23
Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski Carpet Matthew Begu´ e, Tristan Kalloniatis, & Robert Strichartz October 3, 2010

Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Harmonic Functions and the Spectrum of the Laplacianon the Sierpinski Carpet

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz

October 3, 2010

Page 2: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Construction of SC

The Sierpinski Carpet, SC , is constructed by eight contraction mappings.The maps contract the unit square by a factor of 1/3 and translate to oneof the eight points along the boundary. SC is the unique nonemptycompact set satisfying the self-similar identity

SC =7⋃

i=0

Fi (SC ).

F0 F1 F2

F3

F4F5F6

F7

�����

���������������

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 2 / 23

Page 3: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Constructing the Laplacian

The Laplacian ∆ on SC was independently constructed by Barlow & Bass(1989) and Kusuoka & Zhou (1992).In 2009, Barlow, Bass, Kumagai, & Teplyaev showed that both methodsconstruct the same unique Laplacian on SC .

We will be following Kusuoka & Zhou’s approach in which we consideraverage values of a function on any level m-cell.

We approximate the Laplacian on the carpet by calculating the graphLaplacian on the approximation graphs where verticies of the graph arecells of level m:

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 3 / 23

Page 4: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Constructing the Laplacian

∆mu(x) =∑y∼xm

(u(y)− u(x)).

����

~~a

b

c

d����

~~x

x

x ′ y

z

For example the graph Laplacian of interior cell a is∆mu(a) = −3u(a) + u(b) + u(c) + u(d).For boundary cells, we include its neighboring virtual cells.eg: ∆mu(x) = −4u(x) + u(y) + u(z) + u(x) + u(x ′).

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 4 / 23

Page 5: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Construction of the Laplacian

The Laplacian on the whole carpet is the limit of the approximating graphLaplacians

∆ = limm→∞

r−m∆m

where r is the renormalization constant r = (8ρ)−1.

So far, ρ has only been determined experimentally. ρ ≈ 1.251 andtherefore 1/r ≈ 10.011.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 5 / 23

Page 6: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Harmonic Functions

A harmonic function, h, minimizes the graph energy given a functiondefined along the boundary as well as satisfying ∆h(x) = 0 for all interiorcells x .The boundary of SC is defined to be the unit square containing all of SC .Example: Set three edges of the boundary of SC to 0 and assign sinπxalong the remaining edge and extend harmonically.

sinπx

0 0

0Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 6 / 23

Page 7: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

More Harmonic Functionssin 2πx

0 0

0sin 3πx

0 0

0Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 7 / 23

Page 8: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Boundary Value Problems

We also wish to solve the eigenvalue problem on the Sierpinski Carpet:

−∆u = λu

We have two types of boundary value problems:

Neumann∂nu |∂SC = 0

Corresponds to even reflectionsabout boundary.

ie: x = x

Dirichletu|∂SC = 0

Corresponds to odd reflections aboutthe boundary.

ie: x = −x

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 8 / 23

Page 9: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

∆mu(x) =∑y∼xm

(u(y)− u(x))

����

~~a

b

c

d����

~~x

x

x ′ y

z

Therefore the Laplacian operator is determined by 8m linear equations.

This can be represented in an 8m square matrix.

The matrix is created in MATLAB and the eigenvalues andeigenfunctions are calculated using the built-in eigs function.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 9 / 23

Page 10: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Some eigenfunctions

Neumann: ∂nu|∂SC = 0 Dirichlet: u|∂SC = 0

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 10 / 23

Page 11: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Refinement

On level m + 1 we expect to see all 8m eigenfunctions from level mbut refined.The eigenvalue is renormalized by r = 10.011.

Figure: φ(4)5 and φ

(5)5 with respective eigenvalues λ

(4)5 = 0.00328 and

λ(4)5 = 0.000328.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 11 / 23

Page 12: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Miniaturization

Any level m eigenfunction and eigenvalue miniaturizes on the level m + 1carpet. It will consist of 8 copies of φ(4) or −φ(4).

Figure: φ(4)4 and φ

(5)20 with respective eigenvalues λ

(4)4 = λ

(5)20 = 0.00177.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 12 / 23

Page 13: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Describing the eigenvalue data

Eigenvalue counting function: N(t) = #{λ : λ ≤ t}

N(t) is the number of eigenvalues less than or equal to t. Describesthe spectrum of eigenvalues.

We expect the N(t) to asymptotically grow like tα as t →∞ whereα = log 8/ log 10.011 ≈ 0.9026.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 13 / 23

Page 14: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

N(t) = #{λ : λ ≤ t}

Page 15: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Weyl Ratio: W (t) = N(t)tα α ≈ 0.9

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 15 / 23

Page 16: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Neumann vs. Dirichlet eigenvalues

By the min-max property, we can say that λ(N)j ≤ λ(D)

j for each j .

Therefore, N(D)(t) ≤ N(N)(t).

What is the growth rate of N(N)(t)− N(D)(t). We suspect there issome power β such that N(N)(t)− N(D)(t) ∼ tβ.

β ≈ log 3log 10.011 = 0.4769

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 16 / 23

Page 17: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

N (N)(t)− N (D)(t)

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 17 / 23

Page 18: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

N(N)(t)−N(D)(t)tβ

A stronger periodicity is apparent here.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 18 / 23

Page 19: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Fractafolds

We can eliminate the boundary of SC by gluing its boundary in specificorientations. We examined three types of SC fractafolds:

@

@

� �@ @ � �@ @

@ @� �

� �@ @

� �@ @

Torus Klein Bottle Projective Space

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 19 / 23

Page 20: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Some Eigenfunctions for the Fractafolds

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 20 / 23

Page 21: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

How to define the normal derivative on the boundary of SC

We wish to define ∂nu on ∂SC so that the Gauss-Green formula holds:

E(u, v) = −∫

SC(∆u)v dµ+

∫∂SC

(∂nu)v dµ′.

We know that

Em(u, v) =1

ρm

∑x∼y

(u(x)− u(y))(v(x)− v(y))

and

−∆mu(x) =8m

ρm

∑x∼y

(u(x)− u(y)).

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 21 / 23

Page 22: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Sketch of how ∂nu is defined

Let x be a point on ∂SC and xm be the m-cell containing x . We can usethe equations from the previous slide to find ∂mu remembering to givespecial treatment to cells on the border of SC because we mustincorporate their virtual cells.After much rearrangement we obtain∫

∂SCv∂nu dx =

2 · 3m

ρm

∑xm∼∂SC

v(xm)(f (x)− u(x))1

3m

which lets us define the normal derivative as:

∂nu(x) = limm→∞

2 · 3m

ρm(u(x)− u(xm)).

The normal derivative most likely only exists as a measure.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 22 / 23

Page 23: Harmonic Functions and the Spectrum of the Laplacian on ...pi.math.cornell.edu › ~reu › sierpinski-carpet... · Matthew Begu e, Tristan Kalloniatis, & Robert Strichartz ()Harmonic

Website

More data is available (and more to come) onwww.math.cornell.edu/∼reu/sierpinski-carpetincluding:

Full list of eigenvalues and pictures of eigenfunctions for bothDirichlet and Neumann boundary value problems.

Eigenvalue counting function data & Weyl ratios.

Eigenvalue data on covering spaces of SC .

All MATLAB scripts used.

Trace of the Heat Kernel data.

Dirichlet and Poisson kernel data.

Matthew Begue, Tristan Kalloniatis, & Robert Strichartz ()Harmonic Functions and the Spectrum of the Laplacian on the Sierpinski CarpetOctober 3, 2010 23 / 23