30
HEALTH CARE RESEARCH COLLABORATIVE Healthcare Ventilation Research Collaborative: Displacement Ventilation Research Phase II Summary Report DECEMBER 2009 AUTHORS: Arash Guity, PE, Mazzetti Nash Lipsey Burch Bob Gulick, PE, Mazzetti Nash Lipsey Burch Paul Marmion, PEng, Stantec

Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

H E A L T H C A R E R E S E A R C H C O L L A B O R A T I V E

Healthcare Ventilation Research Collaborative:Displacement Ventilation ResearchPhase II Summary ReportD E C E M B E R 2 0 0 9

A U T H O R S :

Arash Guity, PE, Mazzetti Nash Lipsey BurchBob Gulick, PE, Mazzetti Nash Lipsey BurchPaul Marmion, PEng, Stantec

Page 2: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Health Care Without Harm

has initiated a research

collaborative coordinated

by faculty of the University

of Illinois at Chicago School

of Public Health, with

support from the Pioneer

Portfolio of the Robert Wood

Johnson Foundation, aimed

at stimulating collaborative

research around health and

safety improvements in

health care. The Research

Collaborative is designed to

increase the evidence base

concerning the impacts

of sustainable design,

construction, organization,

operations, materials and

chemicals in the health care

sector on patient, worker and

environmental safety.

This paper is the sixth in a

series of papers in which

the Collaborative provides

research and analysis of factors

influencing patient, worker

and environmental safety and

sustainability in the healthcare

sector. The editors of this series

are Peter Orris, MD, MPH and

Susan Kaplan, JD.

Page 3: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

TA B L E O F C O N T E N T S

Acknowledgements.........................................................................................................................................4

1. Executive.Summary..................................................................................................................................5

2. Background..............................................................................................................................................7

2.1 History..............................................................................................................................................................7

2.1.1 Context...................................................................................................................................................7

2.1.2 PhaseIandtheHealthcareVentilationResearchCollaborative..........................................................7

2.2 SystemComparison:DisplacementVentilationvs.OverheadVentilation....................................................8

2.3 CodeConsiderations........................................................................................................................................8

3. Hypothesis...............................................................................................................................................9

4. Approach.................................................................................................................................................9

4.1 EmpiricalAnalysis............................................................................................................................................9

4.1.1 Objective................................................................................................................................................9

4.1.2 ExperimentalSetup................................................................................................................................9

4.1.3 TestingandValidation.........................................................................................................................11

4.2 InitialNumericalModelingandValidation..................................................................................................12

4.2.1 Objectives.............................................................................................................................................12

4.2.2 ModelingSetup....................................................................................................................................12

4.2.3 TestingandValidation.........................................................................................................................17

4.2.4 StatisticalComparison.........................................................................................................................17

4.3 ParametricNumericalTesting........................................................................................................................17

4.3.1 Objectives.............................................................................................................................................17

4.3.2 Metrics..................................................................................................................................................17

4.3.3 Testing..................................................................................................................................................18

Page 4: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

5. Key.Findings..........................................................................................................................................20

5.1 EmpiricalTestingResults...............................................................................................................................20

5.2 ParametricTestingResults.............................................................................................................................20

5.2.1 ImpactofHotSummerConditionsandSupplementalCooling.........................................................22

5.2.2 ImpactofColdWinterConditionsandSupplementalHeatingModes..............................................22

5.2.3 ImpactofAirDiffuserandGrilleLocations........................................................................................23

5.2.4 ImpactofCeilingHeight.....................................................................................................................23

5.2.5 ImpactofMovementonDisplacementVentilation............................................................................24

5.2.6 ImpactofCoughingonDisplacementVentilation..............................................................................24

6. Recommendations..................................................................................................................................25

6.1 GeneralRecommendations............................................................................................................................25

6.2 DesignStrategies............................................................................................................................................25

7. APPENDICES.......................................................................................................................................26

7.1 TerminologyandAbbreviations.....................................................................................................................26

7.2 HVRCAdvisoryCommittee.........................................................................................................................26

ThefollowingAppendicesareavailableintheonlineversion,availableat:http://www.noharm.org/lib/downloads/doc_index.php

7.3 EmpiricalTesting

7.4 NumericalTesting

7.5 StatisticalAnalysis

7.6 MovementStudy

L I S T O F TA B L E STable.1:.Empirical.Cases.for.Validation.........................................................................................................11

Table.2:.Parametric.Numerical.Cases............................................................................................................19

Table.3:.Summary.of.Parametric.Study.Results.............................................................................................21

Page 5: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

L I S T O F F I G U R E SFigure.1:.Initial.configuration.of.the.patient.room..........................................................................................10

Figure.2:.Dimensions.of.the.patient.room......................................................................................................10

Figure.3:.Photo.of.patient,.bed,.and.caretaker................................................................................................10

Figure.4:.Measurement.locations:.Poles.1-8.for.air.velocity.and.temperature..and.TGs.1-5.for.tracer.gas.or.particles...........................................................................................................10

Figure.5:.Initial.numerical.model.setup..........................................................................................................12

Figure.6:.Summer.Base.Case.Normalized.Contaminant.Concentration:.Whole.Room.....................................13

Figure.7:.Summer.Base.Case.Normalized.Contaminant.Concentration:.At.Caregiver.Height..........................13

Figure.8:.Summer.Base.Case:.3ppm.Iso-Surface.for.DV.at.4.ACH................................................................13

Figure.9:.Summer.Base.Case:.3ppm.Iso-Surface.for.OHV.at.6.ACH.............................................................13

Figure.10:.Temperature.profile.for.DV.at.4.ACH..........................................................................................14

Figure.11:.Velocity.profile.for.DV.at.4.ACH................................................................................................14

Figure.12:.Temperature.profile.for.OHV.at.6.ACH.......................................................................................14

Figure.13:.Velocity.profile.for.OHV.at.6.ACH.............................................................................................14

Figure.14:.3ppm.Iso-Surface.for.DV.at.4.ACH.............................................................................................14

Figure.15:.3ppm.Iso-Surface.for.OHV.at.6.ACH..........................................................................................14

Figure.16:.DV.with.Warmer.Temperature.Supply..........................................................................................15

Figure.17:.3ppm.Iso-Surface.for.DV.at.4.ACH.with.High.Supply.Air.Temperature.......................................15

Figure.18:.3ppm.Iso-Surface.for.DV.at.4.ACH.with.Radiant.Heating.Panels.................................................15

Figure.19:.3ppm.Iso-Surface.for.DV.at.4.ACH.with.Baseboard.Heating........................................................15

Figure.20:.Normalized.tracer.gas.concentration.profiles.(comparison.of.low..and.high.level.auxiliary.exhaust.with.4.ACH.and.6.ACH.respectively)..........................................................16

Figure.21:.3ppm.Iso-Surface.for.OHV.at.6.ACH..........................................................................................16

Figure.22:.3ppm.Iso-Surface.for.DV.at.4.ACH.............................................................................................16

Page 6: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report4

Theauthorsgratefullyacknowledgethesupportandcontributionsofthefollowingindividualsandorganizations:

Healthcare.Ventilation.Research.CollaborativeBobGulick,PE,LEED®AP,Principal,MazzettiNashLipseyBurch1

WalterVernon,PE,LEED®AP,Principal,MazzettiNashLipseyBurchJohnPappas,PE,LEED®AP,Principal,MazzettiNashLipseyBurchArashGuity,PE,LEED®AP,HVRCProjectManager,MazzettiNashLipseyBurch1

ChristyLove,EIT,LEED®AP,MechanicalDesigner,MazzettiNashLipseyBurchPaulMarmion,PEng,LEED®AP,ManagingPrincipal;BuildingEngineering,Stantec1

RayPradinuk,MAIBC,LEED®AP,HealthcareResearchandInnovationLeader,StantecWeiranXu,PhD,MentorGraphics2

AndyManning,PhD,MentorGraphics2

Qingyan(Yan)Chen,PhD,SchoolofMechanicalEngineering,PurdueUniversity2

YonggaoYin,PhD,SchoolofEnergyandEnvironment,SoutheastUniversity,Nanjing,ChinaandSchoolofMechanicalEngineering,PurdueUniversity2

JitendraK.Gupta,SchoolofMechanicalEngineering,PurdueUniversity2

SagnikMazumdar,PhD,UniversityofMedicineandDentistryofNewJersey2

EnidK.Eck,RN,MPH,RegionalDirector,InfectionPreventionandControl,KaiserPermanenteAlfDyck,PEng,VicePresidentofEngineering,E.H.PriceBradTully,ResearchandDevelopmentManager,E.H.PriceJulianRimmer,E.H.PriceJohnMesservy,DirectorofCapitalandFacilitiesPlanning,PartnersHealthcareSystemInc.TeerachaiSrisirikul,DirectorofUtilities&Engineering,PartnersHealthcareSystemInc.PaulaWright,RN,BSN,CIC,DirectorofInfectionControlUnit,PartnersHealthcareSystemInc.AndrewStreifel,MPH,HospitalEnvironmentSpecialist,UniversityofMinnesotaMikeBuck,SafetyandHealthComplianceSpecialist,UniversityofMinnesotaJudeneBartley,MS,MPH,CIC,VicePresident,EpidemiologyConsultingServicesInc.SeanBrice,PE,LEED®AP,DirectorofEngineering,ThompsonConsultantsInc.RalphGifford,ThompsonConsultantsInc.MaryMcNaughton,RN,BSN,MSA,CIC,InfectionControlPractitioner,ProvidenceHealthcareBillRavanesi,MA,MPH,HealthcareWithoutHarmLindaDickey,RN,MPH,CIC,UniversityofCaliforniaIrvineMedicalCenterRussOlmsted,MPH,CIC,Epidemiologist,InfectionControlServices,TrinityHealthSystem

HVRC.Advisory.CommitteeDr.PaulJensen,PhD,PE,CIH,Captain,EngineerDirector,CentersforDiseaseControlandPreventionDr.FarhadMemarzadeh,PhD,PE,NationalInstitutesofHealthDr.MicheleR.Evans,DrPH,NationalInstitutesofHealthDr.BernardT.Baxter,PhD,MD,UniversityofNebraskaMedicalCenterDr.AnjaliJoseph,PhD,DirectorofResearch,CenterforHealthDesignChrisRousseau,PE,Newcomb&BoydJeffreyHardin,DeputyDirectorofMedicalFacilitiesCenterofExpertise,USArmyCorpsofEngineers

Supporting.OrganizationsKaiserPermanentePartnersHealthcare

A C K N O W L E D G E M E N T S

1 HVRCSteeringGroup2 HVRCResearcher

Page 7: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 5

Lowsidewalldisplacementventilation(DV)inhospitalpatientroomsappearedpromisinginhealth-careapplicationsasanHVACapplicationtoreduceoperatingcostandfirstcostwhileprovidingimprovedenvironmentalcomfort,ventilationeffectiveness,andinfectioncontrol.Testingin2006and2007invendorlaboratoriesandinthefieldsupportedthehypothesisthatlowsidewallventilationattwothirdstheairflowoftraditionalmixingoverheadventilation(OHV)hadequalorbetterperformanceinallareas.Aswithanychange,practicalquestionsarosefromhospitaldesign,operationsandcodeenforcementagenciesregardingDV.Thequestionsprecipitatedamoreformalresearcheffortin2008tomorerigorouslytestthefindingsfrom2006and2007,andtocreateandvalidateaComputa-tionalFluidDynamics(CFD)designtooltorespondtothequestionsthathadbeenraised.

Aformalresearchprocesswasundertaken,includingindependent,highlyqualified,empiricalandnumericalresearchersandanindependentadvisorycommittee.Dr.YanChenofPurdueUniversitywasselectedforempiricaltesting,andDr.WeiranXuandDr.AndyManningofMentorGraphics(formerlyFlomerics)wereselectedfornumericalCFDmodeling.Thepur-poseoftheresearchwastocomparetheperformanceofDV–attwothirdsairflow–toacode-compliantOHVconfiguration,consideringenvironmentalcomfort,ventilationeffectiveness,andparticledisper-sioncontrol(asurrogateforairbornepathogens).Theempiricaltestingwasusedtovalidatethenumericalmodel,sothatthenumericalmodelcouldthenbeusedtoevaluateperformanceunderavarietyofdynamicconditionsthatwouldbedifficulttosimulateinanempiricalmodel.

Inordertobeacknowledgedbyregulatingandstan-dardsbodiesasanacceptablemethodofventilation,thealreadyacceptedminimumoverheadairflowrateofsixairchangesperhour(ACH)wasusedastheyard-stickagainstwhichtomeasuretheperformanceofDV.

Thisresearcheffortfocusedonlow-risk,singlepatienthospitalrooms.TheroomconfigurationwasmodeledaccordingtoKaiserPermanente’sstandardsingle-bedpatientroomwithabathroomontheexteriorwall.TheresearchconcludedthatDVat4ACHperformedequallyorbetterthanOHVat6ACHforthermalcomfort,ventilationeffectivenessandcontaminantconcentration,andthattheperformanceofDVisdependentonseveralintegratedelementsoftheairdeliveryandroomexhaustairsystemdesign.Thestudyidentifiedthefollowingdesignissuesthatneedtobecarefullyconsidered:

1. ThecoolingcapacityofaDVsystemislimitedbytheminimumallowablesupplyairtemperaturerequiredtomaintainthermalcomfort.

2. RoomthermalgainsandlossesmustbecontrollediftheperformanceoftheDVsystemistobemain-tained,i.e.:

a. Facadesshouldbedesignedtominimizethethermalgainsandlossestopreventwarmandcoldsurfaces,especiallywithrespecttoglazing.ThewarmsurfacescouldaffecttheDVairflow.

b. Manualorautomaticsolarshadingdevicesshouldbeinstalledtominimize/eliminatedirectsolargains.Thefieldtestsshowedthatfloorsurfaceswarmedupbydirectsolargainscanactasathermalhotspot,creatinglocal-izedthermalchimneys,andcausingmostofthedisplacementsupplyairtoshortcircuitthebreathinglevel.

c. Lightingandmedicalequipmentloadsshouldbeminimized.

1.E X E C U T I V E S U M M A R Y

Page 8: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report6

3. DVshouldnotbeusedforspaceheating,i.e.:

a. Providingsupplyairfromthelowsidewalldis-placementdiffuseratahighertemperaturethantheroom’stemperaturewillresultindecreasedperformanceoftheDVsystem.

b. Whenusingasupplementalheatingmethodsuchasradiantorconvectivebaseboardheat-ing,theperformanceoftheDVcanbemain-tained,ifnotimproved.

4. Theplacementofthesupplyairdiffuserisnotcritical,butshouldbecoordinatedwiththeroomdesign.Thediffusershouldbelocatedatlowlevelinalocationthatwillnotbeblockedwithsolidfurnituresuchasastoragecabinet.

5. Thetoilettransfergrilleshouldbelocatedathighlevel.TheempiricalexperimentsshowedthattheDVeffect/pluming/highlevelremovalofairborneparticlescanbeseriouslyaffectedifthesupplyairisallowedtoshortcircuitatlowlevel,directlyintothetoiletroom.

Page 9: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 7

2.1 History

2.1.1 ContextHealthcarefacilitiesareoneofthemostdifficulttypesofbuildingsto“green”.Giventheirpurposeinserviceofvulnerablepopulations,theyareregulatedmoreheavilythananyotherbuildingtype.Theymustfunctionfirstandforemostinacapacitythatensuresqualityofpatientcareandoccupant(caregiv-ers,visitors,andpatients)safety,andassuch,infec-tioncontrolcannotbecompromisedbytheneedorthemeanstoreduceenergy.

Conversely,healthcarefacilitiesofferauniqueopportu-nityforincorporatingsustainablestrategiesthatsimul-taneouslyimprovethehealingenvironmentandreducetheenvironmentalimpact.Healthcarefacilitiesrankasthesecondhighestbuildingtypeforenergy-density,sothecorrespondingpotentialtoreduceenergyuseissignificant.Alternateventilationmethodssuchasdis-placementventilation(DV)haveproveninothertypesoffacilities(suchasschools,officebuildings,andareasofassembly)toimproveindoorenvironmentalqualityandthermalcomfortwithreducedenergyconsumptioncomparedtotraditionalmixingoverheadventilation(OHV)systems.

Thethermalandventilationeffectivenessperfor-manceofDVhasbeenwelldocumented.Theissuethatdifferentiateshealthcareventilationfromotherbuildingtypesisairborneinfectioncontrol.WhiletherearestudiesthathaveconsideredairborneparticlemovementwithDV,none(tothebestoftheauthors’knowledge)hasdoneasidebysidecomparisonofDVtoOHVconsideringenvironmentalcomfort,ventila-tioneffectiveness,andparticlecontrolalltogether.

2.1.2 Phase I and the Healthcare Ventilation Research CollaborativeTheHealthcareVentilationResearchCollaborative(HVRC)wasformedin2006bytwohealthcareengineer-ingdesigncompanies(StantecandMazzettiNashLipseyBurch)toconsolidatetheeffortsofseveralorganizationstowardthecommongoalofpromotingimprovedpatientandstaffsafetyandsustainabledesigninhealthcarefacili-tiesthroughtheimplementationofinnovativeengineer-ingconceptsthathavebeenthoroughlyandscientificallydocumented.TheHVRCrepresentsagroupofindustryprofessionalsincludinghealthcareproviders,infectioncontrolexperts,architects,engineers,equipmentmanu-facturers,andaffiliatedprofessionals.ThecurrentrosteroftheHVRCislistedintheAcknowledgements.

InPhaseI,researchwasconductedtoassessbothnatu-ralventilationandDVinexamrooms,patientroomsandemergencywaitingrooms.Researchmethodsincludedlaboratorymockups(attheE.H.Pricelabora-toryinWinnipeg,Canada),fieldtesting,andcomputa-tionalfluiddynamics(CFD)analysis.TestingfocusedonenvironmentalcomfortperASHRAEStandard55,ventilationeffectivenessperASHRAEStandard62,andparticledispersionperatestdesignedbyAndrewStreifel,MPH,HospitalEnvironmentSpecialistattheUniversityofMinnesota.

PhaseIresultsindicatedthatDVat4ACHinapatientroomprovidesbetterparticledispersal,ventila-tioneffectiveness,andenvironmentalcomfortthanOHVat6ACH.However,morestringenttestproce-dureswereneededtodemonstrateconclusiveresults.

Dr.FarhadMemarzadeh,oftheNationalInstitutesofHealth,recommendedadetailedfollow-upeffortbeper-formed,undertheguidanceofanindependentadvisorycommittee,withadoubleblindcomparisonbetweenanempiricalandnumericaltest.Akeypurposeoftheempiricaltestingwouldbetovalidateanumericalmodelandfacilitateitsuseforevaluatingmultipleroomandsystemdesignconfigurationsinamorepracticalandfea-siblemannerthancontinuedphysicaltesting.ContainedhereinaretheresultsofthisfollowupPhaseIIresearch.

2.B A C K G R O U N D

Page 10: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report8

2.2 System Comparison: Displacement Ventilation vs. Overhead VentilationConventionalOHVsystemsgenerallysupplyairinamannersuchthattheairintheentireroomisfullymixed.Incoolingmode,thecoolsupplyair,typicallyaround55°Fatdesignconditions,exitstheoutletathighveloc-ityandinducesroomairtomixandequalizetempera-ture.Becausetheentireroomisessentiallyfullymixed,temperaturevariationsaresmallwhilethecontaminantconcentrationisfairlyuniformthroughouttheroom.

DVsystems,ontheotherhand,introduceairatlowvelocitiesandatlowleveltospecificallyavoidinduc-tionandmixing.Suchsystemsutilizenaturalbuoyancyandconvectiveforces(createdbyheatsourcessuchaspeople,lighting,equipment,etc.)tomovecontami-nantsandheatfromtheoccupiedzonetothereturnorexhaustgrillesabove.

Coolair(coolerthantheroomair)issuppliedatlowvelocityintothelowerzoneandpoolsacrossthefloorbecauseitismore‘dense’orlessbuoyantthantheroomair.Convectionfromheatsourcesthendrawstheairverticallyintotheupperzonewherehighlevelreturnopeningsextracttheair.Inmostcases,theseconvectionheatsourcesarealsothecontaminationsources(people,equipment,etc.),therebybringingthecontaminantsdirectlytotheupperportionoftheroom,awayfromtheoccupants.Indoingso,theairqualityintheoccupiedzoneisgenerallyconsideredsuperiortothatachievedwithmixingroomairdistribution,andthethermalloadsintheoccupiedzonearelessthantheentireroomvolume.ASHRAE’sSystemPerformanceEvaluationandDesignGuidelinesforDisplacementVentilation3describeshowthermalloadscanbediscountedwhenusingDV.

Sincetheconditionedairissupplieddirectlyintotheoccupiedspace,thesupplyairtemperaturesmustbehigherthanmixingsystemstoavoidoverlycooltem-peraturesatthefloor.ByintroducingtheairathighersupplyairtemperaturesandloweroutletvelocitiesthanOHVsystems,ahighlevelofthermalcomfortcanbeachievedwithDV.

TheenergybenefitsforDVcomefromthefactthatairissuppliedatahighertemperaturethanwithOHVsys-tems,andmuchofthethermalcoolingloadinthespacedoesnotcomeintotheoccupiedzonebutisdrawn

throughnaturalbuoyancyandconvectiondirectlytotheupperunoccupiedzonewithoutmixing.Thisresultsinhigherreturnairtemperaturesandlowerairflowrates,whichcontributetoareducedmechanicalcoolingandventilationplantsizeandenergyconsumption.

Becauseitreliesonmorepassiveforcesforitseffective-ness,DVcanbealessrobustsystemthanOHV.Assuch,anintegrateddesignapproachisgenerallyrecommendedtooptimizeitsperformance.Thekeyparametersaffect-ingDVperformanceareinvestigatedinthisstudy.

2.3 Code ConsiderationsIntheUnitedStates,healthcarefacilitydesignrequire-ments,includingtheirHVACsystems,aregovernedonastate-by-statebasis.MoststatesutilizetheGuidelinesforDesignandConstructionofHealthCareFacilitiespublishedbytheFacilitiesGuidelinesInstitute(FGI)asthebasisoftheirregulations.VentilationrequirementsforhospitalsandoutpatientfacilitiesarecoveredinTable2.1-2oftheGuidelines(2006Edition),prescrib-ingspace-pressurerelationships,minimumairexchangerates(forbothtotalandOSA),exhaustrequirements,andtemperatureandhumiditycontrols.

ExtensivefootnotestoTable2.1-2provideclarifica-tionsandexceptionstotheserequirements.Forexam-ple,theTablerequiresminimumsof6airchangestotaland2outsideair(OSA)changesforpatientrooms,andminimumsof12airchangestotaland2OSAchangesforemergencywaitingrooms,butFootnote10allowstheminimumtotalairchangesinapatientroomtodropto4ifusingsupplementalheatingand/orcool-ing.So,technically,theGuidelinesallowDVaslowas4ACHinapatientroomwithsupplementalheatingand/orcooling.However,whilemoststateregulationsincludeaversionofTable2.1-2,theextenttowhichthefootnotesareadoptedvarieswidely.

TheHealthGuidelinesRevisionCommittee(HGRC),inconjunctionwiththeFacilityGuidelinesInstitute,updatestheGuidelineseverythreeyears.

ASHRAEhadalsorecentlydevelopedStandard 170: Ventilation of Healthcare Facilities,whichdefinesventilationsystemrequirementsforhealthcarefacili-ties.Ratherthanhaveparallelguidelinesforventila-tionrequirementsforhealthcarefacilities,theHGRCelectedtoadoptStandard170toreplaceTable2.1-2intheGuidelines forthe2010Edition.

3 Chen,QingyanandLeonGlicksman.SystemPerformanceEvaluationandDesignGuidelinesforDisplacementVentilation.ASHRAE:2003.

Page 11: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 9

3.H Y P O T H E S I S

TheHVRCinitiatedtheformationofanAdvisoryCommitteein2007toserveasanindependentpartytoguidetheresearchandevaluatetheresults.TheAdvi-soryCommitteerosterisincludedasAppendix7.2.

Theresearchconsistedoftwoindependentblindcomponents:empiricalanalysisandnumericalanalysis.ResearchersforeachcomponentwereselectedwiththeguidanceoftheAdvisoryCommitteebasedontheirgeneralexperience,qualifications,andcapabilitytomeettherequirementsofadetailedtestprotocol.

Theempiricalresearchanalyzedenvironmentalcom-fortandparticledispersionforasingle-bedhospitalpatientroom(withabathroom),comparinganOHVsystemat6ACH(currentacceptedminimum)tolowsidewallDVat4ACH.

Inaddition,theempiricalOHVandDVtestswerecomparedtoanumericalcomputationalfluiddynamic(CFD)simulationforthepurposesofvalidation.Theblind,independenttestresultsweresubmittedtotheHVRCforastatisticalcorrelationevaluation.

Followingvalidation,thenumericalmodelwasusedtotestanumberofkeyparameters,includingoutdoorconditions,supplyairtemperatures,grilleanddiffuserlayouts,andsupplementalheatingandcooling.

Additionalempiricalandnumericaltestingwasperformedtoevaluatetheeffectsofcoughingandmovement.

4.1 Empirical AnalysisDr.Qingyan(Yan)ChenofPurdueUniversitycon-ductedtheempiricalanalysis.Anenvironmentalchamberwascreatedtosimulateaone-personpatientroom,inwhichthepatientcouldbreatheorcoughoutcontaminants.ThecompleteresultsoftheempiricalstudyareincludedinAppendix7.3.Anoverviewoftheresearchfollowsbelow.

4.1.1 ObjectiveTheobjectivesoftheempiricalanalysiswereto:

• Developatestingconfigurationtocomparetheper-formanceofaconventionalOHVsystemwithalowsidewallDVsystematlowerairflowrates;

• Collectmeasurementstobeusedforestablishingboundaryconditionsforthenumericalmodel;and

• Providehighqualityoutputresultstofacilitatevali-dationofthenumericalmodel.

Asecondaryobjectivewastodetermineatanearlystageoftheexperimentalprocesswhetheratracergas(SF6)couldbeusedtosimulatecontaminantsbreathedorcoughedoutbyapatient,sincetracergasesaremuchsimplertomodelthanactualparticles.

4.1.2 Experimental SetupTheempiricalvalidationtestsweredoneatroomenvelopeconditionsasclosetoadiabaticaspracticallypossible,withboundaryconditionscarefullymeasuredandsuppliedtothenumericalanalysisteamsothatthesamesurfacetemperatures,roomloads,andairflowratescouldbeusedforbothmodels.Comparisonmea-surementsincludedtemperature,velocity,andtracergas(SF6)concentrations.

TheHVRCinitiatedthisresearchtodetermineiflowsidewallDVcanmaintainorimproveairbornepathogenremovalfrompatientroomsatequalorlowerairchangeratesthanthosecurrentlyrequiredusingconventionalOHV,whilemaintainingorimprovingpatientandstaffcomfort,andreducingenergyuseandenvironmentaldegradation.Ifthehypothesisisproven,theresultswillpromptrevisionstocodesandstandardsforhealthcaredesignandconstruction.

4.A P P R O A C H

Page 12: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report10

Figure 1: Initial configuration of the patient room

Figure 2: Dimensions of the patient room

Figure 3: Photo of patient, bed,

and caretaker

Figure 4: Measurement locations: Poles 1-8 for air velocity and temperature and TGs 1-5 for

tracer gas or particles

ThepatientroomsetupwasbasedonaKaiserTemplateHospitalsingle-bedpatientroom.Figures1through4showtheinitialconfigurationandmeasurementlocations.

Page 13: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 11

Thepatientroomincludedthefollowingelements:

a. Patient(thermalmanikin)lyingonbed –breath-ingzoneat1.1maboveflooristhecontaminantsource;patientassumedtobecontaminantsource

b. Caretaker(thermalmanikin)standingatbedside –breathingzoneat1.7mabovefloor;oneofthecriti-calpointsformeasuringcontaminantconcentration

c. FortheOHVconfiguration:overheadceilingdif-fusercenteredabovebed

d. FortheDVconfiguration:lowsidewallsupplydif-fuseragainstwalloppositefootofbed

e. ForbothDVandOHV:mainroomexhausthighonheadwall –nearinteriorwall

f. ForbothDVandOHV:transfergrilletobath-room –initiallylowintoiletdoor,thenmovedtohighwallabovebathroomdoor

g. Interiorloads:Equipmentoninteriorwall,TVonwalloppositebed,lightsonceiling

h. Temperatureandvelocitymeasurements:eightpolelocationsatsevenelevationseach,foratotalof56points

i. Tracergas/Particleconcentrationmeasurements:fivepolelocations,fouraroundbedandonenearexteriorwindow,representinglocationsofpeopleinroom,atsevenelevations,foratotalof30points

TheempiricaltestingconsistedofeightcasesdesignedtotestOHVvs.DVsystems.ThecasesaresummarizedinTable1below.

4.1.3 Testing and ValidationMultipletestcaseswereruninthelab.CaseslookedatanOHVsystemat6ACH,andlowsidewallDVatboth4and6ACH.Testswereperformedforbothtracergas(SF6)and1micronand3micronparticlestoevaluatetheacceptabilityofusingoftracergasasasurrogateforparticles.Initialtestingdemon-stratedpoorperformanceoftheDVsystemwhenthetransfergrillebetweenthepatientroomandthetoiletwaslocatedatlowlevel.FurthertestswererunwithahightransfergrillewhichshowedasignificantimprovementoftheDVsystem.Subsequenttestswereperformedwiththehightransfergrillelocation.Two(2)basecaseswereestablished(cases1and2inTable1)tobeusedforvalidationofthenumericalmodel.Evenwithsignificanteffortstocreateadiabaticroomenvelopeconditions,heattransfercannotbetotallyeliminatedinthephysicalworld.Assuch,itwascriti-caltomeasureairflowcharacteristicsandtherateofheattransferonallsurfacesoftheroomtoestablishboundaryconditionsforthenumericaltestingteam.Eachcasewasrunthreetimestoverifytherepeatabil-ityofthedata.

Table 1: Empirical Cases for Validation

Cases

ROOM CONDITIONS

Contaminant sourceVentilation Bathroom exhaust grille Flow rate (ACH)

1 OverheadSupply Lowlevel 6 SF6

2 SidewallDisplacement Lowlevel 4 SF6

3 OverheadSupply Highlevel 6 SF6

4 SidewallDisplacement Highlevel 4 SF6

5 SidewallDisplacement Lowlevel 6 SF6

6 SidewallDisplacement Highlevel 6 SF6

7 SidewallDisplacement Highlevel 4 1μmparticles

8 SidewallDisplacement Highlevel 4 3μmparticles

Page 14: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report12

Empiricaltestingproducedtwoprimaryoutputs:mea-suredtestoutputdatafortemperature,velocity,andtracergasconcentration,aswellasboundarycondi-tionsfordefiningthenumericalbasecaseanalysis.Boundaryconditionsincludedthefollowing:

a. Roomdimensions

b. Grillelocations

c. Airflows

d. Datameasuringpointdimensions

e. Interiorloadsandlocations,includingthermalmanikins

f. Wallheattransferdata

g. Supplydiffuservelocityprofiles

Theempiricaltestoutputdatawerekeptblindtothenumericalmodelers.

4.2 Initial Numerical Modeling and ValidationDr.AndyManningandhisassociate,Dr.WeiranXu,withMentorGraphics(previouslyFlomerix),conductedthenumericalmodelingresearch.CompleteresultsofthenumericalresearchareincludedinAppendix7.4.Anoverviewoftheresearchfollowsbelow.

4.2.1 ObjectivesTheobjectiveoftheinitialnumericalanalysiswastovalidatethenumericalmodelfromtheempiricalresults.Oncevalidated,thenumericalmodelcouldbeusedtoevaluatearangeofvariablesappliedtoDVandOHV.

4.2.2 Modeling SetupThenumericalmodelwassetuptomatchtheempiri-calmodel,basedonboundarydataprovided.Figure5showsthemodelsetup.

Figure 5: Initial numerical model setup

Page 15: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 13

Figure 7: Summer Base Case Normalized Contaminant Concentration:

At Caregiver Height

Figure 6: Summer Base Case Normalized Contaminant Concentration:

Whole Room

Figure 8: Summer Base Case: 3ppm Iso-Surface

for DV at 4 ACH

Figure 9: Summer Base Case: 3ppm Iso-Surface

for OHV at 6 ACH

C O L O R F I G U R E S

Page 16: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report14

Figure 10: Temperature profile for DV at 4 ACH

Figure 13: Velocity profile for OHV at 6 ACH

Figure 12: Temperature profile for OHV at 6 ACH

Figure 11: Velocity profile for DV at 4 ACH

Figure 14: 3ppm Iso-Surface for DV at 4 ACH

Figure 15: 3ppm Iso-Surface for OHV at 6 ACH

Page 17: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 15

Figure 17: 3ppm Iso-Surface for DV at 4 ACH with

High Supply Air Temperature

Figure 16: DV with Warmer Temperature Supply

Figure 19: 3ppm Iso-Surface for DV at 4 ACH with

Baseboard Heating

Figure 18: 3ppm Iso-Surface for DV at 4 ACH with

Radiant Heating Panels

Page 18: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report16

Figure 21: 3ppm Iso-Surface for OHV at 6 ACH

Figure 22: 3ppm Iso-Surface for DV at 4 ACH

Figure 20: Normalized tracer gas concentration profiles (comparison of low and

high level auxiliary exhaust with 4 ACH and 6 ACH respectively)

Page 19: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 17

4.2.3 Testing and ValidationNumericalvalidationtestingwasconductedtocreatedataforcomparisontotheempiricalstudy,usingtheboundaryconditions(walltemperatures,roomgeom-etry,roomloads,andairflowvalues)fromtheempiricalanalysis.Twobasecaseswereusedforvalidationofthenumericalmodel:oneforanOHVsystemat6ACHandoneforaDVsystemat4ACH.

Anearlysubsetoftheresearchwastoconstructapatientbreathingmodelthatsimulatedtheeffectofrealbreathingandwasconsistentwithempiri-caltesting.Thepurposeofthisanalysiswastoevaluatewhetherthenumericalsimulationsshouldbeperformedassumingaconstantrateofexhalation(constantbreathing)oractualbreathing(inhalationandexhalation).Theresultoftheanalysiswasthat“constantbreathing”wouldaccuratelyrepresenttherateofparticlereleaseofactualbreathing.Appendix7.4includesasummaryofthetestingandverificationofa“constantbreathing”numericalmodelthatassistedinsubsequentmodeling.

Thevalidationperiodwasextendedduetomanyiterativerunstofinetunetheboundaryconditions,ofwhichheattransferthroughtheenvelopeandvelocityprofilesfromthesupplydiffusersprovedmostchalleng-ing.Theboundaryconditionswererefinedtothepointofgoodcorrelationofnumericaltoempiricaldata.

Figures6-9onpage13(andFigures12-16inAppendix7.4availableintheonlineversion)showthecomparison.

4.2.4 Statistical ComparisonAnindependentstatisticalcomparisonoftheempiri-calandnumericaldatawasconductedbyDr.FarhadMemarzadeh,todeterminethelevelofagreementbetweentheempiricalandnumericalmodelsandcon-firmthatthenumericalmodelcouldserveasanappro-priaterepresentationoftheempiricaltest.Appendix7.5includesthecompletestatisticalcomparison.

Theresultsbetweenthetwomodelsdemonstratedacceptableagreement,particularlyintermsoftrend-ingoftheoutputsinthebreathingzone,allowingforextendeduseofthedevelopednumericalmodelformorecomplextestingandcomparisonofDVandOHV.

4.3 Parametric Numerical TestingAfterthenumericalmodelwasvalidated,Dr.ManningandDr.Xusetupnumerical(CFD)modelsthatvariedanumberofkeyparameterstotesttheresearchinitia-tive’scentralhypothesis.

4.3.1 Objectives Theoverallobjectiveofthisresearchproject–andofthisportionoftheproject-wastostudyandcomparetheperformanceofOHVandDVsystemsinasingle-bedhospitalpatientroom.Thedistinctemphasisofapatientroomventilationsystemistheabilitytoremovecontaminantswhilemaintainingacceptablethermalcomfort,andtheparametricnumericaltestingwasdesignedtoevaluatetheseparallelgoals.

4.3.2 MetricsTwomainsetsofmetricswereestablishedtocompareperformance,asfollows:

a. ThermalComfort

Therearethreestandardmeasuresfordetermi-nationofthesuitabilityofanenvironmentforhumanoccupation:

• Fanger’scomfortequationsforPercentageMeanVote(PMV)andPredictedPercentageDissatisfied(PPD).PMVandPPDwereempiri-callyderivedfromhumanresponsestotestconditions,inwhichindividualsreportedtheirlevelofcomfortfromverycoldtoveryhot.Theindiceswerethendevelopedtodescribeasetofroomconditionsintermsofthepercent-ageofoccupantswhoarelikelytobedissatis-fiedwiththoseconditions.Theseindicesdonotaccountforthediscomfortexperiencedwhenmovingfromoneregiontoanotherwithdifferentconditions(theAirDistributionPerformanceIndexdescribedbelowaddressesmovementeffects).

Page 20: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report18

• Comfort(Resultant)Temperature.Thether-malcomfortofaroomdepends,toasignificantdegree,ontheradiativeexchangebetweentheoccupantsandtheirsurroundings.Theconceptofmeanradianttemperatureisusedtodescribethisradiativeexchange,andisdependentuponthesurfacetemperatureofthesurround-ings.Theresultanttemperature,byextension,describesthecombinedeffectofmeanradianttemperature,airtemperature,andvelocity.

• AirDiffusionPerformanceIndex(ADPI).ADPIisaparameterthatmeasurestheuni-formityofthespaceintermsofthepropor-tionofthevolumewithavelocitylowerthan0.35ms-1(70ftmin-1)anddrafttemperaturebetween-1.7°Cand+1.1°Cfromthemeantemperature.Uniformityisnormallyconsid-eredgoodintheoccupiedregionofamixedflowdesigniftheADPIforthatregionexceeds80%.Althoughthismeasurewasdesignedforestablishingwhethercoolingjetsfrommixedflowventilationsystemsarewelldissipated,thismeasurecanbecautiouslyappliedtodeterminethegeneraluniformityofotherenvironments.

PPDwaschosenastheonlythermalcomfortindexforthisstudysinceitistheonemostwidelyusedandunderstood.

b. VentilationEffectiveness/ContaminantRemoval

Therearetwomaincategoriesofindicestomea-surethecontaminantcontrolcapabilityofventila-tionsystems:

• VentilationEffectiveness,ortheabilityofaventilationsystemtoremoveinternallygeneratedpollutantsfromabuilding,zone,orspace.VentilationEffectiveness(asdefinedbyASHRAE62.1)iscalculatedforthecaregiver,visitor,andwholeroom.AfurtherrefinementofVentilationEffectivenessisthePersonalExposureIndex,whichreflectsthecontami-nantconcentrationattheexactbreathinglocationofthecaregiver,versussimplythecontaminantconcentrationatthegeneralbreathingzone.

• AirChangeEffectiveness,ortheabilityofaventilationsystemtodistributeventilationairtoabuilding,zone,orspace.AirChangeEffectivenessisdefinedbyASHRAEStan-dard129-1997.ArefinementofAirChangeEffectivenessis“AirDistributionEffective-ness”,whichspecificallyaddressesdisplace-mentcoolingsystemsandiscurrentlyunderconsiderationbyASHRAE.

Fourindiceswerethususedtoevaluatetheresultsfromacontaminantremovalperspective:

• VentilationEffectiveness

• PersonalExposureIndex

• AirChangeEffectiveness

• AirDistributionEffectiveness

4.3.3 TestingInordertosystematicallyinvestigatethecharacteristicsofDVandOHVsystems,aseriesofcasesweredevelopedtotest(usingCFDmodeling)thefollowingparameters:

• Impactofhotsummerconditions(includingsolargain)

• Impactofsupplementalcooling

• Impactofvaryingsupplyairtemperatures

• Impactofcoldwinterconditions

• Impactofsupplementalheating

• Impactofairdiffuserandgrillelocations

• Impactofceilingheight

• ImpactofmovementonDV

• ImpactofcoughingonDV

Table2summarizesthecases.

Page 21: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 19

Table 2: Parametric Numerical Cases

#Description/

PurposeVentilation

TypeMain

Return Weather Load ACHSupply

Temp (degF)

Additional Cooling/Heating

1 DV Limit with Solar Load

Displacement Above Patient

Summer LA 105F

Standard 4 Adjustable, 60F low limit

No

2 Overhead Overhead Close to Window

Winter Chicago -10F

Reduced 6 Adjustable, up to 105F

No

3 DV with Radiant Heating Panel

Displacement Above Patient

Winter Chicago -10F

Reduced 4 67.1 Radiant Heating

4 DV with Baseboard Heater

Displacement Above Patient

Winter Chicago -10F

Patient, Caregiver only

4 67.1 Baseboard Heater

5 Overhead 4ACH

Overhead Close to Window

Summer LA 105F

Standard 4 Adjustable, 55F low limit

No

6 Overhead 4ACH

Overhead Close to Window

Winter Chicago -10F

Patient, Caregiver only

4 Adjustable, up to 105F

No

7 DV at 4 ACH - w Radiant Cooling Panel

Displacement Above Patient

Summer LA 105F

Standard 4 67.1 Radiant Cooling

8 Overhead 6 ACH in Summer

Overhead Close to Window

Summer LA 105F

Standard 6 Adjustable, 55F low limit

No

9 DV 4 ACH w Solar Loading

Displacement Above Patient

Summer Reduced Temp 97F

Standard 4 60 No

10 DV 4 ACH w High Supply Temperature

Displacement Above Patient

WinterChicago -10F

Patient, Caregiver only

4 87F No

11 DV 4 ACH w 12’ Ceiling Height

Displacement Side wall above Patient

Summer LA 105F

Standard 4 60F No

12 DV 4 ACH w 12’ Ceiling Height

Displacement Above Patient on the ceiling

Summer LA 105F

Standard 4 60F No

Standard Load = Load from Patient, Caregiver, TV, Equipment. Reduced Load: Patient, Caregiver only

Page 22: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report20

ThekeyfindingsofthePhaseIIresearcharesumma-rizedinthissection.Completeresultsaredetailedinindividualresearchpapers,referredtothroughoutthisdocumentandincludedasAppendices.

5.1 Empirical Testing ResultsInthecourseofestablishingarobustsetofboundaryconditionsforthenumericalmodel,theempiricaltest-ingyieldedinterimresultsthatinformedthefinalsetupofthepatientroomthatwasthenusedforcomplexnumericaltesting.

Thethreekeyresultsoftheempiricaltestingwereasfollows:

a. DVdidnotperformwellwhenthetransfergrilletothetoiletroomwaslocatedatlowlevel.Withmorethanhalfofthesupplyairtransferredviathetoiletroom,supplyairwasshortcircuitedreduc-ingtheDVeffectivenessintheroom.Whenthetransfergrillewaslocatedathighlevel,DVperfor-mancesignificantlyimproved,evenatareducedairchangerate.

b. SF6tracergaswasavalidsurrogatefor1and3micronairborneparticles.

c. Withthehightoilettransfergrille,DVat4ACHperformedequallyorbetterthanOHVat6ACHforenvironmentalcomfort,ventilationeffective-ness,andtracergasconcentration.

5.2 Parametric Testing ResultsThenumericaltestingresultsforthebasecasesshowedthatDVat4ACHperformedequallyorbetterthanOHVat6ACHforthermalcomfort,ventilationeffec-tiveness,andcontaminantconcentration.

Thebasecaseresultsareillustratedinthefigures10-13(seepage14).

Themodelersdevelopedavisualconcepttodisplayareasofconstantcontaminantconcentrationwithinthepatientroom.Figures14and15(seepage14)showthroughtheuseofaniso-surface,theextenttowhichcontaminantsspreadintheDVandOHVscenarios.Astheiso-surfacedemonstrates,theDVairflowpatternresultsinamorecontainedcontaminantconcentrationathighlevel.

Thenumericalmodelingwasalsousedtotestmorecomplexparametersbeyondthescopeofthebasecasesusedforvalidation.Theresultsforthesetestsaresum-marizedinTable3.

5.K E Y F I N D I N G S

Page 23: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 21

Table 3: Summary of Parametric Study Results

#Description

/Purpose

PPDPatient AreaVisitor Area

VE for caregiver

at 1.1m1.7m

VE for visitor

at 1.1m1.7m

VEWhole room

at 1.1m1.7m PEI ADE ACE

# Description /Purpose

PPDPatient AreaVisitor Area

VE for caregiver at1.1m1.7m

VE for visitorat1.1m1.7m

VEWhole roomat1.1m1.7m

PEI ADE ACE

1 DV Limit with Solar Load

8.618.91

1.221.05

1.451.38

1.311.18

1.36 1.62 0.950.91

2 Overhead 7.0621.1

0.990.87

1.121.09

1.041.00

1.07 N/A 0.840.82

3 DV with Radiant Heating Panel

5.899.84

1.671.48

1.391.37

1.711.63

1.89 N/A 1.601.18

4 DV with Baseboard Heater

7.058.37

3.242.58

2.532.37

3.072.61

3.26 N/A 0.850.71

5 Overhead 4 ACH 5.96.64

0.970.80

1.191.19

1.010.90

0.99 N/A 0.920.91

6 Overhead 4 ACH 5.7514.99

1.030.94

1.091.08

1.061.03

1.10 N/A 0.750.74

7 DV at 4 ACH - w Radiant Cooling Panel

12.5311.57

1.651.35

1.911.60

1.771.53

1.94 1.81 1.081.28

8 Overhead 6 ACH in Summer

8.178.74

0.800.76

0.940.94

0.810.79

0.84 N/A 0.790.80

9 DV 4 ACH w Solar Loading

9.313.18

1.251.06

1.571.51

1.351.20

1.45 1.62 0.870.84

10 DV 4 ACH w High Supply Temperature

5.812.33

0.900.90

0.940.98

0.940.98

0.97 N/A 0.750.85

11 DV 4 ACH w 12’ Ceiling Height

8.258.5

1.231.06

1.451.38

1.311.19

1.39 1.62 0.830.80

12 DV 4 ACH w 12’ Ceiling Height

7.197.86

1.140.99

1.261.16

1.191.08

1.30 1.84 0.970.93

See section Summary of Metrics for definition of PPD, VE, PEI, and ACE.

Page 24: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report22

5.2.1 Impact of Hot Summer Conditions and Supplemental CoolingThemetricPPD(PercentageofPeopleDissatisfied),describedinsection4.3.2above,determinesthether-malcomfortofaspacebasedontemperatureanddraftcomponents.PPDindicatesthepercentageofpeoplethatwouldbeuncomfortablegiventheairtemperatureandvelocityconditions.ASHRAEStandard55indi-catesthatvaluesof20orlessareacceptable,meaningthattheairtemperatureandvelocitywouldbeaccept-ableformorethan80%ofoccupants.

Thestandardfurtherstatesthatfornon-mixingsys-tems,suchasDV,airtemperaturestratificationshouldnotexceed3.6°Fforseatedoccupantsand5.4°Fforstandingoccupantstoensurethermalcomfort.

ThesummerbasecaseresultsaresummarizedinTable3,Cases1and8.Thebaselinesupplyairtemperaturewassetat67°Fwithanassumedmaximumtemperatureat44inchesabovethefloorof73°F.TheresultsforincreasingsolargainsarereflectedinCases1and9.

Theroomairtemperatureandthermalcomfortweresignificantlyaffectedbytheincreaseindirectsolargainswithafixedsupplyairtemperature,whilethecoolingcapacityofDVwaslimitedbytheacceptablesupplyairtemperature.

TheDVsystem’sventilationeffectivenesswasreducedbydirectsolargain.However,thermalcomfortprovedtobethelimitingfactor,meaningthat,aslongasther-malcomfortismaintained,ventilationeffectivenessrequirementswillbemet.Thus,theroom’sdirectsolarheatgainsshouldnotexceedlevelsthatcompromisethermalcomfort.

AlthoughthethermalcomfortwasmaintainedinCases1and9,the5.4°Fairtemperaturestratificationrequirementwasnotsatisfiedduetotherequiredlowsupplyairtemperatureof60°Ftoachievethatlevelofthermalcomfort.Thus,asupplementalcoolingstrategy,suchasisusedinCase7(withradiantcooling),mayberequiredtosimultaneouslysatisfybothrequirementsoftheStandardforcertainclimates.

Theresultsofthesupplyairtemperaturesensitiv-ityanalysiswereusedasthebasisfordeterminingtheeffectivenessofceilingmounted,radiantcoolingpanelstoprovidesupplementarycooling(Case7).Forthisanalysis,theDVsystemsupplyairtemperaturewasfixedat67°Fandtheroomthermalgainswereincreased.Theanalysisshowsthatradiantcoolingpan-elseffectivelymaintainedoccupantthermalcomfortwithincreasingthermalgains.

5.2.2 Impact of Cold Winter Conditions and Supplemental Heating ModesCase10(Table3)studiedtheimpactofincreasingsup-plyairtemperature.

DuetothesamebuoyancyprinciplesthatallowtheDVsystemtoworkincoolingmode,supplyingairintotheroomthatiswarmerthantheroomair’stemperatureresultsintheairimmediatelyrisingasitentersthespace.Thewarmersupplyaircannotdroptowardthefloortoformstratifiedlayers.Figure16(seepage15)illustratestheairflowpatternoftheDVsystemusingahighersupplyairtemperaturethanthatoftheroom’s.

ThelowerventilationeffectivenessandlongermeanageofairintheoccupiedregionindicateareductioninperformanceoftheDVsystemintermsofindoorairquality.

BecauseoftheineffectivenessofheatingviathesupplyairinaDVsystem,twodifferentstrategiesforsupple-mentalheatingweretested:baseboardconvectorsandceilingmountedradiantheatingpanels. RefertoCases3and4inTable3.

Figures17through19(seepage15)showtheiso-sur-facecomparisonbetweenthehighsupplyairtem-peraturecase(Case10)andthesupplementalheatingstrategies(Cases3and4).

Page 25: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 23

5.2.3 Impact of Air Diffuser and Grille Locationsa. RoomtoToiletTransferGrille

Initialempiricaltestingusedatransfergrillelowinthetoiletroomdoorasthemeanstomakeupairtooffsetexhaust.Thisarrangementwasintendedtorepresentairtransferredviaagrille,adoorundercutorboth.Afterearlyresultsdem-onstratedpoordisplacementperformance,itwasdeterminedthatahighpercentageofthesupplyairwasshortcircuitingviathetoiletroom,limitingthedisplacementmechanismintheroom.At4ACH,thetotalsupplyairtothepatientroomwas114CFM.With78CFMexhaustedviathetoilet,68%ofthesupplyairwasbeingshortcircuited.Thetransfergrillewasrelocatedhighonthetoiletroomwall,abovetheoccupiedzone,andtheper-formanceoftheDVsystemimproveddramatically.

Figure20(seepage16)showsthattheperformanceoftheDVsystemat4ACH,withalow-leveltransfergrilletothetoilet,islessdesirableascom-paredwithanOHVsystemat6ACH.Whenthetransfergrilleislocatedathighlevel,however,theperformanceisbetterthanthatoftheOHVsystem.

Thisresearchdidnotevaluatethecomfortorventilationeffectivenessinthetoiletroom.Thisresearchalsodidnotevaluatetheeffectsofanopentoiletroomdoorforeitherdisplacementoroverheadsupply.Itisanticipatedtheperformancewouldbesimilartoalargerroomwithtwoexhaustgrillelocations.

b. MainRoomExhaustGrille

Themainroomexhaust(orreturn)grillewaslocatedintheceilingabovetheheadofthepatientbedforallnumericalcases.Thisloca-tionwasselectedbasedontheassumptionthatparticledispersionwouldbecontrolledtosomeextentbythelocationofthegrille.Numericalmodelingdemonstratedtheeffectivenessoftheexhaustgrillelocation.

Figures21and22(seepage16)compareparticleconcentrationsofthestandardoverheadarrange-mentat6ACHvs.displacementat4ACH,andshowthattheselectedexhaustlocationeffectivelylimitsthedispersionofparticlesintheoccupiedzoneandabove.

5.2.4 Impact of Ceiling HeightTwonumericalcaseswereconductedtotesttheimpactofroomceilingheightonthermalcomfortandventila-tioneffectiveness.RefertoCases11and12onTable3.

Itwasfoundthatincreasingtheceilingheightfrom9to12feetinthebasecaseonlyslightlyreducedtheventilationeffectiveness;however,thermalcomfortwasimproved.

Theadditionalvolumeintheupperleveloftheroomallowscontaminantsmorespaceabovetheoccupiedzoneinwhichtocollectbeforebeingventedout,whilecreatingalargervolumefortheairtofilloverall(whenevaluatingairchangeeffectivenessforthewholespace).Placingtheroomexhaustgrilleasclosetothepatientaspossible(i.e.,directlyabovethepatientbed),regardlessofceilingheight,willresultinthemostdirectpathforcontaminantremoval.

Page 26: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report24

5.2.5 Impact of Movement on Displacement VentilationAdiscretestudywascompletedtotesttheimpactofmovingobjectsoncontaminantconcentrationdistribu-tioninasingle-bedpatientroomwithDVat4ACH.TheinvestigationalsoevaluatedacaseofOHVwith6ACHforcomparison.ThefulltestdetailsandresultsareincludedinAppendix7.6.

Fourdifferentmovingobjectsintheroomwerecon-sidered,foruptofoursecondsofmovements:avisitorwalkingnearthebedend;acaretakerwalkingalongthebedside;asheetbeingchangedoverthepatientbed,andaswingingdoor.

Thestudyfoundthat:

1. Themovingobjectscancarrythecontaminantintheirwakes.Themovementscancauseswingsinthecontaminantconcentrationinthebreathinglevelofsittingandstandingpositionsfor10to90seconds.Thevariationoftheaveragedcontami-nantconcentrationduetothemovingobjectswaswithin25%forallthecasesstudied.Thevaria-tionatthebreathinglevelwaslowerinthesittingpositionthaninthestandingposition.Sincethevariationlastedforlessthan90s,itwouldnotlikelychangetherisklevelinthepatientroom.

2. Atmosttimes,theDVsystemwith4ACHprovidedbetterairqualitythantheOHVsystemwith6ACH.Thewalkingvisitorandcaretakercouldexperiencealargeswingincontaminantlevelsduetobodymovementsintheward.How-ever,theswingwasgenerallyshort(about30s)soitwasnotlikelytochangetherisklevelforthevisitorandcaretaker.

3. Aroundthebedregionorclosetothecontami-nantsource,theDVsystemhadahighercon-taminantconcentrationthantheOHVsystem.However,inmostpartsoftheroom,theconcen-trationwaslower.

5.2.6 Impact of Coughing on Displacement VentilationAstudywascompletedtotesttheimpactofcoughingonairflowinasingle-bedpatientroom.ThefulltestdetailsandresultsareincludedinAppendix7.4.

Thesimulationresultsshowedthatalthoughthecoughingonlylastedaveryshortperiodoftime(about0.73s),amuchlongertimeperiod(upto5min)neededtobesimulatedinordertocapturetheeffectofthecoughingactivity.

Aroundthebed,whereacaregiverismostlikelytostand,theDVcaseshowedahighercontaminantconcentrationforashortperiodoftime,whileattheendofthesimulated5minutes,theconcentrationwaslowerthanthatwiththeOHVsystem.ThiscanbeexplainedbythefactthatDV‘confines’or‘contains’theconcentrationaroundthepatient,whileOHV-givenitsmixingnatureandhigherACH-isabletodilutethecontaminantbetteraroundthebed.Con-sistentwiththeabovediscussion,DVdeliversabetterconcentrationinthevisitorarea,asitisfurtherawayfromthepatient.

Whenlookingattheroomasawhole,theresultsachievedbythetwoventilationsystemintermsofresponsetocoughingwerecomparable.

Page 27: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 25

6.1 General RecommendationsThisresearchefforthasledtothefollowinggeneralrecommendationsfora4ACHDVsysteminasingle-bedpatientroom:

1. Insummertimewarmclimateconditions,accept-ableventilationeffectivenessandcontaminantcontrolcanbeachieved,providedthatthermalcomfortismaintained.

2. WhentheinternalthermalgainsexceedthecoolingcapacityoftheDVsystem,supplementarycooling,suchasradiantcooling,willhavetobeaddedtomaintaintherequiredroomairtempera-tureandcorrespondingthermalcomfort.

3. Supplementalheatingisrecommendedwhenheat-ingisrequired.

4. Thetransferairtothetoiletroomneedstobehigh,abovetheoccupiedzone.

5. Whilemultiplealternativemainexhaustgrillelocationswerenottestedfordisplacementventilation,thelocationabovetheheadofthepatientbedisrecommendedunlessanalternatelocationcanbeshowntobeanimprovementvianumericalmodeling.

6.2 Design StrategiesTheresultsofthenumericalandempiricalanaly-sisshowedthattheparticleremovalefficiencyandthermalcomfortofDVisdependentonanintegrateddesignapproachtoaddressbothwholesystemoptimi-zationandthermalcomfort.Thestudyidentifiedthefollowingroomlayoutandsystemdesignissuesthatneedtobecarefullyconsidered:

1. ThecoolingcapacityofaDVsystemislimitedbytheminimumallowablesupplyairtemperaturerequiredtomaintainthermalcomfort.

2. RoomthermalgainsandlossesmustbecontrollediftheperformanceoftheDVsystemistobemain-tained,i.e.:

a. Facadesshouldbedesignedtominimizethethermalgainsandlossestopreventwarmandcoldsurfaces,especiallywithrespecttoglazing.ThewarmsurfacescouldaffecttheDVairflow.

b. Manualorautomaticsolarshadingdevicesshouldbeinstalledtominimize/eliminatedirectsolargains.Thefieldtestsshowedthatfloorsurfaceswarmedupbydirectsolargainscanactasathermalhotspot,creatinglocal-izedthermalchimneys,andcausingmostofthedisplacementsupplyairtoshortcircuitthebreathinglevel.

c. Lightingandmedicalequipmentloadsshouldbeminimized.

3. DVshouldnotbeusedforspaceheating,i.e.:

a. Providingsupplyairfromthelowsidewalldis-placementdiffuseratahighertemperaturethantheroom’stemperaturewillresultindecreasedperformanceoftheDVsystem.

b. Whenusingasupplementalheatingmethodsuchasradiantorconvectivebaseboardheat-ing,theperformanceoftheDVcanbemain-tained,ifnotimproved.

4. TheplacementoftheDVsupplyairdiffuserisnotcritical,butshouldbecoordinatedwiththeroomdesign.Thediffusershouldbelocatedatlowlevelinalocationthatwillnotbeblockedwithsolidfurnituresuchasastoragecabinet.

5. Thetoilettransfergrilleshouldbelocatedathighlevel.TheempiricalexperimentsshowedthattheDVeffect/pluming/highlevelremovalofairborneparticlescanbeseriouslyaffectedifthesupplyairisallowedtoshortcircuitatlowlevel,directlyintothetoiletroom.

6.R E C O M M E N D AT I O N S

Page 28: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report26

7.1 Terminology and Abbreviations

Terminology and AbbreviationsTerm Definition

ACH Air Changes Per Hour

AHJ Authority Having Jurisdiction

CFD Computational Fluid Dynamics

CFM Cubic Feet Per Minute

DV Displacement Ventilation

FGI Facilities Guideline Institute

FPM Feet Per Minute

HVRC Healthcare Ventilation Research Collaborative

OHV Overhead Ventilation

PPD Percentage of People Dissatisfied

PPM Parts Per Million

7.2 HVRC Advisory Committee

HVRC.ADVISORY.COMMITTEE

1. Dr.PaulJensen,PhD,PE,CIH,Captain,EngineerDirector,CentersforDiseaseControlandPrevention

2. Dr.FarhadMemarzadeh,Ph.D.,P.E.fromNIH

3. Dr.MicheleR.Evans,DrPHfromNIH

4. Dr.BernardT.Baxter,PhD,MD,UniversityofNebraskaMedicalCenter

5. Dr.AnjaliJoseph,PhD,DirectorofResearch,CenterforHealthDesign

6. ChrisRousseau,P.E.,Newcomb&Boyd

7. JeffereyHardin,DeputyDirectorofMedicalFacilitiesCenterofExpertise,USArmyCorpsofEngineers

7.A P P E N D I C E S

Page 29: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Healthcare Ventilation Research Collaborative: Displacement Ventilation Research – Phase II Summary Report 27

Appendices7.3-7.6areavailableintheonlineversion.Toviewtheseappendices,gotohttp://www.noharm.org/lib/downloads/doc_index.php

•7.3EmpiricalTesting

•7.4NumericalTesting

•7.5StatisticalAnalysis

•7.6MovementStudy

Page 30: Healthcare Ventilation Research Collaborative: Displacement Ventilation … · 2013-12-05 · 6 Healthcare Ventilation Research Collaborative: Displacement Ventilation Research –

Health Care Without Harm12355 Sunrise Valley Drive, Suite 680 Reston, VA 20191 USAwww.noharm.org

Environmental and Occupational Health SciencesUniversity of Illinois at Chicago School of Public Health835 S. Wolcott, Suite E-144, MC 684Chicago, Illinois 60612