.0-10000.0)/10.0;

double dx3=(1e6-1e5)/10.0;

double dx4=(1e7-1e6)/10.0;

double dx5=(1e7-1e6)/10.0;

double dx[]={dx1,dx2,dx3,dx4,dx5,dx5};

xx=2100.0;

for(i=0;i<51;i++)

{ l=i/10;

x[i]=xx;

xx+=dx[l];

//System.out.println("i="+i+"dx="+dx[l]+"x="+x[i]);

Page 6: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

}

for(k=1;k<12;k++)

{

for(j=0;j<n;j++)

{

error[k-1][j+1][0]=eod[j];

for(i=0;i<51;i++)

{

error[k-1][0][i+1]=x[i];

error[k-1][j+1][i+1]=(a[k][j][i]-a[0][j][i])/a[0][j][i]*100;

}//end of i Re

}//end of j eod

}//end of k(equation)

return error;

}

public static void create_data() throws IOException

{

PrintWriter cfout=new PrintWriter(new BufferedWriter(new FileWriter("a.txt")));

double eod[]={1e-8,5e-8,1e-7,5e-7,1e-6,5e-6,1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2};

int n2=eod.length;

double x[]=new double[2001];

double dx1=(10000.0-2100)/500.0;

double dx2=(100000.0-10000.0)/500.0;

double dx3=(1e6-1e5)/500.0;

double dx4=(1e7-1e6)/500.0;

double dx5=(1e7-1e6)/500.0;

double dx[]={dx1,dx2,dx3,dx4,dx5,dx5};

double xx=2100.0;

int l=0;

for(int i=0;i<2001;i++)

{ l=i/500;

x[i]=xx;

xx+=dx[l];

//System.out.println("i="+i+"dx="+dx[l]+"x="+x[i]);

}

int n3=x.length;

double a[]=new double[n3];

int i,j;

for(j=1;j<(n2-1);j++)

{

for(i=0;i<2001;i++)

{

cfout.println(x[i]+" "+eod[j]+" "+f_colebrook(x[i],eod[j]));

}//end of i Re

}//end of j eod

cfout.close();

}

public static void plot()

{

double e[][][]=error();

int n1=e.length;

int n2=e[0].length;

int n3=e[0][0].length;

Plot pp[]=new Plot[n1];

Page 7: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

double a[][]=new double[n2][n3];

double eod[]=new double[n2];

double Re[]=new double[n3];

String

s[]={"Haaland","Moody","Wood","Churchill","Chen","Swamee","Zigrand","Serghides","Goudor",

"Romeo"};

double xx=0;

double x[]=new double[51];

double dx1=(10000.0-2100)/10.0;

double dx2=(100000.0-10000.0)/10.0;

double dx3=(1e6-1e5)/10.0;

double dx4=(1e7-1e6)/10.0;

double dx5=(1e7-1e6)/10.0;

double dx[]={dx1,dx2,dx3,dx4,dx5,dx5};

xx=2100.0;

int l=0;

for(int i=0;i<51;i++)

{ l=i/10;

x[i]=xx;

xx+=dx[l];

//System.out.println("i="+i+"dx="+dx[l]+"x="+x[i]);

}

int i,j,k;

for(k=1;k<11;k++)

{

for(j=0;j<(n2-1);j++)

{

eod[j]=e[k-1][j+1][0];

for(i=0;i<51;i++)

{

a[j][i]=e[k][j+1][i+1];

}//end of i Re

if(j==0)

{pp[k]=new Plot(x,a[j]);

pp[k].setPlabel(s[k]+" denklemi");

pp[k].setXlabel("Re");

pp[k].setYlabel("f_hata %");

}

else pp[k].addData(x,a[j]);

System.out.println(Matrix.toString(x));

}//end of j eod

pp[k].plot();

}//end of k(equation)

}

public static void plot_f()

{

double eod[]={1e-8,5e-8,1e-7,5e-7,1e-6,5e-6,1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2};

int n2=eod.length;

double x[]=new double[2001];

double dx1=(10000.0-2100)/10.0;

double dx2=(100000.0-10000.0)/10.0;

double dx3=(1e6-1e5)/10.0;

double dx4=(1e7-1e6)/10.0;

Page 8: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

double dx5=(1e7-1e6)/10.0;

double dx[]={dx1,dx2,dx3,dx4,dx5,dx5};

double xx=2100.0;

int l=0;

for(int i=0;i<201;i++)

{ l=i/200;

x[i]=xx;

xx+=dx[l];

//System.out.println("i="+i+"dx="+dx[l]+"x="+x[i]);

}

int n3=x.length;

double a[]=new double[n3];

int i,j;

for(i=0;i<2001;i++)

{

a[i]=f_colebrook(x[i],eod[0]);

}//end of i Re

Plot pp=new Plot(x,a);

pp.setPlabel("Moody diagramı");

pp.setXlabel("Re");

pp.setYlabel("f");

pp.setXlogScaleOn();

pp.setYlogScaleOn();

for(j=1;j<(n2-1);j++)

{

for(i=0;i<2001;i++)

{

a[i]=f_colebrook(x[i],eod[j]);

}//end of i Re

pp.addData(x,a);

}//end of j eod

pp.plot();

}

public static void main(String arg[]) throws IOException

{

double Re=107163.52439399;

double eod=0.00184000;

double f=f_colebrook(Re,eod);

System.out.println("f : "+f);

String

s[]={"Haaland","Moody","Wood","Churchill","Chen","Swamee","Zigrand","Serghides","Goudor",

"Romeo","Turhan"};

double e[][][]=error();

for(int i=0;i<12;i++)

{

System.out.println("Equation : "+s[i]);

System.out.println(Matrix.toString(e[i]));

System.out.println("=========================");

}

//create_data();

}

Page 9: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

}

EXCEL çözümü : pipe_HT.xls

Newton-Raphson root finding Solution of Colebrook-White equation

Re 6000 eps/D eod 0.001 Sergides equation

A 5.287844876 B 5.210273255 C 5.221702842 X 5.220235048 f sergides 0.036696098 Colebrook-White root finding by Newton-Raphson method

X f(x)=X+2log10(eod/3.7+2.51/Re*X)

fx/dx=1+2*(2.51/Re)/(eod/3.7+2.51/Re*X)

5.22023504771383000 8.4445E-06 1.340930432

5.22022875022313000 1.21457E-06 1.340930798

5.22022784445472000 1.74692E-07 1.34093085

5.22022771417782000 2.5126E-08 1.340930858

5.22022769544005000 3.61389E-09 1.340930859

5.22022769274500000 5.19787E-10 1.340930859

5.22022769235736000 7.47606E-11 1.340930859

5.22022769230161000 1.07532E-11 1.340930859

5.22022769229359000 1.54632E-12 1.340930859

5.22022769229244000 2.22933E-13 1.340930859

5.22022769229227000 3.28626E-14 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

Page 10: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

5.22022769229225000 0 1.340930859

f colebrook 0.036696201

Goudar-Sonnad Equation equation a 0.868588964 b 0.00027027 d 2752.093737 s 8.663926378 q 6.929186844 g 6.72818391 z 0.02943721 delta_LA 0.025628138 delta_CFA 0.025634441 X 5.220227692 f Goudar-Sonnad 0.036696201

Makale:

BORULARDAKİ SÜRTÜNME KAYIPLARI ANALİZİNDE DARCY-WEİSBACH

SÜRTÜNME KATSAYISI HESAPLARINDA COLEBROOK-WHITE DENKLEMİ

Page 11: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

YERİNE GEÇECEK DÖNGÜSEL OLMAYAN ÇÖZÜMLÜ DENKLEMLERİN HATA

ANALİZİ

Dr. M. Turhan Çoban

EGE Üniversitesi, Mühendislik Fakultesi, Makina Mühendisliği Bölümü, Bornova, İZMİR

[email protected]

ÖZET

Borulardaki sürtünme basınç kayıpları Darcy-Weisbach formula ile hesaplanır. Bu basınç kaybını

hesaplamak için f, Darcy sürtünme katsayısının hesaplanması gereklidir. Türbülanslı akışlarda Darcy

sürtünme katsayısının hesaplanmasında en geçerli yöntem Colebrook-White denklemidir, ancak bu

denklem sayısal kök bulma yöntemleri kullanılarak çözülebilen bir denklemdir. Colebrook-White

denklemine yaklaşım yapan ve direk olarak çözülebilen çeşitli denklemler mevcuttur. Bu denklemlerin

bazılarının Colebrook-White denklemiyle kıyaslandığında hata yüzdeleri çok küçük olduğundan, direk

olarak bu denklemin yerine kulanılmaları mümkündür. Yazımızda çeşitli Darcy sürtünme faktörü

denklemlerinin Colebrook – White denklemine gore göreceli hatası irdelenmiştir.

Anahtar Kelimeler : Darcy-Weichbach basınç düşümü, boru içi basınç düşümü, Colebrook denklemi

ABSTRACT

Pressure drop in pipes can be calculated by using Darcy-Weisbach formula. In order to use this

formula, Darcy friction factor should be known. The best approximation to Darcy friction factor for

turbulent flow is given by Colebrook-White equation. This equation can only be solved by numerical

root finding methods which requires relatively costly computer calculations. There are several other

approximation equations to Darcy friction factor with some relative error compared to Colebrook-

White equation. In some of this equations the error percentage is so small that they can be directly

used in place of Colebrook equation. In this study relative errors of several equations re-evaluated.

Key-words: Darcy –Weichbach pressure drop formula, pressure drop in pipes, Colebrook equation,

friction factors

1. GİRİŞ

Borulardaki sürtünme basınç kayıpları genellikle Darcy-Weisbach formülü ile hesaplanır.

2

2V

D

LfP (1)

Bu denklemde P basınç düşümü, f sürtünme katsayısı, L boru boyu, D boru çapı, V akışkan hızı ve

yoğunluktur. Denklemdeki f sürtünme katsayısı akış rejimine bağlıdır. Laminer akış şartlarında

(Reynold sayısı Re<2100) Hagen-Poiseuille denklemiyle hesaplanır

VDRe (2)

Bu denklemdeki vizkozitedir, Re Reynold sayısı olarak adlandırılan boyutsız hız parametresidir.

Re

64f (3)

Bu denklemde sürtünme katsayısı Re sayısı ile lineer olarak değişmektedir. Geçiş bölgesi ve Tam

türbülanslı bölgeye geldiğimizde, sürtünme katsayısını Colebrook-White denklemi ile tanımlayabiliriz.

Page 12: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

2. SÜRTÜNME DENKLEMLERİ VE HATA ANALİZİ

Colebrook-White denklemi (1937)[4]

f

D

f Re

51.2

7.3

)/(log2

110

(4)

Bu denklem ek olarak yüzey pürüzlülüğünün () de fonksiyonudur. Denklemden de görüleceği gibi,

Colebrook-White denkleminin direk olarak çözümü mevcut değildir. Çözüm için sayısal kök bulma

metodlarını kullanmamız gerekir. Örnek olarak Newton Raphson kök bulma metodunu kullanırsak,

denklemin çözümünü aşağıdaki gibi gerçekleştirebiliriz:

fX

1

(5)

X

DXXf

Re

51.2

7.3

)/(log2)( 10

(6)

XDdX

Xdf

Re

51.2

7.3

)/(Re

51.2

21)(

(7)

nk

dX

Xdf

XfXX

k

kkk ,......,0

)(

)(1

(8)

Bu denklem döngüsel çözüm gerektirir. Aynı zamanda bir ilk tahmin değerine de ihtiyaç gösterir. İlk

Tahmin değeri çözümden çok uzaksa çözümün başarılı olamama olasılığı da mevcuttur. İlk tahmin

değeri için burada verilen yaklaşım formüllerinden birisi kullanılabilir. Temel olarak Haaland

denklemi gibi iterative yaklaşım gerektirmiyen denklemler Colebrook-White denkleminin çözümünde

ilk tahmin değeri olarak kullanılmaktaydı. Ancak yeni geliştirilen ve aşağıda listelenen denklemlerin

bazıları sonuç olarak Colebrook-White denklemi sonuçlarıyla oldukça yakın sonuçlar vermektedir.

Belli hassasiyet seviyesinin altına indiğimizde Colebrook-White denkleminin iteratif kök bulma

metodları kullanılarak çözülmesi gereği tamamen ortadan kalkmaktadır. Boru basınç düşümü

analizlerinin bilgisayar ortamında yapıldığı günümüzde bu özellik bilgisayar hesaplamalarında zaman

kazanma ve hesaplamaların daha basit MS excell gibi ortamlarda hesaplanabilmesi kolaylığı sağlaması

açısından oldukça önemlidir. Aşağıda çeşitli Colebrook-White denklemi yaklaşım formülleri

verilmiştir.

Haaland denklemi (1983) [23]

Re

9.6

7.3

)/(log8.1

111.1

10

D

f

(9)

Moody denklemi(1944) [9]

3/16

43

Re

10/1021105.5 Dxxf

(10)

Wood denklemi (1966) [18] Geçerlilik bölgesi : Re>10000 , 10-5< D/ <0.04

)11(/094.0/53.0225.0

DDa )12(/88

44.0Db

(13)/62.1134.0

DC )14(Re Cbaf

Page 13: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

Churchill denklemi (1977) [3] Geçerlilik bölgesi : Tüm değerler için geçerlidir 16

9.0

10Re

7

7.3

)/(log2

DA

(15)

16

Re

37530

B

(16)

12/1

2/3

12

)(Re

88

BAf

(17)

Chen denklemi (1979) [2] Geçerlilik bölgesi : Tüm değerler için geçerlidir

)18(Re

8506.5

8257.2

)/(log

8981.0

1098.1

10

DA

)19(Re

0452.5

7065.3

)/(log2

110

AD

f

Swamee-Jain denklemi (1976) [14] Geçerlilik bölgesi : 5000>Re>107 , 0.00004< D/ <0.05

)20(Re

74.5

7.3

)/(log

9.010

DA

)21(25.02A

f

Zigrang - Sylvester denklemi (1982) [20] Geçerlilik bölgesi : Tüm değerler için geçerlidir

)22(Re

13

7.3

)/(log10

DA

)23(Re

02.5

7.3

)/(log10

ADB

)24(Re

02.5

7.3

)/(log2

110

BD

f

Serghides denklemi (1984) [22] Geçerlilik bölgesi : Tüm değerler için geçerlidir

)25(Re

12

7.3

)/(log2 10

DA

)26(Re

51.2

7.3

)/(log2 10

ADB

)27(Re

51.2

7.3

)/(log2 10

BDC

)28(2

)(1 2

ABC

ABA

f

Goudar- Sonnad denklemi (2008)[21] Geçerlilik bölgesi : Tüm değerler için geçerlidir

)29()10ln(

2a

)30(7.3

)/( Db

Page 14: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

)31(Re02.5

)10ln(d

)32()ln(dbds )33())1/(( sssq )34()/ln(* qddbg

)35(ln

g

qz

)36(1

zg

gLA

)37(

123/)1(

2/1

2

gzg

zLACFA

)38(ln1

CFA

q

da

f

Romeo Denklemi (2002) [11] Geçerlilik bölgesi : Tüm değerler için geçerlidir

)39(Re815.208

3326.5

7918.7

)/(log

9345.09924.0

10

DA

)40(Re

567.4

827.3

)/(log10

ADB

)41(Re

0272.5

7065.3

)/(log2

110

BD

f

Bu denklemlerin Colebrook-White denklemine ne kadar yaklaştığını irdelemek amacıyla bu denkleme

göre hata miktarları Re sayısının ve (/D) oranının fonksiyonu olarak hesaplanmıştır. Hata terimi

)42(100_

)_(% x

WhiteColebrookf

fWhiteColebrookfhata

Denklemi ile hesaplamıştır.

3. SONUÇLAR

Sonuçlar grafik formunda sunulmuştur. Hata analizinden elde edilen başlıca sonuçlar aşağıdaki gibi

özetlenebilir:

Geçiş bölgesinde hata daha yüksektir, türbülans arttıkça(Daha büyük Re sayıları için) hata

küçülmektedir.

Hata Miktarlarına göre sıralama yapılacak olursa en iyiden başlayarak : Goudar-Sonnad

denklemi, Serghides denklemi, Romeo denklemi, Ziagrand denklemi ve Chen denklemidir.

Geri kalan denklemlerde hata miktarı daha büyük olduğundan burada listelenmemiştir.

Hata derecesi olarak karşılaştırma yapıldığında Goudar-Sonnad denklemi %10-12

Seviyesine varan küçük hatayla nerdeyse bire bir Colebrook-White denklemi sonuçlarını

aynen oluşturmaktadır. Ondan sonraki en iyi denklem olan Serghides denklemi de %10-4 hata

seviyesiyle paratik olarak kullanılabilir bir denklemdir.

Bu denklemler yeterince hassas olduğundan Colebrook-White denkleminin iterative çözüm

gereksinimi ortadan kalkmış görünmektedir.

Page 15: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

Şekil 1 Goudar denkleminin Colebrook-White denklemiyle karşılaştırılmasındaki % hata miktarı

Şekil 2 Serghides denkleminin Colebrook-White denklemiyle karşılaştırılmasındaki % hata miktarı

Page 16: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

Şekil 3 Romeo denkleminin Colebrook white denklemiyle karşılaştırılmasındaki % hata miktarı

Şekil 4 Zigrang denkleminin Colebrook white denklemiyle karşılaştırılmasındaki % hata miktarı

Page 17: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

Şekil 5 Chen denkleminin Colebrook white denklemiyle karşılaştırılmasındaki % hata miktarı

4. REFERANSLAR

1. Barr, D.I.H., “Solutions of the Colebrook-White functions for resistance to

uniform turbulent flows.”, Proc. Inst. Civil. Engrs. Part 2. 71,1981.

2. Chen, N.H., “An Explicit Equation for Friction factor in Pipe”, Ind. Eng. Chem.

Fundam., Vol. 18, No. 3, 296-297, 1979.

3. Churchill, S.W., “Friction factor equations spans all fluid-flow ranges.”, Chem.

Eng., 91,1977.

4. Colebrook, C.F. and White, C.M., “Experiments with Fluid friction roughened

pipes.”,Proc. R.Soc.(A), 161,1937.

5. Haaland, S.E., “Simple and Explicit formulas for friction factor in turbulent pipe

flow.”, Trans. ASME, JFE, 105, 1983.

6. Liou, C.P., “Limiations and proper use of the Hazen-Williams equations.”, J.

Hydr., Eng., 124(9), 951-954, 1998.

7. Manadilli, G., “Replace implicit equations with sigmoidal functions.”,

Chem.Eng. Journal, 104(8), 1997.

8. McKeon, B.J., Swanson, C.J., Zagarola, M.V., Donnelly, R.J. and Smits, A.J.,

“Friction factors for smooth pipe flow.”, J.Fluid Mechanics, Vol.541, 41-44,

2004.

9. Moody, L.F., “Friction factors for pipe flows.”, Trans. ASME, 66,641,1944.

10. Nikuradse, J. “Stroemungsgesetze in rauhen Rohren.” Ver. Dtsch. Ing. Forsch.,

361, 1933.

11. Romeo, E., Royo, C., and Monzon, A., ‘‘Improved explicit equations for

estimation of the friction factor in rough and smooth pipes.’’ Chem. Eng. J., 86,

369–374, 2002.

12. Round, G.F., “An explicit approximation for the friction factor-Reynolds number

relation for rough and smooth pipes.”, Can. J. Chem. Eng., 58,122-123,1980.

13. Schlichting, H., “Boundary-Layer Theory” ,McGraw–Hill, New York, 1979..

14. Swamee, P.K. and Jain, A.K., “Explicit equation for pipe flow problems.”, J.

Hydr. Div., ASCE, 102(5), 657-664, 1976.

15. U.S. Bureau of Reclamation., “Friction factors for large conduit flowing full.”

Engineering Monograph, No. 7, U.S. Dept. of Interior, Washington, D.C, 1965.

Page 18: HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 PROBLEM 2± transferi II (Heat Transfer II... · HEAT TRANSFER II WEEK 2 2017 PROBLEM 1 Water at 27 C flows with a mean velocity of 1 m/s through

16. Von Bernuth, R. D., and Wilson, T., “Friction factors for small diameter plastic

pipes.” J. Hydraul. Eng., 115(2), 183–192, 1989.

17. Wesseling, J., and Homma, F., “Hydraulic resistance of drain pipes.” Neth. J.

Agric. Sci., 15, 183–197, 1967.

18. Wood, D.J., “An Explicit friction factor relationship.”, Civil Eng., 60-61,1966.

19. Zagarola, M. V., ‘‘Mean-flow Scaling of Turbulent Pipe Flow,’’ Ph.D.thesis,

Princeton University, USA, 1996.

20. Zigrang, D.J. and Sylvester, N.D., “Explicit approximations to the Colebrook’s

friction factor.”, AICHE J. 28, 3, 514, 1982.

21. Goudar, C.T. and Sonnad, J.R. , “Comparison of the iterative approximations of the

Colebrook-White equation”, Hydrocarbon Processing, August 2008, pp 79-83

22. Serghides, T.K., “Estimate friction factor accurately”, Chem. Eng. 91, 1984, pp. 63-64

23. White, Frank M., “Fluid Mechanics”, Fourth Edition, McGrawHill, 1998, ISBN 0-07-

069716-7