Heat Integration_Setting Energy Targets

Embed Size (px)

Citation preview

  • 7/28/2019 Heat Integration_Setting Energy Targets

    1/30

    HEAT INTEGRATIONSETTING ENERGY TARGET

  • 7/28/2019 Heat Integration_Setting Energy Targets

    2/30

    Process Energy Targets

    Process energy targets (minimumsteam and cooling waterrequirements) can be obtained from

    Composite Curves

    Cumulative process heat availability(surplus)

    Cumulative process heat requirement(deficit)

    Problem Table Algorithm

    Process heat surpluses and deficits within

    some specified temperature intervals

  • 7/28/2019 Heat Integration_Setting Energy Targets

    3/30

    Process Energy Targets from

    the Composite Curves

    Representation of process streams heatcontent on a plot of temperature (T)

    versus enthalpy (H)

  • 7/28/2019 Heat Integration_Setting Energy Targets

    4/30

    Example 1: Two-stream Heat

    Recovery Problem

    Stream Type Supply

    Temp.

    (oC)

    Target

    Temp.

    (oC)

    H (MW)

    1 Cold 40 110 14

    2 Hot 160 40 -12

  • 7/28/2019 Heat Integration_Setting Energy Targets

    5/30

    Two-stream Heat Recovery

    Problem

  • 7/28/2019 Heat Integration_Setting Energy Targets

    6/30

    Streams can be shifted horizontally

  • 7/28/2019 Heat Integration_Setting Energy Targets

    7/30

    Example 2

    A simple flowsheet with two hot streams and two cold streams

  • 7/28/2019 Heat Integration_Setting Energy Targets

    8/30

    Stream Data For The Flowsheet

    Stream Type Supply

    Temp. Ts

    (oC)

    Target

    Temp.

    TT (oC)

    H (kW) Heat Capacity

    Flowrate

    CP (kW oC-

    1)

    Reactor 1Feed Cold 20 180 3200 20

    Reactor 1

    Product

    Hot 250 40 -3150 15

    Reactor 2Feed Cold 140 230 2700 30

    Reactor 2

    Product

    Hot 200 80 -3000 25

  • 7/28/2019 Heat Integration_Setting Energy Targets

    9/30

  • 7/28/2019 Heat Integration_Setting Energy Targets

    10/30

  • 7/28/2019 Heat Integration_Setting Energy Targets

    11/30

  • 7/28/2019 Heat Integration_Setting Energy Targets

    12/30

  • 7/28/2019 Heat Integration_Setting Energy Targets

    13/30

    Effect ofTmin

    Tmin = the smallest approach temperature (T)for heat exchange

    Bigger Tmin gives:

    Less heat rocovery Maximum hot and cold utilities

    Maximum energy consumption

    Big capital cost

    Small Tmin gives: Maximize energy recovery

    Minimize hot and cold utilities

    Minimize energy consumption

  • 7/28/2019 Heat Integration_Setting Energy Targets

    14/30

    Summary (i)

    Temperature-enthalpy diagrams canbe used to determine heat recoverypotential

    Composite curves can be used totarget for many hot streams andmany cold streams

    Energy targets set from material andenergy balance and Tmin

    Can be varied to different targets

  • 7/28/2019 Heat Integration_Setting Energy Targets

    15/30

    Working Session 1

    a) Set up stream data tableb) Construct composite curvesc) Read energy targets for Tmin = 10C

    1

    2

    4

    CP=1.8

  • 7/28/2019 Heat Integration_Setting Energy Targets

    16/30

    Targeting the Minimum

    Energy Requirement using

    Problem Table Algorithm

  • 7/28/2019 Heat Integration_Setting Energy Targets

    17/30

    Problem Table Algorithm

    What is the problem with the CC??

    1) Complicated2) Cant get accurate point for

    T pinch, QHmin and Qcmin

  • 7/28/2019 Heat Integration_Setting Energy Targets

    18/30

    Problem Table Algorithm

    2 Approaches:

    Hot and Cold Temperature Intervals

    Global (Shifted) Temperature Intervals

    General Idea Get net H for each heat/enthalpy interval

    Cascade Hnet downwards for cumulative net H

    Only cascade for positive heat flow eliminate negativeheat flow

    HHOT - HCOLD = (FCpHOT -FCpCOLD) T

  • 7/28/2019 Heat Integration_Setting Energy Targets

    19/30

    Problem Table Analysis - Example

    Stream data, Tmin = 10C

    Stream Type Ts (oC) TT (

    oC) FCP (kW/K)

    C1 Cold 20 180 20

    C2 Cold 140 230 30

    H1 Hot 250 40 15

    H2 Hot 200 80 25

  • 7/28/2019 Heat Integration_Setting Energy Targets

    20/30

    Hot and Cold Temperature

    Intervals Determine the heat surplus (S)/deficit (D) within intervals

    COLD HOT FCP,H - FCP,C HNET

    (240) 250

    230 (240) C2 15 150 (S)

    (190) 200 -15 -600 (D)

    180 (190) C1 10 100 (S)

    140 (150) -10 -400 (D)

    (70) 80 20 1400 (S)

    (30) 40

    H2

    -5 -200 (D)

    20 (30)

    H1

    -20 -200 (D)

  • 7/28/2019 Heat Integration_Setting Energy Targets

    21/30

    Hot and Cold Temperature

    Intervals Heat Cascade

    0

    150

    -600

    100

    -400

    1400

    -200

    -200

    150

    450

    -350

    -750

    650

    -450

    250

    750

    150

    -600

    100

    -400

    1400

    -200

    -200

    900

    1200

    400

    0

    1400

    300

    1000

    QH,min

    QC,min

    Pinch

    Add the largest (-) heat flow

  • 7/28/2019 Heat Integration_Setting Energy Targets

    22/30

    Global (Shifted) Temperature

    Intervals

    Shifting Rule:

    Cold Stream +Tmin /2

    Hot Stream -Tmin /2

  • 7/28/2019 Heat Integration_Setting Energy Targets

    23/30

    Shifted temperature intervals

  • 7/28/2019 Heat Integration_Setting Energy Targets

    24/30

    In each shifted temperature

    interval, calculate a simple energybalance form

  • 7/28/2019 Heat Integration_Setting Energy Targets

    25/30

    Temperature Interval Heat Balance

  • 7/28/2019 Heat Integration_Setting Energy Targets

    26/30

    Cascade any surplus heat from

    high to low temperature

  • 7/28/2019 Heat Integration_Setting Energy Targets

    27/30

    Heat flows cannot be negative! Add

    heat to make them at least 0!

  • 7/28/2019 Heat Integration_Setting Energy Targets

    28/30

  • 7/28/2019 Heat Integration_Setting Energy Targets

    29/30

    SUMMARY (ii)

    The problem table algorithm:

    Step 1: Adjust for Tmin

    Step 2: Set up temperature intervals

    Step 3: Calculate interval heat balance

    Step 4: Cascade for positive heat flows

    Then, QHmin, QCmin and pinch location withoutdrawing graphs

  • 7/28/2019 Heat Integration_Setting Energy Targets

    30/30

    Working Session 2

    Use the problem table method to verify your results in working session 1

    1

    2

    4

    CP=1.8