37
1994 CEDAR Workshop Boulder, Colorado June 20-25,1994 CEDAR Prize Lecture by Raymond Roble HAO/NCAR Modelling the Circulation, Temperature and Compositional Structure of the Upper Atmosphere (30-500 km)

HAO/NCAR - CedarWiki · 1994 CEDAR Workshop Boulder, Colorado June20-25,1994 CEDAR Prize Lecture by Raymond Roble HAO/NCAR Modelling the Circulation, …

  • Upload
    lyque

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

1994 CEDAR WorkshopBoulder, ColoradoJune 20-25,1994

CEDAR Prize Lecture

by Raymond RobleHAO/NCAR

Modelling the Circulation, Temperature andCompositional Structure of the Upper

Atmosphere (30-500 km)

TGCM TEAM

HAO

B. Cicely Ridley

Ben Foster

Art Richmond

Baraibara Emery

Bill Roberts

Gang Lu

Maura Hagan

Mathematical analysis auid development

Processors, display and diagnostics

Electrodynamics, AMIE

Auroral Parameterizations, AMIE

AMIE displays

AMIE/TGCM r\ms and analysis

TGCM/DATA analysis and tidal boundaries

ViCKiUsa/) U.cF ARIZONAcoiJLXsofiiaoRs

CASANDRA FESEN

STEVE BC^KSHER

JEFF FORBES

DAVE FRITTS

VICTC« F(»1ICHEV

TIM KILLEEN, ALAN BURNS, PAUL HAYS

FRED REES

GONZALO HERNANDEZ

GEOFF CROWLEY

FRANK MARCOS

CTC., ETC., ETC.

PhV^cs

1980

1989

1991

1992

1996

LONG RANGE MODEL DEVELOPMENT

IonosphereDynamoMSISAurora

SolarTides

DynamoAurora

Solar

Tides

Aurora

Solar

Tides

Aurora (GEM)Solar (RISE)

Aurora (GEM)Solar (RISE)

TGCM

(100-500 km)

N /

TIGCM

(95 - 500km)

N /

TIE-GCM

(95 - 500 km)

\ /

TIME-GCM

(30-500 km)

N /

CCM/TIME-GCM(0 —500 km)

Atmosphere ExplorerD)mamics ExplorerRadar and Airglow

Atmosph^e ExplorerDynamics ExplorerAir Force

CEDAR

Atmosphere ExplorerDynamics ExploreSan Marcos

CEDAR

GEM

UARS

ISTP

CED^GEM

Air Force

UARS

EOS

Global ChangeTIMED

Fig. i Schematic illustrating past and future TGCM development. The year of modeldevelopment and diminishing dependence on empirical specification is givenon the left of the boxes and the programs and data sources used for GCMvalidation and scientific studies is givw on the right. CCM refers to the NCARcommunity climate model.

TIE-GCM OUTPUT

• Neutral gas temperature, T„

• Neutral winds, U^V^W

• TTftight of constant pressttre surface, h

• Neutral composition and deoaty

Major - O, O2, and iV2

Minor - iV(2£>), JV(45), iVO, iTe, and

• Ion composition

0+(2p), 0+(2D), o+(45), isro+, OtrNt,and Srij = -

Ion temperature, Ti

Electron temperature, Te

• Global distribution of electric fields E and currents J

SOLAR EUV, UV, AND AURORAL INPUTS

ION DRAG

~THERMOSPHER£STRUCTUREAND WINDS

TIDES

"IonosphereDIFFUSION

WTTHIONDRIFT

TIE-GCM

EMPIRICAL

ION DRIFTMODELS

SOLAR EUV, UV, AND AURORAL INPUTS

lONOSPBERE0+ DIFFUSION

WITH ION DRIFT

/PHOTOCHEMISTRY

/THERMOSPHERE

STRUCTUREand WINDS

i \

V«x-

J xB

TIDES

MAGNETOSPHERICELECTRIC FIELD

E » B DRIFT

\IONOSPHERIC

DYNAMO

TIE-GCM350 km, 0 UT, Equinox. Solar Maximum

(a) NEUTRAL TEMPERATURE AND WIND90

m

1.'Ly'^ 4 i

ELECTRIC POTENTIAL AND ION DRIFT

lOOOO

aajgg^=f^j^l4-^^ it 11 iL

300 m/s

NCAR

THERMOSPHERE-IONOSPHERE-ELECTRODYNAMICS

GENERAL CIRCULATION MODEL

(TIE-GCM)

• Primitive equations of dynamic meteorology adapted to ther-mospheric heights

• Eulerian model of the ionosphere

• Horizontpl grid 5® latitude x 5® longitude, geographic

• Vertical grid - 25 constant pressure surfaces, 2 grid points perscale height, 95 to 500 km

• Time stef 240 or 300 S

• Global dynamo with realistic magnetic fidd

INPUT :

• Solar EUV and UV radiation 5 to 250 nm

• Empirical ionospheric convection and auroral particle precipitation models

• Structure of upward propagating tides and other featiires frommiddle atmosphere

THERMOSPHERE-IONOSPHERE-MESOSPHERE-ELECTRODYNAMICS

GENERAL CIRCULATION MODEL

(TIME-GCM)

• TIE-GCM is extended downward to 30 km (10 mb) altitude

• Major species transport for O2, iV2, and 0x{0 + O3)

• Minor species transport for H2O, ff2» CH4, CO, CO2, NOxiNO + N02)^HOxjH + HO2 + OH)

• Minor species in photodiemical eqtiilibrium for N(^D), ^2^2,02(^Ap), and 02C^g)

Z.TS-4.•^NLTE- CO2 radiational cooling (Fomichev parameterization) j

• Fritts gravity wave parameterization

• Boundary conditions

(a) Lower: specified mixing ratios for O2, N2, H2O, H2, CH4,CO2, COyOx^ aB:d NOx ^"5 — tO ^

(b) Upper: diffusive equilibrium for all species except \SF wbereexospheric escape is specified

(c) Dynamics based on tidal theory at various frequencies (10 mb)tOiHQ (SeoP^TSfJTiAL. Hcf6HT J)aTA

• D^region ion chemistry

• Energetic electron and proton particle degradation

MAJOR TIME-GCM OBJECTIVES

How deep into the atmosphere do effects of solar variabilitypenetrate?

How do disturbances from lower atmosphere affect middle(30-100 KM) and upper atmosphere (100 - 500 KM)?

+ Couplings

* Solar Radiative

* Auroral

* Chemical

* Radiative

* Electrical

* Dynamic

How will the upper atmosphere and ionos^ere respondto global change?

l70^i^S

260^55

0 -20

LATITUDE

5.2, MAXIMUM 352.0, CONTO

0 -20

LAT

-39.20, MAX

0 60 8

L 7.5

CLM

(m/s)LON- -100.00 UT- 0.00

/I ^ J--r-;/ ' -

III''--'' >>%»"•

VVV ' » «H'«i- ' /IMl^/ /Ml

20 0 20

LATITUDE

MIN -76.24, MAX 77.43, INTERVAL 10

niST0RY-/R0DLE/RGR92/TISEZ3

NftfOlO

90

70 ^CD

- 50

L 30

•!« • .v.;

SUMMERit'Eastcrly

\N esterA

w caihcf

Source

y-f.-; - V#">.v>

AMELTER\Studv Region

m\ \ 1Wave Breaking

WesterK

Or.-^grarhicSo^-.

Gravit% Wa^e ;url>(#nc€>

WINTERWesterly

Gravity Waves PropagateIf They Have Tlie Correct Phase Speed.

Thus They Are Present Both In The Winterand Summer vj' ' , •;1'- ^ .A-.

Stratosphere And Mesosphere.

, "f ^ ^

mm..

, /.-••• >• ••• •• •• s-

•\ ti?'' :

-. -r :

V

U)

o k;

?3

o C3

H a 03 o > S3

CJ

HE

IGH

T(K

M)

X 5

^aiMLSilKr.o.

I fit-

120 I«»''1''" •

110 -

100 -

X 80 -

40 -

-u) -A/H

S^STiC te

4 h

2

0

-2 -

-4 -

VU ZONAL MEANS UT= 0.00 (TIS0G9)

"1 « 1 »——r 1 1 r 1 1 r

0-

-6c!!:^

+ (00

(Shl^TUJAIIS>J)

/ s ^ ^60'

-12 -- O 20-

14 -

-16

-0-

-0-

±a I I I I I ^

-80 -60 -40 -20 0 20 40 60 80

LATITUDE

MIN -152.0, MAX 114.5, INTERVAL 20

oJtHTcJ^

330

270

210

hl50

- 30

9

^vMeiTiflliavAA I

TIMESGCM VN

LAT = 17.5 UT = - 0.0

-60 0 60

LONGITUDE (DEC)

I • I : I . 1 1 1—

20 0 4

LOCAL TIME (HRS)

-99.16 -14.97 69.22

CONTOUR -TOO. TO 100. BY 25.0 (MIN,MAX = -99.2,69.2)

HISTORY/R0BLE/RGR93/TSEQBZ4 ( 6: 0; 0)

U)i MTIMESGCM VN

LAT =17.5 UT = 0.0

-60 0 6'

LONGITUDE (DEC)

20 0

LOCAL TIME (HRS)

-59.36 0.7361

CONTOUR -100. TO 100. BY 25.0 (MIN,MAX=-59.4,60.8)

HISTORY /R0BLE/RGR93/TSEQBZ4 ( 6: 0: 0)

u)£AK ,

5^B»c

i!M

SCiiJiilOo/, ^LAR. mia).

VN LAT= 17.50 UT= 0.00

•330

•270

210

-150

Xo

-90^

^ 30-153 -100 -50 0 50

LO«GITUO£

12

(a)

_L A. Jl

16 20 0 4 8 12LOCAL TIKE CHRSI

MINIMUM -117.1. UAXIUUU 75.3. CONTOUR INTERVAL 20

UT= t7.50 UT= 0.00

7] -330

-270

r210

150

12

(b)

5- 903

-150 -100 -50 0 50

• LONGITUDE

100 150L- 30

±. X J

16 20 0 4 a 12LOCAL TIME (HftSl

UINIMUU -110.0. UAXIUUU 74.0. CONTOUR INTERVAL 20

oktMB\oS'

S 1o ,||"S»

t •

1 • ll***

I'***

V". If"'

LATITUDE

UlNiUUM -87.22, UAXUIUU 91.20. CONTOUR INTERVAL 10

D U)^ ^M, •'F. WiaIii

DIURNAL (1,1) TIDE AT SPRING E^^UINOX

(MERIDIONAL COMPONENT) "I I 11 nil B "r I I i'in|" ' i 130

100

o

TIMB-GCJI : SOUD

HRDl {SYMBOL

CUSSICAL: DASHED

I mil t III init 11 I • II

20

-it 4-^ ^ -

TIldB-CCM : DIAMOND

HRDl : TRIANGIE

» ' ' • J.

10 100 1000 -180 -120 -60 0 60 120 180MODE AMPLITUDE (M/S) AT UTs20 PI1ASE(DEGRB£S}

(3><=3

In;70O

tJ• •

<Af

<A

o><A

</lO

05

OCM

<n• •

u>

oo

o

TIMESGCM TN (UN+VN) ZP = -9.0 UT

^c. .

itf4-f^ ^_j

' -l-S-j

- V

LONGITUDE (DEG)

I. )

TIMESGCM TN (UN+VN) ZP = -7.0 UT

': t /.^ . /

r*/

|\, \S \I "y* \ -*v »r", ^<?o

.™v..x.,

y*

/ w-\\:'-.t:'/r-(^--*' '̂ -- -\- \ \ •' /'•"'• f V 0»"* ""' "" •••**••-'- -^ ...

'c ifn-- •-N ^ -• -•—4- '^-^VrA-./...:-.^' ....:-> • •^•••^''ww*v;,

, ~^"-'-^.w4Y—,

^ -••v- -:^^:::---^ ' •

LONGITUDE (DEG)

© •! I

^7

TIMESGCM 01 HT = 97.0 UT =

'•••"•-"•"•' • . —• '• -•••. 4-0 xitr

. •'̂ ,^-V.:w.tii|̂ lll^-^ ^1' gm.,.

-180 -120 60 0 60

LONGITUDE (DEC)

20 0 4

LOCAL TIME (HRS)

4.170e+11

Y)(o j ")

5.578e+11

CONTOUR 3.00E+n TO 6.00£+n BY 5.00E+10 (MIN,MA^«2,76E+11.5.58E+11)

HISTORY /R0BLE/RGR93/TSEQBZ4 ( 6: 0:. 0)

(o^, (L^

LAT= 2.50 UT

U0l^6i Tid.

m.

LONGITUDE

MIN 3.009, MAX 11.524, INTERVAL .6

HIST0RY=/R0BLE/RGR93/S0LGU8

LOGIO 03

r7.2-

-7.6-

•9.2-

-10.0-

-10.4-

-8.8-

•9.6-

•11.6-

•12.0-

-150 -700

t:>Ufi

-50

2-5Q UT= 0.00

' ' ' 1 1 r-T8.0-.

Lft fl

L7.2

/ 1

11

•a.8.

•10.0-•9.6-

•9.2^

90

-11.2- 50

0 50

longitudeWIN 6.022, MAX 12.518. INTERVAL

HrSTORY=/ROBLE/RGR93/soLGU8

f

100 150

Su»tsi^

r

ZP= 2.0 UT = 0.00

-150 -100 -50 0 50

LONGITUDE

j I I

100 150

12 16 20 0 4LOCAL TIME (HRS)

UlN 437.8. MAX 767.5. INTERVAL 25

HIST0RY-/R0BLE/RCR92/TISSZ4340 U/S

>

-150 -100 -50 0 50

LONGITUDE

j_> I I

100 150

12 16 20 0 4LOCAL TIME (HRSl

IflN 150.63, MAX 204.52, INTERVAL 4

HIST0Ry»/R0BLE/RGR92/TISSZ4155 M/S

>

ZP=-11.0 UT = 0.00

-150 . -100 -50 0 50

LONGITUDE

J I I

100 150

12 16 20 0 4LOCAL TIME (HRS)

ION 187.00. UAX 214.21. INTERVAL 2

HIST0RY-/R0BLE/RCR92/TISS24130 U/S

>

rio£

12

I

12

12

120

Q.M

.XCD>—4

llJX'

TN ZONAL MEANS UT= 0.00

-80 -60 -40 -20 0 20 40 60 80

LATITUDE

MINIMUM 120.3. MAXIMUM 332.6. CONTOUR INTERVAL 20

Hsisqa TKi (deg ki zonal meansDAY=355 UT= 0.0 F107= 67.0 F107A= 72.0 AP= 4.

T

-80 -60 -40 -20 0 20 40

LATITUDE

HIN 137.4. MAX 367.3, INT 20

-240

120

UN ZONAL MEANS UT= 0.00

h-X

2;

XCJ1-4

LJX

120

r

\ \ I N \ \-1V\

. <yj.-80 -60 -40 -20

MIN -53.56. MAX 75.90, INT 10

//

HWM93 UN (M/SI ZONAL MEANSDAY=355 UT= 0.0 F107= 67.0 F107A= 72.0 AP = 4.0

\ \ ^\ WN/"*-—

-40 -20 0 20 40

LATITUDE

MIN -63.42, MAX 61.38,. INT 10

Ptf>Tfc/)TiA L ( |0 v*i Id ^ 3^ ^

UTIME=12: 0 FIELO=H

20. -90. -60. -30.LO

iDiOti^ L

Z=-17.0

i\

LJQ

< _

UJ

o

<'_j

80

12

12

^£^lDlOAlA^- U)fAfr^

I

-150 -100

VN

RAW DIFFERENCE FIELD

ZP= -7.0 UT= 0.00

<?7

-r50 0 50

. LONGITUDE

1 I !

16 20 0 4

LOCAL TIME (HRS)

MIN -27.93, MAX 30.70, INTERVAL 4

ZP=-15.0 UT= 0.00

. ^

m

-1.50 -100

16

-50 0 50

•LONGITUDE

j 1

20 0 4LOCAL TIME (HRS)

100

8 12

150

8 12

^ 70

UIiaJT) Dipt

Uf.^- W ("/s)

UN

RAW DIFFERENCE FIELD

ZONAL MEANS UT= 0.00tt n I i

I lip I \ \ \ \ • N ^

fn \^ AV/

'ilnA

/ / / /^/ / J^11 />V / \

/ I I t ' t ' / ^ \' // f I I ' / y- ^''.\\\\^ ~

' I I I I t I , ^ ^/ 'I I ' I ' t rI ' ''''' f \'\\*M1'K ' t t I I t I , 1^ /-^ \^ iiUlH

Jiism\ . ////'/ JE ' / /f UmM

' /^;&>^';'T; 11--N ''n \ ^ ^ \ ^ ^"///'/'"-

-•" ----fTTV-. ^ \ \\^ ^ ^

60 -40 -20 0 20

LATITUDE

MIN -12.53, MAX 3.78, INTERVAL 1

DIFFS FROM T17PW9 MINUS T17LB2

5(p<4}W4

Q 20

< -20

E3PERCENT DIFFERENCE FIELD

ZP=-15.0 UT= 0.00

•"

3S- --P43I—

5 20

-40

^60

-80

12

-150 -100 -50 0 50

LONGITUDE

! ! I I

100 150

16 20 0 4

•LOCAL TIME (HRS)

MIN -17.47. MAX 6.38, INTERVAL 1.5

OH

8 12

PERCENT DIFFERENCE FIELD ^ZP= -9.0 UT= 0.00

^

> / ' 1/ 1 '

/ " -___ ✓ /'

II.

"U

III•s. tl

-150 -100 -50 0 50

LONGITUDE

J I L

100 150

12 16 20 0 4 10

TIMESGCM Z (UN+VN) ZP = -7.0 UT

-60

LONGITUDE (DEG)

LOCAL TIME (HRS)

TIMESGCM Z (UN+VN) ZP = -17.0 UT

-

^ \ \ \ \

•H- -* -S. V. ^ t

'n** .••««»i.*.

-120 -60

.LONGITUDE (DEG)

LOCAL TIME (HRS)

^IS5tM8S

m

A

LOCAL TIME (HRS)

r

!t

I

i-i

1

PERIMUM

Ill'*--**"

iri^--

PERIMLAT=-'27.5

E

<D"D3

(Q

O^CjO^

t90

no

105

100

95

90

85

80

192

Colo.

spring.dat

-193

/ %%

•1

k*

«

-

• ^✓ J

•••«

»

-

1

0•

«m

•m

{

V7

75

160

110

108-

106

1 OkA1 iff**

10^

100

98

961-XC3

94

lU 92X

90

88

86.^

84 •

82 -

80

170 180 190 200

Temperature (K)210 220

LAT. LON ^ 42.50. -105.00 (FT. COLLINS)-

195 200 205

.0)

fco /f OA X «T7 A

o 203

~ 202

DQPPLER TN (DEG K) (from E5577)LAT.LON = 2.50. 0.00 (EQUATOR)

196 —'—'

0 .3 6 9 12 15 18 21

UT (HOURS) (MTIMES 00 00=00 TO 01 00:00)

J I L • • I J I L

0.00 4.00 8.00 12.00 16.00 20.00

. LOCAL TIME (HRS) {LON= 0.00)

MIN, MAX= 0.1961E+03. 0.2069E+03

0

0.00

SwmiHAPV

^ UP /IaIQ

l^lANNiN^ -——> CSDAi^ 57*14 D/e5

^ C^AnR^UcJ) SX^BAttAetfTs

-f I ^Kc/a>^

r^HSSS^HS fyZ AAfALySlS of

ma^S , fr<2. Data

+ 6^M»u4A^»7y MdP£L