35
Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde [email protected] Coastal Ocean Dynamics Second course: North Sea dynamics

Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde

  • Upload
    erna

  • View
    57

  • Download
    0

Embed Size (px)

DESCRIPTION

Coastal Ocean Dynamics Second course: North Sea dynamics. Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde [email protected]. North Sea bathymetry. Source: Werner Alpers. North Sea catchment areas and Exclusive Economic Zones. Weser. Elbe. - PowerPoint PPT Presentation

Citation preview

Page 1: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Hans Burchard

Leibniz Institute for Baltic Sea Research Warnemünde

[email protected]

Coastal Ocean Dynamics

Second course: North Sea dynamics

Page 2: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

North Seabathymetry

Source: Werner Alpers

Page 3: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

North Seacatchment areas and Exclusive Economic Zones

Source: OSPAR Commission

Elbe

Weser

Rhine

Page 4: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Annual cycle of sea surface temperature in North Sea

Page 5: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

http://www2.astro.psu.edu/users/cpalma/astro10/class21.html

Generation of the semi-diurnal lunar (M2) tide

Page 6: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

http://www2.astro.psu.edu/users/cpalma/astro10/class21.html

Generation of the semi-diurnal solar (S2) tide

Page 7: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal chart for the M2 tide (phase lines)

http://en.wikipedia.org/wiki/Amphidromic_point

Page 8: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde
Page 9: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Why do the tides in the North Sea look like this ?

Tidal waves enter into North Sea through northern boundary and English Channel.

Phase propagation is c = (g * depth)1/2, g = 9.81 m/s2

(depth = 40 m c = 20 m/s = 72 km/h)

Due to Earth rotation, tidal waves are Kelvin waves,leaning on a coast to the right.

Energy loss due to bed friction: tidal waves loosepower during their journey through the North Sea.

Page 10: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal chartfor the M2 tide

full lines: amplitude

dashed: phase

(Source: POL)

Page 11: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal chart for the M2 tide (phase lines)

Page 12: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

M2 t

idal

cha

rt o

f Sou

ther

n N

orth

Sea

Prandle, 1981

Amphidromic point

Page 13: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal propagation into the Baltic Sea is blocked !

Page 14: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tides in the Wadden Sea (as seen in 200 m resolution model)

Page 15: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Wadden Sea model:

M4 tidal elevations(phase and amplitude)as validation data.

Gräwe et al., in prep.

Page 16: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Seasonality of tidal forcing

Müller et al. (in prep.)

Gräwe et al. (in prep.)

How does this affect sediment transport due to tidal asymmetries (M4)?

Page 17: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Stratification in the North Sea

Besides tides, seasonal stratification is characteristic for the North Sea dynamics.

Bolding and Burchard (2002)

Annual cycle of temprature stratification in the Northern North Sea (as seen from a 1D model)

Page 18: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Doggerbank

Doggerbank

Model results by Burchard & Bolding, 2002

Tidal front

Stratification is spatially not homogeneous

Page 19: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal fronts

Tidal fronts (stratified in deep, mixed in shallow water) are an environmentally very important phenomenon.

Thus, in shallow water the bottom sediment is in direct contact with the surface waters, whereas in deeper waters, the bottom layers are clearly separated from the surface wates.

Page 20: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

What determines the position of tidal fronts ?

Stabilising: water depth H, surface buoyancy flux Q (heat flux, net precipitation).

Destabilising: tides given as tidal velocity amplitude u.

Important parameter by dimensional analysis:

(Q * H) / u3

Large: stably stratified; Small: mixed

Note: H / u3 is the famous Simpson-Hunter (1974) parameter.

Page 21: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal mixing fronts in the Irish Sea

Satellite images courtesy Alejandro Souza

stratified & deepmixed & shallowmixed & very shallow & warm

or

stratified due to river run-off

Page 22: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal Mixing fronts in the Irish Sea

Numerical model result, Souza et al., in press.

Stratification Simpson-Hunter parameter

Page 23: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Environmental effects of seasonal thermal stratification

Surface heat flux (cumulated)during FLEX‘76

Burchard, 2002

Page 24: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Burchard, 2002

Lateral effects are small, such that one-dimensional modelling may be successful

FLEX 1976

Page 25: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Summer stratification along 56°North Sea transect

Page 26: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Summer chlorophyll conc. along 56°North Sea transect

Page 27: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Northern North Sea:Annual cycle ofstratification andprimary production

Burchard et al., 2005Burchard, 2002

Page 28: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Rotating bulk shear in Monterey Bay

Itsweire et al. (1989)

Page 29: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

PROVESS-NNS study site(observations: Sep-Nov 1998)

ADCP, CTD, MST

Wind

Page 30: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Bulk property observations in NNS

Wind

Bulk shear squared

Bulk shear directionvs.inertial rotation

Page 31: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Theory I

1D dynamic equations:

Layer averaging:

Page 32: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Dynamic equation for bulk shear squared:

Conclusion:

Assuming bed stress being small, bulk shear is generated by the alignment of wind vector and shear vector.

Page 33: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Application of theory to observations

Page 34: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Impact of bulk shear on diapycnal mixing

Conclusion:Increased interfacialmixing rates correlatewith high shear.

Can we resolve this in 3D models?

Page 35: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Transect in NNS

Observations (Scanfish data from BSH)

Model results (GETM with adaptive coordinates)

Gräwe et al. (in prep.)