Click here to load reader

Harvesting solar power with · PDF file Henning Pennekamp Jascha Volk Dr. Melanie Kern Dr. Stefan Martens Alexander Schlauer Barbara Wolf Anne Einhäupl Prof. Dr. Michael Grätzel

  • View
    1

  • Download
    0

Embed Size (px)

Text of Harvesting solar power with · PDF file Henning Pennekamp Jascha Volk Dr. Melanie Kern Dr....

  • Harvesting solar power with anthocyanins iGEM Team TU Darmstadt 2014

  • Electricity & Poverty

    2

    Access to electricity leads to • Additional hours spent learning by children • Additional productivity • Improved health • Increased household net income

    8 UN Millennium Development Goals to fight hunger & poverty

    Africa at night in 2014

  • 3

    DSCs (or Grätzel cells) are • Cheaper • Don’t need rare metals • More environment-friendly

    than classical solar cells

    DSCs can • Utilize diffuse light • Light from every angle • Be used in warm regions

    Dye-sensitized solar cells (DSC) vs. classical solar cells

  • Dye-sensitized solar cells

    4

  • Anthocyanins

    • Flavonol derived plant pigments

    • Found in higher plants

    • Can be used effectively in Grätzel cells

    • Heterologous production in E. coli feasible

    5

  • Application scenario

    6

    Local partnerVillagers

    Government / NGOsLocal industry

    DSC producer Local microcredit

    bank

    Purchasing machines

    Developing concepts

    Providing capital

    Cooperation Purchasing DSCs

    Lending money

    Training

    Selling DSCs

    Conclusions:

    1. Project will be applied in hot rural areas

    2. Adjusting our pathway

    3. Examining “soft” aspects by a techno-moral vignette

  • Meeting the experts

    7

    Visiting Prof. Dr. Grätzel and Dr. Toby Meyer of Solaronix

  • • Broad variety of anthocyanins in plants

    • Production yield in plants not predictable

    • Easy extraction from E. coli

    • No unwanted side products

    • Higher yield in shorter time with less space consumption

    Why in E. coli?

    8

    pelargonidin

    Katsumuto et al., 2007

  • The pathway

    9

    Central branching point Splitting of our pathway

  • iGEM Uppsala 2013

    BBa_K1497001BBa_K1497000BBa_K1033000BBa_K1033001

    chi4-cl chstalR R R R

    From tyrosine to naringenin

    naringenin producing operon (BBa_K1497007)

    10

  • Naringenin biosensor (1)

    11

    naringenin

    FdeR homodimer

    naringenin bound to FdeR homodimer

  • A: Naringenin biosensor with CFP as reporter (BBa_K1497022) B: Naringenin biosensor with mKate as reporter (BBa_K1497021) C: Naringenin biosensor without a reporter (BBa_K1497019) D: Naringenin biosensor with GFP as reporter (BBa_K1497020)

    Naringenin biosensor (2)

    12

    GFP and mKate biosensor combined have a broader range!

    GFP mKate

  • Quantification of naringenin production

    13 Quick comparison of different constructs!

    T7 operon: ≈ 3 µM Const. operon: ≈ 1 µM after 16 h of incubation

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    R el

    at iv

    e Fl

    u o

    re sc

    e n

    ce U

    n it

    s (R

    FU )

    Neg. control

    T7 naringenin operon (BBa_K1497017) Const. naringenin operon (BBa_K1497016)

  • BBa_K1497011BBa_K1497010BBa_K1497009

    From naringenin to pelargonidin

    14

    dfrf3h ansR RR

    BBa_K1497023

    No glycosylation -> extraction with organic solvents possible!

    pelargonidin

    pelargonidin extracted with dichloromethane

  • DFR ANS

    Metabolic channeling

    15 protein scaffold by iGEM Team SJTU-BioX-Shanghai 2012

    SH3 GBDPDZ

    naringenin pelargonidin

    F3H

  • Modularization

    16

    Construction of scaffold variations by BglII Brick cloning strategy

    See SCUT 2014 for S. cerevisiae

  • • Elastic Network Models

    • Linear Response Theory

    • All Atom Molecular Dynamics

    Elastic Network Model

    Dry lab to wet lab

    17

    Modeling lead to shortened anthocyanidin synthase (eANS, BBa_K1497002)

  • • Modularizable Grätzel cell holder

    • Printed with bio-degradable PLA

    • First test: ≈ 0.6 mA and 150 mV !

    • See the models at our poster

    Mission accomplished!

    18

  • Achievements

    • Characterizing 23 of 33 BioBrick parts sent to the registry

    • Construction of a functional pelargonidin pathway in E. coli

    • Engineering and improving of ANS by in silico protein multi-scale modeling

    • Introducing three functional naringenin biosensors

    • Introducing an improved protein scaffold

    • Describing a novel Policy & Practices approach

    19

    SH3 GBDPDZ

    pelargonidin extracted with dichloromethane

  • More achievements!

    20

    Visit our Wiki for:

    • Our Safety approach

    • More modeling data

    • More scaffold improvements

    • Open Hardware models (3D-printer STL files)

    • Open Software packages for R

    • Our full application scenario & techno-moral vignette

  • Acknowledgements

    21

    The Team Rico Ballmann Sebastian Barthel Malte Blumenroth Thomas Dohmen Max Dombrowsky Kai Fenzl Tobias Gabriel Sascha Hein Niklas Hummel Carmen Klein Kai Kucharzewski Benjamin Mayer Christian Mende Laurin Monnheimer Sebastian Palluk Sven Rumpf Fabian Rohden Daniel Sachs Renè Sahm

    Christian Sator Andreas Schmidt Christian Sürder Michael Sürder Bastian Wagner Alex Wyllie

    Advisors Prof. Dr. Heribert Warzecha Sven Jager

    Thank you! Prof. Dr. Katja Schmitz Prof. Dr. Kay Hamacher Prof. Dr. Heinz Koeppl Prof. Dr. Jörg Simon Prof. Dr. Adam Bertl Prof. Dr. Gerhard Thiel PD Dr. Tobias Meckel Sabine Fräbel

    Henning Pennekamp Jascha Volk Dr. Melanie Kern Dr. Stefan Martens Alexander Schlauer Barbara Wolf Anne Einhäupl Prof. Dr. Michael Grätzel Dr. Toby Meyer Prof. Dr. Alfred Nordmann Wieke Betten Charlotte Kaspar

Search related