31
Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 1 Topic 41 Radical Expressions and Functions  What is a square root of 25?  How many square roots does 25 have?        Definition: X is a square root of a if X² = a.    Symbolically, a  is the principle square root of a.  To symbolically represent each square root of a, one must write a and . a   This leads to the shorthand way of writing both square roots as . a      Do the following square roots exist?  4 4 0 4           

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 1

Topic 4‐1  Radical Expressions and Functions  

What is a square root of 25?  How many square roots does 25 have?        Definition:  X is a square root of a if X² = a.    Symbolically,  a  is the principle square root of a.  To symbolically represent each square root of a, one must write a and .a   This leads to the short‐hand way of writing both square roots as .a      

Do the following square roots exist?  4

4

0

4

 

         

Page 2: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 2

What are the following square roots?   

949

8

4

0.0016

64

x

z

 

         

In general….  

  is called a “radical sign” or a “root sign”.  A square root is a particular type of root that uses the root sign for itself.  

464z  is an example of a radical expression since it an expression with a root sign.  In the above expression, the 464z is the radicand.  The radicand is the expression under (or better said, inside) a radical expression.  ( )f x x  is an example of a radical function. 

       

Page 3: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 3

Definition:  A number S is called a perfect square if it’s the result of squaring an integer.   

 You need to memorize the first 21 numeric perfect squares.    0     1  121   4  144   9  169   16  196   25  225   36  256   49  289   64  324   81  361  100  400         

The square root of a numeric value that isn’t a perfect square usually results in an irrational number.  Recall that irrational numbers cannot be expressed as fractions of integers and their decimal form neither repeats nor terminates.                   

Variable expressions can be perfect squares also if we amend the definition as follows:  An expression is a perfect square if its coefficient satisfies the definition of a numeric perfect square & each variable has an integer exponent that is a multiple of 2. 

Page 4: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 4

Definition:  X is a cube root of a if X³ = a.  

33 a X X a   All numbers have one cube root thus every cube root is a principle cube root.  3

3

64

64

 

            

Definition:  A number C is called a perfect cube if it’s the result of cubing an integer.   

 You need to memorize the first 11 numeric perfect cubes.    0     1     8     27     64    125    216    343    512    729   1000         

Variable expressions can be perfect cubes also if we amend the definition as follows:  An expression is a perfect cube if its coefficient satisfies the definition of a numeric perfect cube & each variable has an integer exponent that is a multiple of 3. 

Page 5: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 5

Definitions:   X is a fourth root of a if X4 = a.         X is a fifth root of a if X5 = a.         X is an nth root of a if Xn = a.  All roots have an index.  The index of a root is equal to the power needed to return X to a by the previously state definitions.  Roots with an even index (such as square roots and fourth roots)…   Positive number have 2 real roots.   Zero is its own root.   Negative numbers have 0 real roots.  Roots with an odd index (such as cube roots and fifth roots)…   All numbers have exactly one real root.        

Notationally write the fourth roots of 81 and evaluate.    

Notationally write the fifth root of 243 and evaluate.    

Definitions:  A number R is called a perfect fourth if it’s the result of raising an integer to a fourth power.   A number R is called a perfect fifth if it’s the result of raising an integer to a fifth power.   

           

Page 6: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 6

You need to memorize the first 6 numeric perfect fourths and first 5 numeric perfect fifths.  Perfect fourths:   0   1   16       81    256   625  

Perfect fifths:    0   1   32     243  1024   For roots with even indices, keep in mind the following rule:  

If variables can represent any real number, you may need to use absolute value symbols when simplifying.  

If the variables can only represent non‐negative numbers, you won’t need absolute value symbols when simplifying. 

 Absolute value symbols are never needed if a root has an odd index.         

Find each root.  Assume that all variables represent non‐negative real numbers.  

 

4 4

9 123

12 2 6

625

125

64

x

x y

x y z

 

           

Page 7: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 7

Find each root.  Assume that all variables can represent any real number.  

4 4

4 124

4 8

5 20

625

32

x

x y

x

x

             

     

Find each root.  Assume that all variables can represent any real number.  

 

3 3

4 4

3 3

2

27

625

27

6 9

x

x

x

x x

 

    

Page 8: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 8

Topic 4‐2  Radicals and Rational Exponents    hw§1  

Recall the Laws of Exponents  (x > 0)  

 

a b a b

aa b

b

n a na

x x x

xx

x

x x

 

  

Also:  m m mxy x y   and  m m

mx xy y

 

        

Think about how the Laws of Exponents are related here:  

  2x x             12x x  

      

  33 x x             13 3x x  

    

                  1n nx x  

        

Page 9: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 9

Explore the possibilities associated with the following rational exponent:  

     3

4x         

In general we can conclude that 

.

n mmn

mn

xx

         

Evaluate and/or simplify.  Assume that all variables represent non‐negative real numbers.  

 

12

23

18 2

112 3

49

8

9

64

x

         

Page 10: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 10

Rewrite each expression in radical notation and simplify as possible.  Assume that all variables represent non‐negative real numbers.  

 

29 3

14 2

35

32 4

27

5

7

81

x

x

x

       

Recall that1mmxx

which we can extend to 

define

1

.mn

mn

xx

 

 Evaluate.  

 

13

34

32

27

16

36

 

      

Page 11: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 11

Use the properties of exponents to simplify each expression.  Write your final answers with positive exponents.    

 

4 13 2

23

34

x x

x

             

Use the properties of exponents to simplify each expression.  Write your final answers with positive exponents.    

 

456

415

11102

2

x

x

x x

 

           

Page 12: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 12

Multiply.                      hw§2  

1 12 23 2x x x  

      

1 113 62 2 3 1x x x  

           

Factor.      

34

5 5x x         

  5 37 72x x  

           

Page 13: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 13

Use rational exponents with each to find a single simplified radical.  Assume that all variables represent non‐negative real numbers.  

 

4 2

9 36

8 64

x

x y

x

 

      

Use rational exponents with each to find a single simplified radical.  Assume that all variables represent non‐negative real numbers.  

 

4 3 6

5 2

x x

xx

          

Page 14: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 14

Topic 4‐3  Product/Quotient Rules and Simplifying  

  Product Rule for Radicals:  n n na b a b   

  Quotient Rule for Radicals:   n

nn

a abb

 

  Divide.  

 153           

3

3542

 

             

Multiply.  Assume that all variables represent non‐negative real numbers.    3 7            3 35 9x x           2 8x x           3 34 2               

Page 15: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 15

To simplify radicals, apply the product and quotient rules in reverse.  Simplify.     75             162      

   

            

Simplify.  

  48             3 128        

                

Page 16: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 16

Simplify.  

4 48             3 56        

               

Emphasis: it’s all about perfect squares, cubes, etc.  Simplify.  Assume that all variables represent non‐negative real numbers.  

  5x             3 10x        

            

Page 17: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 17

Simplify.  Assume that all variables represent non‐negative real numbers.  

  318x            83 24y        

               

Simplify.  Assume that all variables represent non‐negative real numbers.  

  5 8 1150x y z         7 2 63 40x y z        

              

Page 18: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 18

Simplify.  Assume that all variables represent non‐negative real numbers.  

 625

           3 2

49x y

 

     

              

Simplify.  Assume that all variables represent non‐negative real numbers.  

  412x

 

    

               

Page 19: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 19

Topic 4‐4  Adding and Subtracting Radicals  

Compare the following pairs of sums  

   

2 3

3 4 3 2 4 3

3 4 3 2 4 2

3 4 3 2 4 2

x y

x x

x x

 

   To add or subtract radicals, you must have like radicals.  Like radicals have the same radicand and the same root index.       

Add.    8 27 5 12                               

Page 20: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 20

Subtract.    80 2 45                               

Subtract.    3 35 32 3 108                       

Page 21: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 21

Add and/or subtract.    4 50 3 24 5 32 54                      

Add.  Assume that all variables represent non‐negative real numbers.  

  32 28 3 7x x x                      

Page 22: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 22

Add.  

 5 112 28

9 9  

                  

                      

Page 23: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 23

Topic 4‐5  More Multiplying Radicals  

To multiply radicals with coefficients, keep the following rule in mind:        n n nx a y b x y a b   Multiply.    3 2 4 5 2         

             

Multiply.    33 32 6 5 3 7 4  

                     

Page 24: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 24

Multiply.    7 2 3 4 6 2 3      

                    

Multiply.    2 6 3 2 2 6 3 2      

                    

Page 25: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 25

Multiply.  

23 4 2  

                   

                      

Page 26: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 26

Topic 4‐6  Rationalizing Radical Expressions  

Imagine if you had to divide the following expressions, which would be easier?   (Note,  3 1.7320508 )  

  23               2 3

       Traditionally, rationalizing the denominator of a radical expression was done for computational purposes.  Today, it is used less frequently but is still a useful skill.   

    

 

Rationalizing the denominator of a fraction:  

to rewrite a fraction in an equivalent form where no radical is present in the denominator.  There are three cases that vary the technique of rationalizing the denominator, based on what is in the denominator.                 

Page 27: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 27

Case 1: The denominator is a square root.  

Rationalize the denominator of the expression.  

62 

      

To rationalize the denominator when it is a square root, simplify the denominator and multiply by an identity fraction involving only the radical part of the simplified radical.           

Rationalize the denominator of each expression.  

  512

            2750

 

                   

Page 28: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 28

Rationalize the denominator of each expression.  

156x

            38 

               

      

Case 2:  The denominator is a cube root, fourth root, or any other root.  Rationalize the denominator of the expression.   

 3

54 

      To rationalize the denominator when it is any root other than a square root, simplify the denominator, then determine the smaller perfect cube (fourth, etc) that the radicand of the denominator will divide.  Create an identity fraction using an appropriate radical to create the perfect number under the root.      

Page 29: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 29

Rationalize the denominator of each expression.  

  373            

3

3

2 24 5

 

                       

Rationalize the denominator of each expression.  

 3

336x

           4 3

2

9x 

                   

Page 30: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 30

Case 3:  The denominator is a square root ± a number or another root.  Rationalize the denominator of the expression.  

 53 1

 

        To rationalize the denominator when it consists of a square root plus or minus a number or another root, create an identity fraction using the conjugate pair of the denominator.         

Rationalize the denominator of each expression.  

  3 47 3

           

                      

Page 31: Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 ...faculty.ung.edu/thartfield/courses/2014-3-fall/0099_notes_unit4.pdf · Hartfield – Intermediate Algebra (Version 2014-2D)

Hartfield – Intermediate Algebra (Version 2014-2D) Unit 4 | Page 31

Rationalize the denominator of each expression.  

 4

7 3 

                      

Rationalize the denominator of each expression.  

 5

2 5