828
18 MeV 20 MeV 180 TECHNICAL REPORTS SERIES No. 273 Handbook on Nuclear Activation Data INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1987

Handbook on Nuclear Activation Data - CERN Document Servercds.cern.ch/record/111089/files/IAEA-TR-273.pdf · HANDBOOK ON NUCLEAR ACTIVATION DATA IAEA, VIENNA, 1987 STI/DOC/10/273

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

18 MeV20 MeV

180

TECHNICAL REPORTS SERIES No. 273

Handbookon Nuclear Activation Data

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1987

HANDBOOKON NUCLEAR ACTIVATION DATA

The following States aie Members of the International Atomic Energy Agency:

AFGHANISTANALBANIAALGERIAARGENTINAAUSTRALIAAUSTRIABANGLADESHBELGIUMBOLIVIABRAZILBULGARIABURMABYELORUSSIAN SOVIET

SOCIALIST REPUBLICCAMEROONCANADACHILECHINACOLOMBIACOSTA RICACOTE D'lVOIRECUBACYPRUSCZECHOSLOVAKIADEMOCRATIC KAMPUCHEADEMOCRATIC PEOPLE'S

REPUBLIC OF KOREADENMARKDOMINICAN REPUBLICECUADOREGYPTEL SALVADORETHIOPIAFINLANDFRANCEGABONGERMAN DEMOCRATIC REPUBLICGERMANY, FEDERAL REPUBLIC OFGHANAGREECE

GUATEMALAHAITIHOLY SEEHUNGARYICELANDINDIAINDONESIAIRAN, ISLAMIC REPUBLIC OFIRAQIRELANDISRAELITALYJAMAICAJAPANJORDANKENYAKOREA, REPUBLIC OFKUWAITLEBANONLIBERIALIBYAN ARAB JAMAHIRIYALIECHTENSTEINLUXEMBOURGMADAGASCARMALAYSIAMALIMAURITIUSMEXICOMONACOMONGOLIAMOROCCONAMIBIANETHERLANDSNEW ZEALANDNICARAGUANIGERNIGERIANORWAYPAKISTANPANAMA

PARAGUAYPERUPHILIPPINESPOLANDPORTUGALQATARROMANIASAUDI ARABIASENEGALSIERRA LEONESINGAPORESOUTH AFRICASPAINSRI LANKASUDANSWEDENSWITZERLANDSYRIAN ARAB REPUBLICTHAILANDTUNISIATURKEYUGANDAUKRAINIAN SOVIET SOCIALIST

REPUBLICUNION OF SOVIET SOCIALIST

REPUBLICSUNITED ARAB EMIRATESUNITED KINGDOM OF GREAT

BRITAIN AND NORTHERNIRELAND

UNITED REPUBLIC OFTANZANIA

UNITED STATES OF AMERICAURUGUAYVENEZUELAVIET NAMYUGOSLAVIAZAIREZAMBIAZIMBABWE

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of theIAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. TheHeadquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge thecontribution of atomic energy to peace, health and prosperity throughout the world".

© IAEA, 1987

Permission to reproduce or translate the information contained in this publication may be obtainedby writing to the International Atomic Energy Agency, Wagramerstiasse 5, P.O. Box 100, A-1400 Vienna,Austria.

Printed by the IAEA in Austria

April 1987

TECHNICAL REPORTS SERIES No. 273

HANDBOOKON NUCLEAR ACTIVATION DATA

INTERNATIONAL ATOMIC ENERGY AGENCYVIENNA, 1987

HANDBOOK ON NUCLEAR ACTIVATION DATAIAEA, VIENNA, 1987

STI/DOC/10/273ISBN 92-0-135087-2

FOREWORD

More than a decade has passed since the Handbook on Nuclear ActivationCross-Sections (Technical Reports Series No. 156) was issued. This publication wasfavourably received by scientists working in the fields of education and industrialapplications, as well as in basic research, and there have been many requests sincethen for a more up to date version. In response to these requests, and with theendorsement of the International Nuclear Data Committee of the IAEA, this newTechnical Report, Handbook on Nuclear Activation Data, is being issued for the par-ticular benefit of the many scientists who use nuclear activation methods.

The preparation of such a handbook requires a number of compromises whichmay not be acceptable to everyone. The scope and treatment of each topic had to belimited in order to be concise and this limit may conflict with the wishes of readersinterested in greater detail. However, the material in this Handbook is generallysimilar to that contained in the earlier version, though there are several importantdifferences, besides the inclusion of more recent data. In Part 1-1, all necessaryinformation on standard reference data has been assembled, something that wasmissing in the previous Handbook. Great efforts have been made to include as muchrecent information as possible. There is, however, one important omission. TheENDF/B-VI Standards File has not as yet been released and thus evaluated data fromthe ENDF/B-V Standards File have been quoted, together with up to date statusreports. This part will almost certainly have to be revised when the ENDF/B-VIStandards File becomes available.

The contents of this Handbook are divided into four parts, i.e. standardreference data and neutron, charged particle and photonuclear activation data. Theneutron source and gamma ray standards data in Part 1 and the californium spectrumaveraged data in Part 2 have been added following requests by the users of theprevious Handbook.

While every effort has been made to ensure consistency and uniformity ofpresentation between the different parts of this Handbook, there remain someinconsistencies concerning the standard reference values of some half-life, abundanceand other data that are quoted. The reader is therefore requested to refer to Part 1-1for appropriate citations.

The emphasis in this Handbook is on evaluated or recommended values ratherthan on an exhaustive presentation of all experimental results. This aim has been onlypartially achieved because in some cases it has not been possible to make a selectionbetween parallel presentations of different results. A number of valuable suggestionsfor subjects to be included in this Handbook have been received and most of themhave been adopted; it is hoped that those subjects not included, such as PIXE, canbe considered in a separate publication.

It should be emphasized that many of the data contained in this Handbook havebeen assembled in special computer files in order to ease their updating and tofacilitate their use in computations. These files are being updated continuously andcan be obtained from the IAEA Nuclear Data Section upon request.

The Agency wishes to thank all of the contributors and also those who havecritically reviewed the original manuscripts, especially H. Conde", A.B. Smith andA.D. Carlson for Part 1-2, and H. Vonach for Parts 2-2 and 2-3. The IAEA officerresponsible for the planning, overall co-ordination between the authors and for theorganization of this Handbook was K. Okamoto.

EDITORIAL NOTE

The papers have been edited by the editorial staff of the IAEA to the extent considered necessaryfor the reader's assistance. The views expressed remain, however, the responsibility of the namedauthors or participants. In addition, the views are not necessarily those of the governments of thenominating Member States or of the nominating organizations.

Although great care has been taken to maintain the accuracy of information contained in thispublication, neither the IAEA nor its Member States assume any responsibility for consequences whichmay arise from its use.

The mention of names of specific companies or products (whether or not indicated as registered)does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsementor recommendation on the part of the IAEA.

The authors are responsible for having obtained the necessary permission for the IAEA toreproduce, translate or use material from sources already protected by copyrights.

CONTENTS

PART 1. STANDARD REFERENCE DATA

1-1. Nuclear properties 3J.K. Tuli1. Introduction 32. Explanation of symbols used in table 4

2.1. Column 1. Isotope (Z, El, A) 42.2. Column 2. T% or abundance 42.3. Column 3. Decay mode 4

References 5Table I: Nuclear properties of all known nuclides and some of their

isomeric states 6

1-2. Standard monitor reactions for neutrons 29Z. Body1. Introduction 292. The 'H(n,n)'H cross-section 30

2.1. Status 353. The 3He(n,p)3H cross-section 35

3.1. Status 374. The 6Li(n,t)4He cross-section 40

4.1. Status 405. The 10B(n,a)7Li, loB(n,ao)

7Li and 10B(n,a,)7Li* cross-sections 415.1. Status 44

6. The C(n,n)C cross-section 456.1. Status 45

7. The 27Al(n,a)24Na cross-section 507.1. Status 51

8. The ^Fefn.p^Mn cross-section 518.1. Status 57

9. The 197Au(n,7)198Au cross-section 64

9.1. Status 6410. The ^Ufof) cross-section 73

10.1. Status 7311. The 238U(n,f) cross-section 76

11.1. Status 77References 78

Neutron Source Standards

1-3. Production of monoenergetic neutrons between 0.1 and 23 MeV:Neutron energies and cross-sections 83M. Drosg, O. Schwerer1. Introduction 832. Selection of the appropriate source 84

2.1. Neutron source intensity 852.2. Neutron background and target structure 89

2.2.1. Gas targets 923. Parametrization of the differential cross-sections 93

3.1. Interaction of protons with tritons 953.1.1. 3H(p,n)3He 953.1.2. 'H(t,n)3He 98

Graphs of the 3H(p,n)3He reaction 99Graphs of the 'H(t,n)3He reaction 107

3.2. Interaction of deuterons with deuterons I l l3.2.1. 2H(d,n)3He I l l

Graphs of the 2H(d,n)3He reaction 1153.3. Interaction of deuterons with tritons 121

3.3.1. 3H(d,n)4He 1213.3.2. 2H(t,n)4He 124

3.4. Interaction of protons with 7Li 126Graphs of the 3H(d,n)4He reaction 129

3.4.1. ^ ( p . n / B e and 7Li(p,n,)7Be* 1383.4.2. ' H ^ L l n / B e and 'H^Li.n^Be* 138

Graphs of the 2H(t,n)4He reaction 139Graphs of the 7Li(p,n)7Be reaction 145Graphs of the 'H(7Li,n)7Be reaction 153

Appendix 158References 161

Neutron Source Standards

1-4. The neutron spectrum of spontaneous fission of californium-252 163W. Mannhart1. Introduction 1632. Status of data for the neutron spectrum 1643. Evaluation of the neutron spectrum by least squares methods 165

3.1. Principles of the least squares adjustment 1653.2. Data on spectrum averaged neutron cross-sections 1663.3. Prior information on the neutron spectrum 1673.4. Energy dependent cross-section data 171

4. Results of the evaluation of the spectral distribution 1725. Comparison with other experimental and theoretical data 1756. Conclusions 182References 183

1-5. Decay data for radionuclides used as calibration standards 187A. Lorenz1. Introduction 1872. Selection of standards included in the file 1873. Selection of recommended gamma ray energies and intensities 1884. Key to the comments column in the table 188Table I: Photon energies and emission probabilities for radionuclides

used as standards 189References 195

PART 2. NEUTRON ACTIVATION

2-1. Thermal neutron cross-sections and infinite dilution resonanceintegrals 199E. Gryntakis, D.E. Cullen, G. Mundy1. Introduction 1992. Definition of a resonance integral 2003. Experimental measurement with a Cd filter 202

3.1. The Westcott method 2023.2. The common method 204

4. Experimental measurement without a Cd filter 2055. Explanation of the columns in Table II 248References 248Annex: Effective resonance energy values 256F. De ComReferences to the Annex 260

2-2. Data for 14 MeV neutron activation analysis 261Z. Body, J. Csikai1. Introduction 2612. The activation process 2623. Explanation of the nuclear data in Table II 3004. Explanation of the cross-section tables 301References 303

2-3. Activation cross-sections induced by fast neutrons 305V.N. Manokhin, A.B. Pashchenko, V.I. Plyaskin, V.M. Bychkov,V.G. Pronyaev1. Introduction 3052. Procedure for file preparation 3063. Presentation of the data 3064. Relationships with other sections of this Handbook 307References 308Graphs of the reactions 309

2-4. Californium-252 spectrum averaged neutron cross-sections 413W. Mannhart1. Introduction 4132. Basis of the experimental data 414

2.1. Experiments with incomplete uncertainty information 4142.1.1. Experiment by Pauw and Aten 4142.1.2. Experiment by Kirouac et al 4142.1.3. Experiment by Green 4222.1.4. Experiments by Csikai et al 4222.1.5. Experiment by Benabdallah et al 4232.1.6. Experiments by Dezso and Csikai with

improved experimental conditions 4232.2. Experiments with complete uncertainty information 424

2.2.1. Experiments performed at the Physikalisch-TechnischeBundesanstalt (PTB) 424

2.2.2. Fission cross-section measurements at the NBS 4252.2.3. Measurements by Adamov et al 4262.2.4. Measurements by Spiegel et al 4262.2.5. Measurements by Davis and Knoll 4282.2.6. Measurements by Winkler et al 4282.2.7. Measurements by Kobayashi et al 4282.2.8. Measurements by Mannhart 4282.2.9. Measurements by Lamaze et al 430

2.3. Other data 4313. Calculation of spectrum averaged cross-sections 4314. Evaluation of a 'best' set of experimental data 432References 435

PART 3. CHARGED PARTICLE ACTIVATION

3-1. Calculation of excitation functions for charged particle inducedreactions 441R. Nowotny, M. Uhl1. Introduction 4412. Models and parameters 443

2.1. Reaction mechanisms and their importance for activationproduct cross-sections 443

2.2. The compound nucleus evaporation model 4442.3. Models for pre-equilibrium emission 449

2.3.1. The exciton model 4492.3.2. The hybrid model 452

2.4. Auxiliary quantities and model parameters 4542.4.1. Transmission coefficients 4542.4.2. Level densities 4562.4.3. Pre-equilibrium model parameters 457

3. Computer codes 4604. Applications 461

4.1. Proton induced reactions 4624.1.1. 67Ga 4634.1.2. 77Kr 4634.1.3. 127Xe 4664.1.4. 123Xe 4694.1.5. 201Pb 469

4.2. Yield calculations 4704.3. Reactions with particles other than protons 471

5. Conclusions 473References 474

3-2. Activation cross-sections for elements from lithium to sulphur 479P. Albert, G. Blondiaux, J.L. Debrun, A. Giovagnoli, M. Valladon1. Introduction 479Tables of the reactions 479Graphs of the cross-sections 490References 534

3-3. Thick target yields for the production of radioisotopes 537P. Albert, G. Blondiaux, J.L. Debrun, A. Giovagnoli, M. Valladon1. Introduction 537Tables of the reactions 538Graphs of the thick target yields 562References 626

PART 4. PHOTONUCLEAR ACTIVATION

4-1. Photonuclear cross-sections 631B. Forkman, R. Peters son1. Introduction 6312. Bremsstrahlung reaction yield 6313. Comments 635References to Sections 1 through 3 6354. Contents list of graphs 636Graphs of the reactions 637References to Section 4 808

Part 1

STANDARD REFERENCE DATA

1-1. NUCLEAR PROPERTIES*

J.K. TULI**National Nuclear Data Center,Brookhaven National Laboratory***,Upton, New York,United States of America

Abstract

NUCLEAR PROPERTIES.The paper presents half-life, abundance and decay modes for all known nuclides and

some of their isomeric states. The data are taken from the 1984 edition of the EvaluatedNuclear Structure Data File maintained by the National Nuclear Data Center at BrookhavenNational Laboratory.

1. INTRODUCTION

Half-life, abundance and decay modes for all known nuclides and some oftheir isomeric states are presented in Table I. The nuclides for which none of thesethree properties are known have been omitted. The data given here are from theadopted properties of the various nuclides as given in the 30 Nov. 1984 edition of theEvaluated Nuclear Structure Data File (ENSDF), a computer file of evaluatedexperimental nuclear structure data maintained by the National Nuclear DataCenter at Brookhaven National Laboratory, Upton, New York. The data inENSDF are based on experimental results for A = 45 to 263 [ 1 ] and in Nuclear Physicsfor A < 45. For those nuclides for which either there is no data in ENSDF or morerecent data are available, the half-lives and decay modes are taken from Ref. [2].In some cases, the percentage decay modes are taken from material in Ref. [3].Recent data, contained in Refs [4-16], have also been included. The isotopicabundances are those of Holden, Martin and Barnes [17]. Other references,experimental data and information on the data measurements can be found in theoriginal evaluations contained in Ref. [1] and in Nuclear Physics.

* The nuclear properties given here are based upon the author's pocket-size handbook -Nuclear Wallet Cards (1985) — published and distributed free by the National Nuclear DataCenter, Brookhaven National Laboratory, Upton, New York, 11973, USA. Other quantitiescontained in the Nuclear Wallet Cards and not presented here are spin, parity, mass excess anda number of appendices.** This research was supported by the Office of Basic Energy Sciences, US Department of

Energy.*** Operated by Associated Universities, Inc., under contract with the US Department ofEnergy.

4 TULI

2. EXPLANATION OF SYMBOLS USED IN TABLE

2.1. Column 1. Isotope (Z, El, A)

Nuclides are listed in order of increasing atomic number (Z) and aresubordered by increasing mass number (A). Included are all isotopic species, allisomers with half-life >\ s and other selected well known isomers. The nuclidesfor which neither the half-lives nor the decay modes are known have been omitted.

Isomeric states are denoted by the letter 'm' after the mass number and aregiven in order of increasing excitation energy. More than one entry for a nuclide,without the letter 'm' for any of them, indicates that their relative excitationenergies are not known.

The symbols Rf (rutherfordium) and Ha (hahnium) have been used forelements with Z = 104 and 105, respectively. However, these have not beenaccepted internationally owing to conflicting claims of their discovery.

2.2. Column 2. T] /2 or abundance

The half-life and the abundance are given followed by units (the %in the case of the abundance), followed by the uncertainty, in italics.The uncertainty given is in the last significant figures. For example,8.1 s 10 means TI/2 = 8.1 ± 1.0 s. For some very short-lived nuclei, level widthsrather than half-lives are given. In these cases also the width is followed by theunits (e.g. eV, keV or MeV), which are followed by the uncertainty, in italics,if known. Those half-life values for which there is no uncertainty given are takenfrom Ref. [2] and the uncertainty in most of these cases is < 5 in the last figuregiven.

2.3. Column 3. Decay mode

Decay modes are given followed by the per cent branching, if known ('w'indicates a weak branch). The decay modes are given in decreasing strength fromleft to right. The percentage branching is omitted where there is no competingmode of decay.

The various modes of decay are:

/3- 0 - decay;£ £ (electron capture) ort+|3+ or/3+ decay;IT Isomeric transition (through y or conversion-

electron decay);n, p , oc, ... Neutron, proton, alpha, ... decay;SF Spontaneous fission;

PART 1-1

2/3-, 3a, ... Double 0 - decay (|3-/?-), decay throughemission of 3 a's, ...;

0-n , j3-p, j3-a, ... Delayed n, p, a, ..., emission following/3- decay;

£p,£a, Delayed p, a,SF, ... decay following£SF, ... E or/3+ decay.

REFERENCES

[ 1] TULI, J.K., (Ed.), Nucl. Data Sheets B7-46 (1972M1985).[2] Chart of the Nuclides, 13th edn (WALKER, F.W., MILLER, D.G., FEINER. F., Eds),

Knolls Power Laboratory, Schenectady, NY (1983).[3] BROWNE, E., et al., Table of Isotopes, 7th edn (LEDERER, CM., SHIRLEY, V.S. Eds),

Wiley, New York (1978).[4] ALBURGER, D.E., private communication on 18OmTa, 1984.[5] FREKERS, D., et al., Half-life of ""Ti, Phys. Rev. C 28 (1983) 756.[6] KUTSCHERA, W., et al., Half-life of 60Fe, Nucl. Instrum. Methods BS (1984) 430.[7] ROSE, H.J., JONES, G.A., A new kind of natural radioactivity, Nature (London) 307

(1984)245. (223Ra)[8] LANGEVIN, M., et al., Observation of (3-delayed triton emission, Phys. Lett. 146B

(1984) 176. (nLi)[9] Recent half-life measurements on 156Pr, 163Gd, I6sTb, 168Dy, carried out at the Idaho

National Engineering Laboratory, as reported in the literature.[10] LANGEVIN, M., et al., Nucl. Phys. A414 (1984) 151. (32~3SNa, "^ '"^Mg)[11] DETRAZ, C, et al., Phys. Rev. C 19(1984) 164. (29Mg, 31A1)[12] GUILLEMAUD-MUELLER, D., et al., Nucl. Phys. A426 (1984)37. (32A1)[13] MURPHY, M.Y., Phys. Rev. Lett. 49 (1982) 455. (32A1)[14] KAITA, R., et al., Nucl. Phys. A344 (1980) 389. (32Si)[15] ELMORE, D., et al., Phys. Rev. Lett. 45 (1980) 589. (32Si)[16] VOSICKI, B., et al., Nucl. Instrum. Methods 186 (1981) 307. (42'43C1)[17] HOLDEN, N.E., MARTIN, R.L., BARNES, I.L., Isotopic composition of the elements

1983, Pure Appl. Chem. 56 (1984) 675.

QZ

ooWQ

UPZ

z

OooUJHCM

PH

oOHPH

OH

w_)up

zwpa<H

00pqH

HooU

2W53O00M

OH

1HUH

oso00

CO.

Q a . o a . Q a . ^ 2 . w w w

! e ^t'-^.°><~'»~.

: « " » : » ,= -<•* " • - ° c

O

co f in CD r-co o

I I I I I - «

00 v

OK•inoco

^4I I I

^ C N , ^ ^ c ^ '

CO i n t o • c o '

D-H to t-- oo co o -H c\j t-- oo en o -H OJ co •* m oo co o -* cy co •**• in to —< OJ co •* in to t-- co OJ CO •«*• in to i> oo co o —< into

ca o ^ o t«-OQ

m to oo o>

PART 1-1

IsotopeZ

14

15

16

17

18

19

El

Si

P

S

Cl

Ar

K

A

27282930313233342628293031323334353629303132333435363738393132

333434m3536373838m39404142433233343536373839404142434445463536373838m39

Tl/2 orAbundance

4.16 s92.23%4.67%3.10%2.62 h105 y

6.11 s2.77 s

20 ms270.3 m4 142 s2.498 m

100%14.26 d

25.34 d12.43 s47.3 s5.9 s

0.187 s1.24 s

2.584 s95.02%0.75%4.21%

87.51 d0.02%

5.05 m2.84 h11.5 s0.15 s

298 ms

2.511 s1.5262 s32.23 m75.77%

3.01-105

24.23%37.24 m715 ms55.6 m1 35 m34 s .6.8 s3.3 s0.1 s

173 ms845 ms1.775 s0.337%

35.04 d0.063%269 y

99.600%1.827 h32.9 y5.37 m11.87 m

21.48 s8 s /

0.19 s342 ms1.226 s

7.636 m924.6 ms93.25817

21

1113

2120

i 5154

4128

7

441891812

121

2

325145y 255

322

?32

234

341

337

116515

27181530

Decay Mode

£

0-0-P-0-z, cp, £2p?£

£

0-p-p-0-0-£, £P££

P-P~P-0"£, £p£, £p=0.007%,£0=0.01%£££53.1%, IT46.9%

0-98.1%, £ 1.9%

IT0-0-0-

£, £p£ , £p 34%££

£

0"

0-P-0-0-0-0-£, £P£, £p, £0£z£

IsotopeZ

19

20

21

22

23

El

K

Ca

Sc

Ti

V

A

40

41424344454647484950515336373839404142434445464748

4950515340414243m434444m4545m4646m4748495050m514142434445464748495051525344454647

Tl/2 orAbundance

1.277-10'0.0117%6.7302%

r30

12.360 h 322.3 h

22.13 n17.3 n107 s17.5 s6.9 s1.3 s

472 ms365 ms30 ms0.1 s

175 ms447 ms

859.6 ms96.941%

1.03-10s

0.647%0.135%2.086%

163.8 d0.004%

4.535 ed0.187%

8.716 n13.9 s

10 s90 ms

182.3 m596.3 us681.3 m61.6 s

3.891 h3.927 h58.6 h

100%0.32 S

83.83 d18.70 s3.345 d43.7 h57.4 m

1.710 a0.35 s12.4 s80 ms199 ms513 ms54.2 y3.08 h

8.0%7.3%

73.8%5.5%5.4%

5.76 m1.7 m

32.7 s90 ms539 ms

422.33 in32.6 n

119603

2

455

310

1413y *3351834

111

e5

7

n» 741281

1253/

a3i

2

e8211

1

119

1518

• 203

Decay Mode

0-89.3%, £ 10.7%

0-0-0-0-0-P-0-0", 0-n0-, 0-n 29%0-,/Hi0-,0-n£, £P

z'f

E

0-

0-

0-

f"£p££

££IT 98.8%, c 1.2%

ITP-IT0-P-

IT98.7%, 0- 1.3%0-£, £p£££f

0-P~-£, £0£

£

TABLE i (cont.)

TULI

IsotopeZ El A

Tl /2 orAbundance Decay Mode

23 V 48 15.974 d 3 £49 330 d (5 £50 1 .5 -10" y +3-7 £>70%, 0-<3O%

0.250% 251 99.750% 252 3.75 m I 0-53 1.61 m 4 0-54 49.8 s 5 0-55 6.54 s 15 0-

24 Cr 45 50 ms 6 z, £p>25%46 0.26 s 6 E, £p47 508.0 ms 10 £48 21.56 h 3 £49 42.09 m 15 c50 4.345% 951 27.704 d 4 £52 83.789% 1253 9.501% II54 2.365% 555 3.497 1 3 0-56 5.94 m 10 0-57 21 s 0-

25 Mn 49 0.38 s £50 283.0 ms 4 £50m 1.75 m 3 z51 46 .2 m I £52 5.591 d 3 £52m 21 .1 m 2 z 98.32%,

IT 1.75%53 3 . 7 - 1 0 6 y 4 £54 312 .5 d 5 £55 100%56 2.5785 h 6 0 -57 1.45 m 0 -58 6 5 . 3 s 7 0 -58m 3 .0 s / 0 -59 4 . 6 s / 0 -60 1.79 s 10 0 -62 0 .9 s 0 -

26 Fe 49 75 ms 10 z, £p51 0.25 s £52 8.275 h 8 z52m 46 s 2 £ 80%, IT 20%53 8.51 m 2 z53m 2.58 • ! IT54 5.8% I55 2.68 y £56 91.72% 3057 2.2% I58 0.28% ;59 44.496 d 7 0-60 1.49-106 y 27 0-61 5.98 m 6 0-62 68 s 2 0-63 4.9 s 0-

27 Co 53 262 ms 25 z53m 0.25 s £ 98.5%, pa: 1.5%54 193.23 ms 14 z54m 1.48 m 2 z55 17.53 h 3 £56 78.76 d 12 z57 270.9 d 6 z58 70.916 d 15 z58m 9 .15 h 10 IT59 100%60 5.271 y I 0-

Isotope Tl/2 orZ El A Abundance

27 Co 60m 10.47 m 4

28 Ni

29 Cu

30 Zn

616262m636453555657585960616263646566676857585960616263646566676868m697070m7172735758596061626364656667686969m

707171m7273747576777879

1.650 h 51.50 m 4

13.91 m 527.4 s 50.30 s 345 ms (5189 ms 56.10 d 2

36.08 h 968.27% I

7.5-10 4 y 1326.10% I1.13% i3.59% I

100.1 y 200.91% /

2.520 h 254.6 h 4

21 S 1

0.18 s ?3.204 s 781.5 s 523.2 n 3

3.408 h 109.74 m 269.17% 2

12.701 h 230.83% 25.10 m 261.92 h 9

31 s I3.75 m 53.0 m I4.5 s 146 s 520 s

6.6 s3.9 s

40 ms 10

183.7 ms 232.38 m 589.1 s 29.26 h 238.1 m 348.6% 3

243.9 d /27.9% 24.1% I18.8% 4

55.6 m IS13.76 h 2

0.6% /2.45 m 103.94 h 546.5 h I23.5 s 10

95 s 110.2 s 35.7 s 31.4 s 3

1.47 s (52.63 s 9

Decay Mode

IT 99.75%,0-0.25%

P-,fi-P-z,£££

IT< 1%

£p

££E£££

E 62.9%, / J - 3 7 . 1 %

IT 86%, p - 14%0

£ ,£

Z ,zz££

IT 99. 97%,0-0.03%

0-0-

0-0-, 0-n?

PART 1-1

IsotopeZ El A

30 Zn 8031 Ga 62

6364656667686970

7172737474m757677787980818283

32 Ge 616465666768697071727373m747575m

767777m787979m8081828384

33 As 666768697071727374757677787980

T l / 2 orAbundance

116.12 ms 2632.4 s 5

2.630 m 1115 2 m 29.49 h 7

3.261 d /68 1 m 360.1% 2

21.15 m 5

39.9% 214.10 h ;4.87 h 38.1 m I9.5 s 102.10 m 332.6 s 613.2 s 25.09 s 53.00 s 91.66 s 91.23 s )0.60 s0.31 s

40 ms 1563.7 s 2530.9 s 72.26 h 518 7 m 5271 d

39.05 h 1020.5% 511.8 d 427.4% 67.8% 2

0.499 s 1136.5% 7

82.78 m 447.7 s ?

7.8% 211.30 h /52.9 s 6

88 m 119.1 s 3

39.0 s 1029.5 s 4

7.6 s4.6 s 41.9 s 41.2 s 3

95.8 ms 442.5 s 122.530 m 17

15.2 m 252.6 m 3

62 h26.0 h 180.30 d 617.78 d 3

100%26.32 h 738.83 h 590.7 m 2

9.01 B IS15.2 s 2

Decay Mode

0-£££££

J

0-99.59%,£ 0.41%

0~0~0-IT, 0-?fi-0~0-0-0- , 0-n 0.098%0- , 0-n 0.84%0- , 0-n 12%

0-,' 0-n£, £p££, £p0.013%£

£

£

IT

0~IT 99.97%,/?- 0.03%

0-0-79%, IT 21%0~0-0-96%, IT 4%0"0", 0-

0-

£££

£f££

£65.8%, 0-34.2%

0-

0-0-0-

IsotopeZ El A

33 As 818282838484m858687

34 Se 68697071727373m7475767777m787979m808181m82

8383m84858687888991

35 Br 7072737474m757676m7777m78

7979m8080m818282m838484m85868788899091

T l / 2 orA b u n d a n c e

33 s 219 s14 s13 s

5.5 s 30.65 s

2.028 s 120.9 s 20.75 s 6

1.6 m27.4 s 241.1 m4.74 m 58.40 d 87.15 h 839.8 m 13

0.9% 1119.770 d 10

9.0% 27.6% 2

17.45 s 1023.6% 6

£65000 y3.91 m 549.7% 718.5 m 1

57.25 m 91.4>1020 y

9.2% 522.5 m 270.4 s 33.2 m 2

31.7 s 915.3 s 9

5.55 s 201.53 s 60.41 s 40.27 s 5

80 ms78.6 s 24

3 . 4 m 32 5 . 3 m 3

4 1 . 5 IB 1597 m 2

16.2 h 21.31 s 2

57.036 h 64.28 m 106.46 m 4

50.69% 54.864 s 3517.68 m 24.42 h 149.31% 535.30 h 36.13 m 82.39 h 231.80 m 8

6.0 m 22.90 m 655.0 s 8

55.69 s 1316.3 s 3

4.53 s (01.71 s 140.541 s 5

Decay Mode

0-

t „0-, 0-n0-, 0-n 0.1%0-0-, 0-n 23%0-, 0-n«4%0-.0-n£t , £p0.077.££££IT 73%, £ 27%

£

IT

0-IT

0-IT, 0-0.07%

20-

0-fi-ll-

0-0- , 0-n 0.16%0- , 0-n 0.8%0- , 0-n 5%0- , 0-na:21%£€z£

£IT 99.4%, £ 0.6%£

IT££99.99%,0-sO.Ol%

IT0-91.7%, £8 .3%IT

0-IT97.6%, 0-2.4%0-0-0-0-0-0- , 0-n 2.3%0- , 0-n 6%0- , 0-n 13%0- , 0-n 23%0- , 0-n 9%

10 TULI

TABLE I (cont.)

IsotopeZ El A

35 Br 9294

36 Kr 71727374757677787979m808181m828383m848585m8687888990919293949597?

37 Rb 747576777878m79808181m8282m838484m858686m

87

88899090m919293949596979899

100

T l / 2 orAbundance

0.365 s 7

0.1 s17.2 s 3

27.0 s 1211.50 m 11

4.3 m )14.8 h /74.4 m 60.35% 2

35.04 h 1050 s 32.25% 2

2.1«105 y 213.3 s11.67. /u.5% /1.83 h 257.0% 3

10.72 y 24.480 h 8

17.3% 276.3 m 52.84 h 23.07 B 932.32 s 98.57 s 51.85 s 1

1.289 s 120.20 s /0.78 s 3<0.1 s65 ms

17.2 s 839.1 s 63.70 B 1517.66 a 85.74 m 622.9 m 5

34 s 44.58 h /

32 m1.25 m 36.2 h 586.2 d 1

32.87 d //20.49 B 1772.165% 1318.66 d 21.017 m 3

4.80-1010 y 1327.835% 13

17.8 i I15.2 m 1153 s 3258 s 558.4 s 44.50 s 25.85 s

2.702 s 5384 ms 60.199 s 3

171.8 ms 160.114 s 5

59 ms50 ms

I

0-0-£££ ,££££

£IT

£IT

IT

0-0-

0-0-

0~0-B~0-

£££££

)ecay Mode

0-n 21%0-n > 0%

£P 0.687.

79%, IT 21%

/J-n 0.037./3-n 1.955/S-n5.7%0-n

£90%, IT 8%££££ ,£

£f

IT

£ 96%, 0- 4%IT

($- £0.005%IT>99.7%,/J-<0.3%

2-0-ft~0-0-

2-0~0~0~0-0-

95.7%, IT4.355

/3-n 0.012%/J-n 1.3%/J-n 10.4%/3-n 9.1%/J-n 13%/J-n 24.6%/J-n 15.9%/J-n0-n

IsotopeZ El A

37 Rb 102?38 Sr 77

78798081828383m848585m868787m888990919293949596979899

100101102

39 Y 80818283838484m8585m8686m8787m

888989m9090m9191m929393m94959696m96m9797m9898m99

100100m101

Tl/2 orAbundance

90 ms 209.0 s 10

30.6? a 232.25 B 10106.3 m IS

22.2 m25.6 d32.4 h 2

4.95 s 120.56% /

64.84 d 367.66 a 7

9.86% 17.00% 1

2.81 h 182.58% /50.55 d 928.6 y 39.52 h 62.71 h 17.6 n 2

75.1 s 725.1 s 21.06 s 40.42 s 30.65 s 30.29 s0.2 s

121 ms 6355 ms 5033.8 s 6

72 s9.5 s

7.06 m 82.85 B 240 m /

4.6 s 22.68 h 5

4.86 h 1314.74 h 2

48 m /80.3 h 312.9 h 4

106.64 d 8100%

16.06 s 464.1 h /3.19 h 158.51 d 649.71 m 43.54 h /10.1 h 20.82 s18.7 m 110.3 m 26.2 s 29.6 s 22.3 B /3.5 s 21.23 s 20.64 s 32.0 s 21.5 s

0.94 s0.5 s

0.50 s 5

Decay Mode

0-t, £p<0.25%tceecfIT

£IT 87.3%, £ 12.7%

IT 99.7%, £0 .3%

fi-0-0-0-0-0-fr0-B-, 0-n 0.27%B-, /S-nO.8%P-. /3-n

2-0-0-££f£££E£E£IT99.31%, E 0 . 7 %£IT 98.437.,r l . 5 7 %£

IT0-IT, 0-0.002%0-IT0-0-IT0-0-0-0-0-fi-'

fi-ll- , 0-n 1%0-0-0-

w COt

.5-

;c *o

• OT ™-?<o^-^<«*.iA-.r• r>«-« - ' •

t- m <o t - oo O - c-oo O) O) o—-c\j N n ^f m co i-oo o> o w n e*5 •<* \n <iJ) O) 0- — —

->— 43 O

HOS

yr -^

O )

o in

- A

Jt^cjcj^ -^^ i -- . ixo^.

O) O

OOOOOOOCOCOUCOfOCo en .*»• co ro * - o co co i o> ui 4

3

£ ; . - c

9 3

ro.f* »— c

SI

CO CO

>

S2

W

o3

-3 11 - 3 O I -3 - 3 ^ , (o -3o co • co CJICJ* r j co

CO - 3 ^en as c»

H

r

CD f\jfow(\Jr -ooooo >r

0 0 < o

t o o o o u . ^ ^

i i Icooo

en z?<a ^ro

i CO K— CD CO •—' - CO\ CO " 00 CO ' 00 ' ^

i

ro "^

3

_ - 3CO • CO

cooooo

s ^9

3 =

CJ>1%,

Co3 3 3Co

01 •» " ' U) l

PART 1-1 13

I s o t o p eZ El A

48 Cd 9899

100101102103104105106107108109110111111m112113

113m

114115115m116117117m118119119m120121121m122124126128

49 In 100102103104105105m106106m107107m108108109109m109m110110111Him112112m113113m114114m115

115m116

116m

T l / 2 o rAbundance

£zo s16 s

1.1 ID 31.2 m 25.5 u 57.3 a 1

57.7 m 1055.5 m 41.25% 3

6.50 h 20.89% 1

462.9 d 2012.49% 912.80% 648.6 m 324.13% 11

9.3-10 1 5 y (912.22% 6

13.7 y

28.73% 2153.46 h 1044.6 d 37.49% 92.49 h 43.36 h 550.3 m 22.69 m 22.20 m 2

50.80 s 2113.5 s 3

8 s5.5 s 10.9 s 2

0.506 s 150.94 s 5

23 s 465 s 71.7 m 24.9 m 343 s

6.2 a I5.2 m 132.4 m 350.4 s 639.6 ni 7

58.0 m 124.2 h (1.34 m 70.21 s (69.1 m 54.9 h /2.83 d 17.7 n 214.4 m 220.9 m 2

4.3% 21.658 h 171.9 s 149.51 d 1

4.41-101* y 2595.7% 2

4.486 h 414.10 s 3

54.15 tn 6

Decay Mode

f, fp?f, cp££££££

£

£

IT

P-P- 99.86%,IT 0.14%

0-0-

0-0-0-P~0-0-P-P-P-0-P-P-£. £p£££€IT£££

IT£

£

ITIT£££IT£56%, 0-44%IT

IT0-99.5%, £ 0 . 5 %IT95 .7%, £ 4 . 3 %0-1T957.,0-5Z

£<0.06%0-

IsotopeZ El A

49 In 116m117117m

118118m118m119119m120120121121m122122123123m124124m125125m126126m127127m128129129m130130131132

50 Sn 103104105106107108109110111112113113m114115116117117m118119119m120121121m

122123123m124125125m126127127m128128m

Tl/2 orAbundance

2.18 s 443.8 m 7116.5 m 7

5.0 s 34.45 m 58.5 s 32.4 m 118.0 m 3

44.4 s 103.08 s 823.1 s 63.88 m 1010.0 s 51.5 s 3

5.98 s 647.8 s 53.17 s 52.4 s 42.33 s 412.2 s 1

1.45 s 221.5 s 21.15 s 53.76 s 30.9 s 1

0.59 s 21.26 s 20.51 s0.53 s 50.27 s 20.22 s7 s 3

31 s2.10 m 152.90 m 510.30 m 818.0 m 2

4.11 h (035.3 m 80.97% I

115.09 d 421.4 m 40.65% 10.36% 1

14.53% 117.68% 7

13.61 d 424.22% 118.58% 4

293.0 d 1332.59% 1027.06 h 4

55 y 5

4.63% 3129.2 d 440.08 m 75.79% 59.64 d 39.52 m 5

sl.0-105 y2.10 h 44.13 m 359.1 m S6.5 s 5

Decay Mode

IT0-£-52.9%,IT 47.1%0-0-IT98.5%, j8- 1.5?0-£-97.5%, IT 2.570-0-0-£-98.8%, IT 1.2?0-0-0-0-0-P-0-0-0-0-0-P-, 0-n0-0-0-P-0-0-0-

0-/i-n

p-nfi-nP-n0-n

f, ^P

£ , £p££££££

tIT 91.1%, £8.9%

IT

IT

0-IT77.655,£-22.4%

P-0-

P-0-P-0-P-0-1T

14 TULI

TABLE I (cont.)

IsotopeZ El A

50 Sn 129129m130130m131131m132133134

51 Sb 108109110111112113114115116116m117118118m119120120121122

122m123124124m124m125126126m126m127128128m129129130130m131132132133134134135136

52 Te 106107108109110111112113114115115m116117118119

Tl /2 orAbundance

2.16 n 46.7 n 4

3.72 m 111.7 m 161 s 339 s

40 s 11.47 s1.04 s 27.0 s 517.0 s 723.0 s 475 s /

51.4 s 106.67 m 73.49 m 332.1 m 315.8 m 860.3 n 62.80 h 1

3.6 m5.00 h 138.1 h 215.89 m 45.76 d 257.37. S

2.70 d /

4.2 m 242.7% 9

60.20 d 393 s 5

20.2 n 22.73 y 312.4 d 119.0 • 3=11 s

3.85 d 59.01 h 310.4 m 24.40 h (17.7 m38.4 m6.3 n 223 n 24.1 m3.07 a2.5 m

0.85 s 1010.43 s 14

1.71 s0.82 s 20.06 ms

3.6 ms +6-42.1 s 14.6 s 318.6 s 819.3 s 42.0 m 21.7 m 2

15.2 m 75.8 m 26.7 a 4

2.49 h 462 B 2

6.00 d 216.05 h 5

Decay Mode

P~B-, IT0.0002%P~P-p-P-P-P-, P-DP-, /8-nl7%£, £p££

£££tz£££££££

P- 97.62%,£ 2.38%IT

P-IT 75%, ,3-25%ITP-P-/J-86%, IT 14%ITP-P-0-96.4%, IT3.6%P-P-fi-P-P-fi-P-P-P-S-, /?-n0.1%fi-, /?-n20%/?-, /3-n32%aa 70%, £ 30%a 68%, £ 32%, £p£ 96%, £p, a4%£, a£, £ p , a££c£tCttt

IsotopeZ El A

52 Te 119m120121121m122123

123m124125125m126127127m

128129129m

130

131131m

132133133m134135136137138

53 I 110

111112113114115116117118118m119120120m121122123124125126127128129130130m131132132m133133m134134m135136136m137

Tl/2 orAbundance

4.69 d 40.096% 2

i a .78 d 35154 d 72.60% ;

1.3-101 3 y0.908% 3119.7 d /4.816% 87.14% f58 d 1

18.95% /9.35 h 7109 d 2

>8.»102 4 y31.69% 269.6 a 233.6 d 1

2 . 5 M 0 2 1 y 2733.80% 225.0 m /30 h 2

78.2 h 812.45 a 2855.4 m 441.8 n 819.2 s18 s

3.5 s 51.4 s 4

0.65 s 2

7.5 s3.42 s 115.9 s 52.1 s 228 s

2.91 s 152.3 m 114.3 B8.5 m 519.1 m 481.0 m 653 m 4

2.12 h 13.62 m 613.2 h 14.18 d 2

60.14 d 1113.02 d 7

100%24.99 m 2

1.57«10' y i12.36 h 19.0 a (8.04 d /2.30 h 383.6 m 1720.8 h 1

9 s52.6 n 43.69 m 76.61 h 1

84 s 145 s /

24.5 s 2

Decay Mode

£

f

IT 88.6%, £ 11.4%

£

IT

IT

P-IT97.6%, /S-2.4%2/8-

P-IT64%, 0-36%2/8-

P-/3-77.8%,IT22.2%P-P-0-83%, IT 17%P-P-P-, /J-nO.7%P-, 0-nZZP-, /8-n 6%£ 83%, a 17%, rp,£a£99.9%, a 0.1%£, £p, fa , a£ , £Cf, a£££

£E

£. IT£££C£££

£56 .3%, /J-43.77.

/J- 93.1%, £6 .9%P-P-IT83%, /?- 17%P-P-IT86%, 0- 14%fi-llfi-ll 97.7%, /?-2.3%fi-fi-P-0-, /8-n 6.4%

PART 1-1 15

IsotopeZ El A

53 I

Tl /2 orAbundance

54 Xe

138139140141142110111111112113114115116117118119120121122123124125125m126127127m128129129m130131131m132133133m134134m135135m136137138139140141142143143144145

55 Cs 114

115116116117118

119119120120121121m122122123

1

6.41 s 52.30 s 50.86 s 40.43 s 20.2 s0.2 s0.7 s0.9 s 22.8 s 22.8 s 210.0 s 4

18 s 456 s 261 s 2

4 m5.840 m

40.1 B 220.1 h 12.08 h 20.10% 116.9 h 257 s 1

0.09% 136.4 d I69.2 s 91.91% 326.4% 6

8.89 d 24.1% 121.2% 411.9 d I26.9% 5

5.245 d 62.188 d 8

10.4% 2290 ms 179.09 h I15.29 m 3

8.9% I3.818 n 1314.08 m 8

39.6813.601.73 s1.22 s 2

s 3s 2

0.300.961.15 s 200.9 s 30.57 s 2

Decay Mode

0- , /3-n 57./3-, /3-n 10%0- , /J-n 14%P-, /3-n 21.2%

£, a£

£99.16%, a 0.84%£, £p, ta, a

£, £pO.3%££ ,£

tpO.003%

f£££

£

IT

£

IT

IT

IT

ITfi-ll, p - 0.004%

0- , 0-n 0.044%

P-,fi-n£, £p7%, EaO.16%,a 0.02%1.4

3.810.71

6.516.4

37.72864

60.2136121

4.521.05.87

sssss

ssssssmsm

8IS8

12

101

15

275

£ ,£ ,£ ,£

£ ,

£pO.3%£p, £O£p, £0

£PO.O4%,£a0".0024%£ ,

£ ,££

n£££

£<X?

£p, ta

\ £

IsotopeZ El A

55 Cs 123m124124m125126127128129130131132133134134m135135m136136137138138m139140141142143144144?145146147148

56 Ba 117119120121122123124125125126127128129129m130131131m132133133m

Tl/2 orAbundance

1.60 s30.8 s6.3 s45 m i

1.64 m6.25 h3.62 B32.06 h

29.2 B9.69 d

6.475 d100%

2.062 y2.91 h3»106 i

53 m J13.16 d

19 s ;

(55

2f

21026

;10

51

I7

' 37

30.17 y32.2 B

2.90 m9.27 m63.7 s24.94 s

1.8 s1.78 s1.02 s

<1 s0.59 s

0.343 s0.22 s170 ms1.9 s

5.35 s32 s

29.7 s2.0 m

2.7 m11.9 m3.5 B

8 m100 m

12.7 m2.43 d

2.23 h2.17 h0.106%11.8 d14.6 m0.101%10.74 y38.9 h

110536

13

1717

230

15

4104

245114222251

134135135m136136m137137m138139140141142143144

2.417% 276.592% 1828.7 h 2

7.854% 390.306 s11.23% 4

2.5513 m 771.70% 7

84.63 m 3412.746 d 1018.27 a 710.6 n 214.5 s 511.4 s 5

Decay Mode

IT£ITf££££

£ 98.4%, p- 1.6%

£98%, 0-2%0 - , £0.0003%IT

IT

0-

IT81%, 0- 19%

0-n 0.029%/J-n 0.28%0-n 1.7%0-n 3%

/3-n 12%0-n 14%0-nI

fi-£, £P£, £p£, £p0.02%££££E£££££

CIT

IT 99.99%,£0 .01%

IT

IT

IT

i

16 TULI

TABLE I (cont.)

IsotopeZ El A

56 Ba 145146147148

57 La 123124125126127127m128129129m130131132132m133134135136137138 1

139140141142143144145146146m147148149

58 Ce 124125126127128129130131131132133133134135135m136137137m

138139139m140141142

143144145146147

Tl/2 orA b u n d a n c e

4.0 s2.20 s 30.72 s 7

0.607 s 2517 s 329 s 376 s 61.0 m 33.8 m 55.0 m ?5.0 ID 311.6 m 20.56 s 58.7 m 159 m 2

4.8 h 224.3 m 5

3.912 h 86.45 in 16

19.5 h9.87 m 3

6»104 v 2.28«10'^ y 12

0.09% 199.91% ;

40.272 h 73.92 h 391.1 m 5

14.23 m 1440.9 s 424.8 s 206.27 s 1010.0 s 14.4 s 51.05 s /1.2 s 46 s 29 s

50 s 632 s 4

6 m3.5 n 525 m 210 m 15 m 1

3.5 h5.40 h 5

97 a75.9 h 917.6 h20 s

0.19% 19.0 h 3

34.4 h 3

0.25% 1137.66 d 13

56.4 s 588.48% 10

32.501 d 5>5-1016 y11.08% 1033.0 h 2284.4 d

2.98 m 1513.52 m (356.4 s 12

Decay Mode

0-0-0-, 0-n/?-, 0-n£££££

££ITtz£IT 76%, c 24%£

££

££

£ 66.7%, 0-33.3%

0-t>-0-0-0-0-0-0-0-, 0-n0-0-f

£, £p£££

£££££ff£

IT

£IT 99.22%,£0.78%

£

IT

0-

0-0-0-0-0-

IsotopeZ El A

58 Ce 148149150151

59 Pr 121129130132133134134m135136137138138m139140141142

142m143144144m

145146147148148m149150151152

60 Nd 129130132133134135135m136137137m138139139m140141141m

142143144

145

146147148149150

151152154

T l / 2 o rA b u n d a n c e

56 s 15.2 s 34.0 s 61.02 s 61.4 s 824 s 528 s

1.6 m 36.5 m 317 m 211 a25 m

1 3 . 1 m (1.28 h 21.45 m 52 . 1 h 1

4.41 h 43.39 m 1

100%19.12 h 4

14.6 m 513.58 d 317.28 m 57.2 m 2

5.98 h 224.15 m 18

13.6 m 52.27 m 42.0 m t

2.26 m 76.19 s )6

4.0 s 73.2 s

5.9 s 628 s1.8 oi1.2 m

8.5 m 151 2 ID

=5.5 m50.65 m 3338.5 m 151.60 s 155.04 h S29.7 m 55.5 h 23.37 d 22.49 h 362.4 s 9

27.13% 1012.18% 5

2.1-10'= y 423.80% 10>6«10'6 y8.30% 517.19% 8

10.98 d 15.76% 3

1.725 h 7> M 0 1 8 y5.64% 312.44 ID 711.4 m 240 s 10

Decay Mode

0-0-0-0-£, £pc£££f£££

£££

£

0-99.98%,£ 0.02%IT0-0-IT99.96%,0-0.04%0-0-0-0-0-0-0-0-0-£, £p££££

££££IT£££ 88%, IT 12%££IT 99.97%,£ 0 . 0 3 %

a

a

0-

0-20-

0-0-0-

PART 1-1 17

IsotopeZ El A

61 Pm 132133134135136137138139140140m141142143144145146147148148m149150151152152m152m153154154155

62 Sm 133134135136137138139139m140141141m

142143143JD

144145146147

148

149

150151152153154155156157158

63 Eu 138138139140

Tl /2 orAbundance

4 s12 s

24 s 20.8 m107 s 62 . 4 is /

3.24 m 54.15 m 59.2 s 2

5.95 m 520.90 B 540.5 s 5265 d 7363 d 1417.7 y 45.53 y 5

2.6234 y 25.370 d 9

41.29 d 1153.08 h 52.68 h 228.40 h 44.1 m 1

7.52 m 815 B 1

5.4 B 21.7 B 22.7 n /48 s 432.0 s12 s 310 s42 s

44 s 83.0 B 3

2.57 B 109.5 s 10

14.82 m 1010.2 m 222.6 B 2

72.49 m 58.83 m 1

66 s 2

3.1% 1340 d 3

10.3-10' y 51 .06-10" y 2

15.0% 27-101* y 3

11.3% />2-101 5 y13.8% 17.4% /90 y 626.7% 2

46.7 h 122.7% 2

22.1 m 29.4 h 28.0 m 55.51 m 9

35 s 61.5 s 422 s 3

20 s +15-1

Decay Mode

£

£

£

£

££

f

£££

£

£

£

£

£, aw£66.1%, 0-33.9%P~0-0-95.4%, IT4.6%0-0-0-0-0-0- , IT0-0-0-Z , £p££, £p£

££

£

IT 9 3 . 7 % , £ 6 . 3 %££

£99.69%,ITO.31%££IT 99.76%,£0.24%

zaa

a

a ?

0-

0-

0-0-P-0-£

£

C

Z

IsotopeZ El A

63 Eu 140141141m142142m143144145146147148149150150151152

152m152m153154

154m155156157158159160

64 Gd 142143143m144145145m146147148149150151152

153154155156157158159160161162163

65 Tb 144145146146m147147148148m149149m150150151

T l / 2 o rAbundance

1.3 s 240.0 s 73.3 s 32.4 s 21.22 m 22.63 m 510.2 s 15.93 d 44.59 d 3

24 d 154.5 d 593.1 d 4

12.62 h 1035.8 y 1047.8% 5

13.33 y 4

9.32 h 196 B 1

52.2% 58.8 y 1

46.0 B 34.96 y 115.19 d 615.15 h 445.9 m 21 8 . 1 m ;44 s 41.5 B 339 s 21.83 B4 . 5 m 1

23.9 m 185 s 3

48.27 d ro38.1 h r74.6 y 30

9.4 d J1.79«106 y 8

120 d 201 .08-10 1 4 y 8

0.20% 1241.6 d 2

2.18% 314.80% 520.47% 415.65% 3

24.84% 1218.56 h 821.86% 43.66 m 58.4 m 268 s 3

5 s30 s8 s 4

23 s 21.65 h 101.83 m 660 m 1

2.20 m 54.13 h 24.16 B 43.27 h 10

5.8 m 217.6 h )

Decay Mode

££f67%, IT 33%£££££££, aw£, aw£0-89%, £ 11%£

£72.08%,0-27.92%0- 72%, £ 28%IT

0-99.98%,£0.02%IT0-0-0-0"0-0-£££, IT?£

£

IT 95 .3%, £ 4 . 7 %££a£, awaE , awa

£

0-0-0-0-f££

£

££

£

£

£82.8%, a 17.2%£, a 0.022%£ a—0 05%

£, a 0.01%

18 TULI

TABLE I (cont.)

IsotopeZ El A

65 Tb 151m152152m153154154m154m155156156m156m157158158m159160161162163164165

66 Dy 145146147147m148149150151152153154155156

157158159160161162163164165165m

166167168

67 Ho 146147148148m149150150151151152152153153m154154155156156m

Tl/2 orAbundance

50 s17.5 h 34.3 n 22.34 d 121.4 h 59.0 h 5

22.6 h 65.32 d 65.34 d 95.0 h 1

24.4 h 10150 y 30150 y 3010.5 s 2

100%72.3 d 26.90 d 2

7.76 m 1019.5 a 33.0 n 1

2.11 a 1018 s

29 s 380 s58 s

3.1 m 14.23 n 187.17 m 216.9 m 52.38 h 26.4 h /

3«106 y10.0 h 3

M.O-IO 1 8 y0.06% 18.1 h /0.10% 1

144.4 d 22.34% 518.9% I25.5% 224.9% 228.2% 2

2.334 h S1.258 m 6

81.6 h 16.2 m

8.5 m 53.9 s 8

9

2.2 s 119 s 1

21.4 s 1872 s >0

24 s35.6 s 447 s 2

2.35 m 1152.3 s 52 .0 m 19.3 m 511.8 m 53.2 m 148 m ;

2 it55.6 n 6

Decay Mode

IT£IT78.9%, £ 21.1%c€£78.2%, IT 21.8%r 9 8 . 2 % , IT 1.8%££IT, £, 0-WIT££82%, 0 - 18%IT

P-0-P~P-0-P~t££IT, £, £p£££ 64%,a 36%£ 9 4 . 4 % , a 5 . 6 %£99.9%, a 0 . 1 %£99.99%, a 0 . 0 1 %a£

£

£

P-IT97.76%,/S-2.24%P-P-P-£

£, £p££

£££

£ 90%, a 10%£ 80%, a 20%£ 88%, a 12%£89.5%, a 10.5%£99.95%, a0.05%£99.82%, a 0.18%£, aO.017%£, a<0.002%£, a£I T , £

IsotopeZ El A

67 Ho 156?157158158m158m159159m160160m160m161161m162162m163163m164164m165166166m167168169170170

68 Er 147148149150151152153154155

156157158159160161162163164165166167167m168169170171172173

69 Tm 147148150152153154154155156156157158

Tl/2 orAbundance

7.4 m12.6 m 211.3 oi 4

21 .3 m 2327 m 233 m 1

8.30 s 835.6 n 35.02 h 5

<2 B2.48 h 56.73 s 10

15 m 167 m />10 y

1.09 s 329 in 1

37.5 m t/5-5100%

26.80 h 21.20-103 y 18

3.1 h ;3.0 m /4.7 m (2.8 n43 s

2.5 s4.5 s 4

9 s 218.5 s 723 s 210.3 s37.1 s

3.75 m 125.3 m 3

20 n25 m 3

2.25 h 736 m

28.59 h 93.21 h 30.14% 1

75.0 m 41.61% (

10.36 h 433.6% 2

22.95% 132.28 s 326.8% 29.40 d 214.9% 1

7.52 h 349.3 h 51.4 n 10.5 s

0.7 s 23.5 s 6

5 s1.59 s 88.3 s3.4 s25 s80 s 319 s 3

3.5 it 24.02 m 10

Decay Mode

££££IT 65%, £35%tIT£IT 65%, £35%otITtIT 63%, £37%tIT£58%, /?- 42%IT

P-P-P-P~

frP~P-C, £p£r , £p££a 90%, £ 10%a 53%, £47%£ , a O . 5 %£<99.98%,a.2 0.02%££££££

£

f

IT

P-

P-P-P~p£££a295%, ££5%£, o;a , £a, t£, aa£, aw£

PART 1-1 19

IsotopeZ El A

69 Tm 159160161162162m163164164m165166167168169170

171172173174175176

70 Yb 153154155156157158159160161162163164165166167168169169m170171172173174175176176m177177m178179

71 Lu 151154155156156157158159160161162162m162m163164164?

Tl/2 orAbundance

9 m9.2 a 438 g 4

22.0 m 724.3 s 171.81 h 62.0 m 15.1 n /

30.06 h 117.70 h 39.24 d 293.1 d /

100%128.6 d 3

1.92 y 163.6 h 28.24 h 85.4 g 115.2 is 51.9 m /4.0 s 5

0.42 s 21.65 s 15

24 s /38.6 s 101.38 m 14

12 s4.8 m 24.2 g 2

18.87 n 1911.05 g 2575.8 m (7

9.9 n56.7 h 117.5 m 20.13% 1

32.022 d 846 s 2

3.05% 514.3% 221.9% 3

16.12% (831.8% 44.19 d 112.77. )11.4 s 51.9 h /

6.41 s 274 m 38 n

0.09 s1.0 s

0.07 s 2=0.5 s0.23 s 35.5 s 310.4 s /

12 s35.5 s 872 s 6

1.37 m 2=1.5 ms l . 9 •4.1 in3.17 n

2 in

Decay Mode

E

rttIT 90%, £ 10%££IT 80%, t 20%tc£E, 0 -?

/J-99.85%,c 0.157.fi-/»-0-0-/»-/»-£

aa s 90%, t£, a 21%£99.5%, aO.5%f, a 0.003%£, a£

£££££££

£

IT

fi-

llfi-llfi~fi-PE

a, Ea, £ac94%, a6%£>98.5%, a<1.5%£ , G

£cITIT££

IsotopeZ El A

71 Lu 165166166m166m167168168m169169m170170m171171m172172m173174174m

175176

176m177177m178178m179180181182183

72 Hf 154155156157158159160161162163164166167168169170171172173174

175176177177m177m178178m178m179179m179m180180m181

Tl/2 orAbundance

12 m 12.8 a

1.41 m (02.12 m 1051.5 m 10

5.5 a6.7 m 4

34.06 h 5160 s (02.00 d 30.67 s 108.24 d 379 s 2

6.70 d 33.7 g 51.37 y 13.31 y 5142 d 2

97.41% 23.60*10'° y 16

2.59% 23.68 h 16.71 d 1160.9 d 328.4 m 2

23 n4.59 h 65.7 g ;3.5 m 32.0 m58 s2 s

0.9 s25 ms 4110 ms 62.9 s 25.6 s=12 s17 s 2

37.6 s 840 s

2 . 8 m Z6.77 m 302.05 m 5

25.95 in 23.24 m 4

16.01 h 1312.1 h 41.87 y 323.6 h

2.0»10 1 5 y 40.162% 2

70 d 25.206% 418.606% 31.08 s 651.4 n 527.297% 3

4.0 s 231 y /

13.629% 518.68 s 625.1 d

35.100% 65.5 h /

42.39 d 6

Decay Mode

£££58%, IT 42%£>80%, IT<20%££

£, IT1?£

IT£

ITEIT£

IT£CIT 99.35%,f0.65%

fi-

fi-fi-/S-79%, IT 21%fi-fi-fi-fi-fi-0-fi-£

£

aa 91%, £9%t 54%, a 46%t, at , aac£

£

£££EE

£E

a

£

ITIT

ITIT

ITIT

ITfi-

o

lOlO

m ***

O

.OO

3%, a

O OO-O>

£5?3O O

O O

. 0 a

0.3%

98%

,98

%,

VI - .~ I

N«"S a'

s

CJ •* or- aCO lO ,CTJ

3 O UJ w ^ w O i

Co

- T- >~ ^ O ^f "t

= x : e T 3 E B o •

* ^ f OJ OO ^ ^ OJ • ^ " r . --.CO - ^ " " S ,; in in

,o r - • -- . CO

O) CO —"

7jf,r-ir>Tr I-JQ^J •. . ^ ^ c .

^oO^.no^S

CVI CM CO •**• iCO OO CO CO I

COCOCDCOCOCOCOCDOOCOCOCOOOOOOOC0030POO--J--^-^--J^J^J^J--J-J^JC7JCnO)0) <O<O<0<O<O<£><£><O<J3<OCX>CDaoCOro M M • — H * 3CDOQ-JO)05U>4^COfOH-*OCOCO^JC7)CJ14i'CJrO^-0<OCO-^3CT) CT)Cn.fkCOfOfO*->—•OOCOCOCO--I

^ ^ ( V j ^ ^ ^ ^ U , C O Co _ — 4

73H

jrU^woo^^"°^^°°-^- •1 o TWm"?J "v| CO

3 a, — " ^ ^

- IV IA (o" )) II <o

C O ^

ft Q Q Q O O "tests, — Ts> — t) i 3 ) 3i

o • uoo

» o

b o

22 TULI

TABLE I (cont.)

IsotopeZ El A

79 Au 193m

194195195m196196m196m197197m198198m199200200m201202203204

80 Hs 177178179180181

182183184185185m186187187188

189189190191191m192193193m194195195m196197197m198199199m200201202203204205206207

31 Tl 184185m186186m187187m188

Tl/2 orAbundance

3.9 s 3

39.5 h 5186.1 d30.5 s 2

6.183 d 108.1 s 29.7 h 1

100%7.8 s 1

2.696 d 22.30 d 43.139 d 748.4 m 318.7 h 526 m 128 s 253 s 240 s 30.17 s

0.47 s 141.09 s2.9 s 33.6 s 3

11.2 s 108.8 s 530.6 s 350 s 220 s 2

1.38 n 102.4 m 31.9 m 3

3.25 a 15

7.6 m8.6 m

20.0 m 549 m 10

50.8 m 154.85 h 203.80 h 1511.8 h 2520 y9.5 h

40.0 h0.14% 1064.1 h 123.8 h 110.02% 716.84% 1142.6 m 223.13% 1113.22% 1129.80% 1446.60 d 2

6.85% 55.2 m /

8.15 m 102.9 m 211 s ;1.8 s 228 s4 s50 s

15.60 s 1271 s 10

Decay Mode

IT=99.97%,£=0.03%££IT£92.5%, ^-7.5%ITIT

ITP~IT

0—P- 82%, IT 18%0-0~0-CC, £

a=84%, £=16%a 53%, £47%, cpw£ , ft£>87%, a<13%,tpw , zan£91%, a 9%£ 88%, a 12%, EDW£ 98.75%,a 1.25%£595%, a25%£, IT, a£, aO.02%£, a>0.0001%£, a>0.0002%£>99.99%,a<0.01%£zz£££££92%, IT 8%££IT 54.2%, £45.8%

£IT 93%, £ 7%

IT

0-

P-P-0-£ 98%,a 2%IT, a£, awIT£IT, £, a£

IsotopeZ El A

81 Tl 188m189189m190190191m192192193193m194194m195195m196196m197197m198198m199200201202203204

205206206m207207m208209210

82 Pb 183184185186187187188189190191191m192193194195195m196197197m198199199m200201201m202202m203203m203m204

Tl/2 orAbundance

71 s 12 . 3 m1.4 m

2.6 m 33.7 m 3

5.22 m (69.6 m 410.8 m 221.6 m 82.11 n 1533.0 m 532.8 m 21.16 h 53.6 s 41.84 h 31.41 h 22.84 h 40.54 s 15.3 h 51.87 h 37.42 h 826.1 h 173.1 h 212.23 d 229.524% 93.78 y 2

70.476% 94.20 m 23.76 m 44.77 n 21.33 s 1!3.053 m2.20 m 71.30 m 3

0.6 s4.1 s 37.9 s (618.3 s 315.2 s 3

24.5 s 1551 s

1.2 m ;1.33 m 82.2 m

3.5 m /5.8 m 2

10 m15 m

15.8 m 237 a 3

8 m43 m

2.4 h 190 m 1012.2 m 321 .5 h 49.33 h61 s 2

5.3-10+ y3.53 h51.88 h0.48 s 26.3 s 2

21.4-1017 y1.4% 1

Decay Mode

£E

z££££££IT 75%, £25%£££IT££95.5%, IT4.5%£

IT££54%, IT 46%£££f

JS- 97.45%,£ 2.55%

0-ITP-IT0-0-0-, /J-n 0.007%aaa£, a=2.4%£ 98%,a 2%a, ££78%, a 227.£>99%, a=0.4%f99.1%, a 0.9%£99.99%, a 0.01%££99.99%, a 0.01%££££c, a<0.0001%£c81%, IT 19%, a££IT 90%, £££IT£IT90.5%, £ 9 . 5 %£

ITIT

PART 1-1 23

IsotopeZ El A

82 Pb 204m205206207207m208209210211212213214

QO D; toojO Dl 1OO

189190191191m192193193m194195195m196197197m

198198m199199m200200m200m201201m202203204205206207208209210210m211

212

212m212m213

214

21584 Po 192

193193m194195195m196197197m

Tl/2 orAbundance

66.9 it1.52-10' y 7

24.1% )22.1% 10.796 s52.4% /

3.253 h 1422.3 y 236.1 i 210.64 h 110.2 m 326.8 it

s i 5 s5.4 s 513 s 1

20 s 1542 s 564 s 43.5 s 2105 s 15170 s 2090 s 54.6 m 5

9

9.5 m 10

11.85 in 187.7 s 527 it 1

24.70 m 536.4 it 531 m 2

0.40 s 5108 m 3

59.1 m 61.72 h 511.76 h 5

11.22 h 1015.31 d 46.243 d 332.2 y 9

3.68-10* y 4100%

5.013 d 53 . 0 - 1 0 6 y 1

2.14 m 2

60.55 m 6

25 m9 m

45.59 m 6

19.9 it 4

7.4 m 60.034 s 3

450 ms (500.42 s0.7 s

4.5 s 52.0 s 25.5 s 556 s 326 s 2

Decay Mode

IT£

IT

fi-ll-, aw0-0-0-0-aas: 90%, £

£, a£ 80%, a 20%a 60%, £40%£, a=25%£>99.8%, a<0.2%£>99.8%, a<0.2%£, a 4%

£=99.89%,a=0.11%

IT£E, a££IT££, IT 10%, aw££, anc£

£

£

0- , a 0.0001%aa 99.72%,0-0.28%0-64.06%,a 35.94%,0-a 0.014%a^93% 0-s7%0-0-97.84%,a 2.16%0-99.98%,a 0.02%0-aaaaaaa, ££56%, a 44%a 84%, £S16%,IT?

IsotopeZ El A

84 Po 198199199m200201201m

202203203m204205206207207m208209210211211m212212m213214215216217218

85 At 196197198198m199200200m201202202m203204205206207208209210211212212m213214215216217

218219

86 Rn 199199m200201201m202203203m204

Tl/2 orAbundance

1.76 m 35.2 it 14.2 it 111.5 m (15.3 m 28.9 m 2

44.7 m 535 it

1.2 it 23.53 h 21.66 h 28.8 d 15.80 h 22.8 s 2

2.898 y 2102 y 5

138.376 d 20.516 s 325.2 s 6

0.298 /is 345.1 s 64.2 tis 8

164.3 /is 181.780 ms 4

0.15 s<10 s

3.11 it

0.3 s 10.4 s 14.9 s1.5 s 37.0 s 143 s 24.3 s 389 s 3181 s 31.1 s

7.37 m 209.2 m 226.2 n 529.4 m 31.80 h 41.63 h 35.41 h 58.1 h 4

7.214 h 70.314 s 20.119 s 30.11 iis 2

2 fi%0.10 ms 20.30 ms 332.3 ms 4

=2 s0.9 m /0.5 s

0.29 s1.0 s 27.0 s 43.8 s 4

9.85 s 2045 s 328 s 2

1.24 m 3

Decay Mode

a 70%, f 30%£88%, a 12%£61%, a 39%£ 85%, a 15%£98.4%, a 1.6%£57%, IT40%,a=3%£98%, a 2%£ 99.89%, a0 .11%IT95.5%, £4.5%£99.34%, a 0.66%£99.96%, a0.04%£ 94.55%, o5.45%£ 99.98%, aO.02%ITa, £ 0.0018%a99.74%, £0.26%aaaaaaaa, 0 - 0.0002%aa>95%, 0-<5%a99.98%,0- 0.02%aa=96%, £=4%aa, IT?a 53%, £ 47%£65%, a 35%a, IT?a 71%, £ 29%£ 88%,a 12%IT£69%, a 31%£ 95.6%, a 4.4%£ 90%, a 10%c 9 9 . 0 4 % , a O . 9 6 %£ 91.3%, a 8 . 7 %£99.45%, a 0.55%£95.9%, o 4 . 1 %£ 99.82%, aO.18%£58.3%, a41 .7%aaaaaaa 99.99%,0-0.01%a 99.9%, 0-0.1%a 97%, 0-3%aaa=98%, £=2%ass 80%, £=20%a, £a=85%, £=15%a 66%, £ 34%aa 68%, £ 32%

— o

10 K

KO)ZCOO) OC»AO8

CO CT) O

O O O O 8 O O O O O

"~' C7) OJ

8 C w

D CO CO CO O C\J I D . - ,• * * C O - CD • C~ 0 3_,t- 3—i

cvj c*5 c-j Co^ " 'B^n^w

0)100°,-HCO

>cjcvicOjio<0(ooa>o c7>o«c\JCOTMncorHOJOJCviCviCUfMCVJCVJOJCvJCO O—<—''-<—'—<—•—I'

VCICJOJOJOJOJOJOJCJCXJCJ CJOJJCUCOOJOJJO

3^-<c\ic*ico^*"inco c^CvfCMCOCOCO - H —i — * - - i - H ^-t ^ H —i CM CM CM CM CM CM CM CM CM CM CO CO CO CO CO CO COCMCMCMCMCM CMCMCMCJCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCaCM CMCMCMCM

33

S K JfcYCM CO CM •"*• --• -

SSKS^SS

CMO " 2

O C O 6 O O •"" O 8 O O O 8 i

C7>O 0 0 ) 0W UJ CO C7J Oi CD CJ> O)

CJ> /\ } 1 00 c_, /*\O O 0 O O 8 O O— O O «

, " ^ cv - w ^e

Coo

•^^^-rt-OCM

U O O O O O H - « ^ - H - i - 4 r t H - ( - i t \ ? W W W W W W OOOOOOOOOO—i^i—«W-H—<'—.^H-H-H—<CM OJCMCM CMCMCMCMCMCM OOOO—I-^-H—<_^_HLH—tCJCMCMCMCMCMCMCMCvICMCMCM.CMCMCMCMCMCMCVJCMCMOJ CMCMCMCMOJCMCMCMCMCMCMCMCMCMCMCMCvJCMCMCMCMCM CMCMOJ CMCXJCMCMCMCM OJCMCMCMCMCMCMCMCMCMCMCM

PART 1-1 25

IsotopeZ El A

91 Pa 215216217217m218221222223224225226227228229230

231232233234234m

235236237238

92 U 222226227228229230231232233234

235

235m236237238

239240242

93 Np 227?229230231232233234235236236m237238239240240m

241242242

94 Pu 232

Tl /2 orAbundance

14 ms0.20 s 44.9 ms 61.6 ms

0.12 ms6 fis

4.3 ms6.5 ms 100.95 s (5

1.8 s 31.8 m 2

38.3 m 322 h !1.4 d 417.4 d 5

3.276-10" y 111.31 d 227.0 d 16.70 h 51.17 m 3

24.1 n 29.1 m 28.7 m 22.3 m 1

1 /IS0.5 s 21.1 m 39.1 m 258 m 3

20.8 d4.2 d 168.9 y 4

1.592-105 y 22.45-105 y 2

0.0055% 5703.8-106 y 5

0.7200% 12

Decay Mode

aaaaaaaaaaa 74%, £26%a=85%, £=15%£=98%, a=2%£99.75%, a 0.25%£91.6%, 0-8.4%,awa, SF?0-, £=0.2%P-0-0-99.87%,IT 0.13%P- „P-, SFwP-P-aaaa>95Z, ££5%£=80%, a=20%a£, aO.006%a, SFwa, SFwa, SFw

a, SFw

=25 m IT2.3415-10' y M a , SFw

6.75 d 14.468-109 y 3

99.2745% 1523.50 m 514.1 h /16.8 n 560 s 5

4.0 m 24.6 m 348.8 m 214.7 n 336.2 m 14.4 d 1

396.2 d 12115-103 y 12

22.5 h 42.14-10° y 1

2.117 d 22.355 d 461.9 n 27.22 m 2

13.9 m 22.2 m 25.5 a /

34.1 in 7

fi-ll, SFw

0-0-P-SFa>50%, £<50%ES97%, a£3%£ 98%,a 2%£, a=0.003%£, as0.001%£

£, a 0.0014%£91%, 0-8.9%, a£52%, 0-48%a0~0~0-0-99.88%,1T0 12%0-0-0-C'vOU'O, Q'vCU/«

IsotopeZ El A

94 Pu 233234235236237237m238239240241242243244

245246

95 Am 232234235237238239240241242242m

243244244m245246246m247

96 Cm 238239240

241242243244245246

247248

249250

251252

97 Bk 240242

243244245246247248

248m249

250

Tl/2 orAbundance

20.9 m 48.8 h 1

25.3 m 102.851 y 845.3 d 20.18 s 287.74 y 424119 y 266570 y 6

14.35 v 103.763-10' y 12

4.956 h 38.08-107 y 10

10.5 h )10.85 d 2

55 s 72.6 a 2

0

73.0 n 1098 m 2

11.9 h 150.9 h 2

432.2 y 516.02 h 2141 y 2

7380 y 4010.1 h 1=26 it

2.05 h 139 m 3

25.0 m 222 n 3

2.4 h 1=2.9 h

27 d

32.8 d 2162.8 d 228.5 y 218.10 y 2

8500 y 1004730 y 100

1.56-107 y 53.40-105 y 3

64.15 m 3=7400 y

16.8 m 2<2 d5 m 2

7.0 m (3

4.5 h 24.35 h (54.94 d 31.80 d 2

1380 y 250>9 y

23.7 h 2320 d 6

3.22 h /

Decay Mode

£99.88%, a 0.12%£94%, a 6%£, a 0.0027%a, SFw£, aO.005%ITa, SFwa, SFa, SFw0-, a 0.0025%a, SFw0-a99.88%,SFO.12%0-P-£=98%, cc=2%, £SF£, a ?

£99.97%, a0.03%£, aO.0001%£ 99.99%, aO.01%£, awa, SF0-82.7%, £ 17.3%IT99.5%,aO.5%,SFwa, SFw0-/ ! - , £ *P-0-0-P-££90%, a s 10%

a>99.5%,°£<0.5%SFw£ 99%, a 1%a, SFwa 99.76%, t 0.24%a, SFwaa 99.97%,SF 0.03%aa 91.74%,SF8.26%P-SF=65%, a=28%,

P-P-£ , £ S F w

€ Ot ^ 1%

SF<0 03%£99.85%, a0.15%£, aO.006%f 99.88%,a0.12%£, a<0.2%

a>70%, 0-<3O%,

0-70%, £30%0-, aO.0015%,SFw0-

26 TULI

TABLE I (cont.)

IsotopeZ El A

97 Bk 251252

98 Cf 239240241242243244245246

247248249250

251252

253

254

255256

99 Es 243244245246

247248249250250m251252

253254254m

255256256m257

100 Fm 242243244245246247247248

249250

250m251252253254

255256

Tl /2 orAbundance

56 n 2

39 s +37-/1.06 a 153.8 m 7

3.49 m 1210.7 m 519.4 m 643.6 m 835.7 h 5

3.11 h 3333.5 d 28350.6 y 2113.08 y 9

898 y 442.638 y JO

17.81 d 8

60.5 d 2

1.4 h 312.3 in 12

21 s 237 s 4

1.33 a IS7.7 m 5

4.7 B 327 n 3

1.70 h 18.6 h J2.22 h 533 h J

471.7 d 19

20.47 d 3275.5 d 539.3 h 2

39.8 d 1225 m

K7.6 h

0.8 us 20.18 s +8-4

3.7 ms 44.2 s 131.1 s 235 s 4

9.2 s 2336 s 3

2.6 n 730 m 3

1.8 s5.30 h 825.39 h 53.00 d 123.240 h 2

20.07 h 72.63 h 2

Decay Mode

0-, a s 0.0001%

aa£=90%, a s 10%a, £?£586%, 0=14%a, t ?£=70%, a s 30%a, SF0.0002%,E<0.0001%£99.96%, aO.03%a, SF*a, SF*a 99.92%,SFO.08%a, SFwa 96.91%,SF3.09%0-99.69%,aO.31%SF 99.69%,aO.31%fi-SFrs70%, a>30%£96%, a 4%£60%, a 40%£90.1%, a9.9%,ESF£=93%, a s 7%r, a=0.25%t 99.43%, oO.57%££97%, a^3%£299%, a£l%£99.5%, a 0.5%a 76%, £24%,0-=O.Ol%a, SF*a0-99.59%,aO.33%, £ 0.08%0-92%, a 8%, SF0-0-

SF,a?aSF=99%,a=l%aa 92%, SF 8%a 50%, £ 50%

aa 99%, £=1%,SF=0.05%£=85%, (KB 15%a>90%,SF= 0.0006%,£<10%IT£98.2%, a 1.8%a, SF*f 88%,a 12%a 99.94%,SFO.06%a, SF*SF91.955, a 8.1%

IsotopeZ

100

101

102

103

104

105

El

Fm

Md

No

Lr

Rf

Ha

A

257

258259247248249250251252254254255256257258258m259

250251252253

254

254m255256

257258259

260252

253254255

256

257258259

260253?254?255?256?257258259

260?261

262?255?257

258259?260

Tl/2 orAbundance

100.5 d 2

380 MS 601.5 s 3

3 s7 s 3

24 s 452 s 6

4.0 m 52.3 m a10 m 328 m 827 n 276 m 45.2 h 555 d 443 a 4103 n

0.25 ms 50.8 s 3

2.30 s 221.7 m 3

55 s 5

0.28 s 43.1 m 23.3 s 2

25 s 21.2 BS60 B 5

O

=1 s

1.4 s=20 s22 s 5

28 s 3

0.646 s 254.3 s 55.4 s 8

180 s 30=1.8 s0.5 ms 2

=2 s=5 ms4.8 s 311 ms 23.1 s 7

20 us65 s 10

63 ms1.5 s

1 s

4 s1.2 s

1.52 s 13

Decay Mode

cx99.79%,SFO.21%SFSF

a£80%, a 20%a=70%, £=30%£94%, a 6%C£94%, as6%£>50%, a<50%££E 92%, a 8%£90.7%, a 9.3%£ 90%,a 10%acSF>95%, a<5%,£ ?

SF, as0.1%a, £=1%a 73.1%, SF26.9%a=80%, £=20%,SF=0.001%a>99%, £<1%,SF<0.06%ITa61.4%, £38.6%a99.7%,SF=0.25%aSFa 78%, £22%,SF<2%SFa=90%, £=10%,SF<1%a, SF<2%, £=1%a, £, SF<0.l7.a>70%, £<30%,SF<1%a>80%, £<20%,SF<0.03%a>85%, £<15%a>95%, £<5%a>90%, SF<10%,£<0.5%a, £?SF=50%, a=50%SF, a=0.3%a=50%, SF=5O%SFa=82%, £=18%SF=90%,a=10%a=93%, SF=6%,£=0.3%SF, o<10%a>80%, SF<10%,£<10%SFSFo=80%, SF=20%,

£?a, £SFas90%, SFs9.6%

PART 1-1 27

IsotopeZ El A

105 Ha 260261262

106 259?263

Tl/2 orAbundance

1.52 s 131.8 s 434 s 4

7 ms 30.8 s Z

Decay Mode

c<2.5%a>50%, SF<50%SF71%, a 27%,

SF=70%, a=30%SF=70%, a s 30%

IsotopeZ El A

107

109

261?262262m266^

Tl/2 orAbundance

1.5 ms 5115 as4 . 7 «s

5 ms

Decay Mode

as: 80%, SF=20%aaa

1-2. STANDARD MONITOR REACTIONSFOR NEUTRONS

Z. BODY*Nuclear Data Section,Division of Research and Laboratories,International Atomic Energy Agency,Vienna

Abstract

STANDARD MONITOR REACTIONS FOR NEUTRONS.The most important cross-section standards are given, both in the form of graphs and

numerical tabulations, from the Evaluated Neutron Data File/B-V (ENDF/B-V) evaluations.Remarks and comments are added on the status of these standards. Linear-linear interpola-tions should be used unless otherwise stated.

1. INTRODUCTION

Neutron cross-section measurements often require a determination of theneutron flux and this action can be the most difficult part of the experiment.The flux determination can be significantly simplified by the use of one of thecross-section standards, thus avoiding any complications associated with directneutron flux determinations.

It is essential that these cross-section standards be well defined, accuratelyknown, easy to use, easily referenceable and available without any difficulties.The IAEA International Nuclear Data Committee/(OECD) Nuclear Energy AgencyNuclear Data Committee (INDC/NEANDC) Nuclear Standards File provides justsuch a set of cross-section standards. There are about ten standards in the File,since in the case of a single standard, not all of the requirements can be ful-filled simultaneously at each energy point. Indeed, it is safe to say that there areas many compromises as there are standards. As a result, the user can choosewhich standard is the most acceptable. The choice will also be influencedby whether the user wants to measure a capture, a scattering or a fission cross-section, the ultimate decision being made in order to avoid experimental diffi-culties. With regard to activation standards, a further consideration in making achoice is that the half-life of the activity should be nearly the same as that of theactivity for the irradiated sample. If the half-lives differ considerably, then tempo-ral variations in the flux will not be properly taken into account by the standardmonitor (see also Part 2-2).

•Present address: Institute of Experimental Physics, Kossuth University, Debrecen, Hungary.

29

30 BODY

The following subsections detail the Evaluated Neutron Data File/B-V(ENDF/B-V) evaluations for the standards already completed, together with theENDF/B-V values for some recommended dosimetry standards. The latter arenot included as standards in the INDC/NEANDC Nuclear Standards File, thoughthey are very often used because of several advantages they possess (e.g. high spe-cific activity). The ENDF/B-V values presented are accompanied by some com-ments and remarks on the status of the particular cross-section in question, madeon the basis of information obtained at a recent meeting on neutron standardreference data1 and from papers referred to in the Computer Index of NeutronData (CINDA) master file up to April 1985. Version V of ENDF/B will hopefullybe changed to version VI in the near future, the latter being the outcome of asimultaneous evaluation using a generalized least squares program, R-matrixevaluations and a procedure for combining the results of the evaluations. Thesimultaneous evaluation process will provide cross-sections for the 6Li(n, t),10B(n, a,) , 10B(n, a), 197Au(n, 7), 2 3 5U(n, f), 238U(n, f), 238U(n, 7) and239Pu(n, f) reactions, while evaluations of 3He(n, p) and C(n, n) are beingperformed separately.

2. THE 1H (n, n ) ' H CROSS-SECTION

The hydrogen elastic scattering cross-section is currently the most accuratelyknown of all the standards. This cross-section can be determined from the totalneutron cross-section, which is easily measured and with which it coincides,except at low energies, where neutron capture makes a significant contribution[1,2]. A number of techniques have been employed in utilizing this cross-section.At low neutron energies (~ 1 keV to ~ 1 MeV), gas proportional counters havebeen used. Extrapolating the pulse height distribution of such a counter to zeroenergy and summing the events in the distribution yields a result which is directlyproportional to the product of the flux and the hydrogen cross-section. Thetiming jitter of these (both methane- and hydrogen-filled) proportional counterslimits their use in time of flight experiments in the MeV energy region. Protonrecoil telescopes represent the other extreme, in that their response is directlyproportional to the product of the flux and the cross-section for neutron-protonscattering into the appropriate solid angle of the detector. This can provide fasttiming, but suffers from low efficiency. A new scintillation detector [3] reportedrecently provides moderate efficiency with fast timing and small corrections [1].The ^ ( n , n) 'H cross-section is considered to be a standard between 1 keV and20 MeV [1].

1 IAEA-OECD/NEANDC, Nuclear Standard Reference Data (Proc. Advisory GroupMeeting Geel, Belgium, 1984), IAEA-TECDOC-335, IAEA, Vienna (1985).

PART 1-2 31

+ .005

bE_

O. POSS (1952)V HAFNER (1953)D FIELDS (1954)

— <r STORRS(I954)• OAT (1959)0 ENGELKE (1963)

i i i i 11 HI ro GROCE (I9S6)O DAVIS (1971)T SIMMONS (1971)A FUJITA (1976)

POENITZ(I98I)

-.005

-ml i i i i i i0.001 0.01 O.I 1.0

NEUTRON ENERGY (MeV)10 100

FIG. 1. Comparison between transmission measurements of the hydrogen total neutroncross-section and the Hopkins-Breit evaluation [1]. (Reference details for the individualslisted in this figure can be found in Ref. [I].)

S 6 0 -

E - 14.1 M*vI I 1 I ] I I I i I 1 I IT ALLRED (1953) • SUHAMIM967) —0 REMLEY (1953) a BASAR (1968)O SEAGRAVE (1955) » SHIRATO (1974)• NAKAMURA (I960) HOPKINS - BREIT _

i i i i i Mi l l I I0 30 60 90 120 150 180

CM. NEUTRON SCATTERING ANGLE (DEGREES)

FIG. 2. Hopkins-Breit evaluation compared with differential cross-section measurementsfor n-p scattering [1 ]. (Reference details for the individuals listed in this figure can be foundin Ref.[l]J

HOT 1301 CROSS-SECTIONS 1 -H - I

3 a s<

MeV

1-H - 1

ENERGY(eV

1.OOOOE-1.OOOOE2.OOOOE3.OOOOE4.OOOOE5.OOOOE6.OOOOE7.OOOOE8.5000E1.OOOOE1.1OOOE1.2000E1.3000E1.5000E1.7000E1.9000E2.OOOOE2.2000E2.4000E2.6000E2.8000E3.OOOOE

ELASTIC

SIGMA(b)

05 2.0449E0404040404040404050505050505

.9213E

.8126E

.7172E

.6327E

.5575E•4900E.4291E.3481E.2774E.2351E.1964E.1607E.0965E.0398E

05 9.8980E05 9.6710E05 9.2580E05 8.8920E05 8.5620E05 8.2620E05 7.9870E

01010101010101010101010101010100000000000000

ENERGY(eV)

3.2000E3.4000E3.6000E3.8000E4.OOOOE4.4000E4.8000E5.OOOOE5.5000E6.OOOOE6.5000E7.OOOOE7.5000E8.OOOOE8.5000E9.OOOOE9.5000E1.OOOOE1.1000E1.2000E1.3000E1.4000E

05050505050505050505050505050505050606060606

SIGMAIb)

7.7340E7.5010E7.2840E7.0830E6.897 0E6.5650E6.2750E6.1430E5.8450E5.5840E5.3540E5.1480E4.964 0E4.797 0E4.6450E4.5060E4.3780E4.2610E4.0510E3.8680E3.7060E3.5610E

00000000000000000000000000000000000000000000

ENERGY(eV)

1.5000E1.6000E1.7000E1.8000E2.OOOOE2.2000E2.4000E2.6000E2.8000E3.OOOOE3.2000E3.4000E3.6000E3.8000E4.OOOOE4.2000E4.6000E5.OOOOE5.2000E5.6000E6.OOOOE6.6000E

06060606060606060606060606060606060606060606

SIGMA(t

3.4290E3.3090E3.1980E3. 097OE2.9150E2.7590E2.6220E2.5010E2.392 0E2.293 0E2.203 0E2.1200E2.0430E1.9730E1.9070E1.8450E1.7340E1.6350E1.5890E1.5060E1.4300E1.3290E

>)

00 "00 "

ENERGY<eV)

r. OOOOE' . 5 0 0 0 E

00 8.OOOOE00 8.5000E00 9.OOOOE00 9.5000E000000000000000000000000000000 '<00

.OOOOE

.0500E

. 1000E

. 1500E

.2000E

.2500E

.3000E

.3500E

.4500E

.5500E

.6500E

.7500E

.8500E

.9500E>. OOOOE

060606060606070707070707070707070707070707

MAT 1301

SIGMA(b)

1.2690E 001.2010E 001.1390E 001 .0830E 001.0320E 009.8590E-019.4320E-019.0350E-018.6650E-018.3230E-018.0050E-017.7100E-017.4330E-017. 1730E-016.6980E-016.2740E-015.8930E-015.5490E-015.2380E-014.9550E-014.8230E-01

"0

FIG. 3. The 11 (n, n) cross-section (ENDF/B- V, Standards File).

34 BODY

TABLE I. UNCERTAINTY DATA FORTHE H(n, n) CROSS-SECTION

Energy range(eV)

1.0E+03 to 1.0E+05

1.0E+05 to 1.0E+06

1.0E+06 to 1.4E+07

1.4E+07 to2.0E+07

Correlation

+ 1.000

+0.339 +1.000

-0.110 +0.330

-0.040 -0.110

Uncertainty

(%)

0.5

0.7

0.9

1.0

matrix

+ 1.000

+0.335 +1.00

TABLE II. RELATIVE CENTRE OF MASS NEUTRON ANGULARDISTRIBUTIONS(Legendre polynomial form: sum over A(I)*P(I), 1=0, 1, 2, 3, 4; A(0) = 1.0;linear-linear interpolation [10])

E(lceV)

l.OE 00l.OE 022.OE 024.0E 026.0E 028.OE 02l.OE 032.0E 034.0E 036.0E 038.0E 03l.OE 041.2E 041.4E 041.6E 041.8E 042.OE 04

A(l>

+0.0000E 00-5.5958E-04-1.0415E-03-1.9165E-03-2.7587E-O3-3.5996E-03-4.3923E-03-7.8534E-03-1.3744E.02-1.9O07E-O2-2.3419E-02-2.7817E-O2-3.2412E-02-3.5926E-02-3.8681E-02-4.0592E-02-4.1766E-02

A(2)

+0.OOO0E 00+1.4582E-07+7.7858E-O7-8.2911E-06+2.2326E-05-2.O225E-O5-2.1837E-O5-1.4939E-04-3.9492E-04+3.5263E-04+7.5344E-O4+3.9395E-03+7.8464E-03+1.2899E-02+1.9119E-02+2.6532E-02+3.5148E-O2

A(3)

+0.0000E 00+1.0491E-11+2.4558E-14+8.8759E-09-1.583OE-O7-2.96O4E-O7-9.584OE-O7-3.2478E-O5-1.8595E-O4-5.7961E-O4-1.1913E-03-2.1302E-O3-3.3448E-03-4.6372E-03-6.O657E-O3-7.5378E-O3-8.9187E-03

A(4)

+0.0000E 00-6.2615E-12-7.1725E-12+9.1619E-10+4.0976E-09+1.3141E-08+5.5044E-08+1.3443E-06+1.6038E-05+4.5184E-05+2.7082E-04+4.2552E-O4+1.2151E-O3+1.955OE-O3+3.1383E-03+4.698OE-03+6.5867E-O3

PART 1-2 35

2.1. Status

Gammel [4] has analysed the available experimental data between 0 and40 MeV and provided a formulation for the ^ ( n , n) 'H cross-section which hasbeen used as a reference in many subsequent cross-section measurements [2].Newer experimental data were taken into account in a phase shift analysis byHopkins and Breit [5] and the resulting cross-sections were used in ENDF/B-II[6] and were retained in ENDF/B-III through V [7]. Neither the cross-sectionsnor the angular distributions have been changed since version II, except to addone more significant figure to the total cross-sections and to include correlatederror data and different interpolation rules [7].

Analysis of the neutron-proton interaction by Lomon and Wilson [8] differsfrom the Hopkins-Breit (HB) analysis by only <0 .3% at low energies (< 5 MeV)and thus this difference is well within the uncertainty range of 0.5-1.0% statedin the error files of ENDF/B-V. Dilg [9] measured the !H(n, n) *H cross-sectionat 135 eV and obtained a parameter set which results in cross-section values thatare within < 0.2% of those of ENDF/B-V [2].

In Fig. 1, transmission measurements of the hydrogen total neutron cross-section, with reported uncertainties of less than 1%, are compared with theHopkins-Breit evaluation. All experimental data in Fig. 1 agree with the respec-tive ENDF/B-V values within their quoted errors.

Above about 1 MeV, where proton recoil telescopes are used, angular distri-bution determinations are required [1]. In Fig. 2, differential cross-sectionmeasurements for n-p scattering at 14.1 MeV are compared with the Hopkins-Breit evaluation [5]. However, this cross-section has not been measured wellenough to determine the flux with 1% accuracy above approximately 10 MeV,nor can it be calculated with sufficient accuracy because of uncertainties inP-wave phase shifts [1, 10, 11]. High accuracy polarization measurements shouldprovide a more sensitive method for establishing the phase shifts. Recently, ana-lysing power measurements for n-p scattering have been performed by, for example,Tornow et al. [12]. Other similar measurements are mentioned in Refs [1] and [10].These analysing power measurements were successfully reproduced in the R-matrixanalysis of Dodder and Hale (see Ref. [1]), but the calculated total cross-sectionswere ~ 0.3% lower than those predicted by Hopkins and Breit [5]. The finalversion of this Dodder-Hale analysis was accepted in 1983 as the hydrogenstandard for ENDF/B-VI [13]. Figure 3. and Tables I and II detail the H(n, n)cross-section.

3. THE 3He(n, p) 3H CROSS-SECTION

The 3He(n, p) 3H cross-section is often used as a standard in the neutronenergy range from thermal to 50 keV. However, this cross-section is not acceptedas a standard in the INDC/NEANDC Standards File because of the lack of a good

25

24

23

22

21

20

18

17

16

15

14

13

12

11

10

9

8

7

6

5

3

2

1

\

i14\\\

A\\\\VV

- - 1 2 3 4 5 6 7

JHe (n.pl >H

— ENDF/B-V

| Borzakov et al (291

\ i

8 9 ^ W ElksV)

^ ^""m—•—r—

4t

47

46

45

44

43

42

41

40

39

— 38

37

36

35

34

33

32

31

30

29

29

27

~~r- 26

Ifla

\m

da\\

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8( $ \

~ — . . M 1.0 E IkeVI

aO:o

11 12 13 14 1S 16 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

E IkeV)

FIG. 4. The 2Hefn, p) cross-section: the ENDF/B-Vand the Borzakov etal. measurements.

PART 1-2 37

1.00

0.90

o.8o

0.70

TTT1 I 111

--*-.

o LOPEZ 1221• BOWMAN, LINAC [21]» BOWMAN, FILTEREO BEAM [211

HALE [231ENDF/B-V

_LLJ I I I I I

10° lO' 10' 10*NEUTRON ENERGY (eV)

FIG. 5. Various measurements of the 3He(n, p) cross-section [1].

detector. Development of a new detector at the US National Bureau of Standardswas reported at the 1984 IAEA-OECD/NEANDC Advisory Group Meeting in Geel,Belgium. If this development is successful, the situation might change [11].

3.1. Status

The data contained in version V of the ENDF/B evaluation were originallyproduced in 1968 and were accepted by the US Cross Section Evaluation WorkingGroup (CSEWG) Standard Subcommittee for version III in 1971, which in turn wascarried over intact again to version V [14] through version IV [15].

The thermal cross-section of 5327 b was derived from precise (better than1%) measurements by Als-Nielsen and Dietrich [16] of the total cross-section upto an energy of 11 eV. The 3He(n, p) cross-section was assumed to follow 1/v upto 1.7 keV. Gibbons and Macklin [17, 18] determined the 3He(n, p) cross-sectionfrom 5 keV and up. The ENDF/B evaluation was based on the results of themeasurements detailed in Refs [16-18] (at least for the thermal to 50 keV energyrange) and an error of 10% has been estimated for the recommended values [14, 15].Carlson [1] mentions that the uncertainty varies from 0.2 to ~4% from thethermal to 50 keV region. Wasson [19] ascribed errors of 3-5% in the ENDF/B-Vevaluation for the E < 1 MeV energy range, but these numbers have not beenuniversally accepted as being of reliable enough precision [20].

HRT 1 146 CROSS-SECTIONS 2-HE-3

101

O<

keV 2-HE-3

PART 1-2 39

i 2 _

I 10

I UJI Z •I UJ

<i S .

I O .

Si

— ~— — — — — — — — — — — o o o o o o o o o o o o o o o o o o o o o o o o o o o oOOiOGOOOOOOOOOOOOOOOOOOOOOOIOOOOOOOOOOOOOOOO:

UJ UJLUUJ UJUiLU UJ UJ UiUJUJ UJ UJiUJ U1UJ UiUJUJ UJUiUJUJUJUilULUUJUiUJUJUJUJ.UJUJUJLliUJUJliJUitocMTj-toototnr- ——inooTOOo»roco«toco:TOin-cvfor-CMOocooo—OOOT —ID<T;CMO>OTOIO—o^-toiD't-'T'TcoiinTcnoTOtDr-in—ot--co:inco—co—iDcotocoinoaiocM —ootoroocot-r—too^o^coTOOoo^or^ot—:-to—OTOCM —P-^"COP-O>O — o oo> tv<o in in • * i co oo c* — — o o o i f o OO<T o> to TOOto TO aco IOI -—io> Tot— oi— — > - - — — ; — - - — : - - — —iooococo r»f»r-r-ID to to: in in in in v^rc'T'T OOTOTOTOTOTOTO

COOoioOTOTOCO'OOCOTOTOTOCOTOTOCOTOCOTOTOCOCOfTTr'sr'J-iifl'IT'S- > ! « » » « » « » «O O i O O O O O O O O O O O O O O O O O O O O ' O O O O O O O O O O O O O O O O i O O O O

UJ UJ'UJ UJ UJ U£UJ UJ UJ UfcUl UJ UJ UJ:UJ Ul UJ UIUJ UJ UJ UJiUJ UJ UJ ID:UJ UJ UJ UiUJ UJ Ul UJiUJ UJ UJ UiUJ UJ UJ U iTcocMr*-mo>--0)coin.cooif)(c>.o^Toa>inTOin icomcoc>cocMTOO^-ooocMCNO ;

mOir»ocNTOc>icociJO*TO'-r*»—^"CO —(K o o O o > o D c o

CM<NCN CM — — : > - • - — < - : - - • - — — • - — *•— •— — " " ' • - >- — >-r— — * - •-:— — — • - ; » - >- "- "^ — — — —•

ooooooooooooooooooooooooooooooooooooooooooUJUJiUJUJ UJUJ:UJUJUJUJ:UJUJUJUJiLLJUJUJUJ:UJUJ UJUXUJUJ UJUJ:UJUJ UJ UiUJ UJUJUJrUJUiUJUiUJUJUJUJ:<O C0i«3 O) in COO) CM T - T : O I ^ C 3 > ( ^ : C N 0 0 ) 1 1 X 0 ^ " Ot"~incOf-0>tDCOOO<OCO'-li>COOTOtC>*-CO(DCam coin co in "^o o) CN U I T co CN o>:co en co inr-o> O) or-co in TOO) — r» <-:in inco iftr-TO ID <J>CN o <a-u>c o c 0 o o o o i o c J o n D O D T O C M a > c o r » c J ) O C N i n c j ) i n : t n o c o T O « - ooo:o>cococo

>-o r~in TO • -OCO<D TOCM o ocar-us in TtiCN • - o o>

! I (NC^CVOlCIOtCNCWCMCMCMCNCNCVCCMC^C^CMOICgCMC^OiC^CICOTOTOTOTOTOTOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOOOO

UJUJ'UJUJUJUJ:UJUJUJUiUJ Ul UJUJiUJUJ UJUkUl UJ UJUtUJUJ t | ; t t f i t i i m i i i r h i i l t i i n l i i n i i n u n i i f i n i M | | | | | f^ r * D i o 5 o r ^ O T O r i n C N ( D ^ 1 o i n o i D i n T O T O O r c N T O C N C M i c o ^ r c o o c O C N o c O r r c o * ri o 5 i o r ^ O T O r i n . C N ( D ^ o i n i D i n : T O T O r c N T O C N C M i c o r c o c O C N c O r . r c o r ^CO T '-COO<J>TOP*»-CN:CO^'r^CN;^OCOU>^"TOOCOO<T^-0>OT3- OOTOCN »-TOT <f CO T: •-TO CN inco —:in • - co - co <D • - o>o o CM r~— r~ ID OXD CO O &><S O CM — TO • - O) --^co oi o oco r CM CM in o> TO O>O in:O) ID CM 0> TO CM O OCM TO T lf> P* CO O CM T tD CO O -ID O : CO TO r* TO ID TO CM CO in O»-CM: TO ID K

m miin to r~ tvco O)' - CM CM. CM CM CM TO TO TO <t T: t in in I D to r» co cam'

CM CM CM CMCMC^CVCMCMC*CMCMCMC<CMCMCMC*CMCMCMCM:CNCMCMCM:CMCMCMCVfCMCMCMPtCMCMCMCVfCMCMCMC<OOOOOOOOOOO OOOOOOOOO 000000:0000000000000000

UJ UJ'UJ UJUJLJ:UJUJUJUJ-UJUJUJUJ:UJUJUJUJ:UJUJUJUJ:UJUJUJUj:UJUJUJUJ:UJUJUJUiUJUJUJUiUJUJUJUim ^ 1 D TOO o o > o c o c M n r 3 C M r i r C M O i r o ^ C M ^ i o r r c o r T i o Nm ^ c M i T O 1 1 D TO i o o > c o c M i n r 3 C M r i r C M i r i o ^ : C M ^ i o : r r o r T i i NTOOTOO — inTOin — ID— CMOlOtDCM — 0>r-TOOTOC0TOf~OOC-— — IDTOOinCOCO -tDCMt CO

C C o T O O x o n r o o T O —CMiTOioo^or--cnTOco^-cMC>0)ooc*^riD<otvcooTOr-—tooTOc C o c o r n ^ C M o c o r o r > T O T O C M O C ) c o r o D n ^ ; j

CMICM CM CM CM CM • - • - ' — « - » - » - » - ; » - • - * - 1 - ^

O O : O O O C>O O O O O O O O :O O O O O O C3 O^O O • - : — W- <- — .-— — — _ . - , - _ ^ - - R-^o oio o o 000 oo-o 00 00 00 00 0000 00 00 00 00 0000 00000 00

UJUJUJUJUJU1UJUJ UJUiUJUJUJUiUJUJUJUJiUJUJUJUtUJ UJUJUJ:LUUJUJUJ:UJUJUJUiUJUJUJUJHxJUJUJUiinTOtoiDiocaTOCMinTOTOcOoycMco^ro—coin u>co <Dio coo) ^-TOCO——to I D in — T T O T O > TO to

O o o o — t»cotDO)co—mcMCOtocMcocooo o aCM TO;T iniDCOOCM T PVOTOtO OTO P* CM tO—tl

— — i— — — —*M CM CM CM!TO TO TO * v in into to p» r- co o> •

TOflinDo j o o a o > T t D—:CMTO^"in.P*COOCMiinr«-OCM:mCOCMtO

TOTOCOCOTOTOTOTOTOTOfOTOTOO>TOrOTOTOTOTOTOroTOTOTO«rOTOroroTOTOTOTOTOTOTOCMCMCMCMC<CM0 0000000000000^000000000000:00000000000000000

UJ UJ:UJ UJ UJ UiUJtU UJ UJ:UJ Ul UJ UiUJ UJ UJ UiUJ UJ UJ UiUJ UJ UJUiUJ UJUJ UiUJ UJ UJ UiUJ UJ UJ UiUJ UJ it MinnOlD:inTOCMr-tnTOlOTOTOTOTOTO^TtOCOtniOin—:0)0)P»—:0>tDtOtOOr-TOmOr«CMOCOO — to CMI ^ - I D . C M V O O ) — i n O T i c o - C M — : t » o o ) v m —cNCOr- —o>—:inTOtO'r t~TOf l -a>totDOincMTr-OTOCMinO(DTCMTOTtOO^-OtDTOOO)P-P - r -COO)OCMinr -— i^IDCO— T CO CM ID— tO CM tD in tOO) in CMTOOon —or-ini-CM —ocarniTOCM ooocorvDn3^TOCMCMoopTOOncJO)

minivTTTf:COTOTOTOTOTOCMCMiCMCMCMC*CMCMCMCM-

CMCM:CMCMCMCM:CMCNCMC*CMCMCMCMiCM

mO> CO CO COr-

<-— — — O O

I I : I I I I : I I I I I I I I I : I I I t : I I I I : I I I I : I I I I : I I I I ' I t I t : I I IUJ UJ"UJ UJ UJ UiUJ LU UJ UiUJ UJ UJ UiUJ UJ UJ UiUJ UJ UJ UiUJUJ LU U£UJ UJLU UiUJ UJ LU UiUJ UJ Ul UiUJUJ UJ I' ^11'oioOTLnTOCNtooinTOOin — r-CMOtor~or-r-cv— tntoiftmrocMOcoo — u>—TOCM—incomes enOr-CMinOCOCMtD ——:OOU)C0:tDOtD—intDr-C0OOTOC0:tD-TO—0)C0-COTOf-TOTOOTr—CMJOcoo— rr — O T — TOOOinr-Ticototot^cooTOP-CMOtDT-^TOTCO^-icOTmoco— c o — o n rLOCO—^COCMtD —tO—:C0>» — K P - O —C*TOintOP-:OOCM^i:tDaCNK>0>TOt-CM.t>-CMCOLO — W

CMCMiTOTOTOTTinintotor-cocoo CMCMotCMCMTOTOnvTinintotDiscocoo—:—

5.I

-C* Oi CN C*CN 00 CO COCO "O" il "^

•2

c2

as

I

£ •S

40 BODY

After the release of the ENDF/B-V evaluation Borzakov and co-workers [20]measured the 3He(n, p) cross-section for the neutron energy range from 0.15 to150 keV. Their experimental data are accurate to 2-3%. These new measurementsgenerally support [13] the lower values obtained by Bowman et al. [21] and Lopezet al. [22]. The preliminary evaluation by Hale [23] is in good agreement withthese measurements (see Figs 4 and 5)- It is apparent that the ENDF/B-Vevaluation is consistently higher at higher neutron energies compared with themore recent measurements. However, the new evaluation by Hale [23] appearsto better describe the 3He(n, p) cross-section [13]; Fig. 6 details the 3He(n, p)cross-section.

4. THE 6Li(n, t)4He CROSS-SECTION

The 6Li(n, t) 4He cross-section is a very important standard in monitoringneutron flux via detection of triton + a-particles by scintillation — glass, Lil (Eu),plastic foils - or by surface barrier detectors and ionization chambers [24].Reviews of detectors using this cross-section as a standard can be found in Refs[25-27]. In addition, it should be noted that tritium and/or 4He buildup can bea precise detection method [28], e.g. by using high sensitivity mass spectrometers[29-33]. The recommended energy range for use as a standard is thermal to100 keV [24].

4.1. Status

The low energy neutron cross-sections of 6Li - including the standard (n, t)cross-section - were obtained from a multichannel, multilevel, R-matrix analysisfor ENDF/B-V [34]. In the analysis, the database included the Harwell total cross-section [35], the shapes of the n-6Li elastic angular distributions and polarizations,6Li(n, t) angular distributions and (normalized) integrated cross-sections andfurther t-a elastic angular distributions [34].

Several new 6Li total cross-section data sets have become available since theevaluation of ENDF/B-V [36], but they differ from the previous data sets onlyabove 100 keV (at the region of the 240 keV resonance) and their influence onthe (n, t) cross-sections in the R-matrix fit together with new scattering cross-section data. New absolute measurements on the 6Li(n, t) cross-section werealso made, as mentioned in Refs [36] and [37]. The data of Gayther [38],measured relative to 23SU(n, f) at energies between 3 and 800 keV, agree ratherwell with the ENDF/B-V results if the ENDF/B-V values are also used for 235U(n, f).Renner et al. [39] measured the 6Li(n, t) cross-section between 80 and 470 keV;their data are also consistent with ENDF/B-V, except possibly for a small norma-lization difference [37]. The only value that was not quite consistent was thatmeasured by Engdahl et al. [40], which was obtained at 23 keV with a quoted

PART 1-2 41

TABLE III. UNCERTAINTY LEVELS OF THE 6 L i ( n , t ) CROSS-SECTION

DATA

Energy range

(eV)

Thermal to 2.000+2

2.000+2 to 2.000+3

2.000+3 to 1.000+4

1.000+4 to 3.000+4

3.000+4 to 1.000+5

Uncertainty given by Hale(Ref. [37])

(%)

0.4

0.5

0.5

1.0

2.0

Deviations from JENDL-3(Ref. [41])

(%)

0.5

0.7

1.0

1.4

1.7

uncertainty of 2.4%, 6% lower than the value of ENDF/B-V. Such a value is difficultto reconcile with the known resonances of the 7 Li compound nucleus [36].

In Table III, the uncertainties of the 6Li(n, t) cross-section data are given,specifically the uncertainty given by Hale [37] as well as the percentage differen-ces between ENDF/B-V and JENDL-3 [41] in different energy regions.

It should also be noted that even if the previous results of ENDF/B-VI [42]are taken as reference values, the outcome of a comparison with ENDF/B-V stilldoes not contradict the conclusion that below 2 keV the uncertainty level of thelatter is less than 1%, and between 2 and 100 keV it is at most 2% [19]. To sumup, the 6Li(n, t) cross-section below 100 keV is known reasonably well, thoughthe desired goal of 1% accuracy has not yet been achieved even at these lowerneutron energies [1]. Figure 7 and Table IV detail the 6Li(n, t) cross-section.

5. THE 10B(n, a) 7Li, 10B(n, a0) 7Li AND 10B(n, a ( ) 7Li* CROSS-SECTIONS

The 10B(n, «i)7Li* and the I0B(n, a0 + « ! ) 7 L i = 10B(n, a)7Li cross-sectionsare often used for neutron flux determination via, respectively, the detection ofthe isotropic 478 keV 7-emission of 7Li* in boron slab detectors and via the detec-tion of a-particles in ionization chambers with surface barrier detectors (or scintil-lators) [24]. A recent review of these detectors, using the above standards, hasbeen made by Carlson [43]. The recommended energy range for use as a standardis thermal to 200 keV for both cross-sections [24].

MflT 1303 CROSS-SECTIONS 3 - L I - 6

10'

. ltP

icr

00

o

ksV 3 - L I - 6

1 3 - .U- 6 (N,T) MAT 1303

ENERGY(«V)

2.6410E-022.8702E-023.1031E-023...458BE-02.3.8129E-024.1695E-024.4038E-024.8792E-025.3371E-025.7729E-026.3719E-026.92076-027.5878E-028.3430E-029.2530E-021.Q00QE-Q11 .1127E-011 .2327E-011.3584E-011.4909E-011.6285E-011.7723E-011.9204E-012.0740E-Q12.2883E-012.5092E-012.7357E-012.9666E-Q13.2006E-013.5573E-013.9114E-014.2671E-Q14.7307E-015.1947E-015.6378E-016.2624E-016.6397E-017.3555E-018. 1746E-018.7847E-m9.5773E-011.0366E 00

SIGMA(b)

9.1601E8.7867E8.4506E8.0042E7.6235E7.2902E7.0936E6.7391E6.4435E6.1955E5.8971E5,6585E5.4040E5.1536E4.8936E4,7073E4.4625E4.2398E4.0388E3.355 IE3.6886E3.5358E3.3967E3.2685E3.J117E2.9715E2.8459E2.7329E2.6310E2.4956E2.3800E2.2786E2.1641E2.0652E1.9823E1.6809E1.8266E1.7355E1.6462E1 . RRROE1.5209E1.4619E

0202020202020202....;02 :

ENERGY(eVI

1.1522EI.2737EI.4021E

,5359E1.6761E1.8209E1.9714E2,.1820E2.3998E

02 2.6237E02 2.8525E02 3.Q852E.02 3.4368E02 3.7947E02 4.1477E02 4.5004E02 4.9727E02 5.4265E02 5.8574E02. ....6...44B3E.02 6.9884E02 7.6434E02 8.4134E.02 9.1724E020202Q20202020202 :02 .02 :02 .....02 '02 .02 .02 ;0202

1.OOOOE1.1127E1.2327E1.3584EI .4909E1.6285E1.7723EI.9204E2.0740E2.2883E2.5092E2.7357E2.9666E3.2006E3.5573E3.91 14E4.2671E4.7307E

00000000000000000000000000000000000000.0000000000010101.010101010.10101010)01ot01010101

SIGMA(b)

1 .3866E1.3188E1.2569E1.2009E1 .1496E1 . 1029E1 .0600E1.0075E9.6068E9.1876E8.8113E8.4725E8.0272E7.6392E7.3068E

.7...Q.145E6.6730E6.3878E6.1483E

.5..8598E.5.6287E5.3821E5.1298E4.9129E4.7052E4.4603E4.2375E4.0366E3.8528E3.6863E3.5335E3.3944E3.2662E3.1094E2.9692E2.8436E2.7306E2.6287E2.4934E2.3778E2.2764E2.1619E

ENERGY(eV)

02 5.1947E02 5.6379E02 eJ.2624E02 6.6397E02 7.3555E02 8.1746E02 8.7847E029.5773E01010101010101Q1

.0443E

.1357E

.2287E,3228E.4657E.6072E.7490E.9333E

01 2.1173E01 2.2925E01 2.5388E01 2.6873E.01 2.9682E01 3.2888E01 3.5270E.01 3.8357E01 4.2358E01 4.4694E01 4.9427E01 5.3.979E01 5.8303E01 6.4238E01 6.9668E01 7.6256E01 8.1603E01 9.0334E0101010101010101

.OOOOE

. 0905E1 .1764E1.294 IE

.4016E....531.9E1.6849E1.8357E

01010101010101010202020202020202020202Q20202020202020202020202.0202020303030303030303

SIGMA(b)

2.063OE1.9802E1.8788E1.8246E1.7334E1.6442E1.586 IE1.5190E.1 .4546E1.3947E1.3408E1.2922E.1.2275E1 . 1721E1.1235E

.K0686E1 . 021OE9.6116E9.3228E9..0613E8.6211E8.1896E7.9078E7..5824E7.2149E7.0235E6.6782E6.39Q0E6 . 1480E5.8567E5.6235E5 . 37.47.E5.1953E4.9375E4.6924E

. 4.4934E4.3261E4.1246E3.9632E

.3.7909E3.6145E3.4628E

010101010101010101010101010101or010000OQ0000000000000000000000QO00000000000000OQ0000

ENERGYlev

2.OOOOE2 . 181 OE2.4321E

...2.664.4E.2.9493E3.2750E3.5174E

....3.8322E4.1232E4.4821E4.9186E

....5..4132E.6.0098E6.5000E7.1905E7.8Q86E8.5298E9.2357E1.OOOOE1...1.067E.1.2286E1.3194E1.4372E

....1...5549E.1.7012E1.8446E2.OOOOE2.205 IE2.3976E2.6166E2.8663E3.00Q0E3.5000E4.OOOOE4.5000E5.Q0QQE6.OOOOE7.OOOOE8.OOOOE

...9.QQ00E1.OOOOE

03030303030303030303030303030303030304.04040404Q4040404Q404040404040404Q4040404

.04.05

SIGMA(b)

3.3175E 003 . 1772E 003.0092E 002.8754E 002.7334E 002.5943E 002.5035E 002.3988E 002.3131E 002.2194E 002.1196E 002,02136 001.9193E 001.8462E 001.7571E 001.6875E 001.6160E 001.5543E 001.4949E 001.4237E.001.3538E 001.3081E 001.2553E 00

.1...2.09 I E . 001.1591E 001.1159E 001.0743E 001....0275E. QO9.8897E-019.5095E-019. 1349E-018.9531E-Q18.3871E-017.9464E-017.5964E-017.3154E-016.9063E-016.6488E-016.5081E-016.4679E-Q16.5235E-01

>

s

FIG. 7. The bIJ(n, t) cross-section {ENDF/B-V, Standards File).

44 BODY

TABLE IV. UNCERTAINTY DATA FOR THE 6Li(n,t) CROSS-SECTION [37]

Energy range(eV)

I.OE-05 to2.0E 02

2.0E 02to2.0E 03

2.0E 03 to l.OE 04

l.OE 04to3.0E 04

3.0E 04 to l.OE 05

+ 1.00

+0.99 +1.00

+0.93 +0.96

+0.67 +0.72

+0.30 +0.35

Correlation matrix

+ 1.00

+0.88

+0.58

Uncertainty(%)

0.4

0.5

O.S

1.0

2.0

+ 1.00

+0.89 +1.00

5.1. Status

This ENDF/B-V [44] evaluation is the result of R-matrix analysis. The analy-sis considers simultaneously data from all the neutron interactions with 10B, as wellas measurements of the 4He+7Li system [1].

At present, the positions of these cross-sections are not very secure in the setof standards, though these ENDF/B-V values can be used for the time being. It ispossible that they are too low [ 1,45,46,42], and it is almost certain that the given uncer-tainties are too small. Wattecamps [47] has commented that these uncertaintiesare much smaller than the accuracies requested in WRENDA (World Request Listfor Nuclear Data) 81/82 and this is true also for WRENDA 83/84 [48]. Manyusers would like to see this cross-section have an accuracy of 1%.

In support of the above statements, it is appropriate to quote Poenitz:"Consideration of the 6Li+ n and 10B + n data bases shows that substantialprogress has been made for the 6Li(n, a) cross section but the 10B(n, a) and10B(n,o:1) cross sections remain poorly defined. There are few absolutemeasurements of these cross sections and those available have large uncer-tainties and/or are followed by various shortcomings. It is therefore recom-mended that the 6Li(n, a) cross-section should be used as a reference crosssection below 100-150 keV until a reasonable data base for the 10B + ninteractions becomes available." [36].

PART 1-2 45

Similarly, it was concluded at the 1984 IAEA-OECD/NEANDC AdvisoryGroup Meeting in Geel that the 6Li(n, t) and 10B(n, a) cross-sections both haveto be studied over a far wider energy range than that recommended in order tounderstand the reaction mechanism and to make accurate theoretical calculations.The experimental database for 6Li(n, t) has yielded results that are not very differ-ent from the ENDF/B-V data for En< 1 MeV, while the database for 10B(n, a)shows large disagreements between new and old measurements [11], especiallyfor10B(n, a j .

It is hoped that the forthcoming ENDF/B-VI evaluation will improve thesituation in the future [42]. Figure 8 details the 10B(n, a) cross-section, whileTables V and VI provide, respectively, the recommended reference data forthe I0B(n, a 0 ) and 10B(n. a,) cross-sections.

6. THE C (n, n) C CROSS-SECTION

The C(n, n)C cross-section is widely used primarily as a scattering standard,the relevant energy range being 1 keV to 1.8 MeV. While the presence of resonanceshinders the use of this cross-section as a standard above 2 MeV, it is useful up to4.8 MeV if care is taken to avoid prominent resonance structure. Since the capturecross-section is negligible above thermal energies and below 2 MeV, the elasticscattering cross-section is actually identical to the total cross-section. This standardis also very useful for verification of total cross-section measurements [49]. A slightuncertainty comes from the fact that the scattering cross-section of natural carbonis recommended as a standard, while R-matrix evaluations refer to the 12C(n, n)12Ccross-section (discussed below).

Carbon has several advantages over hydrogen as a scattering standard, one beingthe fact that the angular distribution in the laboratory system for carbon changesmore slowly with angle than it does for hydrogen. Also, there is reduced energyloss and more simplified multiple scattering corrections for carbon compared withhydrogen [1, 13]. In addition, it should be noted that the energy of the 2078 keVresonance is a valued energy-scale reference point [50].

6.1. Status

The ENDF/B-V evaluation is taken from the R-matrix fits of Fu and Perey [51 ].Concurrent with this work, Holt, Smith and Whalen have reported new neutrontotal and scattering measurements, together with an R-matrix interpretation [52].The latter work is consistent with that of Ref. [51 ] and supports the ENDF/B-Vevaluation to accuracies of < 1% [50]. Recent precision neutron total cross-sectionmeasurements by Poenitz and Whalen [2, 50] (shown in Fig. 9) verify theENDF/B-V file to fractional per cent accuracies [50]. The new evaluation forJENDL-3 [53] differs from that of ENDF/B-V by a negligible amount only below5 MeV.

4

MRT 1305 CROSS-SECTIONS 5 -B -10

tdO'©

keV 5 - B - 1 0

1 5-B - 10 (M. ALPHA) MAT 1305

ENERGYleV)

SIGMA

2.4030E-02 3.9367E2.6410E-02 3.7551E2.87Q2E-Q2 ;3. 1031E-02 C3.4588E-02 C3.8129E-02 C4.1695E-Q2 24.4038E-02 24.8792E-02 25.3371E-02 '.5.7729E-02 26.3719E-02 ;6.9207E-02 :7.5878E-02 :8.3430E-02 59.2530E-02 '.

.0000E-01

. 1 127E-01

.2327E-01

.3584E-01

.4909E-01

.6285E-01

.7723E-01

.9204E-012. 0740E-012.2883E-012.5092E-OI2.7357E-012.9666E-0I3.2006E-013.5573E-01

).6020E).4642E1.2812E). 1251E!.9885E>.9079E'.7626EJ.64 14E!.5397£>.4174E>.3195E>.2152E>. 1126E>.0060E.9296E.8292E.7379E.6555E.5802E.5119E.t493E.3922E.33U7E.27'jiE. 2 1 7<)E.1664E.1201E. 0783E.0228E

3.9114E-01 9.7541E4.2671E-01 9.3385E4.7307E-0I 8.0690E5.1947E-0) 8.4G35E5.6378E-01 8.1239E6.2624E-01 •6.6397E-017.3555E-01 '

r.7080Er.4857Er. 1 I20E

8.1746E-01 6.7462E8.7847E-01 6.50/6E9.5773E-01 t

.0366E 00 E1.1522E 00 f1.2737E 00 E

>. 2324E>.9903E>.G8I6E>.4 03GE

(bl

030303030303 J03 ;03 :03 :03 C

ENERGY(eV)

.402 IE

.5359E,676 IE.8209E.9714E

>. 1820E>.3998E>.6237E>.8525E1.0852E

03 3.4368E03 :03 '03 t03 <•

).7947E.1477E

I.5004EI.9727E

03 5.4265E03 5.8574E03 6.4483E03 6.9884E03 "r.6434E03 8.4134E03 9.1724E0303030303030303

.00O0E

.1127E

.2327E

.3584E

.4909E

.6285E

.7723E

.9204E03 2.0740E02 2.2883E02 2.5092E02 2.7357E02 2.9666E02 3.2006E02 3.5573E02 3.9114E02 4.2671E02 <02 '

I.5004EI.9727E

02 5.4265E02 E02 e02 C

).8574E>.4483EJ.9884E

0000 <0 0 <•00 '

SIGMA(b)

i. 1498E1.9202EI.7097EI.5183E

00 4.3422E00 '1.1271E00 3.9351E00 3.7633E00 3.6090E00 3.4701E00 3.2876E00 3.1285E00 2.9923E00 2.8725EOQ 2.7325E00 2.6156E00 2.5175E00 2.3992E00 2.3045Eoo :oo :oo :010101010101010101010101010101

2.2O35E2. 1001E2.O112E.9261E.8256E.7342E.6517E.5763E.5080E.4453E.3883E•3357E.2714E.2 139E.1624E. H61E.0744E.0189E

01 9.7151E01 9.2999E01 9.0548E01 f3.6125E01 8.2432E01 "01 '

f.9331EP.5596E

01 7.2605E

02

ENERGY(eV)

?.6434E02 8.4134E02 9.1724E020202020202020202 :

.0000E

.1 127E

.2327E•3584E.4909E.6285E.7723E.9204E

J.074 0E02 2.2883E02 :02 :02 :02 :

2.5092E2.7357EJ.9666E3.2006E

02 3.5573E02 3.91HE02 '02 '02 '02 '02 '

1.2671E1.5004E».9727E3.4265E3.8574E

02 6.4483E02 6.9885E02 "02 (

r.6434E3.4134E

02 9.1724E020202020202020201010101oi :

.OOOOE

.1127E

.2327E1.3584E

.4909E1.6285E1.7723E1.9204E2.O74OE2.2883E2.5092E2.7357E2.9666E

01 3.2006E01 3.5573E01 3.9114E

01 e01 e01 f.02 e02 E02 E02 E02 102 102 102 <02 *02 C02 C02 :02 ;02 ;02 C02 C02 :02 :02 :02 :02 :02 502 502 ;02 :02030303030303030303030303030303 £03 £

SIGMA(b)

>.9414E.6150E•3344E.0657E.7472E.4576E. 1965E..9579E.7417E.5434E•3629E.1967E.9934E

I.8118E>• 649 I.E.I.5028E).3710E1. 1959E).0464E>.9154E!.8380E'.6986E!,5822E'.4844E.3667E.2725E.1720E

'.0693E.9809E•8964E,7960E.7048E.6226E.5475E•4795E.4172E.3604E.3082E.2443E.1873E.1362E.0903E.0490E

) .94 04E).4718E

01 <01 <01 .t01 E01 E01 e01 t01 "

ENERGY(oV

I .2671E.5004E,9727E

).4265E).8574E).4483E),9884E.6434E

01 8.1746E01 9.0413E0101010101oi0101

. OOOOE

.0905E

.1764E

.294 1E,40 !6E.5319E.6849E.8357E

01 2-OOOOE01 2.2134E01 2.4573E01 2.6388E0! 2,8744E01 3.1098E01 CJ.4024E01 3.6891E01 '01 '01 '

1. OOOOEI.4102EI.7951E

01 5.2332E01 5.7327E01 6.2357E01 6.7354E01 "r.4833E01 8.2391E01 9.OOOOE01010101010101oo :00

.OOOOE-0954E.2000E.3471E.4967E.6971E.9480E

!.6000E

1SIGMA

Ibl

03 9. 0612E03 8.8190E03 8.3822E03 8.0178E03 "03 •03 "

'.7119Er.3438Er,Q491E

03 6.7349E03 6.5085E03 6.1831E04 5.8739E04 5.6232E04 5.4126E04 5.1589E04 i04 '

I.9557EI.7388E

04 4.5170E04 4.3262E04 '».., 1435E04 3.9412E04 3.7429E04 3.6134E04 3.464 0E04 3.3330E04 3. 191 OE04 3.0684E04 2.9505E04 2.8167E04 2.7 068E04 2.5975E04 2.4890E04 2.3936E04 2.3100E04 2.2012E04 2.1068E04 2.0243E0505050505050505

.9304E

.8528E

.7783E

.6871E

.6066E

.5123E

.4 075E

.1568E

000000000000000000000000000000000000000000000000000000000000000000000000000000000000QO00

===

FIG. 8. The i0B(n, a) cross-section (ENDF/B-V, Standards File).

48 BODY

TABLE V. RECOMMENDED REFERENCE DATA FOR THE 10B(n, <x0)CROSS-SECTION(numerical values are from ENDF/B-V, MAT-1305; applicable energy range:thermal to 200 keV; log-log interpolation [47])

E

1.1.1.2.5.8.1.1.

(keV)

OOE-0800E-04OOE-O100E 01OOE 0100E 0120E 0280E 02

XSEC (b)

11321111

.228 7E 04

.2285E 02

.8622E 00

.7184E-O1

.7988E-01

.4919E-01

.3121E-01

.2458E-01

Cross-section

E

11136912

(keV)

.00E-05

.OOE-03

.OOE 00

.OOE 01

.OOE 01

.OOE 01

.4OE 02

.OOE 02

values

XSEC (b)

3.3.1.2.1.1.1.1.

8853E 02883OE 012092E 002520E-01668OE-O14307E-012707E-012495E-01

E

2114711

(keV)

.53E-O5

.00E-02

.OOE 01

.OOE 01

.OOE 01

.OOE 02

.60E 02

XSEC (b)

2131111

.4425E 02

.2263E 01

.8004E-01

.9802E-01

.5690E-01

.3819E-01

.25O6E-O1

Uncertainties

ENERGY RANGE (keV)

1.0E-08 TO 4.0E 014.0E 01 TO l.OE 02l.OE 02 TO 1.8E 021.8E 02 TO 2.0E 02

UNCERTAINTY (PER CENT)

2.22.01.21.6

CORRELATION MATRIX

+1.000+0.924+0.055+0.316

+1+0+ 0

.000

.323

.302+ 1+0

.000

.627 +1.000

PART 1-2 49

TABLE VI. RECOMMENDED REFERENCE DATA FOR THE 10B(n, a jCROSS-SECTION(numerical values are from ENDF/B-V, MAT-1305; applicable energy range:thermal to 200 keV; log-log interpolation [Al])

E (keV)

1.00E-081.00E-04l.OOE-012.00E 015.00E 018.00E 011.20E 021.80E 02

XSEC (b)

1.8071E1.8067E5.6795E3.8717E2.4736E1.9859E1.6471E1.3442E

0503010000000000

Cross-section values

E (keV)

1.00E-051.00E-031.00E 003.00E 016.00E 019.00E 011.40E 022.00E 02

XSEC (b)

5.7142E5.71O9E1.7754E3.1664E2.2697E1.8812E1.53O7E1.2626E

0302010000000000

E (keV)

2.53E-051.00E-021.00E 014.00E 017.00E 011.00E 021.60E 02

XSEC (b)

3152211

.5923E

.8035E

.4939E

. 7524E

.1124E

.7922E

.4320E

03020000000000

Uncertainties

ENERGY RANGE (keV)

1.0E-08 TO 4.0E 014.0E 01 TO 1.0E 021.0E 02 TO 1.8E 021.8E 02 TO 2.0E 02

UNCERTAINTY (PER CENT)

0.30.70.81.2

CORRELATION MATRIX

+1.000+0.981+0.861+0.729

+1.000+0.928+0.810

+ 1+0

.000

.921 +1.000

50 BODY

3.0

2.0

n i 1111

CTOT

e

1.00.02

PRES. EXPENDF/B-V

1 1 I I I I I I I0 10 1.0 2.0

E. (MeV)

FIG. 9. Comparison of the neutron total cross-sections of natural carbon, as measured byPoenitz and Whalen, with the corresponding values given in the ENDF/B-V file [50].

It should be noted that all data considered in Ref. [51 ] are for natural carbon(containing 1.11% 13C), while the analysis is for 12C. There are two resonancesin 13C below 2 MeV and each resonance will still contribute about 0.2% to thenatural carbon cross-sections. Therefore, the energy ranges from 0.13 to 0.18 MeVand from 1.72 to 1.78 MeV are not recommended as standards until sufficientlydetailed investigations are carried out for these resonances [51 ]. In the upcomingENDF/B-VI evaluation for natural carbon, the contribution to the elemental cross-section from the 13C resonances at 153 keV and 1.75 MeV will be included in theR-matrix analysis [1]. Figure 10 and Tables VII and VIII detail the C(n, n) cross-section.

7. THE 27Al(n, a)24Na CROSS-SECTION

This activation cross-section is a Category-I dosimetry reference and is widelyemployed as a standard in dosimetry and activation measurements [54]. TheENDF/B-V evaluation is recommended for the energy region from ~ 11 to 20 MeV.

PART 1-2 51

7.1. Status

This ENDF/B-V evaluation was made by Hale, Stewart and Young [55].The evaluation agrees with that of Tagesen and Vonach [54, 56] within the givenerrors. Except for the low threshold region at 8-9 MeV, the accuracy of theTagesen-Vonach evaluation was claimed to be better than 5%. In particular, anaccuracy of about 0.5% was estimated for the 13.5-14.8 MeV region [57]. Evainet al. have used the results of the Tagesen-Vonach evaluations [58] as well as theevaluations of Winkler and Ryves [59] and Ryves [60].

Recently, a new evaluation was performed by Kornilov et al. [61], therecommended data cf which are plotted in Fig. 11, while the assigned errorscan be found in Table IX. In the figure, the cited evaluations were plottedtogether with the results of those measurements which were not included in theevaluations (to renormalize the results of Garlea, ENDF/B-V values were usedfor the 235U(n, f) cross-section). It can also be seen from this figure that ENDF/B-Vagrees well (within 5%) with the experiments and evaluations cited, except in theneighbourhood of the threshold. However, in the 14 MeV region, ENDF/B-V mightpossibly be higher by approximately 1-2% than the majority of the experimentalvalues. In the table, the lower and upper limits of uncertainty mean the ± uncer-tainties 'at least' and 'at most', respectively.

In Fig. 12 , the ratios of the ENDF/B-V (dashed-dotted line) and Tagesen-Vonach (dashed line) evaluations are contrasted with the evaluation of Kornilovet al. It should be noted, however, that there is an apparent presence of structurein the evaluation by Kornilov et al. from 6 to 8.5 MeV which must be taken intoaccount in the use of this cross-section. It was recommended at the 1984 IAEA-OECD/NEANDC Advisory Group Meeting in Geel that the reasons for the differen-ces in the Vonach and Kornilov evaluations should be fully investigated [11].Figure 13 and Table X illustrate and detail the 27Al(n, a) cross-section.

8. THE s6Fe(n,p)S6Mn CROSS-SECTION

The cross-section standard 56Fe(n, p)56Mn is frequently used to measurefast-neutron fluence rates, especially around 14 MeV. The 27Al(n, a) or theS6Fe(n, p) cross-sections are clearly the references for the majority of measure-ments where a monitor-foil or mixed-powder technique is employed and themeasured quantity is, in fact, a ratio of cross-sections. However, it should benoted that the 56Fe(n, p) cross-section was not accepted as a standard at the1984 IAEA-OECD/NEANDC meeting in Geel because the standard cross-sectionof the 27Al(n, a) reaction is available in the energy region of interest. Neverthe-less, the activation of natural Fe may be used as a reference, taking advantageof the higher specific activity. For this purpose, an evaluation was stronglyrecommended [11]. The present version of the ENDF/B-V evaluation is recom-mended for the energy region from ~ 11 to 20 MeV.

HflT 1306 CROSS-SECTIONS

.ELfiSTIC

FTT 10,-10 10",-9 10 10 10" 10""MeV

10 10"

4 .5

1.0

3.5

3.0

2.5

2 .0

1O"2 10 ' 10°6-C -NPT

O

1 6-C - 0 ELASTIC MAT 1306

ENERGY SIGMA ENERGY SIGMA ENERGY SIGMA ENERGY SIGMA(eV) (b) (eV) (b) (eV) (b) (eV) (b)

1.0000E-05 4.7392E 00 4.0000E 05 3.6182E 00 8.5000E 05 2.7888E 00 1.3500E 06 2.1739E 002.0QQ0E 04 4.6653E 00 5 . QQOQE 05 .3.4Q33E OQ 9 . 7500E...05. ..2..61.08E.. .00 1...475.QE.. 06 , 2 . Q552E. 0.01.0000E 05 4.4084E 00 6.0000E 05 3.2076E 00 1.1000E 06 2.4503E 00 1.6250E 06 1.9277E 002.0000E 05 4.1172E 00 7.2500E 05 2.9868E 00 1.2250E 06 2.3052E 00 1.7750E 06 1.8155E 003,0000E 05 3 .855 IE OQ

5

FIG. 10. The C(n, n) cross-section (ENDF/B- V, Standards File).

OJ

54 BODY

TABLE VII. UNCERTAINTY DATA FOR THE C(n, n)C CROSS-SECTION [50]

ENERGY RANGE (keV) UNCERTAINTY (PER CENT)

12505006007007508009001000110012001280130014001500160017001750

TOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO

25050060070075080090010001100120012801300140015001600170017501800

0.460.460.530.530.530.530.530.530.530.530.530.530.530.530.600.600.600.60

CORRELATION MATRIX (PER CENT)

1003833333333333333333333333329292929

10033333333333333333333333329292929

100717129292929292929292925252525

1007129292929292929292925252525

10057292929292929292925252525

100717129292929292925252525

1007129292929292925252525

10029292929292925252525

100717129292925252525

1007129292925252525

10057292925252525

100717125252525

1007125252525

10025252525

1007 7 10077 77 10022 22 67 100

PART 1-2 55

TABLE VIII. RELATIVE CENTRE OF MASS NEUTRON ANGULARDISTRIBUTIONS [50](Legendre polynomial form: sum over A(I)*P(I), 1=0, 1, 2, 3, 4, 5; A(0) = 1.0)

E <keV) AU> A(2) A(3) A(4) A(5)

.1000E 01

.5000E 01

.1000E 02

.5000E 02

.1000E 03

.2000E 03

.3000E 03

.4000E 03

.5000E 03

.6000E 03

.7000E 03

.8000E 03

.9000E 03

.1000E 04

.1100E 04

.1200E 04

.1300E 04

.1400E 04

.1500E 04

.1600E 04

.17OOE 04

.1800E 04

.1850E 04

.1900E 04

.1925E 04

.1950E 04

.1960E 04

.197OE 04

.1980E 04

.1990E 04

.2000E 04

.42O3E-O3

.2O95E-O2

.4173E-O2

.2O18E-O1

.3876E-01

.7164E-01

.9948E-01

.1230E-00

.1426E-00

.1588E-00

.1718E-OO

.1819E-00

.1892E-00

.1939E-00

.1961E-00

.1957E-OO

.1927E-00

.1869E-00

.1784E-00

.1666E-00

.1511E-00

.1311E-00

.1187E-00

.1O38E-OO

.9486E-01

.844SE-01

.7965E-01

.7437E-01

.6846E-01

.6171E-O1

.5385E-01

.3749E-O3

.1397E-O2

.4868E-02

.9585E-02

.1498E-01

.2O65E-O1

.2636E-01

.3196E-01

.3742E=01

.4275E-O1

.48O7E-O1

.5355E-O1

.5945E-O1

.66O5E-O1

.7385E-O1

.834OE-O1

.953OE-O1

.1104E-00

.1295E-OO

.14O7E-OO

.1531E-OO

.1596E-00

.1665E-0O

.1693E-OO

.1723E-0O

.17S4E-OO

.1788E-OO•1827E-OO

.4437E-03

.8995E-03

.1569E-02

.2444E-02

.3498E-02

.4679E-O2

.5912E-02

.7091E-02

.8092E-02

.8736E-02

.8792E-O2

.7973E-O2

.5893E-02

.1978E-O2

.4672E-O2

.1583E-01

.2433E-01

.3641E-01

.4474E-O1

.SS65E-O1

.6109E-01

.6 738E-O1

.74 76E-O1

.8365E-01

.9457E-01

.514OE-O3

.9234E-03

.1549E-02

.2463E-O2

.3 750E-O2

.551OE-O2

.785OE-O2

.1088E-01

.1471E-O1

.1939E-01

.24 78E-O1

.3022E-01

.3225E-01

.3267E-01

.3155E-O1

.2866E-01

.267OE-O1

.2408E-01

.2053E-01

.1571E-O1

.9072E-O2

.6801E-03

.9821E-03

.1388E-02

.1923E-02

.2604E-02

.2998E-O2

.3410E-02

.3610E-02

.3789E-02

.3850E-02

.3900E-02

.3934E-02

.394 7E-O2

.3927E-O2

56 BODY

" A l Ins) "Na

EVALUATION:

ENDF/8-V

+ Tagcsen-Vunach

• Winklcr-Ryves

o Kornilov pt al

MEASUREMENT:

• Li Jizhou

7 Antonov et a{.

• Garlea et at.(renormatized)

• Enz el al.

t Enz et al.(with pulsed beam]

x Kudo et al.

REF

IS6I

1591

1611

[621

1631

I6t]

16SI

[65]

[66!

FIG. 11. Different measurements and evaluations for the 1Al(n, a.) cross-section.

TABLE IX. UPPER AND LOWER UNCERTAINTY LIMITS FOR THE27Al(n, a) REACTION CROSS-SECTION [61]

Energy region(MeV)

5.5-6.0

6.0-8.5

8.5-11

11-13.5

13.5-15.5

15.5-17.5

17.5-20.0

Lower limit of uncertainty

15

5

0.8

0.7

0.6

0.9

1.4

Upper limit of uncertainty

15

5

3.8

5.8

2.5

4.1

7.6

PART 1-2 57

1.08

1.06

1.04o5 1.02

o6

0.98 •

0.96

0.94

V\

\

A // V

A' \

s

/

/ /,• /

/ // • /

/

/

/

A " " * -/ V

"• - \ / \

\

\

V

//

11

\

\\

\

, \\ ^

\ '

/

/.\

\

1 1

10 12 14 16

En(MeV)

18 20 22

FIG. 12. Cross-section ratios of the ENDF/B-V (dashed-dotted line) and Tagesen-Vonach(dashed line) evaluations compared with the evaluation of Kornilov [61].

8.1 Status

This ENDF/B-V evaluation was carried out by Fu [67] based on work byDudey and Kenneriey [68], Smith and Meadows [69] and on other experimentaldata that were current at that time.

In Fig. 14, the ENDF/B-IV and ENDF/B-V values are plotted as curvesand are supplemented by more recent experimental data which have errors ofless than 5% (these data were not included in ENDF/B-V). For the 14 MeV(and upper) energy region, the new data are, in general, above the ENDF/B-Vcurve (they are higher by about 4% on average). Particularly interesting are thevalues of Fu et al. [70], who carried out a simultaneous evaluation of the 32S(n, p),56Fe(n, p) and 65Cu(n, 2n) cross-sections, the input evaluations being those theyhad previously submitted for the ENDF/B-V Dosimetry File (Table XI).

Concern has been expressed that ENDF/B-V data are too low in the lowerenergy region. Raics et ah, for example, have measured cross-sections of the56Fe(n, p) and other reactions relative to the 238U(n, f) reaction in the 6.5-10.5 MeVregion and calculated normalized X values for different data sets. Basedon these calculations, they concluded that at an acceptance level of 97.5%, twoof the data sets they examined could not be used for the 238U(n, f) reaction, norcould ENDF/B-V be used for the S6Fe(n, p) reaction in the 6.5-10.5 MeV energyregion. It was their belief that ENDF/B-IV was the most acceptable and consistentdata set for the 56Fe(n, p) and 238U(n, f) reactions [75].

MRT 6 3 1 3 CROSS-SECTIONS 1 3 - A L - 2 7

60O-O

MeV 13-(lL-27

Ito

a.

II tnenentntnentiUJientnoKJitnentnitntntntntnn • 'nnII cooo<Ood3obtoooo<J>oocn:-> _II rnmmiTimmmmmmm-:mmm mmmmrnrnII : iu ooooooooooooooooooooII cncncnicncncncn'cncncno-cncncncnocncncnen

I tn.b.b{OCOCOCOiS3K3S3S3iS3-

co co cn<0 en co —<» tn co sso oo-J ^<JO s s — o en

o -4 cn;—»co <O -»;M tn .k-co A .& JV .^ en i en ACC-S3COCnui(OCO:S3COO~J:COCO-» - £ * S 3 O Cn-«JCOm m mm m m rrvm m m m;m m m m;m m m m mI I I I I I ! I I I ! I I I I I I I I I

O O OO O OOSOOOOOOOOOOOO

en cn<j> en en t w o tn tn enitn en 01 t n m tn en 01 en

•J tn ;^ CO S3— o C0 CO COCO tO CO 03O3 03 CO ] ^J

— II~2~ n- II

O O O O O O O O G ) JO O O O O O O 00 CO COA 01K3-J 03 O 010-JmmTTinimm^Tinimrn.:mmmm;rniTi mrnmooooooooooioooooooooo) o o i O)0 )O I< ] IO)0 ] G > O cn O) o o o> o o> o

co axji -b to ro;- * (O coioo J J ai tnC D t O C O b ^ C O N5:-> o O C D — O l — M - J•«J :•& o <o * to co w a*tn a> tn co I D -C» OO O - J

^ J k O C O C O ( O C O O > CO O O O O O O J O : O O O O C > C no o o o o o o tn to C0:Ji co -J ro:^ ocotn —*m rrrm rn m m:m m rn m=m m m rri:m m mm mi i : i i i i • i i i i • i I i i • i i i i i

O O O O O OO O O OiO O O O O O O O OCO CO 4 0 CO CO COW CO CO COiCO CO A A i A £» .£* i k A

_. — < 0 CO CO tDiCO 03 00 00:00 0 0 - J « J ~ J - 4 - J O 5 O>

o oco a> .& K5:o co en .&iio o a> a*.e» so o t o c oUIOOOOOO OOOO 0 0 0:0 OOOO0 0000000000000:00 OOOOOOOO OO O O OO O O 0:0 OOOOm m;m m m m:m m m ntm m m m-m m mrn mooo oooo ooobooooo oo oM •NJO O) en cnicn o> en cnicn en c> CDicn en o>oi en

m 11 >

ilz(S> II r

i!!= > it •

uIIIIIIIIII

m II_ Z ilo m n< 33 II

d II< n

11to n• - 1 U

il ?it —IIiln

S »S> il

iln

tocoiooco-J~i;-4cnentnJAi»cocois3S3-«---" ,{

to-.>jcotOtnoJitoco;--i-'aioitnotnto-- I]CnS3~JC0-J-'S3t0S3C0i-'C0CnoiO — tD-J03 II-•000000000000000000 IIS3 OOOOOOO OOOOOOOOOOOm mTn m m m:m m m m;m m m rrvm m mrn m1 1:1 1 1 1 1 1 1 111 1 1 1 :1 1 1 1 1o 00 o o 00 oooio oooo ooooS3 S3 JO S3 S3 S3iS3 S3 S3 S3iS3 S3 S3 S3 S3 S3 S3 S3 IO

II II11 m 11H _ 2 II11 » m 1111 < 33 11n a n11 < 11

11u11

n

o coco oo 03 ~)-J en en tnwi Jk A coco sj K J - • - .ocnotnotnotnotnotnotnotnouiooo.o ooo ooooooooo ooooO OO O O OO O O OiO OOO OOOOOm mtn m m m;m m m m m m m firm m m rOOO OOOO OOOOOOOiO OOOO

II (/I ||•I ___ •—• Itii £. o IIil 2 Hil > ilil ilII II

nII

m II_ — 2 IIII 5- m »II S 33 IIII CD II

(j} A !A tn a> ~Ji~) co to -

00C0<0CJ)CO->(003~J O i — - • S 3 I O S 3 S 3 K 3 - > oo •& co e n - J - . .£> .tk o t n x > CD •& CD e n - . i v ~4O COO CO O COO O O *><D CO -«J COCO O N3SO t no*Jo*Jo>]ooio -»ocno o-£i ocoom mtn m m m:m m m m;m m m m-m m mm mi i: i i i i i i i i: i i i i: i i i i iooooooooo oo o o oo o oooS3 S3N3 S3 S3 S3 S3 S3 S3 — - • — - • ->•-» — ——• —

•< IIIIII

I?

IIIIIIIIIIIIII - .II CO u11 . —1 n en11 a- a 11 co11 ~ S 11 - •n s> 11 co

6S Z-\ XHVJ

60 BODY

TABLE X. UNCERTAINTY DATA FORTHE 2 7Al(n, a) CROSS-SECTION

Energy range(eV)

5.4E+6 to 5.9E+6

5.9E+6 to8.0E+6

8.0E+6 to 9.0E+6

9.0E+6to 1.0E+7

1.0E+7to 1.1 E+7

l.lE+7to2.0E+7

Uncertainty(%)

30

25

23

22

21

5

TABLE XI. INPUT-OUTPUT DATA SETS FOR THE 56Fe(n, p) REACTION [70]

E(MeV)

10

13

16

Input data set

XS(mb)

69.3

112.0

81.8

STD

(%)

4.0

2.5

2.0

Output data set

XS(mb)

71.0

114.3

85.0

STD

(%)

3.4

1.9

1.1

Lu Hanlin et al. [76] have concluded that between 5 and 8 MeV, the Chinese evalu-ation is about the same as ENDF/B-IV. Between 8 and 12 MeV, their curve is situatedroughly at the half-way point between ENDF/B-IV and the evaluation of Simonsand McElroy [77], the difference between the lowest curve (see Ref. [68]) andthe highest curve [77] being about 7%. For the 12 to 20 MeV energy region, theevaluation of Lu Hanlin et al. is higher than that of ENDF/B-IV, indirectly implyingthat their curve is also higher than the ENDF/B-V curve. Evain et al. [58] alsoappear to believe that ENDF/B-V is too low, since they use an ENDF/B-V shape,but normalize it to the (higher) Ryves value.

As a result of the above criticisms concerning ENDF/B-V, it is recommendedthat only values higher than 11 MeV be used in this file. Furthermore, it is suspectedthat uncertainties somewhat higher than the presented ones would be more reliable.Figure 15 and Table XII detail the 56Fe(n, p) cross-section.

PART 1-2 61

•s 1

118

m

m.

112

110

108

106

W.

102

100

Y / ENOF/B-IV

s^ ENDF/B-V ^ ^ ^

EVALUATIONS- %. \ .

ENDF/B-V \ v '••.

ENOF/B-IV N. \

i - Fu et at 1701 N. \

• Winkler-Ryves 1591 \ \

MEASUREMENTS: N ^

A Lu Hanlin et al. 1711 \ \

_ Sharma et al 1721 \ N .

Ryves et al. 1731

• Antonov et al. 163]

• Kudo et al. {661

T Pepelnik et al. [741

\

\

• \

13 13.2 13.t 13.6 13.8 K V..2 U.4 H.6 K.8 15

120

110

100

90

80

70

60

50

40

30

20

10

1 1"Fe ln.pl "Mn U ^ \ | | _

/ X

//

/5 6 7 8 9 10 11 12 13 V, 15 16 17 18 19 20

ElMeV)

FIG. 14. ENDF/B-IVand ENDF/B-V curves compared with other recent evaluations andmeasurements.

toMRT6431 CROSS-SECTIONS 26-FE-56

60O-a

26-FE-56

3 -

gCD

2

o>o>(nu>^inai ( j tu iui i j i ik .&. twA^^«&i^uuua}<*)uucj<JuKitofoufOroroK>-*->-* ->-* - ' ->- ' - *oooooaoooM —CQCB^OCfl A<OK> —CDCD^Ocn<0WOO<0C0^O<fl^Q —OCDCO^Oin AK>—©CO^OCfl AC^W —oC0*»iO»yi ACJW —OCO —COU1U1U1CT1.£K*)K> —<0-»JCIirOOO)COtO©0-» -"-*:-»©OCOCO-JOinCOK>OCOOCOOCoen-* —-» —— O<0CDC0-JO ACO — OX»IO-0»JOO- a)-JOJO>roai<J>C*)a)OCDCJ(JlfOOO WfOO*J<*lCKJ)tO-»4 A<DUUUOO>tO-'-'(0(B^AOUlO)oM-*0<>>JU->JOrnrnrnrnTnrnmfTiTnfTi iTiiTirnrnrnrnmmrTirTi-fnrnrnrnTninrn rnTnm TOTOTTI mmnirnmrnmrnrn rnmrn rnrnrnpifflfflnimmmrn

A CO CO-CO CO K) fOK> t o fO tO—* — — — — — — —<£>CDCDCD—J

300OOOOOOOOOOOTi 0*0) d O) Ol O) O) O Ol O10)'

J — — ™»—. — — — — — — <0 CO CO

OOC*)NJ A<0C0fO<0C0C<OC0tniDO OC— ^ - " O A N U A £h<0C0fO—UllOCOOtO -C«CDO —CO —

WOC0C0JC0l0O W A < 0 ^ 0COCO —CO-^CJtDCDO30)0 010

O -• — —-* — - • -» — — o O O O O O O O O (0 <0 <D (0 CO <0 (0 0) <D CD 00 CO OS 03 CD 09 COCD- J0)0)0 0100)01

D01LTlJCI~J010tnNKJl»0NJCno-J<»OCPi*<JO*K0~J — 0>CJT^ TO TO TO?n TO TO HITT I m TO ni^n TO n i TO TO m JTI TO:TO TO rnTO"TO TO TO f

D-Jo)uoo(ocsa>^->MO)0)a3a9-jaiuiJUtoOO-JUta>CJ10D^0100 A-4C*CJO<J1—*n TO TOTH TO TO TO-m rn TOPI rn^n TOTTI TO TO TOI^

O O O O O O O O O O O O O O O) 0)0)0)0)0)0^0) O) 0)0)0) O)O)O)0)

O — (D -»i O

uaoc0 O CO — <De(0t0l*

O — O CO -0 JO

Mauouaoico£<nu^U(0^uO00>-»—JOfOO-JdCBW^ Ayi-J<DO)aiMCa-*roO)0 A C J C D K J Q J U C O C D O O O C JrnTOrriTTi(THTiTOm TOrnrnmmrnmirn TOTOrnTOTOmTOTnrnrnniTTirniTirnTTimTO mTOmi i i i i i i i i t i i i i i i i i i i i i i • i i i i i i i i i i t i i i i i i i i i. i i i i i i i : i i i i i

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOin en ui en oi oioim oi m m yi ui en at en oo)cn o OOJO 01 o 0)0)0)ooo>«» o ciowioomfl ioioioMJioi^N-j- j-JS'j- j 'JS

O O O O D D C C C

nDnou)J AOOW^Wo AOi

TOTOTO'rornTOmTTi

couioicoo-»w—'Cotocoro-J ^cotoo JkKj-co-JXkou>-COCDfO AOQjCJd-JOOCIiyKOWMWtJtCJ AO<Jl-"J0»rnmfTiTTim ni rnfn TO TO m TO TO m firm TO TO rn'Cnmrnrn TO

oo) CO CD -^ —* en COnrnfTjrnfTfntT

oOI (O O A CO CD J (O J — O COtD 4 O OHJ J O) IOO O) i i K3 O J O1O W O M U M CO CO J U O ) J CO CH O) CO CD en CO O OI I I I I I I 1 I I t 1 I t I : I I t I I t I I : I I I I t I I I I I I I I I t I I I I I 1 1 I I 1 1 I : I I I I IOOOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOO 000 -00000000 OOOOO OOOcoco co(o co to co^o co co ^ ^ ^ ^ ^^^ ^ ^ ^ ^ JK ^ ^^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ J^ ^^^^ ^ A ^^cn n n n n t^ en 'j\ en en en^^ n n n n

to —_*— — — — * — — ——_•_._.— — — — _ . _ » —

oooooomooiocoooMuoyooooOOOOOOOOOOOOOOOOOOOOOOOOOo o 00 o o 00 o o 00 o o 00 00 00 o o 00 oTO TO TOfn m rn TO^H TO rri rritn TO TO TOTTI TO TO TOTnTOrnTO^nTO

o o o o o o o u iOOOOOOOCDCO J N O

0 0 o o 0 0 o>co^<ntDornrnTOfnfn^irn rnf^TOTOTO

o ( o W o o c o o ut < 0 O C 0 o —OCOO)CO — CO CO— O COO)-J<o-»en oxo 0 0 tocooooocoo coo

— — — — -»coco-" o — — - * —— co<ococo*jooencn«i

co co -»'ik o> co coo -»o coo o -* -*—• -• o ca>Mco^cocn^Mco^&<7)coN)iooo

J CO - *O I CO M ocoen <o tico i^oeo^^OK)t

«5 - * o co w o ono>CCo«)Ooi

-J COO O * - • 00 -J en * ?oo a > c o t o ^o c c o o o c o o

OOOOOOOOOOOOCOJ»yiOOOOOOOOOOO O O O O O O 0 O O 0

^^OK)toenoCDCo«OoOOOOOOOCOW(D<OCOOOOOOOOO-M-^OOTO TO^l TO TO f n ^ n TO TO I f l - l l l TO TO

I t i l l 1 1 1 1 I I I I I I I t I I t I I I I I f I I I I 1 I 1 ( f i t IO©OOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOO

iocococno4ooaocoootooo^O-CO —-J—<00<D-JQ10—03 010 0 0-JA(0-K>-O»J<31ilO0>D>CJOM;-TO"TO TO TO TO;TO TO TOfn TO nTOTH W TO TO^l

I f t I I I I I I I t I I IOOOOOOOCO<OCOWCOtOU

O O O O O O O ©

<

fifi!

£9 Z-\

64 BODY

TABLE XII. UNCERTAINTY DATA FORTHE 56Fe(n, p) CROSS-SECTION

Energy range(eV)

3.0E+6 to 5.0E+6

5.0E+6to5.8E+6

5.8E+6 to 6.4E+6

6.4E+6 to 8.5E+6

8.5E+6to 1.1E+7

1.1E+7 to 1.2E+7

1.2E+7to 1.6E+7

1.6E+7 to2.0E+7

Uncertainty

10

8

6

5

4

3

2

3

9. THE I97Au (n, 7) 198Au CROSS-SECTION

Gold has excellent properties as a capture standard. Sample preparation isparticularly easy, since the material is monoisotopic, easy to fabricate and theproduct nucleus has a simple decay scheme. The standard is applied with twodifferent methods, activation and prompt gamma ray detection [ 1, 78]. Theactivation method for gold is well understood; 198Au has a well known decayscheme which makes it very attractive for beta-gamma coincident counting withits inherent self-calibration [28]. The recommended energy range is from 0.2 to3.5MeV[78].

9.1. Status

The ENDF/B-V evaluation was carried out in conjunction with the Standardsand Normalization Subcommittee of CSEWG and its Au Task Force [79].

According to one report on the status of the ENDF/B-V evaluations usingexperimental data published before January 1982: "There seems to be a generalconsensus that the most recent measurements have cross section values lowerthan the ENDF/B-V points for En > 1 MeV. Moreover, Macklin's work suggeststhat this trend continues also at lower energies" [78]. The latter statement issupported by Carlson et al. in their preliminary approach to ENDF/B-VI [42].Blinov et al. consider ENDF/B-V to be too high for energies greater than 2 MeV[80]. Tolstikov considers ENDF/B-V "slightly overestimated" for the same energyregion [81 ].

250

200

150

100 •

50

{1\

Y\

\i\

XV

ENDF/B-V

• Andersson

w* Yamamuro

K Hussdin

• July

o Ma<klin

A Chen Ying

Rels

185,86]

1671

(881

1891

1901

ISM

>s

0.50 100 1.50 2.00 2.50 3 00

£„ [MeV|

FIG. 16. Plots ofENDF/B-V versus recent data of other evaluations and measurements.

350

O\

MflT 1379 CROSS-SECTIONS 79-RU-197

8.o

79-RU-I97

79-AU-197ENERGY

(eV

1.9900E2.QQ0QE2.2000E2.3000E2.4000E2.7000E2.8000E2.9000E3.0000E3.1000E3.2000E3.3000E

)

050505050505050505050505

(N,GAMMA)SIGMA

Ib)

2.4420E-012.575QE-Q12.4500E-012.4000E-012.3400E-012,1900E-012.1480E-012.1000E-O12.0650E-012,0100E-Q11.9500E-011.9100E-01

ENERGYlev)

3.4000E3,600053.9000E4.1000E4.2000E

..4.4000E.4.8000E4.9OOOE5.0000E

514000E6.5000E

050505050505050505Q50505

SIGMAIb)

1 .8600E-011,7500E-Q11 .6300E-011.5600E-011 .5280E-011.4700E-011 .3800E-011.3600E-011 .3460E-011.3.000E-Q11 .2600E-011.0800E-01

ENERGY(eV)

7.0000E...7....5000E

8.0000E8.5000E9.0000E1.0000E1.1000E1.2000E1.3000EL4QQQE1.5000E1.5500E

05Q5050505

.06060606.060606

SIGMA(b)

1 .0100E-019,52QQE-Q2.9.0800E-028.7200E-028.5500E-028,30QQE-027.9200E-027.6000E-027.3500E-027..20Q0E-Q27. 1500E-027.1000E-02

ENERGYlev]

1.7000E. ...1...8QQQE..

2.0000E2.2000E2.4000E2.5000E2.6000E2.7000E2.8000E2.90QQE3.0000E3.5000E

1

060.606060606060606

. 0 6 .0606

MAT 1379

SIGMAIb)

6.5000E-026.15Q0E-Q25.4000E-024.6000E-024.0000E-023,75Q0E-023.4200E-023.2000E-022.9500E-022,750QE-022.6000E-022.0500E-02

> •

7*

1to

FIG. I 7. The mAu(n, y) cross-seccion (ENDF/B-V, Standards File).

68 BODY

TABLE XIII. UNCERTAINTY DATA FOR THE 197Au(n, 7) CROSS-SECTION[78]

Energy range(eV)

2.0E 02to5.0E

5.0E 02to6.0E

6.0E 02 to l.OE

l.OE 03to2.5E

2.5E 03to3.5E

+ 1.000

+0.040

+0.040

+0.000

+0.000

02

02

03

03

03

+ 1.000

+0.060

+0.000

+0.000

Correlation matrix

+ 1.000

+0.190

+0.000

Uncertainty(%)

6.1

4.1

4.1

20.0

20.0

+ 1.000

+0.960 +1.000

For the energy region below 1.15 MeV, Davletshin et al. published recentlyre-evaluated experimental data [82]. The original data of the same authors weredifferent from ENDF/B-V by 16% maximally [78]. However, the former datahave now been corrected for neutron scattering and they fit well to ENDF/B-V.

An evaluation by Chen Ying et al. yielded results above ENDF/B-V forenergies E n < 2 MeV(by 7% maximally) and very slightly below that for energies from2.5 to 3.5 MeV [83, 84]. According to Carlson et al., who have published prelimi-nary results for ENDF/B-VI, the new evaluation "is very similar to that ofENDF/B-V. There are changes of 5-6% in the energy range from 200 to 270 keVcompared to ENDF/B-V as a result of the inclusion of data... which show structuredue to competition with inelastic scattering" (page 81 of Ref. [42]).

The most recent data are plotted with the ENDF/B-V curve in Fig. 16. Theagreement can be considered to be good for the energy region from 1.95 to 2.55 MeV,but otherwise ENDF/B-V is a little higher than the experiments. Anderssonet al. present a slightly corrected version of the data set presented in Ref. [85],though the differences between the two data sets remain within the given errorsin every case [86]. According to the results of Hussain and Hunt, the discrepancyis not as high as previously suspected for the En > 2.5 MeV region [88]. In general,it is desirable to have more (activation-type) measurements available for analysis.

PART 1-2 69

2100 •

2000 -

1900 -

1800 -

1700 -

_

£ 1600 •

0

1500 •

1100 •

1300 •

1200 •

1100 -

1000

X

O

D

A

0M

X•

\

E.A.Zhagrov et al.

M. Cance and G. Grenier

OA Wasson et at.

Al-walled iycollimator,

Brass-walled '

Li Jingwen et al.

M. Mahdavi el al.

V.N Oushm et al.

R Aril el al.

Yan Wuguang el al.

A.O. Carlson el al.

ENOFxB-v evaluation

\

\ ,

2150 •

2100 •

2050 •

2000 •

Q.A. Wasson el al.

14.0

96!

971

981

99J

1100]

11011

1021

11031

11041

1105.131

JI

r

14.2

V

] T

i nK.4 14.6 14.8 150 |

1

rk \[\J

V1 1 r-r-

0.1 0.2 OS 1 2 5 10

E, (HeV)

FIG. 18. Post-1980 measurements of the 23S U(n, fj cross-section plotted alongside theENDF/B-V evaluation.

MflT 1395 CROSS-SECTIONS 92-U -235

'. 2 .0

1.8

. 1 . 6

. 1.1

1.2

8.a

10'92-U -235

1 92-U -235 FISSION MAT 1395

ENERGY(eV)

9 .9300E9.9900E1.OOOOE1... 2000E1 .4000E1.6000E2.OOOOE2,200082.4000E2.6000E2.8000E4.25QQE4.7500E5.4000E6.OOOOE7.OOOOE7.8000E8.3000E8.5000E9.0Q00E

0404050505050505050505050505050505050505

SIGMA(b)

.6172E

.5992E1 .5810E

.5200E

.4760E

.4400E

.377 0E

.3430E1 .314OE

.2910E

.2720E

.1.9.6 OE

.1740E1.1570E1.1450E1.1370E

.1370E

.1420E

.1470E

.J680E

ENERGY(eV)

00 9.6000E00 9.8000E0000000000OQ00

!.OOOOE.05Q0E.1500E-2500E.4000E,70QQE.

1.8000E00 2.OOOOE00 2.1000E00 . .2.30Q0E00 2.8000E00 3.OOOOE00 3.8000E00 4.O0Q0E00 4 .4000E00 5.OOOOE00 5.2000E00

05050606060606060606060606060606060606

SIGMA(b)

1.2070E1.2170E1.2200E1..2150E.1 .2160E1.2230E1 .2390E1,278QE1.2880E1.2980E1.297 0E1.286QE1.24 00E1.2190E1 .1480E1.1320E1.1200E1.0640E1.0520S

000000OQ000000QQ000000OQ00OU00OQ.000000

ENERGY(eV)

5.3000E5.5000E5.6400E5.7000E5.8000E5.9000E6.OOOOE6.2QQ0E6.4C00E6.5000E6.7000E

.7..Q.0Q0E7.2500E7.5000E7.7500E

.8..OOOOE8.2500E8.5000E9.5000E

0606060.6...060606O.6....060606Q606060606....060606

SIGMA(b)

.d480EI .047 0E1 .051CEI.Q550E.0660E

I.0830E1 .1120E

.2Q70E1 .3060EI .364 0EI.4560EI....553.0E..1 .6500E1.7190EI.7630E1 .7820E.

.7840E

.7820E

.7620E

do0000OQ00000000000000QQ000000QQ000000

ENERGYleV)

i.05ddE1.1000E1.1500E1,20Q0E1 .2200E1.3000E1 .3500E

....1...4.Q.QDE...1 .4500E1.5000E1.5500E1..6QQQE.1 .6500E1.7000E1 .7500E.1. 8QQ0E1 .8500E1 .9500E2.OOOOE

0707070707070707....;07 :

SIGMAIb

.7380E1 .7320E1 .732 0EI.7480E1 .7710E1 .9150E1 .9980Ei , 068 OE2.0990E

07 2 .1030E07 2 .0930E07....2....Q6.8QE.07 :070707....0707

2.0360EI.9860EI.9600EV.9390E

.9450E

.9900E07 2 .0240E

)

do0000OQ000000.00000000.0000000000000000

*v

1

FIG. 19. The 2X U(n, f) fission cross-section (ENDF/B- V, Standards File).

72 BODY

TABLE XIV. UNCERTAINTY DATA FOR THE 235U FISSION CROSS-SECTION[HO]

ENERGY RANGE UNCERTAINTY (PER CENT)

1001502004001241015

IceVfceVkeVkeVMeVKeVMeVMeVMeV

TOTOTOTOTOTOTOTOTO

150200400

124101520

keVkeVkeVMeVMeVMeVMeVMeVMeV

4.03.03.03.52.53.03.54.06.0

CORRELATION MATRIX

+1.00+0.60+0.25+0.35+0.07+0.05+0.00+0.00+0.00

+ 1.00+0.60+0.50+0.10+0.10+0.00+0.00+0.00

+1.00+0.60+0.15+0.15+0.00+0.00+0.00

+1.00+0.30+0.25+0.05+0.00+0.00

+1.00+0.40+0.30+0.05+0.03

+1.+0.+0.+0.

00402520

+1+0+0

.00

.45

.40+ 1.00+ 0.80 + 1.00

Another matter of interest is what uncertainties could be ascribed toENDF/B-V. Originally, in 1982, values of 6.1% for 0.2 to 0.5 MeV, 4.1% for0.5 to 1.0 MeV and 20.0% for 1.0 to 3.5 MeV were given [79]. Since then,Ryves, in a very detailed investigation using data published before 1983, hasproposed the following uncertainties for ENDF/B-V: 8% below 2 MeV and 4%for 2 to 3.5 MeV [91]. It should be mentioned that at the 1984 IAEA-OECD/NEANDC Advisory Group Meeting in Geel, the usefulness of the gold capturestandard above 1 MeV was questioned because of the small cross-section andbecause of background problems [11].

Finally, it should be noted that recently a deformed optical model andHauser-Feshbach calculation, together with gamma-ray strength function formu-lations have been found to describe well the n+197Au cross-sections for En =0.01 -20 MeV, as well as neutron emission spectra from 14 MeV neutron reactions [92].Figure 17 and Table XIII detail the 197Au(n, 7) cross-section.

PART 1-2 73

10. THE 235 U (n, f) CROSS-SECTION

The 235U(n, f) cross-section is considered to be a standard at thermal andin the energy region from 0.1 to 20 MeV. Detectors which have been employedto implement this cross-section are basically of two types. Either the very ener-getic fission fragments or fission neutrons are counted. Fission fragment detectionis performed with gaseous ionization chambers, scintillation chambers, solid statedetectors and track-etch film techniques. Fission neutron detection is usuallyaccomplished by using large, high efficiency neutron detectors [1 ].

10.1. Status

The ENDF/B-V file was derived from the evaluation by Poenitz [93] usingpre-1978 data. Below 1 MeV the ENDF/B-IV, ENDF/B-V and the Sowerby et al.[94] evaluations agree reasonably well, the largest differences being less than 2%.From 1 to 1.5 MeV, the ENDF/B-V evaluation is lower than ENDF/B-IV, thoughthe Sowerby et al. evaluation is even lower than ENDF/B-V. Above 13 MeV,ENDF/B-V is significantly lower than both the ENDF/B-IV and the Sowerby et al.evaluations, according to Carlson [ 1 ]. Otherwise, ENDF/B-V, JENDL-2, ENDL-82and KEDAK-4 all agree with each other within 4% over the relevant MeV region [95].

The results of measurements reported since 1980 are plotted in Fig. 18along with the ENDF/B-V evaluation. It is apparent that below about 2 MeV,the majority of the data lie below the ENDF/B-V values. (Sowerby and Patrickarrived at the same conclusion earlier using nearly the same data [106].) Abovethis energy the results are in reasonable agreement with ENDF/B-V (see alsoRef. [107]).

According to a preliminary evaluation of ENDF/B-VI, it is approximatelythe same above 4 MeV, ~ 1-2% lower from 1-4 MeV and ~ 2% lower from 0.1-1 MeVcompared with ENDF/B-V. An indication of the reduction in the evaluatedcross-section is given by the calculated average 235U(n, f) cross-section in a 252Cfspontaneous fission neutron spectrum. This quantity is ~ 1.5% lower for the newevaluation as compared with ENDF/B-V [42]. Specifically, the value of (a),that is the 2s2Cf spectrum averaged neutron cross-section of 23SU(n, f), is1210 ± 14 mb (recommended value), while this cross-section is 1236 mb (seePart 2-4) if calculated using ENDF/B-V for 23SU (n, f). The (a) valuecalculated using ENDF/B-VI is smaller. Therefore, one can say, on the basis ofthe experimental values of <<7>, that version VI of ENDF/B is preferable, orthat a reduction of the ENDF/B-V values is justified in some average sense.However, it is a general feeling that the uncertainties contained in the ENDF/B-Vfile [93] are more or less correct, except for data at around 14 MeV where thecross-section is known to be < 1% [1, 106, 108, 109,80]. Figure 19 andTable XIV detail the 23SU(n, f) cross-section.

HOT 6398 CROSS-SECTIONS 92-U -238

i 3

s.

92 -U -238

92-U -238

ENERGY(eV)

5.OOOOE5.5000E5..80.QOE.5 9OOOE6.OOOOE6.2000E6.4000E6.5000E6.6000E6.8000E7.OOOOE7.5000E7.8000E8.OOOOE8.5000E8.8000E9.OOOOE9.2000E9.5000E9.7000E

05050505050505050505.05050505050505050505

FISSION

SIGMA(bl

3.7850E-046.3300E-046,9460ErQ47.6300E-048.2710E-049.3280E-041,134 0E-031 .2460E-031.3010E-031.5830E-03),7260ErQ32.5880E-033.5980E-034.4950E-037.2080E-031.0830E-021.3700E-021 .5580E-021.6630E-021 .5910E-02

ENERGY(eV)

1.OOOOE1.0200EI....0.3Q0E.....0500E.0800E

1 . 1000E1,1300E

. 1400E1 .1500E1.1700E... 2QQ0E...2300E

1 .24 00E.2500E•2800E. 3000E

I.3500E1 .4000E1 .4500E1 .4800E

06060606060606060606Q6060606060606060606

SIGMA(b)

1 .7120E-021.6650E-021,7Q2QE-02.1 .9550E-022.4800E-022.8850E-023.3890E-023.5640E-023.7630E-024.0470E-02

.4,2320E-024. 1580E-024.2970E-024.5810E-025,9160E-027.059OE-021.1250E-011.8890E-012.8380E-013.2990E-01

ENERGY(eV)

1 .5000E1.5500E1.6000E...1.8000E1.900OE2.OOOOE2,1000E2.2000E2.5020E2.8000E

...3..,.0QQ0E...3.1OOOE3.5000E3.7000E4,2000E4 . 5'00'OE5.OOOOE5.5000E6,OOOOE6.2000E

060606060606Ofi06060606060606060606060606

SIGMA(b)

3.4670E-013.8020E-014,0630E-01 .4.8910E-015. 1890E-015.3370E-015,3880E-015.4170E-015.3895E-015.3120E-015,226QE-01..5.2280E-015.3270E-015.4390E-015.4780E-015.4920E-015.3340E-015.4740E-016.126QE-Q16.8640E-01

ENERGY(eV)

6.4000E6.5000E6.6000E6.8000E7.OOOOE7.5000E9.OOOOE1.OOOOE1.1000E1.1500E

. 1,2QQQE.1.3000E1.3500E1.4500E1.5000E1 .6000E1.7000E1 .8000E

. 1.90QOE2 . OOOOE

MAT 6398

SIGMA(b)

06 7.7360E-0106 8.0910E-0106 8.3980E-0106 8.9350E-0106 9.2180E-0106 9.8710E-0106 9.9840E-0107 9.8200E-0107 9.8670E-0107 9.8730E-0107 9,8480E-Q10707070707070707..07

I.0200E 00I.0670E 001. 1720E 00.2160E 00

I.2720E 00I.2740E 001.2880E 00I..3360E OQ1.4180E 00

"0

90

FIG. 20. The 23tU(n, f) fission cross-section (ENDF/B-V, Mod. 2, Dosimetry Library).

76 BODY

TABLE XV. UNCERTAINTY DATA FORTHE 2 3 8U FISSION CROSS-SECTION [111]

Energy(MeV)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.4

1.6

2.0

2.5

3.0

4.0

5.0

6.0

8.0

10.0

12.0

14.0

20.0

Uncertainty(%)

8.9

10.0

12.0

11.3

11.0

8.3

7.7

7.9

6.1

7.4

1.3

1.3

2.9

2.4

2.3

2.6

3.9

3.2

2.9

3.7

4.3

8.4

11. THE 238U (n, f) CROSS-SECTION

This cross-section is a useful reference standard in fast-neutron flux determi-nations, relative fission cross-section measurements and dosimetry applications.The threshold nature of the process makes it reasonably free of thermal back-ground problems [111]. Detectors which have been employed to implementthis cross-section are basically of two types. Either the very energetic fission

PART 1-2 77

fragments or fission neutrons are counted. Fission fragment detection is performedwith gaseous ionization chambers, scintillation chambers, solid state detectorsand track-etch film techniques. Fission neutron detection is usually accomplishedby using large, high efficiency neutron detectors [24, 1]. Originally, these cross-sections were recommended as standards between threshold and 20 MeV [24],but nowadays for energies below 2 MeV they are not recommended.

11.1. Status

The ENDF/B-V evaluation was carried out at the Argonne National Labora-tory by a task force [112]. Most of the experimental information was availablein the form of fission cross-section ratios relative to the 23SU fission cross-section,while a smaller fraction came from measurements employing absolute flux determi-nations. The two sources of information were separately evaluated in order to obtainthe cross-sections from the ratio and absolute measured values; the two resultswere combined to obtain the final 238U(n, f) cross-section values [111].

A comparison of ENDF/B-V with other files (such as JENDL-2, KEDAK-4,ENDL-82 and UKNDL-1981) has been done by Kanda and Uenohara, whoconcluded that the differences between the data sets were below ±6% whenUKNDL-1981 was included, and below ±4% when it was excluded between2 and 15 MeV [95]. The differences below 2 MeV were found to be very great(20% or more). It is worthwhile taking note here of Smith's conclusion concerningthe applicability of the 238U(n, f) cross-section, that it is not useful as a standardbelow 2 MeV [28].

Kanda made an extensive comparison with new experimental data reportedsince 1977. He concluded that it was not necessary to revise the earlier conclusions.In the region from threshold to 10 MeV, the recommended cross-sections were asaccurate as a few per cent, while above 10 MeV, the difference between the experi-mental data was as large as 10% of the values [113]. It should be mentioned thatthere are some new measurements currently in progress that will considerablyimprove the situation at higher energies [28]. Finally, 238U(n, f) values will beforthcoming from the standards evaluation process for ENDF/B-VI, as describedin the Introduction. Figure 20 and Table XV detail the 238U(n, 0 cross-section.

ACKNOWLEDGEMENTS

The assistance of A.D. Carlson, H. Conde, A.B. Smith, K. Okamoto andD.E. Cullen in the preparation of this chapter is acknowledged.

78 BODY

REFERENCES

[1] CARLSON, A.D., Prog. Nucl. Energy 13(1984)79.[2] POENITZ, W.P., WHALEN, J.F., Nucl. Phys. A383 (1982) 224.[3] DIAS, M.D., et al., in Nuclear Data for Science and Technology (Proc. Int. Conf. Antwerp,

1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 875.[4] GAMMEL, J.L., in Fast Neutron Physics (MARION, J.B., FOWLER, J.L., Eds), Wiley-

Interscience, New York (1963).[5] HOPKINS, J.C., BREIT, G., Nucl. Data A9 (1971) 137.[6] STEWART, L., et al., Los Alamos Scientific Lab., NM, Rep. LA-4574 (1971).[7] STEWART, L., LABAUVE, R.J., YOUNG, P.G., in Brookhaven National Lab., Upton,

NY, Rep. BNL-NCS-51619 (1982) 3.[8] LOMON, E., WILSON, R., Phys. Rev. C 9(1974) 1329.[9] DILG, W., Phys. Rev. C 11 (1975) 103.

[10] UTTLEY, C.A., "The H(n, n) cross section", Nuclear Data Standards for NuclearMeasurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 3.

[11] CONDE, H., private communication to K. Okamoto, 1985.[12] TORNOW, W., et al., Nucl. Phys. A340 (1980) 34.[13] CARLSON, A.D., private communication to K. Okamoto, 1985.[14] STEWART, L., in Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-51619

(1982) 19.[15] HALE, G.M., STEWART, L., YOUNG, P.G., Los Alamos Scientific Lab., NM, Rep.

LA-6518-MS(1976).[16] ALS-NIELSEN, J., DIETRICH, O., Phys. Rev. 133B (1964) 925.[17] GIBBONS, J.H., MACKLIN, R.L., Phys. Rev. 114 (1959) 571.[18] MACKLIN, R.L., GIBBONS, J.H., in Study of Nuclear Structures with Neutrons (Proc.

Int. Conf. Antwerp, 1965), North-Holland, Amsterdam (1966) 498.[19] WASSON, O.A., in Nuclear Cross Sections for Technology (Proc. Int. Conf. Knoxville,

TN, 1979), US National Bureau of Standards Special Publication 594-GA1, US Govern-ment Printing Office, Washington, DC (1980) 720.

[20] BORZAKOV, S.B., et al., Yad. Fiz. 35 (1982) 532; Sov. J. Nucl. Phys. (Engl. Transl.)35 3 (1982)307.

[21] BOWMAN, CD., et al., in Nuclear Cross Sections for Technology (Proc. Int. Conf.Knoxville, TN, 1979), US National Bureau of Standards Special Publication 594-AC6,US Government Printing Office, Washington, DC (1980) 97.

[22] LOPEZ, W.M., et al., Gulf General Atomic Co., San Diego, Rep. GA-8835 (1968) 59.[23] HALE, G.M., Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-51363, Vol. 2

(1981)509.[24] DERUYTTER, A. J., "Requirements for nuclear standard reference data from the users'

point of view", Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna(1985)65.

[25] LAMAZE, G.P., in Neutron Standards and Applications (Proc. Int. Symp. Gaithersburg,MD, 1977), US National Bureau of Standards Special Publication 493, US GovernmentPrinting Office, Washington, DC (1977) 37.

[26] WESTON, L.W., ibid., p. 43.[27] HARVEY, J.A., HILL, N.W., Nucl. Instrum. Methods 162(1979) 507.[28] SMITH, A.B., private communication to K. Okamoto, 1983, 1985.[29] FARRAR, H., IV, et al., Nucl. Technol. 25 (1975) 305.[30] FARRAR, H., IV, et al., Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-50681

(1977) 175.

PART 1-2 79

[31] KNEFF, D.W., et al., Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-51245(1980)289.

[32] WU, C.H., WOELFLE, R., QAIM, S.M., Nucl. Phys. A329 (1979) 63.[33] WU, C.H., WOELFLE, R., QAIM, S.M., Nucl. Phys. A410 (1983) 421.[34] HALE, G.M., STEWART, L., YOUNG, P.G., in Brookhaven National Lab., Upton, NY,

Rep. BNL-NCS-51619O982) 25.[35] DIMENT, K.M., UTTLEY, C.A., UKAEA Atomic Energy Research Establishment,

Harwell, Rep. AERE-PR/NP 15,16 (1969).[36] POENITZ, W.P., "The data for the neutron interactions with 6Li and 10B", Nuclear

Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 112.[37] HALE, G.M., "The 6Li(n, t)4He cross section", Nuclear Data Standards for Nuclear

Measurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 11.[38] GAYTHER, D.B., UKAEA Atomic Energy Research Establishment, Harwell, Rep.

AERE-R-8856U977).[39] RENNER, C, et al., Bull. Am. Phys. Soc. 23 (1978) 526.[40] ENGDAHL, F.C., et al., Nucl. Sci. Eng. 78 (1981) 44.[41] SHIBATA, K., Japan Atomic Energy Research Institute, Tokyo, Rep. JAERI-M-84-198

(1984).[42] CARLSON, A.D., et al., "The neutron cross-section standards evaluations for ENDF/B-VI",

Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 77.[43] CARLSON, A.D., in Neutron Standards and Applications (Proc. Int. Symp. Gaithersburg,

MD, 1977), US National Bureau of Standards Special Publication 493, US GovernmentPrinting Office, Washington, DC (1977) 85.

[44] HALE, G.M., STEWART, L., YOUNG, P.G., in Brookhaven National Lab., Upton, NY,Rep. BNL-NCS-51619 (1982) 31.

[45] YOUNG, P.G., The 10B(n, a)7Li Reaction, Los Alamos National Lab., NM, Rep.LA-UR-84-2083U984).

[46] QI, Huiquan, et al., in IAEA/International Nuclear Data Committee, Vienna, Rep.INDC(CPR)-001/L(1985) 14.

[47] WATTECAMPS, E., "The 10B(n, a) cross section", Nuclear Data Standards for NuclearMeasurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 19.

[48] WRENDA 83/84 (PIKSAIKIN, V., Ed.), IAEA/International Nuclear Data Committee,Vienna, Rep. INDC(SEC)-88/URSF (1983).

[49] SMITH, A.B., et al., in Nuclear Data for Science and Technology (Proc. Int. Conf. Antwerp,1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 39.

[50] SMITH, A.B., "The C(n, n) cross section", Nuclear Data Standards for Nuclear Measure-ments, Technical Reports Series No. 227, IAEA, Vienna (1983) 25.

[51] FU, C.Y., PEREY, F.G., in Brookhaven National Laboratory, Upton, NY, Rep.BNL-NCS-51619(1982)35.

[52] HOLT, R., SMITH, A., WHALEN, J., Argonne National Lab., IL, Rep. ANL/NDM-43(1978).

[53] SHIBATA, K., Japan Atomic Energy Research Institute, Tokyo, Rep. JAERI-M-83-221(1983).

[54] VONACH, H., "The 27Al(n, a) cross section", Nuclear Data Standards for NuclearMeasurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 59.

[55] HALE, G.M., STEWART, L., YOUNG, P.G., Los Alamos Scientific Lab., NM, Rep.LA-8036-PR(1979)13.

[56] TAGESEN, S., VONACH, H., Physics Data 13-l,Fachinformationszentrum, Karlsruhe(1981).

80 BODY

[57] CONDE, H., "INDC/NEANDC standards file, status report", Nuclear Standard ReferenceData, IAEA-TECDOC-335, IAEA, Vienna (1985) 84.

[58] EVAIN, B.P., SMITH, D.L., LUCCHESE, P., Argonne National Lab., IL, Rep. ANL/NDM-89(1985).

[59] WINKLER, G., RYVES, T.B., Ann. Nucl. Energy 10 (1983) 601.[60] RYVES, T.B., "A simultaneous evaluation of some important cross-sections at 14.70 MeV,

Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985)[61] KORNILOV, N.V., et al., "Evaluation of the 27Al(n, a) reaction cross-section in energy

range 5.5 MeV-20 MeV", Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA,Vienna (1985) 135.

[62] LI, Jizhou, in IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(CPR)-001/L(1985).

[63] ANTONOV,A.,etal.,Bulg. J. Phys. 10(1983)601.[64] GARLEA, I., et al., IAEA/International Nuclear Data Committee, Vienna, Rep.

INDC(ROMH5/GI(1983).[65] ENZ, W., et al., OECD/NEA Nuclear Data Committee, Paris, Rep. NEANDC-(E)-242-U

(1983), Vol. 5, p. 57.[66] KUDO, K., et al., "Cross-section measurements of S6Fe (n, p)S6Mn and 27Al(n, a)24Na

between 14.0 and 19.9 MeV", Nuclear Standard Reference Data, IAEA-TECDOC-335,IAEA, Vienna (1985) 449.

[67] FU, C.Y., ORNL, Oak Ridge National Lab., TN, ENDF/B-V Dosimetry File (1978)Mat. 6431.

[68] DUDEY, N.D., KENNERLEY, R., in Brookhaven National Lab., Upton, NY, Rep.BNL-NCS-50446(1975)80.

[69] SMITH, D.L., MEADOWS, J.W., Nucl. Sci. Eng. 58 (1975) 314.[70] FU, C.Y., et al., in Nuclear Cross Sections for Technology (Proc. Int. Conf. Knoxville,

TN, 1979), US National Bureau of Standards Special Publication 594-AB7, US Govern-ment Printing Office, Washington, DC (1980) 63.

[71] LU, Hanlin, et al., At. Energy Sci. Technol. 2(1975) 113.[72] SHARMA, D., et al., in Nuclear Physics and Solid State Physics (Proc. Int. Symp.

Bombay, 1978), Vol. 2, Department of Atomic Energy, Bombay (1979) 349.[73] RYVES, T.B.,etal.,Metrologia 14(1978) 127.[74] PEPELNIK, R., et al., OECD/NEA Nuclear Data Committee, Paris, Rep. NEANDC-(E)-252U

(1984)30.[75] RAICS, P., et al., in Neutron Physics (Proc. 5th AU-Union Conf. Kiev, 1980), Vol. 1,

TsNII atominform, Moscow (1980) 242.[76] LU, Hanlin, Chin. J. Phys. 3(1981) 289.[77] SIMONS, R.L., McELROY, W.N., Battelle Pacific Northwest Labs., Richland, WA, Rep.

BNWL-1312O970).[78] CORVI, F., "The "7Au(n, 7) cross section", Nuclear Data Standards for Nuclear

Measurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 33.[79] MUGHABGHAB, S.F., in Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-51619

(1982)47.[80] BLINOV, M.V., et al., "IAEA standards file: some comments and recommendations",

Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 89.[81] TOLSTIKOV, V.A., "Comments to the evaluation of fast neutron radiation capture

by 197Au given in the book of standard nuclear data", Nuclear Standard ReferenceData, IAEA-TECDOC-335, IAEA, Vienna (1985) 147.

[82] DAVLETSHIN, A.N., et al., in Nuclear Physics (Proc. 6th All-Union Conf. Kiev, 1983),Neutronnaya Fiz. 3 (1984) 211 (in Russian).

PART 1-2 81

[83] CHEN, Ying, et al., in Nuclear Data for Science and Technology (Proc. Int. Conf.Antwerp, 1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 462.

[84] CHEN, Ying, et al., Chin. J. Phys. 3(1981)52.[85] ANDERSSON, P., ZORRO, R., BERGQVIST, I., "Neutron-capture cross-section

measurements for 197Au and n 5In in the energy region 2.0-7.7 MeV using the activationtechnique", Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna(1985) 143.

[86] ANDERSSON, P., et al., Nucl. Phys. A443 (1985) 404.[87] YAMAMURO, N., et al., J. Nucl. Sci. Technol. 20 10(1983)797.[88] HUSSAIN, H.A., HUNT, S.E., Int. J. Appl. Radiat. Isot. 34 (1983) 731.[89] JOLY, S., et al., Nucl. Sci. Eng. 70 (1979) 53.[90] MACKLIN, R.L., Nucl. Sci. Eng. 79 (1981) 265.[91] RYVES, T.B., Argonne National Lab., IL, Rep. ANL-83-4 (1983).[92] YOUNG, P.G., ARTHUR, E.D., in Capture Gamma-Ray Spectroscopy and Related

Topics (Proc. Int. Symp. Knoxville, TN, 1984) (RAMAN, S., Ed.), AIP Conf. Proc.No. 125, American Institute of Physics, New York (1985) 530.

[93] POENITZ, W.P., in Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-51619(1982)59.

[94] SOWERBY, M.G., et al., Ann. Nucl. Sci. Eng. 1 (1974) 409.[95] KANDA, Y., UENOHARA, Y., "Fission ratios involving 238U, 237Np, 239Pu and 235U

fission cross-sections", Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA,Vienna (1985) 200.

[96] ZHAGROV, E.A., et al., in Neutron Physics (Proc. 5th All-Union Conf. Kiev, 1980),Vol. 3, TsNII atominform, Moscow (1980) 45.

[97] CANCE, M., GRENIER, G., CEA Centre d'Etudes de Bruyeres-le-Chatel, France, Rep.CEA-N-2194 (1981).

[98] WASSON, O.A., et al., Nucl. Sci. Eng. 80 (1982) 282.[99] WASSON, O.A., et al., Nucl. Sci. Eng. 81 (1982) 196.[100] LI, Jingwen, et al., in Nuclear Data for Science and Technology (Proc. Int. Conf. Antwerp,

(1982) ( BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 55.[101] MAHDAVI, M., et al., ibid., p. 58.[102] DUSHIN, V.M., et al., At. Ehnerg. 55 (1983) 218.[103] ARLT, R., et al., "Absolute measurement of the 23SU fission cross-section at 4.45 MeV

neutron energy using the time-correlated associated particle method (TCAPM)", NuclearStandard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 174.

[104] YAN, Wuguang, et al., At. Energy Sci. Technol. 2 (1975) 133.[105] CARLSON, A.D., et al., "Absolute measurements of the 23SU(n, f) cross-section for

neutron energies from 0.3 to 3 MeV", Nuclear Standard Reference Data, IAEA-TECDOC-335,IAEA, Vienna (1985) 162.

[106] SOWERBY, M.G., PATRICK, B.H., "Review of recent measurements of the U-235 fissioncross-section and fission fragment angular distribution between 0.1 and 20 MeV", NuclearStandard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 151.

[107] DIAS, M.S., CARLSON, A.D., JOHNSON, R.G., WASSON, O.A., "Application of thedual thin scintillator neutron flux monitor in a 235U(n, f) cross-section measurement",Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 467.

[108] YUAN, Hanrong, IAEA/International Nuclear Data Committee, Vienna, Rep.INDC(CPR)-001/L(1985).

[109] YUAN, Hanrong, "AEP measurements of 23SU(n, f) and 238U(n, f) cross-section",Nuclear Standard Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 167.

82 BODY

[110] YANKOV, G.B., "The 23SU fission cross section", Nuclear Data Standards for NuclearMeasurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 39.

[Ill] SMITH, A.B., "The 238U fission cross section", Nuclear Data Standards for NuclearMeasurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 53.

[112] POENITZ, W.P., et al., Argonne National Lab., IL, Rep. ANL/NDM-32 (1977).[113] KANDA, Y., "The 238U fission cross-section, threshold to 20 MeV", Nuclear Standard

Reference Data, IAEA-TECDOC-335, IAEA, Vienna (1985) 191.

Neutron Source Standards

1-3. PRODUCTION OF MONOENERGETICNEUTRONS BETWEEN 0.1 AND 23 MeVNeutron energies and cross-sections

M. DROSGInstitute for Experimental Physics,University of Vienna,Vienna, Austria

O. SCHWERERNuclear Data Section,Division of Research and Laboratories,International Atomic Energy Agency,Vienna

Abstract

PRODUCTION OF MONOENERGETIC NEUTRONS BETWEEN 0.1 AND 23 MeV: NEUTRONENERGIES AND CROSS-SECTIONS.

The angular dependences of neutron energies and cross-sections are given in the form ofgraphs for neutron production by the 'H(t, n)3He, 'H(?Li, n)7Be, 2H(d, n)3!^, 2H(t, n)*He,'HCp, n)3He, ^ ( d , n)*He and 7Li(p, n) ;Be reactions. In addition, tables with Legendre coefficientsare given which allow the accurate calculation of cross-sections at arbitrary angles and energiesutilizing a short computer code. The same code also calculates, relativistically, neutron energiesand the conversion of angles and cross-sections from the centre of mass to the laboratory system.A discussion of the individual source properties and an intercomparison of the various sourcesare presented to assist in selecting the optimum neutron source for a given experimental situation.

1. INTRODUCTION

Fast monoenergetic neutrons can be produced by two-body nuclear reactionsinduced by projectiles from an accelerator. The target nuclei of the reaction isotopeare situated in the active region of the target assembly. The target structure, whichcontains or supports the active part of the target and usually stops the unusedportion of the beam, may affect the beam characteristics (divergence, energy pro-file) and may contribute neutrons of undesired energy (background). For thesereasons, not only must intrinsic source properties, such as intensity (absolute valueand angular dependence), energy (definition, resolution and angular dependence)and background (contamination by secondary neutrons), be discussed, but also thetechnical realizations of neutron sources.

83

8 4 DROSG and SCHWERER

Not considered here are (p, n) reactions in medium weight nuclei which pro-duce monoenergetic neutrons down to a few keV, e.g. 4sSc(p. n)45Ti. 51V(p, n)s lCrand S7Fe(p. n)S7Co. The properties of these reactions have been collected else-where [1-3]. The reactions that are discussed here are those involving the hydrogenisotopes, as well as the p-7Li reaction and its inverse. The data on the formerreactions are based mostly on previous work [4-8] and, for low energies, on thecompilation of Liskien and Paulsen [9]. The data on the latter reactions are derivedsolely from a compilation by Liskien and Paulsen [10].

A number of graphs provide first information on neutron laboratory pro-duction cross-sections and energies. The ready availability of computers nowadaysmakes a presentation in tabular form unnecessary. The short Fortran IV programgiven in the appendix permits the accurate calculation of these quantities at anyangle and for any energy within the range covered by the tables of the Legendrecoefficients that are included here. Upon request, an even more sophisticatedprogram, which includes the Legendre coefficients needed, can be obtained fromthe Nuclear Data Section (Division of Research and Laboratories) of the IAEA.This latter program was written in Fortran for ready use on PDP-11 computers ofthe Digital Equipment Corporation.

2. SELECTION OF THE APPROPRIATE SOURCE

The suitability of a neutron source for a given experimental problem can onlybe discussed in general terms because of the large variety of different experimentalset-ups. The following discussion should help in selecting the most suitable type ofsource. However, it may not be the one routinely used at any particular installa-tion. If that is the case, then the benefits of switching to a better source mustbe weighed against the effort involved. This discussion is kept at a more generallevel than is actually required for standard neutron activation work. Therefore,for specific applications, some of the following considerations may be disregarded.

It is obvious that the optimum source yields a result that is within the. desireddegree of precision in a minimum amount of time and effort. Whereas the effortdepends strongly on the individual experimental set-up (such as ion sources, theaccelerator, the detecting system, etc.) and, therefore, must be ignored here, the timeelement is strongly correlated to the type of neutron source (its intensity and the back-ground situation). Of course, these two properties also depend on the specificexperimental situation (e.g. maximum beam current, target structure, layout of theexperimental area and type of sample). These influences, however, cannot be dealtwith in a general way and, therefore, must be considered individually. A moredetailed discussion, especially of the monochromaticity of the neutron beam, canbe found elsewhere [3].

PART 1-3 85

2.1. Neutron source intensity

Source intensities should be compared for equal neutron energy spreads in thesample at equal beam currents. (In practice, one would allow for the difference inmaximum beam currents delivered by the machine or allowed by the maximumheat dissipation in the target.)

The neutron energy resolution depends on the effective energy spread of thecharged particle beam in the active volume of the target (accelerator and targetproperties) and on the geometric neutron energy spread (caused by the openingangle of the sample and increased by angular straggling of the charged particlesin the target and any intrinsic divergence of the charged particle beam). Using agas target, the main contributors to the full width at half maximum (FWHM) of theenergy spread for measurements at 0° are the energy straggling in the entrance foiland the energy loss in the active volume. (According to Klein et al. [ 11 ], these twocontributions must be added cubically rather than quadratically.)

En(0°)[MeV]

FIG. 1. Energy dependence of the maximum geometric neutron energy spread at 0°caused bya 5° opening angle of the sample for projectiles with no energy spread. The curves for t-H, p-Tand p-nLi can be approximated by a constant relative energy spread of 1, 0.3 and 0.15%,respectively.

86 DROSG and SCHWERER

oa.

c

O

LLJ

o

CDO

- 7

0.2-

Li-H

p-7Li

H 1—I I I I l-t

En (MeV)

FIG. 2. Energy dependence ofthe specific 0°neutron yield. Except for d-Tand t-D, the thickcurves indicate the monoenergetic range of the reaction in question. The index TT denotes thesecond neutron group at 0° (180° in the centre of mass system).

The finite opening angle of the sample not only further broadens the energyspread, but also results in a shift of the neutron energy to its mean by weightingthe neutron energies with their intensities (the angular dependences of laboratorycross-sections and of the effective solid angles). (However, there is strong angledependence: near 90° this shift will vanish.) Figure 1 gives the difference inneutron energy at 0° and 5° for the reactions considered here. This difference isthe minimum energy spread that can be achieved for an opening angle of thesample of 5° The curves for t-H, p-T and p-7Li are quite linear, corresponding toan energy independent relative energy spread of 1, 0.3 and 0.15%, respectively.There is no simple relation to combine the FWHM geometric energy spread (forneutrons generated in the centre of the target) with the FWHM energy spread at

PART 1-3 87

0° (from the energy loss of the projectile in the target) because the energy depen-dence of the kinematics must not be neglected. It appears that the absolute(additive) contribution from the finite opening angle to the FWHM of the totalenergy spread is minimum if the two spreads discussed before are about equal.Also, for thicker targets the geometric contribution remains small. The beamstraggling [ 11 ] in the foil hardly affects the FWHM of the energy spread or themean neutron energy, but it changes the profile of the energy distribution by pro-ducing a low energy tail.

From all these contributions to the energy resolution, the target thicknessmust (and can easily) be included in a general yield comparison. To first order, boththe yield and the energy spread (caused by the energy loss of the charged particlebeam) are proportional to the target thickness. For the reactions considered here.Fig. 2 presents the specific neutron yield at 0° as a function of the neutron energy,with a target thickness corresponding to a neutron energy spread of 10 keV (assum-ing singly charged incoming particles). Neutron production at 0° is usually pre-ferred because the neutrons are unpolarized and, in general, all properties (aniso-tropies, the energy spread, the signal to background ratio, etc.) are optimum atthis angle. For a larger acceptable neutron energy spread (at higher energies aspread of the order 0.1 MeV is more common), the yield increases in proportionto the spread. If the active region of the target consists not only of the reactionisotope, then the yield is decreased because of the additional energy loss by the othernuclei, e.g. by a factor of 10 when Ti hydrides are used for the hydrogen isotopes[3]. Nevertheless, such solid hydrogen targets can give a better overall performancewhen high energy resolution at lower neutron energies is necessary because theentrance foil of an equivalent gas target would give too much straggling.

The following general features can be seen from Fig. 2. The t-H reaction(:H(t, n)3He) has the highest specific yield, followed by the p-T reaction(3H(p, n)3He). Above 8 MeV, the d-D reaction (2H(d, n)3He) has a marginallyhigher yield (less than 20% higher) than the p-T reaction, while below 0.75 MeV,the p-7Li reaction (7Li(p, n)7Be) has a higher yield than p-T. Finally, the yield ofthe d-T reaction (3H(d, n)4He), even at the resonance, is less (by more than a factorof 100) than that of the t-H reaction, while the t-D reaction (2H(t, n)4He) has ahigher specific yield than the d-T reaction between 15.07 and 17.02 MeV. Onlybelow about 1.7 MeV is the yield of the 7Li-H reaction (1H(7Li, n)7Be) outstanding.However, even in the 'monoenergetic' range, the second line (corresponding to 180°in the centre of mass (cm.) system) is negligible neither in energy nor in intensity.Near 0.6 MeV, the specific neutron yield from this second line is three times that ofp-7Li. In special cases, where a higher energy background line is acceptable, it ispossible to take advantage of this high yield.

The closeness of the d-D and the p-T curves above 8 MeV suggests the need fora more detailed comparison in this energy range. This was done in Table I underthe assumption of identical gas targets (entrance foils of 5.3 mg/cm2 molybdenum)for total energy spreads of 0.1 MeV neutron energy (which includes contributions

0000

TABLE I. YIELD COMPARISON FOR THE SAME TOTAL NEUTRON ENERGY SPREAD (FWHM = 100 keV) ANDSAME POWER (0.2 W) IN A 5.3 mg/cm2 MOLYBDENUM ENTRANCE FOIL OF A GAS TARGET(All energies in MeV)

8 MeV neutrons

p-Td-D

10 MeV neutrons

p-Td-D

E ma

8.9575.115

10.9417.134

AE fb

0.1360.307

0.1180.252

Projectile data

AEgas

0.0400.043

0.0400.043

AEgeo'

0.0120.013

0.0150.017

'max(juA)

1.470.65

1.700.79

AE s t re

0.0510.040

0.052

0.043

AEgas

0.0800.083

0.079

0.082

Neutron data

AEgeo

0.0240.026

0.0300.032

Specificyieldf

8.367.66

10.9

12.5

Flux8

1.00.4

1.50.8

a Energy of accelerated projectile.b Energy loss in entrance foil.c Correction of beam energy to give the correct mean neutron energy with an opening angle of ±5°

Maximum current for a power of 0.2 W dissipated in the entrance foil.e FWHM of energy smearing due to energy straggling.f In units of n s r " ' p C " ' for an energy loss in the gas resulting in a 10 keV energy spread.

o58Ov>

ag.oa7)m

PART 1-3 89

from energy and angular straggling in the entrance foil [11], energy loss of the pro-jectiles in the gas and a typical opening angle of the sample of ±5°) and for the samedissipated power of 0.2 W in the entrance foil. Under these conditions, the yieldfrom p-T is about a factor of two higher than that of d-D. In time of flight experi-ments, the p-T reaction is even more advantageous because of the better time resolution.

2.2. Neutron background and target structure

In general, in neutron activation work, the signal to background ratio cannotbe increased by improving the energy resolution of the set-up. The backgroundcannot simply be determined by integration over its energy distribution. The neu-tron flux within each energy bin must be weighted with its effectiveness. Since theenergy dependence of the activation cross-section differs from case to case, onlythe intensity of the integrated background can be considered here and not itseffectiveness.

The intensity of the neutron background in an actual experiment depends ona mixture of physical properties and technical possibilities. The latter cannot bedealt with in much detail because they are strongly dependent on the individualset-up. Thus, only general guide-lines will be given.

The physical properties of a source relevant to the background intensity are:

(1) The intrinsic background from the source reaction (breakup neutrons orneutrons from excited target nuclei or neutrons from a second line at forwardangles when the velocity of the centre of mass is larger than that of the neutronin the cm. system).

(2) The angular dependence of the energy and intensity of the primary neutrons.

The signal to background ratio from the first property is independent of the experi-ment. In the monoenergetic range indicated by the heavy lines in Fig. 2, thereis no such background. When it shows up the intrinsic background cannot be sub-tracted experimentally by a background run. However, a correction can be calcu-lated from known differential cross-sections of the background reaction.

The room background (scattering from air and any objects in the experi-mental area and its environment) is affected by the anisotropy of the intensityand of the energy of the neutron emission. For experiments at 0°, strong anisotropiesof both properties give maximum signal to background ratios. However, for asimultaneous measurement at several angles, a small anisotropy of the differentiallaboratory cross-section will be better.

In Fig. 3, the anisotropy of the differential cross-section is expressed by theratio of the 0° value over the angle integrated value. Three main classes of cross-section anisotropies can be discerned:

(a) (Nearly) isotropic: d-T near threshold(b) Strong forward peaking: d-D for higher energies(c) Containment of neutrons in a forward cone: t-H, 7Li-H.

90 DROSG and SCHWERER

En IMeVJFIG. 3. Energy dependence of the forward peaking of the differential laboratory cross-sections.Inside the monoenergetic range of each reaction the curves are full. Isotropic neutron productiongives a value of 0.08.

En C MeV ]

FIG. 4. Energy dependence of the forward peaking of the neutron energy distribution. Theneutron energy at 90°is compared with that at 0°, except for 'contained'neutrons, where 30°iscompared with 0 . Inside the monoenergetic range the curves are full.

PART 1-3 91

The last class depends on the confinement of the neutrons into a forward conewhen the velocity of the centre of mass is larger than the cm. velocity of the neu-tron. This confinement gives minimum room background and simplifies shielding.However, at each angle inside the cone there will be two neutron groups withdifferent energies.

For negative Q-value reactions which are of interest here, the half-angle © ofthe cone for projectiles of energy Ejj, can be derived from the equation

M2M4sin2© =

M,M3

The masses M; are those of the projectile, the target, the neutron and of the residualnucleus, respectively, while E^ is the threshold energy of the reaction in question.The cone opens with increasing energy E^ and the energy of the transition fromthe double-valued to the single-valued region can be obtained by setting Eq. (1)equal to 1.

For the t-H and the 7Li-H reactions mentioned above, the mass factor inEq. (1) is close to 1 so that in both cases © is given approximately by

0 = arcsin 1 - —E

(2)

This approximation agrees, to better than 0.1°, with the relativistic results for allincoming energies that are considered here.

In Fig. 4, the decrease of the neutron energy with the laboratory angle ispresented by the ratio of the energy at 90° (or, for contained neutrons, at 30°) overthe energy at 0°. A strong decrease with angle (as in the p-T case), i.e. a strong'anisotropy' of the energy, reduces the effectiveness of room background, espe-cially in reactions (or detectors) which are insensitive to lower energy neutrons.

The structural background stems from the interaction of the incoming chargedparticle beam with matter other than the actual target isotope. Usually contribu-tions from the machine (beam line) and the target structure (including the beamstop) will be noticed. This background should be minimized by using high Z mate-rials (such as gold, tantalum and platinum) in the case of deuteron beams and(isotopically pure) materials with sufficiently high (p, n) thresholds for protonbeams. In the case of deuteron beams, carbon, stemming from hydrocarbonatesin the vacuum system and deposited on the target, is often a source of backgroundneutrons. Therefore, either cold traps must remove the hydrocarbonates from thevacuum or hydrocarbonates must be avoided, e.g. by using mercury diffusion pumps.

The structural background can be subtracted experimentally, at least to afirst order, by substituting the neutron production target with a dummy of thesame construction, but without the actual target isotope. For thick targets there

9 2 DROSG and SCHWERER

will be a noticeable over-correction due to the absence of the energy loss in thetarget isotope.

2.2.1. Gas targets [12, 13}

For gaseous targets the evacuated gas cell can serve as the dummy for the back-ground run. In favourable cases, such as the p-T reaction, a dummy gas with asufficiently high neutron production threshold (in our example, H2) can be used tomake up for the energy loss by the target isotope.

The entrance foil of a gas target which separates the gas from the vacuum of thebeam line must be of a material with the following, in some respects contradictory,properties:

(1) Good mechanical strength to withstand a pressure difference of severalatmospheres.1

(2) Good thermal conductivity to avoid an excessive local temperature at thebeam spot.

(3) Small neutron production cross-sections to minimize the intensity of back-ground neutrons.

(4) A low atomic number and/or a small areal density to minimize energy lossand straggling of the incoming beam.

Commonly used materials are Havar2, nickel, molybdenum, tantalum and tungstenin thicknesses of several pm [3].

A practical very low background cell for the p-T reaction would have a 58Nientrance foil and a 28Si beam stop [14]. However, when nickel is heated (e.g.locally by an intense beam), it becomes slightly permeable for the hydrogen isotopes,resulting in small losses of tritium into the vacuum system. No leakage is observedwhen a molybdenum foil is used as the entrance window. The high gamma fluxassociated with such a low neutron background cell should not matter in activationwork. A more detailed comparison of monoenergetic neutron sources with respectto the background can be found in Refs [14] and [15].

The advantages of gas targets are:

(a) Convenient determination of the areal density of the target isotope bypressure and temperature measurements, continuously during the experiment;

(b) Even areal thickness of the target isotope;(c) Convenient background subtraction after emptying the cell (or replacing the

target isotope with a suitable dummy gas, if available);(d) Easy adjustment of the areal thickness of the target isotope by pressure

adjustment.

1 standard atmosphere (atm)= 1.013 25 X 10s Pa (pascal).Hamilton Watch Company, Lancaster, PA, USA. Havar is a complex alloy of Co, Fe,Ci and Ni.

PART 1-3 93

The disadvantages are:

(i) The entrance foil gives an energy loss and adds to the effective neutron energyspread because of angular and energy straggling, thus causing problems withvery thin targets;

(ii) The entrance foil adds to the neutron background;(iii) A longer target because of the smaller density of the target isotope, giving a

less favourable geometry (and worse time resolutions which can be importantin time of flight experiments);

(iv) The effective target thickness depends on the beam current (beam heating).

The beam heating not only affects the actual neutron flux, but also the effectiveneutron energy. The safest way to correct for the beam heating effect is to deter-mine it experimentally by monitoring the dependence of the flux on the beamcurrent under otherwise constant experimental conditions. For a straightforwardcalculation of the beam heating effect, the mean gas temperature in the target celland in the dead volume of the filling system, as well as the ratio of cell volume todead volume, must be known.

3. PARAMETRIZATION OF THE DIFFERENTIAL CROSS-SECTIONS

As has been pointed out earlier (Ref. [4]), the uncertainties in the effectiveprojectile energy and in the actual 0° position are sometimes much more seriousthan those of the differential cross-sections themselves. Figure 5 gives the energydependence of the relative change in the 0° cross-section for a 1% change in the pro-jectile energy. This effect is very serious for the p-7Li reaction (up to 30%) andeven more so for the 7Li-H reaction (with a maximum of 50% at 16 MeV). Thelatter reaction is not shown because its structure would not be resolved in thefigure.

Figure 6 shows the maximum percentage change of the differential cross-sections for a 0.1° offset of the 0° direction. The curve fort-D coincides with thep-T curve above 7 MeV and falls rapidly below that energy. The other two inversereactions (with their contained neutron emission) are omitted for obvious reasons.

These uncertainties not only affect the reference data, but they must also beconsidered in the experiment in which these data are needed. Therefore, theeffective beam energy and/or the actual 0° position must be determined carefullyif their uncertainties contribute too much to the total error. The uncertainty in the0° position can be cancelled to a first order by performing the experiment both tothe left and to the right of the incident beam.

The data presented here are not a collection of all of the experimental results,but rather their presentation in consistent sets of Legendre coefficients. Thesecoefficients were taken from the latest available evaluations. Their accuracies are

94 DROSG and SCHWERER

0.2

3

2

.u 1

z

MIV

E C

H/

REL

-2

-

d - T ^ ^

' ' ' ' I

- ^ _

p-T ,

^—

!

| 1

/

p-'li

- •\jf\f\-K1 2

PROJECTILE ENERGY [MeVJ

- -20

FIG. 5. Percentage change in the 0 cross-section for a 1% change in the projectile energyfuse the right-hand scale for the p-nLi reaction).

1 2 5 10 20

PROJECTILE ENERGY [MeV]

FIG. 6. Maximum percentage change in the differential cross-sections at a given projectileenergy when the 0°position is offset by 0.1°.

PART 1-3 95

discussed later for each reaction. The presentation follows that of Liskien andPaulsen [9]. The absolute differential cm. cross-section at an angle 0 is given by

where P; are the Legendre polynomials and A; the reduced Legendre coefficients.The reaction kinematics data (thresholds and neutron energies) were calculated

relativistically using nuclear masses derived from atomic mass tables [16]. Thegraphs within each section are meant to provide a convenient overview of theenergy and angular dependences of the neutron energies and the laboratory cross-sections. Accurate calculations can be performed using the tables containing theLegendre coefficients and the short, interactive, self-explanatory computer codegiven in the appendix of this paper. A more sophisticated program, which inter-polates non-linearly and includes the Legendre coefficients, can be obtained fromthe Nuclear Data Section (Division of Research and Laboratories) of the IAEA.

3.1. Interaction of protons with tritons

Table II gives the reduced cm. Legendre coefficients for the 3H(p, n)3Hereaction. These coefficients are taken from Ref. [4] for incoming energies, E^,,of 13 MeV and higher. At lower energies a new evaluation was performed [8]which included angular distributions of the 'H(t, n)3He reaction for energies E^between 1.99 and 6.40 MeV and other new p-T data [17].

The scale error of the evaluated data increases from about ±1.5% between 10and 16 MeV to about 4% at energies of 3 MeV and lower. The shape error of theangular distributions is close to ±2% between 3 and 14 MeV; it increases to ±3%at 16 and at 2.5 MeV and becomes even higher below 1.3 MeV. The uncertaintyin the 0°position is typically ±0.1° with a maximum of ±0.6° near 3 MeV. Theenergy uncertainty is approximately ± 0.02 MeV and decreases with decreasingenergy.

Since there are not enough independent data with adequate agreement avail-able on both sides of the resonance at 3.1 MeV, the error estimate given here mightbe optimistic in this energy range. Other original papers on which this evaluationis based are listed in Refs [4, 5, 9].

3.1.1. 3H(p,n)3He

Above 0.7 MeV this reaction has the highest yield, if the ^ ( t , n)3He reactionis disregarded. Below En = 0.7 MeV, 7Li(p, n)7Be is the better choice, not onlybecause of the higher specific yield between 0.45 and 0.7 MeV, but alsobecause of the ease in producing thin targets with good energy resolution. In addi-tion, the relative kinematic energy spread at 0° (owing to the finite opening angle

TABLE II. THE 3H(p, n)3He REACTION

(Proton energy: Ejn; cm. differential cross-section at 0°: So; reduced Legendre coefficients: A(; cm. differential cross-sectionat 180°: Sn; integrated cross-section: S()

jn o

(MeV) (mb/sr)A7

(mb/sr) (mb)

1.20 14.9 1.072 -0.150 0.0781.30 17.55 1.1070 -0.2460 0.13891.40 19.55 1.1365 -0.3550 0.21851.50 21.22 1.1688 -0.4593 0.2947 -0.0042

1.60 22.56 1.1985 -0.5455 0.36.15 -0.01451.70 23.67 1.2229 -0.6252 0.4265 -0.0263 0.00221.80 24.60 1.2396 -0.6918 0.4868 -0.0376 0.0046 -0.00171.90 25.94 1.228.1 -0.7285 0.5460 -0.048.1 0.0068 -0.00432.00 28.39 1.1789 -0.7280 0.6023 -0.0556 0.0086 -0.0062

2.10 31.69 1.1149 -0.7035 0.6470 -0.0613 0.0098 -0.00692.20 35.38 1.0515 -0.6725 0.6817 -0.0650 0.0107 -0.0074 0.00082.30 39.50 0.9860 -0.6365 0.7129 -0.0680 0.0114 -0.0075 0.00172.40 43.60 0.9300 -0.6032 0.7370 -0.0704 0.0119 -0.0076 0.00222.50 47.03 0.8877 -0.58.12 0.7603 -0.0745 0.0125 -0.0076 0.0028

2.60 50.15 0.8495 -0.5597 0.7796 -0.0779 0.0131 -0.0076 0.00322.70 52.28 0.8254 -0.5469 0.7948 -0.0828 0.0137 -0.0077 0.00352.80 53.86 0.8067 -0.5348 0.8060 -0.0885 0.0.145 -0.0078 0.00382.90 54.93 0.7920 -0.5250 0.8160 -0.0949 0.0157 -0.0079 0.00423.00 55.72 0.7806 -0.5.195 0.8269 -0.10.15 0.0170 -0.0079 0.0045

.19.4 201.26.2 24 4.233.4 279.240.9 31.1.7

47.8 339.754.5 363.760.6 383.266.5 400.473.2 420.6

BO.6 444.088. .1 467 .695.7 489.3

103.0 509.5109.4 524.6

1:14.9 535.31.18.9 542.3121.9 546.0123.9 546.7125.8 546.5

OOwaav><->

m

3.20 56.23 0.7624 -0.5.138 0.8515 -0.1168 0.0198 -0.0084 0.0053 128.1 b38.73.40 55.55 0.755.1 -0.5.175 0.8767 -0.1355" 0.0240 -0.0090 0.0062 129 1 527 I3.60 53.84 0.7556 -0.528.1 0.9042 -0.1584 0.0295 -0.0098 0.0070 I28.'o 511.23.80 51.48 0.7618 -0.5418 0.9336 -0.1868 0.0359 -0.0.108 0.0080 127.6 492.84.00 48.96 0.7709 -0.557.1 0.9633 -0.2178 0.0435 -0.0119 0.0090 126.0 474.4

4.50 42.37 0.8123 -0.5998 1.0241 -0.3024 0.0691 -0.0.153 0.0.120 120.1 432.65.00 36.36 0.8616 -0.6520 1.0866 -0.3958 0.1047 -0.0.197 0.0155 -0.0009 114.1 393.75.50 30.88 0.9170 -0.7163 1.1700 -0.5122 0.1^99 -0.0256 0.0.196 -0.0024 1083 ,15b. fl6.00 26.27 0.9750 -0.776.1 1.25.13 -0.6454 0.2070 -0.0329 0.0246 -0.0043 102.9 321.86.50 22.20 1.0404 -0.8454 1.3330 -0.7903 0.2809 -0.0423 0.0305 -0.0066 97.3 291.3

7.00 19.06 1.1117 -0.906B 1.3914 -0.9372 0.3673 -0.0550 0.0373 -0.0089 91.8 266.3 >7.50 16.77 1.1745 -0.9374 .1.4040 -.1.0607 0.45B0 -0.0706 0.0440 -0.0.117 86.6 247. S H8.00 15.30 1.2045 -0.9294 1.3542 -.1.1202 0.5423 -0.0871 0.0500 -0.0144 81.1 231.68.50 14.54 1.1931 -0.8758 .1.2566 -.1.1144 0.6035 -0.10.17 0.0547 -0.0:160 75.8 2:10.0 w9.00 14.29 1.1555 -0.7892 .1.122.1 -.1.063:1 0.6473 -0.1135 0.057.1 -0.0162 70.9 207.5

9.50 14.53 U0955 -0.6851 0.9790 -0.97?.? 0.6587 -0.1200 0.058.1 -0.0141 66.6 200.110.00 14.9.1 .1.0338 -0.5834 0.8480 -0.8807 0.6559 -0.12.13 0.0584 -0.0108 62.5 193.711.00 .16.35 0.8780 -0.4057 0.6399 -0.6787 0.6245 -0.1090 0.0557 -0.0046 54.8 178.212.00 17.85 0.7328 -0.2624 0.4940 -0.4948 0.5708 -0.0956 0.0548 0.0005 48.3 .164.413.00 19.73 0.6131 -0.1527 0.4052 -0.3520 0.5084 -0.0809 0.0526 0.0049 0.00:14 42.6 .152.0

14.00 2.1.50 0.5219 -0.0684 0.3437 -0.2478 0.4571 -0.0677 O.OblO 0.008.1 0.0039 -0.0018 37.7 14 1.015.00 23.02 0.4530 -0.0036 0.3023 -0.1725 0.4:117 -0.0543 0.0504 0.0108 0.0069 -0.00V/ .13.3 131.0.16.00 24.38 0.3983 0.0445 0.276.1 -0.1:151 0.3710 -0.0423 0.0505 0.0133 0.0095 -0.00!i8 29.5 122.0

98 DROSG and SCHWERER

TABLE III. Q-VALUES, THRESHOLDS AND NEUTRON ENERGIES ATFOR p-T(AH energies in MeV)

Exit channel

Ein

1.019

1.147

8.354

11.328

Q

En(0°c.m.)

0.064

0.288

7.585

10.560

n + 3He

En(180°c.m.)

0.064

0.000

•0.764

n + p + d

Enmaxl

0.525

4.561

-6.257

2n + 2p

Enmax2

0.712

-8.482

of the sample) is about twice that of p-7Li, namely, 0.3% for a half-angle of 5°(see Fig. 1). For a 1% change in the proton energy the 0° cross-section changesby more than 1% between 1.9 and 2.6 MeV, between 3.8 and 8.1 MeV and near12.5 MeV (see Fig. 5 ).

Table III summarizes the relevant reaction data, Figs 7-13 illustrate theangular dependence of the neutron energies and differential cross-sections. Above aproton energy of 8.354 MeV (En(0°) = 7.585 MeV), a continuum of breakup neutronswill be present with a maximum energy (En m a x) which is typically 6 MeV less than thatof the primary neutrons. Above 11.328 MeV, another source of breakup neutrons willcontribute to the continuum. However, the intensity of the continuum is muchless severe than in the d-D case, so that experiments even at 14.4 MeV neutronenergy [18] are feasible (with an intensity 25 times higher than that of the d-Tresonance neutrons). As was discussed earlier the structural neutron backgroundcan be reduced by using materials with high (p, n) thresholds. Measurements ofthe breakup cross-section are collected in Ref. [5], while a recent measurement [19]also includes breakup spectra.

3.1.2. lH(t,n)*He

This reaction has the highest yield (for En > 1.7 MeV) among all known mono-energetic reactions. Between 5.6 and 11.4 MeV, the yield is at least ten times largerthan for the competing p-T reaction. Up to 17.64 MeV, the reaction is intrinsicallymonoenergetic.

In addition, the background situation is very good, because neutrons are onlyemitted into a forward cone with a half-angle © according to Eq. (2).

Text cont. on p. 111.

PART 1-3 99

THE 3H(p,n)3He REACTION

60n

0.0100

OO

oJOoV)OCD

3D.V>

na

ino

FIG. 7. (a) Neutron energy values and (b) differential cross-sections for the 3H(p, nj^He reaction: 1.3-1.7 MeV.

1.6 -r

1.4

1B0

90

8 0 -

20-|

10

' ZMMeV

30 60 90 120 150 1B0

>

FIG. 8. (a) Neutron energy values and (b) differential cross-sections for the 3H(p, n)3He reaction: 1.8-2.3 MeV.

120

0.4-

0.2-30 1B0

O

20

oOVI

a

SOw73

100

FIG. 9. (a) Neutron energy values and (b) differential cross-sections for the 3H(p, n)3He reaction: 2.4-3.0 MeV.

120

100

•0

160

FIG. 1 0. (a) Neutron energy values and (b) differential cross-sections for the 3H(p, nfhle reaction: 3.1-4.0 MeV.

5 . 5 -

5 -

4 . 5 -

0 . 5 -30 CO 90

1 I 'lfiO 180

: 5.0 MeV

i 5.5 MeV

' 6 . 0 MeV; .6.5 MeV

10

voVIOw

g.

awSBW7

ISO 1B0

FIG. 11. (a) Neutron energy values and (b) differential cross-sections for the 3H(p, n)3He reaction: 4.5-6.5 MeV.

2 -

! 7.0 MeV

30 60 901 I '120 150 1130

s

ino

FIG. 12. (a) Neutron energy values and (b) differential cross-sections for the 3H(p, n)3He reaction: 7.0-9.0 MeV.

16-r

14-

12-

10-

50

X)

a" 10

3-

(b)

rpff

r ; • • \ • • : /

: • • -A" 1 /

O

OonOu

aaV)

nwtn

160 30 60 90 120 lfiO 1110

FIG. 13. (a) Neutron energy values and (bj differential cross-sections for the 3H(p, n)3He reaction: 10-16 Me V.

PART 1-3 107

THE ^ ( t ^ H e REACTION

2.5-

1.5-

5.5 MeV

5.0 MeV

4.5 MeV

4.0 MeV

1000

0.5-

5 MeV

5.0 MeV

4.f> MeV

1.0 MeV

OOO

OOO

(/IO

M

/ 4. Neutron energy values and (b) differential cross-sections for the lH(t, n)3He reaction: 3.5-5.5 MeV.

1000

100

2-

9.0 MeV

6.0 MeV

7.5 MeV

7.0 MeV

6.5 Mey

6.0 MeV

( b )i ' ' • ' i i

20 30 40 50 80 70ylab

3

FIG. 15. (a) Neutron energy values and (b) differential cross-sections for the 'H(t, n)3He reaction: 6.0-9.0 MeV. oo

1000

100

T 3od>-<u

a%T3

18 MeV i

20 MeV :

FIG.

60 70'l«b "lab

16. (a) Neutron energy values and (b) differential cross-sections for the lHft, nfhte reaction: 10-20 MeV.

ICA

n

m

PART 1-3 111

TABLE IV. Q-VALUES, THRESHOLDS AND NEUTRON ENERGIES AT 0\h

FOR t-H(All energies in MeV)

Exit channel n + 3He n + p + d 2n + 2p

E *

3.051

25.011

33.913

Q

En(0°c.m.)

0.573

17.640

24.347

-0.764

End 80°

0.573

0.019

0.014

.m.) E n m a x l

4.694

14.569

-6.257

E n m a x 2

6.362

-8.482

As shown in Figs 14-16, the second neutron group at 0° (correspond-ing to emission at 180° in the cm. system) becomes very low both in energyand intensity with increasing triton energy so that it may be neglected in manycases (see also Table IV). The main disadvantage is the radioactivity of the tritonbeam, and the need for a rather high beam energy. The latter has limited up tonow the routine use of this source to neutron energies below 13 MeV. In addition,the high triton energy gives a rather high structural background.

The kinematic energy spread is approximately three times as large as in the p-Tcase, e.g. at a half-angle of 5° for the aperture of the sample, the relative energyresolution for neutrons between 2 and 20 MeV is close to 1% (see Fig. 1).Table IV gives the relevant kinematic data and Table II the relevant reducedcm. Legendre coefficients for the differential cross-sections. However, the EJJJvalues in the latter table must be multiplied by 2.9937 and 0 must be changedto 180°— © in order for those data to be valid for the t-H case.

3.2. Interaction of deuterons with deuterons

3.2.1. 2H(d,nPHe

The data in Table V are from Liskien and Paulsen [9] for incoming energies< 3 MeV and from Ref. [4]. The anisotropy at low energies, as given by Liskienand Paulsen [9], agrees with recent accurate measurements [20], resolving thediscrepancy suspected near 0.2 MeV [5]. By including these new data the scale ofthe cross-sections below 0.4 MeV can be improved as compared with the originalevaluation [9]. These new data have shape errors of 1% and scale errors of 1.5%.

TABLE V. THE 2H(d, n)3He REACTION(Deuteron energy: £,„; cm. differential cross-section at 0°: So; reduced Legendre coefficients: ~A,; integrated cross-section: St)

E in So Ao A s A,, A6 Ao A1 0 AJS AJ I , A 1 6 S t

(MeV) Imb/sr l (mb)

0. 28I . 17<1.694 . 636. B5

9. 19I 1. 651 4 . 1 O1 6 . b *>.37.0 g

35.6 g'13. 3 O.SO. 3 £So. 7 BB63. 0 *

m67 .7 m7rl'.Li »77.0a 1.3Hh.?

BB.?PO.b9P. 79'i. 996.9

9B. 399. B

.10.1. B103.7

0.020.030.040.050.06

0.07O.Ofl0.090.100.15

0.200.250.300.350.40

0.450.500.550.600.65

0.700.75O.BO0.850.90

0.95.1.001.101.201.30

0.0270.1190.2820.500.76

1.041 * +

:K651.953.39

4.685! 917. 108.259.4

10.411.412.413.414.3

15.115.016.517.217. 8

IB. 419.020.02.1.02.1.9

0.8190.7850.7580.7370.719

0.7050.6920.6810.67:10.633

0.6050.5830.5640.5470.532

0.51B0.5060.4940.4B30.474

0.4650.4560.4470.4390.432

0.4250.4180.4050.3930.381

0.18.10.2150.2410.26:10.279

0.2920.3040.3140.3230.356

0.3790.3950.4080.4 IB0.426

0.4330.4370.4400.4430.444

0.4450.4460.4450.4440.443

0.4410.4390.4340.4280.422

0.00.10.0020.002

0.0030.0040.0050.0060.011

0.0:160.0220. 0280.0350.042

0.0490.0570.0660.0740.082

0.0900.0980.1 OB0.1170.125

0. 1340. 1420. 1580.1740.189

0.00 10.0030.0050.0 OB

1.401.501.601.70.1.80

1.902.002.102.202.30

2.402.502.602.702.80

2.903.003.504.004.50

5.005.505.806.006.20

7.008.009.00

10.001.1.00

12.00.12.3!13.0014.0015.00

22.723.4

24! 625.2

25.826.426.927.528.0

28.428.929.329.830.3

30.73.1.233.435.537.1

38.640.040.84 1.34.1.0

43.545.045.946.146.0

45.745.645.344.744. 1

0.3700.3600.35:10.3420.334

0.3260.3180.3110.3040.298

0.2930.2870.2820.2770.272

0.4160.4100.4040.398

0.2030.2160.2280.24 0

0.3P2 0.251

0.3870.3820.3770.3720.367

0.3620.3570.3!S30.3490.345

0.268 0.3410.262 0.3370.241 0.32.1

0.2600.2700.2790.2870.294

0.3010.3080.3140.3200.326

0.3310.3370.358

0.0.1.10.0.140.0 170.0200.023

0.0270.0300.0330.0370.04 1

0.0440.0480.0510.0540.057

0.0600.0640.080

0.2233 0.3060 0.3697 0.0950 0.00600.2103 0.2930 0.3763 0.1090 0.01.14

0.1990 0.28.19 0.3792 0.1224 0.01750.1892 0.2721 0.3796 0.1347 0.0232 0.00120.1837 0.2656 0.3783 0.14.17 0.0266 0.0038 0.00030.1804 0.2615 0.3775 0.1460 0.0287 0.0051 0.00080.1769 0.2584 0.3757 0.1505 0.0311 0.0062 0.0011 0.0001

1659 0.2465 0.3690 0.16(54 0.0400 0.0093 0.0020 0.0009.1552 0.2364 0.3589 0.1836 0.0496 0.01.18 0.0027 0.0018

10b. 5105. 910b. 9I Oh. 8105. 7

105.5105.3105.2105.0.104.8

104.5104.3104.0103.8103.5

103.2102.8101.299.698. 0

96.595. 094. 193.59?. 9

90.687 .885. 082.479.0

0.1477 0.2284 0.3489 0.1977 0.0568 0.0.142 0.0036 0.00270.1425 0.222(5 0.3382 0.2093 0.0629 0.0I6b 0.0040 0.00360.1383 0.2.177 0.3275 0.2196 0.0684 0.0.189 0.0052 0.0044

0.J348 0.2.136 0.3167 0.2287 0.0738 0.02.13 0.0060 0.005.1 77.40.1340 0.2122 0.3133 0.2312 0.0753 0.0220 0.0063 0.0053 0.0004 76.60.13.16 0.2098 0.3057 0.2362 0.0792 0.0236 0.0068 0.0058 0.00 13 75.00.1290 0.2070 0.2948 0.2423 0.0843 0.026.1 0.0077 0.0064 0.0024 72.60.1266 0.2045 0.284? 0.2481 0.0893 0.0285 0.008b 0.0068 0.003!. 70.3

7*H

U>

114 DROSG and SCHWERER

TABLE VI. Q-VALUES, THRESHOLDS ANDNEUTRON ENERGIES AT 0 ° ^ FOR d-D(All energies in MeV)

Exitchannel

Ein

0.000

4.451

8.904

Q

n + 3He

En(0°c.m.)

2.449

7.706

11.986

+ 3.269

n + p + d

Enmaxl

0.557

5.512

-2.225

2n + 2p

^nmax2

1.114

-4.449

Liskien and Paulsen give an absolute deviation of the reduced Legendre coefficientsof 0.01 (resulting in worst-case shape uncertainties between ±2.8% at 0.4 MeV and±7.1% at 3 MeV), a 4% relative deviation of the 0° cross-section and a 5% relativedeviation of the integrated cross-section.

The scale uncertainty between 5 and 12 MeV is approximately ±1%, while theshape uncertainty between 5 and 10 MeV is close to ±1%, increasing to about ±4%at 17 MeV. The 0° position has an error of ±0.1° and the incoming energy has atypical uncertainty of ±0.02 MeV which decreases with decreasing energy. Relevantpapers are listed in Refs [4, 5 and 9].

The monoenergetic range extends from 2.45 to 7.71 MeV neutron energy at0°. At energies that are not too low, the yield is strongly forward peaked (seeFig. 3), which gives a reduced in-scattered background. On the other hand, thisstrong angle dependence even in the neighbourhood of 0° makes it necessary tointegrate the differential cross-sections over the opening angle whenever this angleis larger than l°-2° Not to do so may result in systematic errors of a few per cent.

Above 4.45 MeV deuteron energy, the deuteron breakup gives a neutroncontinuum with an energy gap at 0° between its maximum and the primary neu-trons of, typically, 7 MeV. The intensity of this intrinsic background increasesrapidly with energy, severely limiting the usefulness of the d-D source outside of itsmonoenergetic range.

Often there is no choice other than to use the d-D reaction for monoenergeticneutron production, despite its lower yield in primary neutrons (see Fig. 2 andTable I ) and higher yield in background neutrons [14] when compared with thep-T reaction.

Text com. on p. 121.

PART 1-3 115

THE 2H(d,n)3He REACTION

3.4 -, T :

3.2-

1.8

oOVIOSaoSm

l f)0

FIG. 1 7. la) Neutron energy values and (b) differential cross-sections for the 2H(d, n)3He reaction: 0.02-0.3 MeV.

4.5

1.5-l f iO 100

o.n Mcv

_i L0.7 McV

0.6 McV

5

i no 1(10

FIG. 18. (a) Neutron energy values and (bj differential cross-sections for the 2H(d, nJ3He reaction: 0.4-0.9 MeV.

1.5

50 T.

3o :io no 90 mo mo ino 0

°lab "lab

FIG. 1 9. (a) Neutron energy values and (b) differential cross-sections for the 2H(d, n)3He reaction: 1.0-2.5 MeV.

00

oO

v>OEC

7iW73

11)0

A 6

pa

FIG. 20. (a) Neutron energy values and (b) differential cross-sections for the 2II(d, n)3He reaction: 3-7 MeV.

JOVIOta9a.VIoSBWJOM

o - - .100

F/G. 21. (a) Neutron energy values and (bj differential cross-sections for the 2H(d, n)3He reaction: 8-18 MeV.

PART 1-3 121

Data contaminated by d-D breakup neutrons have been corrected by one ofthese two procedures:

(1) An experimental subtraction of the background contribution is done by using3He as a dummy gas, which is reported to give a similar breakup spectrum [21 ].

(2) The effect of the background neutrons is subtracted by a calculation [22]using measured double-differential breakup cross-sections (d2a/dEd£2).Breakup cross-sections and sources of the original data are listed in Refs [4, 5,14, 22, 23].

Other disadvantages of the d-D reaction (as compared with the p-T reaction)are a lower projectile energy, which gives a bigger energy loss (and therefore strongerheating) in the entrance foil; larger straggling and a worse time resolution (onlyimportant in time of flight applications); and the self-target buildup in the beamstop which gives additional low energy background neutrons (noticeable after longuse of the same target) when the deuteron energy is increased. Owing to the ratherhigh yield of the d-D reaction, this latter effect is not so pronounced as in the d-Tcase. In addition, the differential cross-sections of the d-D reaction have a muchstronger angle dependence (see Fig. 6 ). Above 4 MeV deuteron energy, a changein the 0° direction by 0.1° results in a maximum cross-section change of more than1%. Table VI summarizes the relevant reaction data and Figs 17-21 illustratethe angular dependence of the neutron energies and of the differential cross-sections.

3.3. Interaction of deuterons with tritons

The data in Table VII were derived from Ref. [24] (<0.4 MeV), from Ref. [9]« 2 . 9 MeV), from Ref. [6] (<9.5 MeV) and from Ref. [4]. Below 0.4 MeV thetypical total error is less than 1.5%. For the 0.4 to 2.9 MeV range, Ref. [9] gives anabsolute deviation of 0.01 for the reduced Legendre coefficients (resulting in worstcase shape uncertainties between ±1.4% at 0.4 MeV and ±6.5% at 2.9 MeV), 3-4%relative deviation of the 0° cross-section and a 7% relative deviation of the integratedcross-section. The scale error of the two evaluations in the higher energy range isgenerally 1.5%, except near 4 MeV, where it increases to 2%. The shape error isestimated to be ±3% at 3 MeV, decreasing to ±2% between 5 and 10 MeV and thenincreasing again (+2.5% at 13 MeV, ±5% at 16.5 MeV).

The 0° position has an error of ±0.1° and the incoming energy a typical uncer-tainty of ±0.02 Me V, decreasing with decreasing energy. Sources for the relevantdata are listed in Refs [4, 5 and 9]. As pointed out [6], there is an indication thatthe scale at higher energies is too high by (1.5 ± 0.8)%.

3.3.1. 3H(d, n)4He

This reaction is best known for its resonance at 107 keV [3], culminating in apeak cross-section of about 5 b. Owing to the high Q-value (4-17.59 MeV), low

TABLE VII. THE 3H(d, n)4He REACTION(Deuteron energy: Ein; cm. differential cross-section at 0°: So; reduced Legendre coefficients: A(; cm.differential cross-section at 180°: Sn; integrated cross-section: St; the coefficients are multiplied by 1000 tosave space)

(MeV) (mb/sc)A 7 A 1 0 1 2 A1 3

0.020.030.040.050.06

0.070.080.090. 100.12

0.150. 170.200.250.30

0.350.i»00.450.500.55

0.600.650.700.75O.BO

0.901.001.101.201.30

4 . 621.755.5

106.6172.4

245.8313.9366. S393.638't. 1

306.6254.6196.6132.197.5

77.163.553.045.539.4

35.531.929.427.025.0

22.019.817.916.715.8

1000.1000.1000.1000.1000.

1000.1000.1000.1000.1000.

1000.1000.1000.1000.1000.

1000.999.998.997.995.

993.989.986.983.978.

968.957.946.931.915.

4 .1 3 .2 1 .3 0 .

3 8 .4 6 .5 3 .6 0 .(57.

7 7 .8 7 .9 4 .

100.105.

- 3 .-11.-18.-25 .

-3.1.-35 .-39.-43 .-45 .

-45 .-44.-40.-32.-23 .

1.3 .

Sn S t(mb/sc) (mb)

4 . 62.1.755.5

106.6172.4

245.8313.9366.5393.6384.1

306.62S4.6196.6132.197.5

77.163.051.643.637.0

32.829.026.323.82.1.7

18.616.414.5.13.412.5

b8.2273.697.

1339.2166.

3089.3945.4608.4947.4827.

38!i3.3200.2470.1660..1225.

969.797.66H.570.493.

443.396.364.334.307.

268.239.213..195..182.

O50OO»a.V)

oHHNM

j !mmJO

to to ru i-> o x> x> a> -J i < o. ex en en • •*• co to M rururururu

tO O O O O0 . o o o o

tn >-> -e- x> tnooooo

o en o en o i n o v i o ' o D i o k D i ^ u i u w o v B ^ Oooooo ooooo ooooo ooooo ooooo

». OkOk o. -g

tn Wl-J KJ tox>xixjx>as -jcn-truru l u u u * en

^1 O. Cfio o o

xj sr <no ru eocnos-

to to -

Pj Ok U)

to — oPJ tri tn

tx 0. o.

tn as coos •-•ooooo •ftxtnruin tncooo.ru w <

- - - o, ex X) o(_ki_iM rururururu PJ ru ru ru ruin in * o * en o.-kj GOXJCD-C-U

ru ru co to 10 co .*••*• cntnosxswru-e ^ • •a i> iceo to *-» 03 05 cniomMx;

ex ex o. ex a.ot»±-o.a> O C O * -0 X)

J O ' Q U

05 OS OS 03 OSf to tn --1 V)-r was os CD

u» *-* CD

~0 ^J 0-.

o o ;-*

i-* *-* ru

i i i

CD - J U>

o u ru

•-J as 'O^- cr. yia; i-> a:

-J ^1 05J- -J i"U

O VJ.C

ru ru ruLJ 'Jj i>J•o J - *•

CK CK O, CX (Xtr: -t-ru i-* ruo o u * ru

ru O)O) * <r•^ o-Jin -fV3 >0 >0 >O U)

i i i i iU> tij U) CiJ Tu

U) o o . ai fu

O O u M IUru en -t- OJ oru v7\ 1 >o

as os as «• j ! (X <o ru fu

l-fc -C- 05 U) *O

i-i u vj -j tn^3 ru ->i -o UJ

voanoo

OvOk» ^J 0)i j j * V3 (7! *•

rutTi-* -o os

'Jl t% 0k 1 ^1os a> ru o.ai \o o 0 ru

^ • i w ruu> -o -t- -o NO

en vi o, 05 o

ro u> — tn "o

>0 >0 Cfi 05 0

wt ^i eu tn as

(- ru en uj -t-

OOOJ-M

00)0. 05 10

>o i- -J ru-t-

as \oru -t ix

ca ov>oy)u

J - in o> -J via> en en t-* *•

o w oo.ro

o V3 0N c n *•o o X3 tn-^iCA) D- >O !53 O.

0k * to i-> y)i-* -J i-i OS•o ruex >o<o

a> -J tn en.t-rooooro

*• en oc o

rurururuei)OUU«Oo o ~J o

0k en ru o> 0k^JOS <J X)•o io wen

~o > en eo ul-> *• CU ~J- fi-eoer. io

* (o fo ru fuu» en y3 eo -tO. V5 ) vT

03 ^J £T. *• - t

Ok 171 U) O

tr. as i-« en *•

uj eo u> u usw njeo to ru

en -t* io ru i-*X) CC-J - J en

eo ru ru i-» ->i-i - jo) <o en

eo eo eo ru ru~i *- os en

to eoru ruru

o x) OD Ok in

ru XJ -o en •*•

Ok -teo ru u

ru x)Ok eo o

-j^jOk cn-e-

ru ru « i-> i-*ruook eo o

t^- ru J-* »-ruxjOkruea

ru *-k

V3 CD -0 kT. *

-J J- i—

•*• w ru ru I-*

PJ x) inO. PJ ~J

tn en *-JOUlo as ru

en eo ru

to ru XJ Ok to

-t- -f eo to ru

O -f w. CD tO

" S v O O S ^

l-i Otji o

IUIU

t— o

-JO.

Ok to x)asru tn

Ok * ru

-ooro

o. en tn

-ft- O -t- 03 *•*0. o Jr- to 33

o as — tn *

PJ tn o CD *•

•e- to co ru ru

r u o

as as

w o

toxi^OkO, w^j^cnpj

tx

to

Jr ruto o.

to eo

tUPJ

33 OS

b^ i-k x j -^ tn

-c pj tn cr. w

to to ru ru ru

o o-^ J- o05 as - j tn *

-*- to nw-e-t

< tn u

toru t

^ o o

J-05 0.

* o o

O 1t>k(

oto

ru o i - os ru co - j o, as ru

to *JJ rv - o

eo

O

i~> tn as-0 X)

to 'a) •*•Os 05 O

o ;-»to co co PJ ru >-sj tr. w co PJ x> *JJ

- ^- -e- - enpj T. to i->

cr tn en 0keo en xs r»j -

0k t i enru o as

o, -j -j -g osenruo- X) —

-»a ~i en to PJ->;ru w -ft- ru

OS OS 3D X> -CP_' tO 0k O O

ru to-*- er ~;CD -oen en *•

X>X)X) X) OPJ -t- 0k ts ru

J u ITtOO.

O O M Mtr: x) •«• x) o.

eo -f -f cr. o.pj o x> co X)

oa o. o". -«• x> to -t tn * ru

ezi e-i

124 DROSG and SCHWERER

energy accelerators can be used to produce '14 MeV neutrons (which is what isdone in many installations). Comprehensive overviews of such 14 MeV neutrongenerators are available (e.g. Refs [25, 26]).

Although there are no secondary neutrons up to 20.46 MeV, the room back-ground even at lower energies is comparatively high because of the rather smallanisotropies of the cross-sections and neutron energies. In addition, the specificyield, even at the resonance, is very low (see Fig. 2). Thus there are cases wherep-T is a better choice than d-T for experiments with 14 MeV neutrons (e.g. Ref. [18]).

After prolonged use of a target, the deuterium self-buildup in the beam stopcan become an undesired source of low energy background neutrons, especiallyafter an increase in the deuteron energy. Since secondary neutrons (with a maxi-mum energy that is about 20 MeV less than the primary neutron energy) affectmeasurements above 20.5 MeV only, there was up to now little need for breakupdata. The few measurements available are listed in Ref. [5].

Figure 22 compares the specific yields of various sources using gas targets forneutron production near 14 MeV. The advantage of using 90° rather than 0° for thed-T (and the t-D) source is obvious. At this angle the energies of the emittedneutrons are quite independent of the beam energy. However, in an actual experi-ment the neutrons intercepted by the sample will be from a finite angular rangearound 90° (depending on the opening angle of the sample and the angular stragglingof the beam). Thus the actual specific yield will be lower (even more so with solidtritium targets owing to much increased angular straggling). The reaction data arecollected in Table VIII,the angular dependence of the neutron energies and of thedifferential cross-sections are illustrated in Figs 23-30-

3.3.2. 2H(t,n)*He

Exchanging the projectile with the target nuclei of the d-T reaction increasesthe upper limit for monoenergetic neutron production from 20.5 to 23.0 MeV. Themaximum neutron yield at 0° then occurs for 15.2 instead of 14.8 MeV neutrons,so that the specific yield is higher (up to 80%) between 15.07 and 17.02 MeV.Owing to the smaller relative energy loss of the projectile, the total neutron yieldis 1.5 times higher for the same cm. conditions, which results in the higher 90°yield curve in Fig. 22.

No data on the breakup cross-sections have been published. Table IX sum-marizes the reaction data. The maximum energy of the breakup continuum isabout 22 MeV less than the primary neutron energy. The primary cm. cross-sections can be calculated by using the Legendre coefficients from Table VII,multiplying E^ by 1.4976 and changing 0 to 180°- 0 . Figures 31-34 illustratethe angular dependence of the neutron energies and of the differential cross-sections.

PART 1-3 125

10 -

2. 10 -Q

UJ

O

3 io2

10

i

-

. \ \ t -D (90°)

\d-T (90°)

/ /

/ /

1

t-H (0°)

p-t (0°)

t-D

"X—/ d-T

1

1

-

(0°)

_ _ _

Kf) '

I

I

-

-

-

-

1

14.0 14.5 15.0 15.5

NEUTRON ENERGY (MeV)

16.0

FIG. 22. Specific neutron yields from monoenergetic neutron sources near 14 MeVemploying gas targets.

TABLE VIII. Q-VALUES, THRESHOLDS AND NEUTRON ENERGIES ATFOR d-T(All energies in MeV)

Exitchannel

0.000

3.711

4.985

10.443

14.159

17.876

Q

n + 4He

En(0°c.m.)

14.028

20.461

21.964

27.891

31.717

35.465

17.589

n + p + t

Enmaxl

0.298

2.000

7.356

10.918

14.472

-2.225

2n + ^ e

Enraax2

0.400

6.416

10.006

13.573

-2.988

n + d + d

Enmax3

0.838

5.763

9.521

-6.257

2n + p + d

Enmax*

1.136

6.414

-8.482

3n + 2p

Enmax5

1.435

-10.707

1 26 DROSG and SCHWERER

TABLE IX. Q-VALUES, THRESHOLDS AND NEUTRON ENERGIES ATFOR t-D(All energies in MeV)

Exitchannel

Bin

0.000

5.558

7.466

15.639

21.204

26.771

Q

n + *He

En(0°c.m.)

14.028

23.006

25.032

32.946

38.023

42.985

17.589

n + p + t

Enmaxl

0.668

2.990

10.038

14.713

19.375

-2.225

2n + 3He

*-"nmax2

0.897

8.934

13.650

18.331

-2.988

n + d +. d

Enmax3

1.879

8.592

13.559

-6.257

2n + p + d

Enmax4

2.547

9.789

-8.482

3n + 2p

EnmaxS

3.214

-10.707

3.4. Interaction of protons with 7Li

Reduced cm. Legendre coefficients are given in Tables X and XI for the7Li(p, no)7Be and the 7Li(p, n^ 'Be* reactions, respectively (7Be* is in the0.43 MeV excited state). The coefficients used in these tables are taken fromLiskien and Paulsen [10]. For the ground state reaction they give an absolutedeviation of the reduced Legendre coefficients of 0.03 at proton energies above2.2 MeV (resulting in minimum worst case shape uncertainties of ±5.9%) and 5%for the relative deviation of the 0° cross-sections. For the reaction leading to the0.43 MeV excited state, the absolute deviation of the Legendre coefficients forproton energies above 3.2 MeV is 0.1 (resulting in minimum worst case shape uncer-tainties of ±33%), while the uncertainty in the cross-section ratio at 0° is 9%.

The quality of the evaluated coefficients in the light of more recent data hasbeen discussed [2, 3]. Recent data for the 'HC'Li, n)7Be reaction [27] show sur-prisingly large deviations of the 180° excitation function from the evaluated datanear 2.0 and 2.5 MeV proton energy which could be caused by discrepant projectileenergies [7]. From this and other evidence, it can be estimated that the accuracyof the cross-sections calculated from the coefficients will be of the order of 10%over most of the energy range. Experimental papers on the p-7Li interaction arelisted in Refs [2] and [10].

Text cont. on p. 138.

PART 1-3 127

TABLE X. THE 7Li(p, n)7Be REACTION(Proton energy: E^; cm. differential cross-section at 0°: So; reduced Legendrecoefficients: At; cm. differential cross-section at 180°: Sn; integrated cross-section: St)

EIn(MeV)

12222

22222

.95

.00

. 05

. 10

.15

.20

.25

.30

.3b

.40

2.452222

23

.50

.60

.70

.00

.90

.003.1033

33333.

3.4.4.4.4.

4.4.4.4.4.

4.S.S.5.5.

5.5.S.S.5.

5.6.6.6.6.

6.6.6.6.6.

6.7.

.20

.30

.40

.50

.60

.70

.80

.90

.00

.10

.20

.30

4050607080

9000102030

40bO607080

9000102030

40SO607080

9000

So(mb/srl

19.015121322

4679837161

b347403634

3332313029

2920282727

27.26,27.28.30.

32.34.37.41.44.

48.SO.48.45.42.

39.36.33.31.29.

26.24.22.21.19.

18.16.15.14.13.

12.12.

.0

.1

.1

.6

.7

.2

.4

.4

.2

.0

.4

.5

.0

.2

.0

.0

.2

. 5

.9

.3

.7

.2

.8

.4

.0

.7

. 1

.2

.0

.26b18

10664

66960

74605

29667

92

11111

00000

00000

00000

00000

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.

Ao

.125

.425

.805

.810

.300

.815

.bUb

. 475

.460

.44b

.465

.490

.545

. S8b

.590

.580

.575

. sao

. bOb

. b90

.600

.620

.640

.660

.68b

.710

.730

.740

.740

.720

.70S,<S6S.660.63060S

,590590600615635

655675695710725

745760775785800

810820830840850

8S0855

-0-0-0-0-0

00000

00000

0000.0.

0.0,0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

-0.-0.• 0 .

-0.-0.

-0.-0.-0.-0.-0.

-0.-0.-0.-0.-0.

-0.-0.

A.I

. 125

.430

. 825

.845

.435

.110

.330

.430

.440

.445

.420

.400

.3bO

.320

.330

.3bO

.36b

.360

.355

.345

.330

.305

.295

.285

.275

,250,225210.200190

18016bJbS140130

11509006503S005

02S050085110135

160180205220240

255265275285295

300305

0000

00000

00000

00000

00000

00000

0.0.00.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

0.0.

.005

.020

.03b

.055

. 075

.005

.095

.100

.110

.115

.110

.105

.095

.080

.070

.060

.060

.060

.065

.070

.075

.080

.095

.105

.125

.145

.175

.210

.260

.295

.320

.340

.355

.360

.365

.365

.365

.365

.360

.35534S.34033S330

325320316310305

305300295290285

285280

-0.-0.-0.

-0.-0.-0.-0.-0.

-0.-0.-0.-0.-0.

• 0 .

-0.-0.-0.

0.0.0.0.0.

0.0.0.0.0.

0.0.0.0.0.

A3

015040065

08510012bISO170

180170Ibb125095

07004&030015

015030050065080

090100115125135

140145150155160

0.16S0. 170

s,r<mb/tc>

2327323b42

36261186

89,12,12,11

9,0,8.B.

.75

.90

.06

.24

.26

.43

.93

.68

.57

.73

.48

.48

.15

.96

.63

.90

.64

.74

.849.27

9.11.12.14.15.

18.20.22.25.28.

32.34.37.39.41.

43.4b.45.43.41.

40.38.36.34.32.

30.28.

.96

.19

.41

.1889

0903493880

20

508766

IISO207898

3906274419

4430

26.6724.23.

22.20.19.18.17.

16.15.

9960

3996SO4040

3049

st(tub!

269.269.275.298.392.

478.502.498.413.342.

310.292.277.265.253.

241.232.227.223.222.

221.224.227.231.236.

241.245.252.262.271.

28b.£J9B.

311.325.341.

Jb7.371.366.352.338.

326.310.296.,282.264.

250.233.220.207.196.

185.174.163.154.146.

138.131.

128 DROSG and SCHWERER

TABLE XI. THE 7Li(p, n)7Be* REACTION(Proton energy: Ein; cm. differential cross-section at 0°: So; reduced Legendrecoefficients: At; cm. differential cross-section at 180°: Sn; integrated cross-section: St)

E i n(MeV)

2 . 52 . 62 . 72 . 8

2 . 93 . 03 . 33 . 23 . 3

3 . 43 . 53 . 63 . 73 . 8

3 . 94 . 04 . 14 . 24 . 3

4 . 44 .B4 . 64 . 74 . 8

4 . 95 . 0S . I5 . 25.3

5 . 45 . 5b . 65 . 75 . 8

5 . 96 . 06 . 16 . 26 . 3

6 . 46 . 56.66 . 76 . 8

6.97 . 0

So Ao(rnb/sr)

0.651.101.451.75

2.052.2b2.402.602.7b

2.8b2.953.003.053.05

3.0b3.053.002.902.85

2.802.752.702.652.60

2.602.652.702.803.10

3.554.004.555.105.60

6.156.506.957.2b7.40

7.206.756.2b5.805.30

4.7b4.25

1.010.1. 0951.2751.540

1. 7551.88b1.9051.8651.780

1.7001.58b1.48b1.3901.335

1.3001.2801.2801.28b1.290

1.2901.2901.2901.2851.275

1.26b1.2301.1801.1100.970

0.8400.7450.6650.6000.560

0.525O . b l b0.5200.5250.53b

0.5450.5600.5800.6000.630

0.6550.675

A I

0 . 0 0 0-0.025-0.080-0.220

-0.310-0.355-0.400-0.415- 0 . 4 4 0

-0.470-0.490-0.515- 0.535- 0.550

-0.570- 0.58b-0.600-0.610-0.615

- 0.620- 0.620-0.615-0.610-0.600

-0.585-0.550-0.500-0.420-0.280

-0.140-0.0450.0100.0500.080

0.10b0.1300.14b0.1550.165

0.1700.1750.1800.1850.190

0.1950.200

•0.005-0.020-0.050-0.115

-0.220-0.315-0.3bb- 0.34 5-0.27b

-0.210-0.115•0.0200. 1250.240

0.3400.4200.4750.5200. 555

0.5900.6150.6300.6450.655

0.6600.6600.6550.6400.620

0.580O.bbO0.5250.5000.470

0.44b0.4000.3600.3250.290

0.2600.2300.2000.1700.135

0.1050.080

A 3

-0.005-O.ObO-0.145-0.205

- 0.225-0.215-0.150-0.105- 0 . 0 6 b

-0.0200.0200.0500.020

-0.025

-0.070-0.115-0.155-0.195-0.230

-0.260-0.285-0.305-0.320-0.330

-0.340-0.340-0.335-0.330-0.310

-0.280-0.250-0.200-0.150-0.110

-0.075-0.045-0.025-0.005

0.0.10

0.02b0.0350.0400.0450.04b

0.04b0.045

(mb/ sc)

0.66.1.262.103.24

4.244.825.045.30b. !i3

b. 645.72b. 796.196. 56

6. 9b7. 327.537.577.67

7.737.737.677.587.44

7.417.377.237.006.76

6.536.366.286.125.94

5.785.405.285.074.81

4.393.913.503.132.81

2.472.17

c

(mb)

8 . 015.023.033.5

45.053.058.061.06 :1 . O

60. b58.555.553.5b l . b

50.049.048.047.046.0

45.044.543. b43.042.0

41.040.540.039.038.0

37.537.538. 038.539.5

40.542.045.548.049.5

49.547.54b. 543.54 1.5

39. 036.0

PART 1-3 129

THE 3H(d,n)4He REACTION

14.8

14.6

14.4

14.2-

13.8-

13.6-

13.4-

0.07 MeV;

300

100-

20)

1

10

3--r-i-+

(bl

iO.07 MeV

;0.06 MeV

J0.05 MeV

j0.04 MeV

'. i0.02 MeV

0 30 80 90 120 lf)0 1(10

'lab "lab

FIG. 23. (a) Neutron energy values and (b) differential cross-sections for the 3H(d, nflle reaction: 0.02-0.07 MeV.

o7)Oovg.VIO

50

>JO

100

FIG. 24. (a) Neutron energy values and (b) differential cross-sections for the 3H(d, n/4He reaction: 0.08-0.18 MeV.

16-

15.5-

1 5 -

14.5-

13.5-

13

1 2 . 5 -0

( a )

30 60 90' I120 100

220-,

200-

1B0-

CO

0>

a

160-

140-

i 120-

100-

80 -

60 -

40

(fa)

0.20'MeV!

0.25 MeV:

0.30 MeVi

0.35 MeVi

0.40 MeV

:0.45 MeV

to

a73O</>

ovsaVI

O

som

100 30 60 90 120 100 100

FIG. 25. (a) Neutron energy values and (b) differential cross-sections for the 3H(d, njAHe reaction: 0.20-0.45 MeV.

55

16.5-

15.5-

H.5-

13.5-

1S.5-

I 0.5 MeV

100

PSH

F/G. 26. a,/ Neutron energy values and (bj differential cross-sections for the 3H(d, n)*lle reaction: 0.5-1.0 MeV.

19

100

OWO

mjom

r>o iao

. 27. fa Neutron energy values and (bj differential cross-sections for the 3H(d, nflie reaction: 1.1-2.0 MeV.

24

2 2 -

2 0 -

1 2 -

10-

( a )

2.5 McV

30

30 00 90 1K0 lf>0 100

T3

0)

-q io

c33

3- ' I ' ' ' ' ' I '30 00 90

0, .

' I ' ' ' ' ' I 'IfJO l f iO 1(10

5

FIG. 28. (a) Neutron energy values and (bj differential cross-sections for the 3H(d, n)4He reaction: 2.5-6.0 MeV.

i) MeV

10 MeV

B MeV

00 90 120 lf>0 11)030 60 90 120 ifiD 1B0

ON

O

8

o

B

y Ub "lab

FIG. 29. (a) Neutron energy values and (b) differential cross-sections for the 3H(d, n)*He reaction: 7-12 MeV.

1000.6- ~r~r~r

60 90 120 100

FIG. 30. (a) Neutron energy values and (b) differential cross-sections for the 3II(d, n)*lle reaction: 13-20 MeV.

"O

Hi

138 DROSG and SCHWERER

3.4.1. ~'Li(p, no)1Beand1Li(p, n^Be*

Table XII gives the relevant reaction data and Figs 35-40 illustrate theangular dependence of the neutron energies and of the differential cross-sections.Although above Ep = 2.37 MeV (En(0°) = 0.65 MeV) a second neutron line (fromthe 0.43 MeV excitation of 7Be) is present (actually, up to 2.42 MeV there is evena third line), its intensity is less than 10%, so it can be tolerated in some applica-tions. The onset of breakup neutrons at 3.69 MeV (En(0°) = 2.01 MeV) furtherlimits the use of this reaction as a 'monoenergetic' source to neutron energiesbelow 4 MeV. As in the case of d-D breakup, calculated corrections using double-differential cross-sections can be applied [28].

From Fig. V it can be seen that the energy dependence of the 0° cross-sectionis very strong for proton energies below 2.5 MeV (0.8 MeV neutron energy). Inthis region the energy dependence is generally larger than 5% for a 1% change inbeam energy. Therefore, a careful determination of the effective beam energy willoften be necessary when using this reaction.

Single line spectra below En = 121 keV can be obtained at angles >0°. However,in such cases the background from the neutrons at smaller angles (with higherenergy) is troublesome.

The advantages of the p-7Li source are:

(1) Small kinematic energy spread (see Fig. 1). For an opening angle of thesample of ±5° the relative energy resolution caused by the kinematic spreadis close to 0.15% of the neutron energy over the range of interest.

(2) Between 0.4 and 0.7 MeV neutron energy, the yield is higher than for thecompeting p-T reaction. An additional advantage over the p-T reaction is thehigher projectile energy, which gives, e.g. better time resolution in time offlight experiments.

(3) The production of targets for high resolution work is comparatively simple.Usually they consist of lithium metal evaporated on a tantalum [23, 28, 29],silver or tungsten backing. Even natural lithium, which contains 7.5% 6Li, canbe used (the (p, n) threshold of 6Li at 5.92 MeV is outside the useful range ofthe p-7Li reaction). Although the handling of the compound LiF, which isalso used as a target material, is easier, metallic Li is better because its specificneutron yield is three times as large.

3.4.2. lHCLi, n^)1 Be and lH(nLi, n^Be*

If the incoming energy E^ in Tables X and XI is multiplied by a factor of6.9637 and the cm. angle 0 is changed to 180°- 0 , those tables can also be usedto calculate the cross-sections for the 7Li-H reactions.

Table XIII summarizes the relevant reaction data. The special feature of thissource is the containment of the neutrons in a forward cone with a half-angle

Text cont. on p. 158.

PART 1-3 139

THE 2H(t,n)4He REACTION

16

15.5-

1 5 -

14.5-

14

ia.5-

13-

12.5

0.0-1 MeV

0.07 MeV

0.10 MeV

0.17 MeV

30 00 901 I •120

' I 'lf iO

SOO

4> 1 0 0 -

a

X)

10

( b )

; 0.17 MeV;0.23 MeV

; o.io MoV

0.07 MoV

:0.04 MeV

D90OtnO»ao.

r>XtnpaM50

180 0 30 GO 120

0.90

ab lab

FIG. 31. (a) Neutron energy values and (b) differential cross-sections for the 2H(t, n)*He reaction: 0.04-0.40 MeV.

-r-i-i no

o n

19-

18-

1 7 -

<? 16

hf 16-

L4-

13-•

12-

11-

10-

— ~ .

—i—i—r

^ • • \

^v

\ %* • • . ; • • : \

. T S . . . *

\ \ \

\ '

w- l - > j . • 1 • '

%

\vN

\\y....

' ' 1

\ .

.A

•• i 0.7 McV

\\

; 1.0 McV

• 1.3 MeV

! 2.0 MeV

2.5 MeV

!U)_MeV

•••! " f ^ ^ S

60

uCD

10-

8

2.5 MoV

3.0 MeV

"0

30 0 0 90 120 l!30 100 3 0 60

8,90 120

'lab "lab

FIG. 32. fa) Neutron energy values and (b) differential cross-sections for the 2H(t, n)4He reaction: 0.7-3.0 MeV.

150 100

10

8-100 mo iso 1BO

FIG. 33. (a) Neutron energy values and (bj differential cross-sections for the 2H(l, n)*He reaction: 4-10 MeV.

40-

36

32-

lf)O ino

lab

•0

5

1H0

FIG. 34. (a) Neutron energy values and (b) differential cross-sections for the 2H(t, n)4He reaction: 11-20 MeV.

TABLE XII. Q-VALUES, THRESHOLDS AND NEUTRON ENERGIES AT 0°lab FOR p-7Li

(All energies in MeV)

Exit channel n + 7Be n + 7Be* (0.43) n + 3He + a 7Be** (4.57)

Ein

1.881

1.920

2.372

2.422

3.695

7.110

7.260

Q

En0(0

0.030

0.121

0.650

0.703

2.015

5.450

5.600

cm.)

-1 .644

En0(180°c.m.)

0.030

0.000

-

-

-

En,(0°c.m.)

0.037

0.153

1.556

5.010

5.161

-2.073

Eni(180°c.m.)

0.037

0.000

-

-

En m a x

0.058

3.805

3.958

-3.230

En2(0

0.112

0.460

cm.)

-6.214

En2(180°c,n.)

0.112

0.000

OtooenOind SC

H

w99tn

PART 1-3 145

THE 7Li(p,n)7Be REACTION

0.6-

0.5-

0.4

0.3-

0.2-

0.1-

Z.20 MeVi

12.15 MeV;

!2.05 MeVI

0.0- ' i '110 0(1

1 I '9 0

200

100

r io

Kill

2.15 M<-V

2.20 MeV— -

Z.Z^t McV

a7)oCO

g.VI

n

1(10

(a) Neutron energy values and fb) differential cross-sections for the 1l.i(p, nj^Be reaction: 1.95-2.25 MeV.

0.0

0.8-

0.7-

0.6

0.3-

0.2-

0.1 1 I '30

zoo

100

- aasit

a

c

io

an 00

2.50 Mt-V

2.45 MeV

2.35 M('V

2.40 MfV

120 ino ino IfiO 1(10

FIG. 36. (a) Neutron energy values and (b) differential cross-sections for the nhi(p, npBe reaction: 2.30-2.60 McV.

2.5-

1.5-

2.4

0.5-

4.5

4.0

3.5

3.3

3.0

MeV

MeV

MeV

MeV

MeV

2.7 MeV

1B0

0 0

0 . 4 -

0-

4.5

4J0

3.5

3.3

3.0

2.7

MeV

MeV

MeV

MeV

MeV

MeV

ooo3

a.O

a

F/G. J7. Neutron energy values for the (a) 1Li(p, npBe and (b) 1li(p, n)nBe* reactions: 2.7-4.5 MeV.

60-

b/s

tera

d)

J.ftm

•o

10-

(

— .

1

• . . . ' • • • { • • ' - '

V • •:

/ •\.i

\

V A'

>

; • • • •

) \

* / ;

: • • • •

30

L

»» :

^ ;

V11 !

60 00

\ :

! • • • •

• • 1 ' '

120

• ^ " —

s

: • • • • ;

• • • - > • • • > . . . • _

150 1C

3.3 MeV

3.0 MeVo.v-

4.5 MeV

4.0 MeV

3.5 MeV

3.3 MeV

3.0 MeV

2.7 MeV

150 180

FIG. 38. Differential cross-sections of the fa) 1Li(p, n)nBe and (b) nLi(p, npBe* reactions: 2.7-4.5 MeV.

30 60 90 120 150 160

7.0 MeV

1.6-

6.5

6.0

5.6

5.3

5.0

MeV

MeV

MeV

MeV

MeV

30 60 90 120 150 1801 -,•

7.0

6 ^

6.0

5.6

5.3

5.0

MeV

MeV

MeV

MeV

MeV

MeV

DR

OSG

a

IVIO

mJOmJO

FIG. 39. Neutron energy values for the (a) nLi(p, npBe and (b) nLi(p, nf'Be* reactions: 5.0-7.0 MeV.

70-

ed

cT -b"

•V

B-(

~ x • : :

• • • • • . \ - - - : - - - - : :

• \

" \

. . . %

y.. A. ...: :....., ..A...: :

i. y.

\ vvi• \ • \ \ •

;.V . . M . . t«» : * : \ *

+ | |

\ • ; " V j " " \ < i

\ ! \ \•V \ •\ • \ i

— ; —

r • • • •

; • • • •

\ ]

/

( a ) V /

> 30 60 90

, - r—"-

-

i : ; • • • • ;

• • i • • ' • • I • •

120 150 If

5.3

5.6

6.0

6.5

7.0

MeV_

MeV

MeV

MeV

MeV

MeV

C

10-

1-

ix!

\

- i ^. ..

: ***— r-r-.T— 1

(t

\

I

) )

; ; • • • • • : ; • • • • ;

; ; • • • •

i X ! ! • • • •

.\\;...:.v..:.

:•• V • •

• ; \

1 ' 1

*

J

'•.-•/

w.it

i-^-p^-r-

/ ,

\

— ^ ~

i • • • • •

5.3 MeV

5.6 MeV

6.0 MeV

6.5 MeV

7.0 MeV

30 60 90 120 150 100

FIG. 40. Differential cross-sections oj the (a) 1Lifp, n)1 Be and (bj 1Lilp, nf Be* reactions: 5.0-7.0 MeV.

TABLE XIII. Q-VALUES , THRESHOLDS AND NEUTRON ENERGIES AT 0°,^ FOR 7Li-H(All energies in MeV)

Exit channel

Em

13.095

16.514

25.732

49.509

Q

Eno(O°c

1.439

3.843

8.184

18.803

n+7Be

,m.) En0(180°c.m.)

1.439

0.540

0.254

0.111

-1.644

n+7Be*

Eni(0°.m.)

1.815

7.229

17.975

-2.073

(0.43)

Eni(180°cm.)

1.815

0.457

0.184

n + 3He + a

Enmax

2.828

15.612

-3.230

n + 7Be** (4.57)

En2(0°)

5.439

-6.214

O

)SG

aiid SCH

WE

RE

R

PART 1-3 153

THE 1H(7Li,n)7Be REACTION

0.6-

13.0 MeV

13.B MeV

14.0 MeV

14.2 MeV

14.4 .MeV

14.6 MeV

( a )

30—1

40

2

•sc"

"0

50

\J

-j[

/I ill

5 % / • / / • / • / • •

• • • • : / : / • 7 - i J - • : :

_ ^ / / / ' J i: / : ' /:/ : :: • / . ••/ ;l ; :

X J i /— • ' : / • ; > ' • • .

/ / / •

• i i i T , | . . 1 1

) 10 20 I!

13.0

13.0

14.0

14. a

14.4

1 4 ^

0

Mev : ':

MeV i 1

MeV : :

MeV i 1

MeV

i!eV

( b )

, , i , , . .10 51

oOCO

O

0.

FIG. 41. (a) Neutron energy values and jb) differential cross-sections for the lH(1IA, nj1 Be reaction: 13.6-14.6 MeV.

3.5-

0.5- — I —10 20

— I —30

H . 9 MeV i

15.4 MeV I

15.8 MeV

15.8 MeV

1 — I —40

2000

1000 r 1

•a

I•a

a"

50

100 r . - /

0l.b °l.b

FIG. 42. (a) Neutron energy values and (b) differential cross-sections for the XH(1IA, npBe reaction: 14.9-15.8 MeV.

26 MeV

24 MeV

22 MeV

2 0 MeV

! .B . .M . e .y.17 MeV

' lab

ON

26 MeV

24 MeV

22 MeV

20 MeV

IB MeV_

17 MeV

aoa

I

FIG. 43. Neutron energy values for the la) iH{1Li, n)1Be and (b) 1H(1Li, nf'Be* reactions: 1 7-26 MeV.

1000

13cd

0) 100

10

2 0 0

26MeV

TJ

X

26 MeV

24 MeV

22 MeV

20 MeV

lB_MeV_

17 MeV

FIG. 44. Differential cross-sections oj the (a) *H(nU, npBeand (b) xH(nIA. n)1 Be* reactions: 17-26 MeV.

158 DROSG and SCHWERER

according to formula|(2). However, the second neutron group at 0° (correspond-ing to 180° in cm.) is in most cases not negligible (neither in energy nor in intensity)[30]. Nevertheless, the high yield below En= 1.7 MeV and near 0.6 MeV (from the 180°group), together with the strong forward peaking, makes it a useful source forspecial applications at lower neutron energies. Using double- or triple-charged 7Liions, the necessary incident energy can easily be obtained even with moderateaccelerators. However, the effective beam energy must be determined very care-fully because the cross-section changes rapidly with energy (at 16 MeV, a 1%change of the projectile energy changes the 0° cross-section by more than 50%)Figures 41-44 illustrate the angular dependence of the neutron energies and ofthe differential cross-sections.

Appendix

An interactive Fortran IV program is reproduced here for calculating neutronlaboratory and cm. angles, as well as differential cross-sections and laboratoryneutron energies. Calculation of these quantities is possible at any angle and anyenergy within the ranges covered by the Legendre coefficients given in Tables II,V, VII, X and XI. So and Aj are required as inputs from those tables.

DOUBLE PRECISION WA,WB,WC,WD,OUTRE,MASSDIMENSION MASSI8),0UTREI5),REAIN( 10 1DATA MASS/938.2796434D0,1875.6280461D0,2808. 9*37**600,2808.41413471D0,3727.4094091DO,6534.6662515D0,6533.8864536D0,6634.237251500/DATA REAIN/4H 1H,4H 2H,4H 3H,4H ( P,4H ( D,4H I I,4H 7LI,

21H ,1H ,4H(7LI/NLEG/0/WC/939.b730306D0/NIT/1/DIFF/0./FC/.5/1KI/0/DATA 0UTRE/8H,N ) 3Ht,8H,N ) 4HL:,8H,N )7BE*,1H ,8H,N ) /BE/IC/0./

100 WR1TEI5,!I1 FORMAT!15X,' MONOENERGETIC NEUTRON PRODUCTION'/)WRITE(5,2)

2 FORMAT I' LABEL REACTION BY MASS NUMBERS OF PROJECTILE AND IARGEV )READ!5,3)MNP,MNT

3 FORMAT I 213)MNSUM=MNP+MNTIF (MNSUM .GT. 8) GO TO 100IF (MNP .GT. MNT) NLEG=1IF (MNSUM .NE. 8) GO TO 20WRITEI5.4)

4 FORMAT!' IF BE-7 IS EXCITED, INPUT l'lREADI5,3)IEXCIF IIEXC .EQ. 1) MNSUM=6

6 FORMAT!' LAB CROSS SECTIONS ARE DOUBLE VALUED. ACCESS TO LOW,3' ENERGY GROUP'/' VIA CM ANGLES')

20 WA=MASSIMNP)WB=MASS(MNT)WD=MASSIMNSUM)IF IDABS1WA+WB-WC-WD) .GT. 20.DO) GO TO 100WRITE!5,7 I REAIN!MNT ) ,REAIN(MNP+3),OUTRE(MNSUM-3)

7 FORMATI10X,' NEUTRONS FROM THE REACTION',2A4,A8/)WRITE!1,7) REAIN!MNT ) ,REAIN(MNP+3),OUTRE!MNSUM-3)IF (IWA+WB-WC-WD ) .GT. 0.D0) GOTO 23IF I MNP .GT. MNT) WRITE!5,6)

PART 1-3 159

23 WRITEI5,8 I8 FORMAT!' PROJECTILE ENERGY OR NEGATIVE NEUTRON ENERGY AT 0 D E C ,V IN MEV IREADI5,9)YA

9 FORMAT IF10.5 IIF (MNT .NE. MNP) MNT = 1IF IYA .GT. 0.) GO TO 21TYA=-YAYA=TYA-SNGL(WA+WB-WC-WDI

22 YA=ABS(YA+FCxDIFFICALL RELKIN! YA, WA, WB,WC, Wf:),NIT, TC,MNT ,NLF.G, IKI )D1FF=TYA-TCIF (ABS(DIFF) .LT. 0.00021 GO TO 2.1FC=FC-0.01IF (FC .LT. 0.05) f-C=O.OSGO TO 22

21 NIT=0CALL RELKINIYA,WA,WB,WC,WD,NIT,TC,MNT,NLfc"G,IKI )IF I IKI .EQ. 1) WRITF.11,6)STOPENDSUBROUTINE RELKIN!YA,WA,WB,WC,WD,NIT,TC,MNT,NLEG,IKI )DOUBLE PRECISION PA,EA,RAD,ZC,THC,WA,WB,WC,WD,XXXC,WS,ECDOUBLE PRECISION YC,XCCMIA,XXC,GAMACM,BETACM,BETCCM,tCCM,PCCM,PCDIMENSION TABANGI183)DATA RAD/1.745329252D-2/R0UTE/1./TABANGI l)/0./EA=DBLEIYA)PA=DSQRT(EA**2+2.*EA*WA)EA=DSQRTIPA**2*WAx*2IBETACM=PA/(EA4WB1GAMACM=1./DSQRT(1.-BETACMx«2)WS=(EA+WBI/GAMACMIF (IWS-WD-WC) .LT. 0.1 GO TO 56NANG=1IF (NIT .EQ. 1) GO TO 31

27 WRITEI5.90)90 FORMAT!' NUMBER OF ANGLES, NEGATIVE IF CM.')

READIb,66INANGIF (NANG .GT. 0) ROUTE=0.NANG^IABSINANG)JF (NANG .GT. 181) GO TO 27IF INANG .LT. 1) NANG=1WRITE!b,91)

91 FORMAT!' ANGLES,ONE BY ONE. 1 NEGATIVE VALUE FOR CST.ANG.SPACING' )READ! 5,611DANGDO 34 J=l,NANGIF (J .EQ. 1 ) GO TO 3*1IF 1DANG .Gfc". 0.) GOTO 30TABANGI J) = TABANGIJ-3I-DANGGO TO 3^

30 READ!5,611TABANGIJ)34 IF (TABANG(J) .GT. 180.) TABANGIJ 1=360.-TABANGUI

IF (DANG. GE. 0.) TABANG!1)=0ANGWRITEI1,88) YAWRITEI1,84)EN=YAIF INLEG .tQ. 1) EN=EN*WB/WA

31 ROUSA=ROUTtECCMs(WS*#2+WC**2-WD**2)/(2.*WS)PCCM=DSQRT(ECCM*»2-WC**2)BETCCM=PCCM/ECCMLINES=5DO 53 IA=1,NANGTHC=RAD«TABANGIIA)FACT=0.48

160 DROSG and SCHWERER

39 XCCMIA=DCOSITHCIYC=DSIN(THC)XXC=GAMACM*IXCCMIA+BETACM/BE TCCM)IF !XXC .NE. 0.D0) GOTO 40ANGC=90.GOTO 41

40 XXXC=YC/XXCANGC=SNGLIDATANIXXXCI/RAD)I F (XXC -LT . O.DOI ANGC=ANGC+180.

4 1 I F (ROUTE .GT. 0 . ) GOTO 42DTHAN=ANGC-TABANG(IA)IK lABS(DTHAN) . LEi. 0 . 0011 GO TO 42FACT=FACT-0.01I F (FACT . L T . 0 . 1 ) FACT=0.1THC=THCK( 1 . -!DTHAN/ANGC)*FACT )IF I THC . L T . 3 .141S9265D0) GOTO 39I F (FACT -EQ. 0 . 1 ) THC=O.035898D-5+3.141592654D0IF (FACT .EQ. 0 . 1 ) ROUTE=1.GOTO 39

42 PC=PCCMXDSQRT( YCx*2+XXC**2IKC=DSQKT(PC**2+WC**2ITC=SNGL!EC-WCIIF INIT .EQ. 1) GO TO 57ZC=1.-XXC*PCCM*EC*BETACM/PCx«2SOLC=SNGL(GAMACM*PCCM/PC*ZC)LINES=LINES+1IF (LINES-BO) 50,47,47

47 LINES=0WRITE!1,88) YA

50 ANGCCM=SNGLITHC/RAOIACM=ANGCCMIF (NLEG .EQ. 1) ACM=180.-ACMCALL LCAL(ACM,EN,WQCM,MNT,IA)SOLC=ABS( WQCM/SOLC)WHITE!1,85) ANGC,SOLC,TC,ANGCCM,WQCMROU(E=ROUSAIF (ROUTE .GT. 0.) GO TO 53IF IANGCCM .GT. 180.) IKI=1IF (IKI .EQ. 1) GO TO 57

53 CONTINUEGOTO 57

56 IF INIT. NE. 1) WRITE!1,74)IF (NIT. NE. 1) WRITF.15,74)

57 RETURN61 FORMAT!10F6.2)66 FORMAT!14)74 FORMAT!1HO,15HBELOW THRESHOLD I84 FORMAT!/1H ,7X,'LABORATORY SYSTEM',10X,'CENTER-OF-MASS'

1/1H ,4X,'ANGLE',5X,'CROSS',4X,'ENERGY',5X,'ANGLE',3 5X,'CROSS', /1H ,13X,'SECTION',23X,'SECTION'/)

85 FORMAT!1H , F 1 0 . 2 , 2 F 1 0 . 3 , F 1 0 . 2 , F 1 0 . 3)88 FORMAT I 'OINCIDENT LAB ENERGY' ,F9 .3 I

ENDSUBROUTINE LCAL(ANGCCM,ENIN,WQCM,MN f,IA)DIMENSION PI 64)DATA P/64*0./N/0/IP/0/IF IIA .NE. 1) GOTO 12WRITE!5,48) ENIN

48 FORMAT!' USE ',F6.3,' MEV IN LEGENDRE TABLE'/)10 SUM=0.

WRJTEI5,bOIREAD!5,3) PI324N)WRITE(5,49)

49 FORMAT!' HIGHEST ORDER OF LEGENDRE COEFFICIENTS')READ!5,2)IP1

2 FORMAT! 13)

PART 1-3 161

BO FORMATI' PROJECTILE ENERGY FROM TABLE IN MEV )WRITE!5,99)

99 FORMATI' SIGMA-0' )READI5,3)SKFWRITEI5,5I

5 FORMATI' INPUT OF (REDUCED) PARAMETERS, ONE BY ONE')IF (MNT .NE. 2) MNT=1IF (MNT .EQ. 2) WRITE! 5,4)

4 FORMAT! ' SYMMETRIC IN CM., INPUT OF EVEN PARAMETERS ONLY' )DO 11 I=1,1P1,MNTREAD! 5, 3 I PI 14N)PI I+N)=SKK*PI I+N)

11 SUM=SUM+PII+N)IF IABSISUM/SKF - 1. ) .GT. 0 .002) WRITEI5,51)

51 FORMAT!' CAUTION: CHECK LEGENDRE COEFFICIENTS' I3 FORMATIFlO.b)

IK ( I P 1 .GT. I P ) IP=IP1IF (ABSIENIN-PI32) I .LT. 0 .005) GO TO 12IF (N .EQ. 32) GOTO 13N=32WRITE(5,6)

6 FORMATI ' ADDITIONAL LEGENDRE DATA SET (-OR INTERPOLATION'/)GO TO 10

13 FACT = IENIN-P(32 ) I / I PI 64 I -P I32 ) )DO 1 1 = 1 , IP

1 PI I ) = PI I )+FACT*IP( I+321-PI I I )12 WQCM=0.

XA=1.XM=COSIANGCCM*3.141S93/180. )T=XM+XMDO 87 J=1,IP,MNTXJE=J+1XJ=XJE-1.XLEG=XAXE=IXJ/XJE)*I T*XM*I (XJ+XJEI/IXJ+XJ) I-XA)XA=XMXM=XE

87 WQCM=WQCM+PIJ)*XLEGRETURNEND

ACKNOWLEDGEMENTS

Thanks are due to our colleagues, D.E. Cullen of the Nuclear Data Section,IAEA, and G. Winkler of the Institut fur Radium forschung und Kernphysik, Vienna,for helpful discussions and criticisms, to J.J. Smith of the IAEA Computer Sectionfor his help in implementing the graphics software and to H. Wurz for her effortswith the manuscript.

REFERENCES

[1 ] Fast Neutron Physics (MARION, J.B., FOWLER, J.L., Eds), Interscience, New York (1960).[2] DROSG, M., "Properties of monoenergetic neutron sources from proton reactions with

nuclei other than tritons", Neutron Source Properties (Proc. Consultants Meeting DebrecenHungary, 1980) (OKAMOTO, K., Ed.), IAEA/International Nuclear Data Committee,Vienna, Rep. INDC (NDS>114/GT (1980) 241-264.

[3] UTTLEY, C.A., "Sources of monoenergetic neutrons", Neutron Sources for Basic Physicsand Applications (CIERJACKS, S., Ed.), Pergamon Press, Oxford (1983) 19.

162 DROSG and SCHWERER

[4] DROSG, M., Nucl. Sci. Eng. 67 (1978) 190.[5] DROSG, M., "Production of fast monoenergetic neutrons by charged particle reactions

among the hydrogen isotopes. Source properties, experimental techniques and limitationsof the data", Neutron Source Properties (Proc. Consultants Meeting, Debrecen, Hungary,1980) (OKAMOTO, K., Ed.), IAEA/International Nuclear Data Committee, ViennaRep. INDC (NDS)-114/GT (1980)201 -240.

[6] DROSG, M., Z. Phys. A300 (1981) 315.[7] DROSG, M., "Production of fast neutrons with targets of the hydrogen isotopes. Source

properties and evaluation status of the cross-sections", Neutron Source Properties (Proc.Advisory Group Meeting Leningrad, 1986) (OKAMOTO, K., Ed.), IAEA-TECDOC-410,IAEA, Vienna (1987).

[8] DROSG, M., HAOUAT, G., STOEFFEL, W., DRAKE, D.M., Los Alamos National Lab.,NM, Rep. LA-10444-MS(1985).Germany, 1984.

[9] LISKIEN, H., PAULSEN, A., Nucl. Data Tables 11 (1973) 569.[10] LISKIEN, H., PAULSEN, A., At. Data Nucl. Data Tables 15 (1975) 57.[11 ] KLEIN, H., BREDA, H.J., SIEBERT, B.R.L., Nucl. Instrum. Methods Phys. Res. 193

(1982)635.[12] MARTIN, J.T., SMITH, R.K., Los Alamos Scientific Lab., NM, Rep. LA-6237-MS (1976).[13] MITTAG, S., PILZ, W., SCHMIDT, D., SEELIGER, D., STREIL, T., Kernenergie 22

(1979)237.[14] DROSG, M., AUCHAMPAUGH, G.F., Nucl. Instrum. Methods 140(1977) 515.[15] DROSG, M., AUCHAMPAUGH, G.F., GURULE, F., Los Alamos Scientific Laboratory,

NM, Rep. LA-6459-MS(1976).[16] WAPSTRA, A.H., BOS, K., At. Data Nucl. Data Tables 19 (1977) 177.[17] DROSG, M., VESELY, F., HAOUAT, G., DRAKE, D.M., Verh. Dtsch. Phys. Ges. 19

(1984)922.[18] DROSG, M., et al., Phys. Rev. C 9 (1974) 179.[19] THAMBIDURAI, P., BEYERLE, A.G., GOULD, C.R., Nucl. Instrum. Methods Phys. Res.

196(1982)415.[20] JARMIE, N., BROWN, R.E., Nucl. Instrum. Methods Phys. Res. B10/11 (1985) 405.[21] GRABMAYR, P., RAPAPORT, J., FINLAY, R.W., KULKARNI, V., GRIMES, S.M., in

Nuclear Cross Sections for Technology (Proc. Int. Conf. Knoxville, TN, 1979),US National Bureau of Standards Special Publication 594, US Government PrintingOffice, Washington, DC (1980) 542.

[22] SMITH, D.L., MEADOWS, J.W., Argonne National Lab., IL, Rep. ANL/NDM-9 (1974).[23] MEADOWS, J.W., SMITH, D.L., Argonne National Lab., IL, Rep. ANL/NDM-53 (1980).[24] JARMIE, N., BROWN, R.E., HARDEKOPF, R.A., Phys. Rev. C 29 (1984) 2031.[25] CSIKAI, J., "Production of 14 MeV neutrons by low voltage accelerators", Neutron Source

Properties (Proc. Consultants Meeting Debrecen, Hungary, 1980) (OKAMOTO, K., Ed.),IAEA/International Nuclear Data Committee, Vienna, Rep. INDC (NDS)-114/GT (1980)265-291.

[26] BARSCHALL, H.H., "14 MeV D-T sources", Neutron Sources for Basic Physics andApplications (CIERJACKS, S., Ed.), Pergamon Press, Oxford (1983) 57.

[27] DAVE, J.H., GOULD, C.R., WENDER, S.A., SHAFROTH, S.M., Nucl. Instrum. MethodsPhys. Res. 200(1982)285.

[28] MEADOWS, J.W., SMITH, D.L., Argonne National Lab., IL, Rep. ANL-7938 (1972).[29] MEADOWS, J.W., Argonne National Lab., IL, Rep. ANL/NDM-25 (1977).[30] DROSG, M., Los Alamos Scientific Lab., NM, Rep. LA-8842-MS (1981).

Neutron Source Standards

1-4. THE NEUTRON SPECTRUMOF SPONTANEOUS FISSIONOF CALIFORNIUM-252

W. MANNHARTPhysikalisch-Technische Bundesanstalt,Braunschweig,Federal Republic of Germany

Abstract

THE NEUTRON SPECTRUM OF SPONTANEOUS FISSION OF CALIFORNIUM-252.The spectral distribution of the 2S2Cf neutron spectrum, together with a complete

covariance uncertainty matrix, has been evaluated on the basis of least squares principles.The least squares adjustment was based on experimental data on spectrum averaged neutroncross-sections. The result can be regarded as one of the first steps towards future evaluationsand further experiments. This result is compared with recent data from time of flight experi-ments and with the data of nuclear evaporation theory models.

1. INTRODUCTION

The 2S2Cf neutron field is one of the few which can be realized with onlyminor perturbations of the neutron spectrum. This fact, and its similarity to thetechnically important neutron field of neutron-induced fission in 23SU, is thereason for the importance of the 2S2Cf field in reactor dosimetry and forsurveillance purposes. Its usefulness also extends to other applications, suchas the calibration of neutron detectors. The result has been a recommendationto treat the 2S2Cf neutron spectrum as a standard [1 ]. However, the shape ofthis spectrum has yet to be unambiguously defined, since the data from spectrummeasurements are contradictory even if some convergence of the results has beenrecently observed. While the situation has been reviewed periodically, andrecommendations have been made regarding the shape of the neutronspectrum [2, 3], an improvement in the situation has only been detected since1982 [4]. Recent experiments, using more refined techniques, have givenincreasingly precise results and have diminished the divergence of the data.

In this context, it was considered of interest to use these data for a newevaluation of the 252Cf neutron spectrum [3]. There has also been great demandfor a covariance matrix of the spectrum in order to allow correct propagationof the spectrum uncertainties to the integral parameters determined in reactor

163

164 MANNHART

dosimetry [5]. As discussed in this chapter, there is at present only a very limitedquantity of data that meets the requirements for use in an evaluation of theneutron spectrum with a complete covariance matrix. It is planned to expandthis evaluation in future work and to include other experiments as soon as thecovariances of these data are available. However, this work does not representall of the information available on the 2S2Cf neutron spectrum; it should beregarded instead as the first version of future evaluations.

2. STATUS OF DATA FOR THE NEUTRON SPECTRUM

A complete review of the experiments up to 1979 is given in Ref. [2]. Overthe last five years, much additional effort has been concentrated on carrying outnew experiments [6-15] aimed at resolving discrepancies in the data of thespectrum, found mainly at low (<1 MeV) and at high (>6 MeV) neutron energies.The data available now cover the neutron energy range between 1 keV and28 MeV. Most of the recent experiments have been of a preliminary nature, i.e.the final analyses have not been completed owing to corrections that requireadditional investigation. For these, and all other experiments, detailed uncertaintyanalyses, indispensable in an updated evaluation, are outstanding. It is knownfrom experience that a reanalysis of older experiments aimed at obtaining sufficientdetails of the uncertainty components is a hopeless task; this makes reanalysis ofrecent experiments all the more necessary, while memory of the experimentaldetails is still fresh.

In addition to high resolution time of flight experiments, there is anothergroup of experiments which must be regarded as 'broad' resolution experiments.These experiments, of spectrum averaged cross-section measurements of thresholdand non-threshold neutron reactions, cover various energy ranges in the 2S2Cfneutron spectrum between the limits of a few keV and about 18 MeV. The datacan be determined with a high level of precision, with relative uncertainties of2-3%. A review of all available data is given in Part 2-4. Furthermore,analyses of the uncertainties resulting from experiments carried out since 1979,as well as the covariances generated, are given in Ref. [ 16]. Based on thisinformation, data from the various experiments have been combined by leastsquares techniques (see Part 2-4). This means that the results of spectrumaveraged neutron cross-section measurements are at present the only data setwith a complete covariance matrix containing the full uncertainty informationrequired for evaluations based on the least squares principle.

It should also be mentioned that some progress has recently been made intheoretical calculations of the 2S2Cf neutron spectrum [14, 17-19]. Based onnuclear evaporation theories, results have been obtained which are in good agree-ment with the experimental data. However, sometimes physical parameters ofthe theories which are not sufficiently well known must be adjusted by usingexperimental results.

PART 1-4 165

3. EVALUATION OF THE NEUTRON SPECTRUM BY LEAST SQUARESMETHODS

The aim of an evaluation must be to obtain results which are based as faras possible on objective facts and to avoid subjectivity. This requires consistentattention to all data uncertainties involved in the evaluation process. The onlymethod which meets this requirement is a generalized least squares method.The urgent need of reactor technology to specify results with appropriateuncertainties [20] has led to the use of such methods. A variety of computercodes for these purposes have recently become available, e.g. STAY'SL [21, 22],FERRET [23] and others. All of these evaluation methods are based on the leastsquares principle and combine prior informaiion and experimental data, with fullregard to their uncertainties, with the objective of obtaining results with amaximum likelihood.

The application of this method to the present problem of evaluating the252Cf neutron spectrum has already been described in detail [24]. Only a fewessential points of the procedure are repeated here, the main emphasis being onthe data used in this evaluation.

3.1. Principles of the least squares adjustment

Experimental reaction rates a? of various neutron detectors i, measured inthe 2S2Cf neutron field, are compared with calculations a based on energydependent cross-sections and the 2S2Cf neutron spectrum. Minimization of theX2 gives a minimum value of

v2 — \ \ caO— o W r<jO_ Q \ m

The elements w-- are the components of the weight matrix of the problemexplained below. In the present case, the experimental reaction rates arenormalized by the neutron flux density, i.e. they are spectrum averaged neutroncross-sections:

a9=<a>fxP (2)

The corresponding calculated quantities are

a.=<0>calc = J O1oi(E)X(E)dE (3)

166 MANNHART

The integral of Eq. (3) contains the energy dependent cross-section ofthe neutron reaction i and the normalized spectral flux density distribution of252Cf, with

X(E)dE = 1 (4)

Both of these quantities are parameters of the problem and can be formallywritten as a parameter vector P with an absolute covariance matrix Np, i.e.

P = and N p = (5)

X being the vector of the spectral distribution and 2 the vector of the full setof energy dependent cross-sections involved in the problem.

The evaluation results in a new vector P' and a corresponding matrix Np,which fulfils the minimum condition of Eq. (1). P is often called the problem's'prior information'. P' is then the most likely adjusted value with regard to theprior information and Np is the resulting uncertainty covariance matrix withreduced uncertainties as a result of taking into account the experimentalinformation in Eq. (2). From Eq. (5), it is clear that the spectral distribution,as well as the energy dependent cross-section data, were adjusted, i.e. the zerocorrelation of Np in Eq. (5) vanishes for Np. The result of the adjusted neutronspectrum x' and its covariance matrix Ny is derived from P' and Np . The weightmatrix of Eq. (1) contains the uncertainties of the experimental data ofEq. (2), as well as the uncertainties of the calculated data of Eq. (3). Thematrix is thus an inverse:

(6)

NA contains the covariance matrices Nx and N^ transformed to the calculatedvalues (see Eqs (7) and (10) of Ref. [24]).

3.2. Data on spectrum averaged neutron cross-sections

These data, based on various experiments, have been pre-processed (seePart 2-4). In all, the data from 25 different neutron reactions were used.The reactions and the numerical values of the spectrum averaged cross-sectionsare listed in columns 1 and 2 of Table I. The covariance matrix is shown inthe form of relative standard deviations in column 3 of the table and a correlation

PART 1-4 167

TABLE I. SPECTRUM AVERAGED DATA USED IN THE LEAST SQUARESEVALUATION

React ion

F-19(n ,2n )

Mg-24(n ,p)

A l - 2 7 ( n , p )

A l - 2 7 ( n , c )

T i - 4 6 ( n , p )

T i - 4 8 ( n , p )

Mn-55(n,2n)

F e - 5 4 ( n , p )

F e - 5 6 ( n , p )

N i - 5 8 ( n , p )

N i - 5 8 ( n , 2 n )

Co-59(n,o )

Co-59(n ,2n)

Cu-63(n ,y )

Cu-63(n,a )

Cu-63(n ,2n )

Zn -64 (n ,p )

Z r - 9 0 ( n , 2 n )

I n -115 (n , y )

I n - 1 1 5 ( n , n ' )

Au-197(n ,Y)

U - 2 3 5 ( n , f )

N p - 2 3 7 ( n , f )

U - 2 3 8 ( n , f )

P u - 2 3 9 ( n , f )

a Correlation matrix

1

2

4

1

1

4

4

8

1

1

8

2

4

1

6

1

4

2

1

1

7

1

1

3

1

<o> e x p

(b)

.628E-5

.OO5E-3

.892E-3

.021E-3

.420E-2

.275E-4

.079E-4

.729E-4

.471E-3

.176E-1

.965E-6

-221E-4

.058E-4

.055E-2

.897E-4

-866E-4

.047E-2

.211E-4

.261E-1

.981E-1

.711E-2

.210E+0

.356E+0

-234E-1

.811E+0

in Table I I .

Relativestandarddeviation3

(%)

3.33

2.39

2.16

1.42

1.68

1.81

2.26

1.29

1.73

1.25

3.32

1.78

2.49

3.08

1.88

3.82

1.85

2.78

2.191.31

1.54

1.19

1.65

1.72

1.37

calc

(b)

1.628E-5

2.16OF.-3

5. 140E-3

1.013E-3

1.347E-2

4.096E-4

4.462E-4

8.823E-2

1.415E-3

1.138E-1

8.471E-6

2.164E-4

4.107E-4

9.772E-3

6.767E-4

1.982E-4

3.922E-2

2.058E-4

1 . 2 2 2 E - 1

1.819E-1

7 . 7 2 0 E - 2

1.238E+Q

1.353E+O

3 . 1 3 4 E - 1

1 . 7 9 2 E + 0

Exp/calc

1 . 0 0 0

0 . 9 2 8

0 . 9 5 2

1 . 0 0 8

1 . 0 5 4

1 . 0 4 4

0 . 9 1 4

0 . 9 8 9

1 . 0 3 9

1 . 0 3 4

1 . 0 5 8

1 .027

0 . 9 8 8

1 . 0 8 0

1 . 0 1 9

0 . 9 4 1

1 .032

1 . 0 7 5

1 . 0 3 2

1 . 0 8 9

0 . 9 9 9

0.978

1.003

1.032

1.010

Xpart

0.00

2.62

0.61

0.10

0.16

0.17

0.47

0.17

0.66

0.19

0.72

0.32

0.02

0.37

0.08

2.96

0.13

3. 73

0.470 . 5 2

0.00

1.89

0.00

2.89

0.05

matrix is given in Table II. The data are least squares averages (see Part 2-4)of diverse experiments and it can be seen from Table I that for 15 reactionsthe relative uncertainties are smaller than 2%.

3.3. Prior information on the neutron spectrum

Slightly modified data of a United States National Bureau of Standards(NBS) evaluation of the 2S2Cf neutron spectrum were used as the source of prior

TABLE II. CORRELATION MATRIX OF THE EXPERIMENTAL SPECTRUM AVERAGED NEUTRON CROSS-SECTIONS

C o r r e l a t i o n m a t r i x ( x 1 0 0 )

0 0

F-19(n,2n)Mg-24(n,p)

Al-27(n,p)

Al-27(n,o)

Ti-46(n,p)

Ti-48(n,p)

Mn-55(n,2n)

Fe-54(n,p)

Fe-56(n,p)

Ni-58(n,p)

Ni-58(n,2n)

Co-59(n,a)

Co-59(n,2n)

Cu-63(n,Y)

Cu-63(n,a)

Cu-63(n,2n)

Zn-64(n,p)

Zr-90(n,2n)

ln-115(n,Y )

In-115(n,n')

Au-197(n,1f)

O-235(n,f)

Mp-237(n,f)

U-238(n,f)

Pu-239(n,f)

100

15

8

26

23

21

43

31

21

36

28

36

39

17

24

24

19

35

16

26

23

13

9

8

11

100

27

54

33

30

23

39

35

43

15

28

20

18

25

14

32

19

25

40

35

17

12

10

14

100

44

33

33

25

40

34

44

13

39

22

49

29

43

33

19

31

54

44

19

14

12

16

100

57

50

40

65

57

73

26

49

36

29

42

23

55

32

41

64

59

27

20

17

23

100

64

34

55

46

63

22

42

31

23

35

18

44

27

33

52

48

23

16

14

19

100

30

50

42

56

20

37

28

23

32

18

39

25

33

55

45

22

16

13

18

100

46

32

53

40

58

60

21

36

30

29

50

23

38

33

19

14

12

16

100

56

B5

30

56

42

28

50

22

50

37

39

63

56

35

25

22

30

100

59

21

39

29

23

34

18

43

26

34

53

47

23

17

14

20

100

35

66

49

30

57

24

54

43

43

69

61

35

25

22

30

100

34

36

11

29

17

19

38

16

26

22

13

9

8

11

100

50

23

50

25

37

41

29

46

41

24

17

15

20

100

19

32

28

27

45

21

34

30

17

13

11

15

100

16

36

22

16

22

39

31

13

10

8

11

100

15

31

30

26

44

38

23

17

15

20

100

18

25

17

31

25

11

8

7

9

100

24

31

48

45

21

15

13

10

100

19

31

27

16

11

10

13

100

53

54

19

13

12

16

100

75

32

23

20

2B

100

27

19

17

23

100

67 100

78 67 100

79 66 67 100

>z>so

PART 1-4 169

information [25]. The NBS evaluation covered spectrum measurements up to1974 and parametrized the spectral distribution by a Maxwellian of kT = 1.42 MeV[26]. The deviations of the data from the Maxwellian were taken into accountby five energy dependent, segment correction functions fitted to the data. Theresult was:

X(E) = 0.6672 VEexpC-E/l.42)f(E) (E in MeV) (7)

The correction functions f(E) were linear below 6 MeV and exponential abovethis. The NBS evaluation showed some structure below 0.8 MeV, which is notconfirmed by recent spectrum measurements. The data of Lajtai et al. between25 keV and 1.2 MeV show no deviations from a Maxwellian with kT = 1.42 MeV[15]. This is also confirmed by the data of Blinov et al. taken between 1 keV and1 MeV [8]. The recent data of Batenkov et al. show that between 10 keV and5-6 MeV, no essential deviations from the Maxwellian can be identified [14].Above 6 MeV, the NBS evaluation states a deficit of neutrons compared withthe Maxwellian. This fact has been confirmed by spectrum averaged cross-section measurements of high threshold reactions [27] and also, recently, bydirect spectrum measurements [13]. However, other data exist which contradictthese measurements [6].

Taking all these facts as a basis, it was decided to represent the spectraldistribution by a pure Maxwellian between 0 and 6 MeV and omit the segmentsof the NBS evaluation in this energy range, but include the segment of the NBSevaluation above 6 MeV. After renormalization, the following form was obtained:

X(E) = 0.6680 v/Eexp(-E/l . 42 )g(E) (8)

with

/ 1 for 0 < E < 6 MeVg(E)= I ) (9)

\exp[-0.03(E-6)] for 6 < E < 20 MeV,

Equation (8) assumes that up to 6 MeV, a Maxwellian of kT = 1.42 MeV witha scaling factor of 1.002 is valid and that the spectrum above 6 MeV is describedby another Maxwellian of kT = 1.362 MeV with a scaling factor of 1.126. It iswell known that the Maxwellian is only a rough approach to describe the fissionspectrum in the laboratory system. On the other hand, it is adequate andconvenient for the present purposes.

In all, 30 group averages of Eq. (8) were formed and used in the evaluation.The energy bins were 0.5 MeV between 0 and 10 MeV and 1 MeV between 10and 20 MeV. With these averages Y, Eq. (4) must be rewritten as

30

i = 1

Energy(MeV)

0 -

0.25 -

0.8 -

1.5 -

2.3 -

3.7 -

6.0 -

8.0 -

12.0 -

range

• 0.25

• 0.8

1.5

2.3

• 3.7

6.0

8.0

12.0

•20.0

170 MANNHART

TABLE III. RELATIVE STANDARD DEVIATIONSFROM THE NBS EVALUATION AS DETERMINEDFROM THE SCATTER OF THE EXPERIMENTALDATA

Relative standarddeviations

13.0

1.1

1.8

1.0

2.0

2.1

2.1

8.5

15.0a

a This value is based on an estimate by the author.

The NBS evaluation gave relative standard deviations ( la level) in variousenergy ranges. These are given in Table III. The data contained in this tablewere used in the generation of the covariance matrix of the neutron spectrum.The relative uncertainties of the data in the table are very similar to thoseobtained by attributing a 2% uncertainty to the kT = 1.42 MeV of a Maxwellian[28]. However, taking into account the Maxwellian shape of Eq. (8) wouldresult in full correlations between all of the data in Table III in the case of anon-normalized spectrum, or full correlations and anticorrelations for anormalized spectrum. These rigid conclusions hamper any adjustment procedurein obtaining sufficiently detailed results, as they indicate a pure shape adjustment(by a scale factor) of the spectrum over the whole energy range in the non-normalized case (for a normalized spectrum the shape adjustment factor runsin opposite directions below and above the average energy of the Maxwellian).The implicit inclusion of the Maxwellian shape in the covariance matrix wastherefore avoided.

After the generation of a union group structure [24] containing the energydelimiters of the data in Table III, as well as those of the groups of Eq. (10),all diagonal elements of the union group matrix were filled with the correspondinguncertainties of the data in Table III, which meant that these uncertainties wereregarded as belonging to a non-normalized spectrum. All data between one of

PART 1-4 171

the energy ranges in Table III were assumed to be equally correlated by 75%.No correlations between the different energy ranges were used. A correlationcoefficient of 1.00 for one of the energy ranges in Table III would mean thatthe whole range would be adjusted by the same factor, whereas a correlationcoefficient of 0.50 would surely underestimate the Maxwellian-type structurein the range. A correlation coefficient of 0.75 was therefore chosen. Thisprocedure is a compromise which takes account of the lack of detailed information.It avoids fixing the adjustment procedure on a Maxwellian shape, but it takesinto account the fact that the data of a segment of the NBS evaluation must atleast be correlated owing to the fitting functions.

The union group matrix was then collapsed to the final group structure ofthe evaluation. Up to this point, it was not taken into account that the neutronspectrum can be normalized according to Eqs (4) and (10). However, thiswas now done by a transformation of the matrix from the non-normalized tothe normalized case, as shown in Eqs (17) and (18) of Ref. [24]. The adjustmentof the neutron spectrum in a certain energy group can now be compensated forin other groups with a full conservation of the normalization. This is automaticallytaken into account owing to the special structure of the absolute covariancematrix of the normalized spectral distribution, with the sum over each row andover each column of the matrix being equal to zero.

3.4. Energy dependent cross-section data

Most of the cross-sections of the reactions listed in Table I were takenfrom the Evaluated Neutron Data File/B-V (ENDF/B-V). For the 24Mg(n,p),s4Zn(n,p), 90Zr(n,2n) and 63Cu(n,2n) reactions, the data are taken from Ref. [29],while Ref. [30] is the source for 19F(n,2n). The ENDF/B-V data on the27Al(n,a), 63Cu(n,a) and S8Ni(n,2n) reactions have been replaced with morerecent data. For 27Al(n,a), the data are from Ref. [31 ], for 63Cu(n,a) fromRef. [32] and for 58Ni(n,2n) from Refs [33] and [34].

The original point-wise data on the energy dependent cross-sections aretransformed to group cross-sections according to the structure of Eq. (10).The data are then weighted with the spectral distributions of Eqs (8) and (9),resulting in an exact identity of the integral of Eq. (3) with the sum over thegroup constants of the cross-sections a and of the spectral distribution x, with

30

oi(E)X(E)dE = ^ <7/Xj (11)

0 j = 1

J

Thus the usual problem of the group sums forming the integral only in a firstapproximation is avoided. The covariance matrices of the energy dependent

172 MANNHART

cross-sections have been taken from the literature (i.e. from ENDF/B-V and fromreferences already mentioned). These matrices, showing their own groupstructures, have been transformed to the group structure of the present problemaccording to the rules given in detail in Refs [24] and [35].

For the neutron reactions considered here, the ENDF/B-V covariance fileshows a cross-correlation only between the 23SU(n,f) and 239Pu(n,f) reactions.For all other reactions, no cross correlations were stated. It is well known thatthis is far removed from experimental reality (see, for example, Refs [36-38]).However, owing to the lack of data, the covariance matrix of the whole set ofenergy dependent cross-sections generated here shows no such cross correlations.Consequently, the 23sU(n,f) to 239Pu(n,f) correlations have been neglected as aresult of the consistency between the other reactions, i.e. the present covariancematrix contains only correlations between data belonging to the same reaction.

4. RESULTS OF THE EVALUATION OF THE SPECTRAL DISTRIBUTION

Before the least squares adjustment was performed, the minimum valueof x2 in Eq. (1) was calculated. This quantity is a measure of the consistencyof the experimental data (Section 3.2) with the prior information on the spectraldistribution and on the energy dependent cross-section data used. This consistencytest takes the uncertainties of all these data fully into account. An evaluation canonly be justified when this consistency test is positive.

With the present data a minimum x2 of 19.3 was obtained, which should beconsidered at 25 degrees of freedom. The result indicates that an adequateconsistency was given. The calculated spectrum averaged cross-sections ofEq. (1) are shown in column 4 of Table I. In addition, the ratio of theexperiment to the calculation that was formed is given in column 5 of that table.In the last column of the table, the partial components XPart of the minimumX2 belonging to the various reactions are given. These values were obtained byperforming only the second summation in Eq. (1). The data should not bemistaken for individual x2 calculated without regard to the other reactions.The data of Xpart are of some use in identifying problems between the experimentand the calculation. Values exceeding unity indicate the probability of suchproblems. Here, this is true of the 24Mg(n,p), 63Cu(n,2n), 90Zr(n,2n), 235U(n,f)and 238U(n,f) reactions. Within their uncertainties the experiment and thecalculation disagree. These inconsistencies are not new and were already quotedfor 23SU and 238U in Ref. [5] and for 24Mg, 63Cu and 90Zr in Fig. 5 of Ref. [39].In all cases the inconsistency is not large enough to justify a rejection of the data.From the last two columns of Table I it can also be seen that an exp/calcvalue strongly deviating from unity does not automatically result in a largecontribution to the x2 •

The inputs and outputs of the evaluation are listed in Table IV. The energydelimiters of the group structure are listed in the first two columns of this table.

PART 1-4 173

TABLE IV. INPUTS AND OUTPUTS OF THE EVALUATION OF THESPECTRAL DISTRIBUTION

(MeV)

0 . 0

0 . 5

1 .0

1 .5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

4. 5

5 . 0

5 . 5

6 . 0

6 . 5

7 . 0

7 . 5

8 . 0

8 . 5

9 . 0

9 . 5

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

Eu

( M e V )

0 .5

1 .0

1. 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

5 . 0

5 . 5

6 . 0

6 . 5

7 . 0

7 . 5

8 . 0

8 . 5

9 . 0

9. 5

10.0

11 .0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

1

1

1

1

1

8

6

4

3

2

1

1

1

7

5

3

2

1

1

9

1

5

2

1

7

3

1

8

4

2

X.in

. 280E-1

.689E-1

.545E-1

-288E-1

.029E-1

.003E-2

.121E-2

.625E-2

.464E-2

.575E-2

.904E-2

.402E-2

.O2OE-2

.347E-3

.275E-3

.778E-3

.701E-3

.927E-3

.372E-3

.761E-4

.185E-3

.954E-4

.979E-4

.486E-4

.392E-5

.668E-5

.816E-5

.978E-6

.430E-6

.183E-6

Relativestandarddeviation

(%)

4 . 5 1

1.03

1.65

1.21

1.05

1.86

1.87

1.40

2 .09

2 .09

2 . 10

2 .10

2 .24

2 .25

2 . 2 5

2 . 2 5

8 .49

8 .49

8. 49

8 .49

8 .49

8 .49

15.02

15.02

15.02

15.02

15.02

15.02

15.02

15.02

Xout

1.253E-1

1.691E-1

1.544E-1

1.294E-1

1.034E-1

8.056E-2

6. 160E-2

4.650E-2

3.480E-2

2.587E-2

1.913E-2

1.408E-2

1.025E-2

7.376E-3

5.296E-3

3.793E-3

2.675E-3

1.912E-3

1.363E-3

9.695E-4

1.177E-3

5.863E-4

2.839E-4

1.502E-4

7.663E-5

3.790E-5

1.860E-5

9.150E-6

4.503E-6

2.215E-6

Relativestandarddeviationa

(%)

3.79

1.01

1.63

1.16

0 .95

1.75

1.76

1.25

1 .95

1.96

1.96

1.97

2 .15

2 .15

2 .15

2 .15

5.32

5. 37

5.46

5.53

5.39

5.60

7.40

6.39

6.48

7.07

7.64

7.97

8.15

8.24

a Correlation matrix given in Table V.

174 MANNHART

XoUT

XlN

no

105

100

0.95

090

• T

:J1J•jjIliUll]itlTi1ilil]

1 ! 1 1 1

71. 1 .

!

(I

1

_— "L

I

.

|

*-• —

-

-

8 10 12En[MeV)

U 16 20

FIG. 1. Ratio of the output to the input for the evaluation of the spectral distributionof2S2Cf.

The averages of the spectral distributions of Eqs (8) and (9), and theiruncertainties, are listed in columns 3 and 4. The relative standard deviationsshown in column 4 are those obtained after the collapse of the group and afterthe normalization of the input covariance matrix. This explains the deviationsbetween 0 and 4 MeV compared with the data in Table III. The adjusted spectraldistribution and its uncertainty are given in the last two columns of Table IV.It can be seen that an essential uncertainty reduction was obtained for thespectrum data above 8 MeV.

The ratio of the output of the evaluation relative to the input is shown inFig. 1. The error bars quoted correspond to the uncertainties of the outputdata. The figure shows that within the uncertainties the adjusted spectraldistribution is fully consistent with the prior information. Between 0.5 and8 MeV the maximum deviation from Eq. (8) is 0.6%. However, too high avalue should not be placed on the remaining structures, especially at high neutronenergies. Obviously, a part of this structure is due to the missing cross correlationsbetween the various energy dependent cross-section data sets. It should also bementioned that not more than 0.93% of the total spectrum intensity is above8 MeV and only 0.06% is above 12 MeV of neutron energy.

The absolute covariance matrix of the input spectrum Nx takes into accountthe normalization of x- As shown in Ref. [24], this results automatically in an

PART 1-4 175

output covariance matrix N^ which also fulfils the normalization condition. Thecorrelation matrix of the adjusted spectral distribution shown in Table V there-fore gives correlations as well as anticorrelations. The data in this table show thatthe ranges of maximum intensity of the spectral distribution are only weaklycorrelated with the low intensity ranges at high neutron energies. Between 4 and8 MeV the correlation pattern is only slightly modified owing to the experimentaldata, whereas below 4 MeV and above 8 MeV the experimental data essentiallychange the structure of the correlations as compared with the prior information.

Finally, it should be mentioned that the reconstruction of the absolutecovariance matrix of the spectral distribution from the data given in Tables IVand V can (owing to rounding errors) result in a matrix which does not fullytake into account the normalization. This can be circumvented by applyingEq. (17) in Ref. [24] to the matrix. With this procedure the matrix remainsunchanged if it already corresponds to the normalized spectrum: otherwise thenormalization will be regenerated.

5. COMPARISON WITH OTHER EXPERIMENTAL AND THEORETICALDATA

The aim of this work was to obtain a result with a complete uncertaintydescription. As mentioned earlier, this resulted in a strong limitation of thedatabase available. To get an impression of the adequacy of the present data,some of the latest experimental and theoretical data are compared in Figs 2-4.

The approximation of the 2S2Cf neutron spectrum of Eqs (8) and (9) iscompared with the results of two nuclear evaporation models. In the modelcalculations of Madland and Nix [40] and Madland et al. [41], a remaining freeparameter, the level density parameter, has been adjusted with regard to theexperimental data of Poenitz and Tamura [10]. This adjustment has been madein the neutron energy range between 0.225 and 9.8 MeV, the energy range coveredby the experiment. The other theoretical description, by Marten andSeeliger [42, 43] using a complex cascade evaporation model (CEM), takes intoaccount that the emission of neutrons is not isotropic in the centre of masssystem of the fission fragments due to the fragment spin. A 10% anisotropyis involved in the calculation. In contrast to the Madland and Nix model, theCEM model has no free parameter. Both models differ substantially below0.5 MeV and above 10 MeV neutron energy.

The experimental data used in the comparison are taken from Lajtai et al.between 25 keV and 1.2 MeV [15], Blinov et al. between 42 keV and 11.4 MeV[44] and Marten et al. between 8.9 and 19.8 MeV [45]. The data are plotted inFigs 2-4 in the form of ratios, relative to a Maxwellian with kT = 1.42 MeV.

The experimental as well as the theoretical data show a clear deviation fromthe Maxwellian, with kT = 1.42 MeV above about 6 MeV neutron energy. This

TABLE V. CORRELATION MATRIX OF THE EVALUATED SPECTRAL DISTRIBUTION x o u t

Energy range Correlation matrix (xlOO)(HeV)

100

-57 100

-4B 44 100

-44 19 -3 100

-53 6 -15 57 100

-29 -17 -20 -11 40 100

-29 -16 -19 -10 41 68 100

-36 -10 -19 -4 18 27 27 100

0.0

0.5

1.0

1 .5

2.0

2.5

3.0

3.5

4.0

1.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10

11

12

13

14

15

16

17

18

19

- 0.5- 1.0

- 1.5

- 2.0

- 2.5

- 3.0

- 3.5

- 4.0

- 4.5

- 5.0

- 5.5

- 6.0

- 6.5

- 7.0

- 7.5

- B.O

- 8.5

- 9.0

- 9.5

- 10

- 11

- 12

- 13

- 14

- 15

- 16

- 17

- 18

- 19

- 20

-20

-20

-20

-20

-18

-18

-18

-18

7

6

£

1

1

1

0

0

0

0

0

-3

-2

-2

- 2

13

13

13

13

-6

-6

_

_

-1

-1

-1

-1

-0

-0

-0

-0

-9

-9

-9

-9

1

1

1

1

-3

-3

_ 3

_ i

-i

-i

-i

-1

-i

-i

-i

-i

i

i

2

2

15

16

16

16

-6

-6

_

_

-0

-0

-0

-0

-0

0

0

0

-11

-10

-9

-9

10

10

11

11

-6

-6

- 5

-i

-i

-i

-0

-0

-0

-0

-0

-19

-18

-18

-17

-4

-4

-4

-I)

-2

-2

_ |

_ J_ 1

-0

-1

-1

-0

-0

-0

-0

-0

-IB-IB

-17

-17

-4

-3

-3

-3

-2

-2

1

_ 1

- 1-0-1

-0

-0

-0

-0

-0

-0

53

54

54

54

-2

-2

-1

-1

-4

-4

_ -i

_ 3

- 3

00

0

0

0

0

0

0

100

72

72

72

-1

-0

-0

-0

-3

-3

- 3

_ j

- 3

i

i

i

i

i

i

i

i

100

72

72

-0

-0

-0

0

-3

-3

_ 5

_ j

- >i

i

Ii

i

i

i

i

100

72

-0

-0

0

0

-4

-3

- 3

j

_ -i

i

i

i

i

i

i

i

i

100

-0

-0

0

0

-4

-3

_ J

_ y

- 3

i

i

i

i

i

i

i

i

100

76

76

76

-20

-19

-18

-19

-17

i

i

i

i

i

i

i

i

100

76

76

-20

-20

- 1 8

-1 9

-1 8i

i

i

i

i

i

i

i

100

76

-21

-20

-19

-19

- 19

- 18

1

1

1

1

1

1

1

1

100

-21

-20

19

1 9

20

1 8

1

1

1

1

1

1

1

1

100

36

37

38

36

38

-5

2

4

3

2

2

2

1

100

37

38

37

39

-5

2

4

3

2

2

1

1

1Q0

39

38

40

-5

2

4

3

2

2

1

1

100

39

4 1

-5

2

3

3

2

2

1

1

100

39

-5

2

4

3

2

2

1

1

10 0

-8

-0

3

2

1

1

0

0

100

-17

-6

3

7

10

12

12

100

-26

-15

-6

-2

0

2

100

-14

-5

-0

2

4

100

2 100

6 12 100

9 14 17 100

10 15 17 19 100

sz5!33JO

PART 1-4 177

1.2

1.1

3 1.0

0.9

0.8

0.7

i ilkl ift •

p i *HiIpP

ifI

0.01 0.02 0.05 0.10 0.20

E (MeV)

0.50 2.00

FIG. 2. Various representations of the 2S2Cf neutron spectrum relative to a referenceMaxwellian, with kT = 1.42 MeV. The solid curve denotes the spectrum of Eqs (8) and (9).The dashed curve represents the theoretical calculations ofMadland and Nix [40] andMadland et al. [41 ]. The dot-dashed curve represents the calculations of Marten andSeeliger [42, 43], with (3 = 0.1. The experimental data (triangles) are from Lajtai et al. [15].

0.01 0.02 0.05 0.10 0.20

E (MeV)

0.50 MeV 2.00

FIG. 3. Same details as for Fig. 2. The experimental data (circles) are from Blinov et al.[44].

178 MANNHART

18 MeV 20

FIG. 4. Same details as for Fig. 2, except that the neutron energy range is from 2 to 20 MeV.The experimental data above 2 MeV are from Blinov et al. [44] (circles) and from Marten et al.[45 ] (squares).

effect seems to be best described by the theory of Marten and Seeliger [42, 43](dot-dashed curve). The formula for Eqs (8) and (9) (solid curve) under-estimates the effect, whereas the theoretical data of Madland and Nix andMadland et al. (dashed curve) show an overestimation. Between 1 MeV and4 MeV, the experimental data show a slight enhancement relative to the referenceMaxwellian. This effect is well described by both evaporation theories. Below1 MeV neutron energy, the experimental data strongly support the referenceMaxwellian of kT = 1.42 MeV. Below 0.5 MeV, the data of both evaporationtheories diverge. The theoretical data of Marten and Seeliger are compatiblewith the experimental data available. The same is not true of the theory ofMadland and Nix and Madland et al. This is easily understandable, since thelatters' theory has been optimized between 0.2 and 10 MeV owing to the adjust-ment of their data to the data of Poenitz and Tamura [10]. The logical conse-quence is that their theory must have some deficiencies outside of the range ofadjustment, i.e. their data are restricted in validity below 0.2 MeV and above10 MeV.

The data of both evaporation theories are listed numerically in Tables VIand VII. They are given between 1 keV and 20 MeV. For both theoreticalcalculations no original uncertainty information is available. Thus, the plots ofFigs 2-4 must be used to obtain some rough estimates of the accuracy ofthese calculations.

PART 1-4 179

TABLE VI. NUMERICAL DATA FROM THE THEORY OF MADLAND et al.ON THE 252Cf NEUTRON SPECTRUM [40, 41 ](Data from Los Alamos National Laboratory; applicable energy range: 1 keV to20 MeV; interpolation: In (N(E)), linear in E)

E(MEV)

1.O0E-31.30E-31.6OE-31.90E-32.20E-32.50E-32.8OE-33.1OE-33.40E-33.70E-34.OOE-34.3OE-34.S0E-34.90E-35.2OE-35.50E-3S.SOE-36.1OE-36.40E-36.70E-37.OOE-37.3OE-37.60E-37.90E-3S.20E-38.50E-38.80E-39.10E-39.40E-39.70E-3l.OGE-21.3OE-21.60E-21.90E-22.20E-22.5OE-22.SOE-23.1OE-23.40E-23.7OE-24.OOE-24.3OE-24.60E-24.90E-25.2OE-25.50E-25.8OE-2

N(E)(1/MEV)

1.750E-21.995E-22.213E-22.411E-22.595E-22.766E-22.927E-23.079E-23.224E-23.363E-23.4S7E-23.625E-23.749E-23.869E-23.985E-24.098E-24.208E-24.315E-24.419E-24.521E-24.621E-24.718E-24.814E-24.908E-24.999E-25.O9OE-2S.178E-25.2S5E-25.351E-25.435E-25.518E-2S.285E-26.966E-27.583E-28.152E-28.681E-29.178E-29.648E-21.009E-11.052E-11.093E-11.132E-11.169E-11.206E-11.241E-11.275E-11.308E-1

E(MEV>

1.1OE-31.40E-31.70E-32.OOE-32.30E-32.SOE-32.9OE-33.20E-33.5OE-33.8OE-34.10E-34.40E-34.70E-35.OOE-35.30E-35.60E-35.90E-36.20E-36.50E-36.80E-37.10E-37.40E-37.70E-38.00E-38.30E-38.60E-38.90E-39.20E-39.50E-33.80E-31.1OE-21.40E-21.70E-22.OOE-22.30E-22.6OE-22.9OE-23.20E-23.50E-23.8OE-24.1OE-24.40E-24.70E-25.00E-25.30E-25.60E-2S.9OE-2

N<E>(1/MEV)

1.835E-22.070E-22.281E-22.474E-22.653E-22.82OE-22.978E-23.128E-23.27iE-23.408E-23.540E-23.667E-23.789E-23.9OSE-24.023E-24.135E-24.244E-24.350E-24.454E-24.S55E-24.654E-24.7S0E-24.845E-24.93SE-2S.O3OE-2S.119E-25.2O7E-25.294E-25.379E-25.463E-25.785E-26.S20E-27.178E-27.777E-28.332E-28.850E-29.337E-29.799E-21.O24E-11.O66E-11.106E-11.144E-11.182E-11.217E-11.252E-11.286E-11.319E-1

E(MEV)

1.20E-31.50E-31.SOE-32.1OE-32.40E-32.70E-33.00E-33.30E-33.6OE-33.9OE-34.2OE-34.5OE-34.80E-35.1OE-35.4OE-3S.70E-36.00E-36.3OE-36.6OE-36.9OE-37.2OE-37.50E-37.80E-38.10E-38.4OE-38.7OE-39.OOE-39.3OE-39.60E-39.90E-31.2OE-21.5OE-21.80E-22.1OE-22.40E-22.7OE-23.00E-23.3OE-23.6OE-23.9OE-24.20E-24.50E-24.80E-25.10E-25.40E-25.70E-26.OOE-2

N<E>(1/MEV)

1.917E-22.143E-22.347E-22.535E-22.710E-22.874E-23.029E-23.177E-23.318E-23.453E-23.583E-23.708E-23.829E-23.947E-24.061E-24.172E-24.280E-24.385E-24.488E-24.S88E-24.686E-24.782E-24.877E-24.9S9E-25.O6OE-25.149E-25.236E-25.322E-25.4O7E-25.490E-26.040E-26.747E-27.383E-27.967E-28.509E-29.016E-29.494E-29.947E-21.038E-11.079E-11.119E-11.157E-11.194E-11.229E-11.264E-11.297E-11.329E-1

180 MANNHART

TABLE VI (cont.)

E(MEV)

6. 10E-26.40E-2S.70E-27.OOE-27.3OE-27.6OE-27.90E-28.20E-2S.SOE-2s.aoE-29.1OE-29.40E-29.7OE-21.00E-11.3OE-11 .t.OE-11 .9OE-12.20E-12.5OE-12.80E-13.1OE-13.4OE-13.7OE-X4.OOE-14.30E-14.60E-14.90E-15.20E-15.50E-1S.80E-16.10E-16.40E-16.7OE-17.00E-17.3OE-17.60E-17.9OE-18.2OE-18.5OE-18.80E-19.1OE-19.40E-19.70E-11 .OOE+O1.3GE+01 .60E+01.90E+02.2OE+O2.50E+02.80E+03.10E+03.4OE+O

NiE>Cl/MEV)

1.34OE-11.371E-11.401E-11.431E-11.460E-11.488E-11.515E-1i.542E-11.S63E-11-S34E-11.620E-11.&44E-11.S69E-11.692E-11.9O9E-12.095E-12.257E-12.400E-12.528E-12.642E-12.744E-12.836E-12.918E-12.991E-13.05SE-13.113E-13.163E-13.204E-13.239E-13.268E-13.291E-13.308E-13.320E-13.328E-13.334E-13.336E-13.336E-13.333E-13.329E-13.322E-13.314E-13.304E-13.292E-13.279E-13.O87E-12.827E-12.525E-12.211E-11.906E-11.S25E-11.374E-11.1S6E-1

ECMEV)

S.20E-26.50E-26.80E-27.10E-27.40E-27.7OE-28.00E-28.30E-28.60E-28.90E-29.2OE-29.SOE-29.80E-21.1OE-11.40E-11.70E-12.00E-12.3OE-12.60E-12.90E-13.20E-13.5OE-13.80E-14.10E-14.40E-14.70E-15.00E-15.30E-15.60E-15.90E-16.20E-16.50E-16.SOE-17.10E-17.40E-17.7OE-18.00E-18.30E-18.60E-18.90E-19.20E-19.50E-19.80E-11.1OE+O1.40E+01.70E+02.OOE+O2.30E+02.60E+02.9OE+O3.20E+03.SOE+O

H < E)(i/MEV)

1.350E-11.381E-11.411E-11.441E-11.4S9E-11.497E-11.524E-11.SS1E-11.577E-11.603E-11.628E-11.653E-11.S77E-11.769E-11.974E-12.151E-12.307E-12.444E-12.567E-12.677E-12.77SE-12.864E-12.943E-13.013E-13.076E-13.131E-13.178E-13.217E-13.249E-13.276E-13.297E-13.312E-13.323E-13.33OE-13.335E-13.336E-13.335E-13.332E-13.327E-13.319E-13.311E-13.300E-13.288E-13.225E-13.006E-12.729E-12.421E-12.107E-11.809E-11.538E-11.298E-11.090E-1

E<MEV)

6.30E-26.S0E-26.90E-27.20E-27.50E-27.80E-28.10E-28.40E-28.70E-29.00E-29.30E-29.60E-29.9OE-21.20E-1l.SOE-11.80E-12.1OE-12.40E-12.70E-13.00E-13.30E-13.60E-13.90E-14.20E-14.50E-14.80E-15.10E-15.40E-15.70E-16.00E-16.30E-16.60E-1S.90E-17.20E-17.50E-17.80E-18.10E-18.40E-18.70E-19.00E-19.30E-19.60E-19.90E-11.20E+01.50E+01.80E+02.10E+02.40E+02.70E+03.OOE+O3.3OE+O3.60E+0

N(E>Cl/MEV)

1.3S1E-11.391E-11.421E-11.450E-11.479E-11.5O6E-11.533E-X1.S60E-11.586E-11.611E-11.636E-11.661E-11.6S5E-11.841E-12.O36E-12.2O5E-12.354E-12.487E-12.6O5E-12.711E-12.807E-12.892E-12.967E-13.O3SE-13.095E-13.147E-13.192E-13.228E-13.259E-13.284E-13.3O3E-13.316E-13.326E-13.332E-13.336E-13.336E-13.334E-13.330E-13.324E-13.317E-13.3O7E-13.296E-13.283E-13.160E-12.919E-12.S28E-12.315E-12.OO5E-11.715E-11.454E-11.225E-11.O28E-1

PART 1-4 181

TABLE VI (cont.)

E(MEV)

3.7OE+O4.OOE+O4.30E+04.60E+04.90E+05.20E+0S.50E+0S.SOE+G6.iOE+06.40E+06.70E+07.00E+07.30E+07.60E+07.90E-I-0S.20E+08.5GE+08.B0E1-09.IOE+09.40E+O9.70E+0l.OOE+11.3OE+11.60E+11.90E+1

N(E>( 1 /MEV)

9.S89E-2S.094E-26.745E-2S.607E-24.S50E-23.847E-23.176E-22.61SE-22.149E-21.7S2E-21.442E-21.178E-29.610E-37.831E-36.375E-35.iS5E-34.214E-33.422E-32.777E-32.2S2E-31.S25E-31.477E-31.716E-41.893E-52.019E-6

E(MEV)

3.80E+04.IOE+04.40E+04.70E+05.00E+05.30E+05.60E+05.90E+06.20E+06.50E+06.80E+07.XOE+O7.40E+07.70E+0S.OOE+OS.3OE+O8.60E+08.9OE+O9.20E+09.50E+09.80E+01.1OE+11.40E+11.70E+12.00E+1

N(E)(1/MEV)

9.128E-27.S19E-2b.344E-25.269E-24.3S7E-23.61OE-22.977E-22.4SOE-22.011E-21.648E-21.34SE-21.101E-28.977E-37.313E-35.952E-34.839E-33.932E-33.192E-32.530E-32.100E-31.701E-37.265E-48.266E-59.006E-69.522E-7

E(MEV)

3.90E+04.20E+04.50E+04.80E+05.IOE+05.40E+05.70E+06.00E+06.30E+06.60E+06.90E+07.2OE+O7.50E+07.80E+08.IOE+08.40E+08.70E+09.00E+09.30E+09.S0E+O9.90E+01.20E+11.50E+11.80E+1

N(E)(1/MEV)

8.597E-27.169E-2S.965E-24.951E-24.099E-23.386E-22.791E-22.29SE-21.883E-21.542E-21.260E-21.029E-28.385E-36.828E-35.556E-34.516E-33.669E-32.978E-32.415E-31.958E-31.585E-33.543E-43.963E-54.271E-6

TABLE VII. NUMERICAL DATA FROM THE THEORY OF MARTEN ANDSEELIGER ON THE 252Cf NEUTRON SPECTRUM [42, 43](Data from the Technical University of Dresden, German Democratic Republic;

applicable energy range: 1 keV to 20MeV; interpolation: In (N(E)), linear in E)

E(MEV)

N (£)(1/MEV)

l.OOE-3 2.G32E-22.5CE-3 3.2iiE-24.00E-3 4.0S8E-26.OOE--3 4.964E-29.00E-3 6.068E-21.20E-:1 .50E-;2.00E-;2.60E-;3.3OE-J

.' 6.994E-2: 7.805E-2; 8.984E-2

• 1.O2OH-12 1.144E-1

4.30E-2 1.298E-i

£(MEV)

1.S0E-33.OOE-34.5OE-37.00E-3l.OOE-21.30E-21.6OE-22.2OE-22.80E-23.7OE-24.70E-2

N(E)(1/MEV)

2.489E-23.SlfaE-24.303E-25.35SE-26.393E-27.275E-2S.056E-29.410E-21.056E-11.209E-11.354E-1

E( MEV)

2.00E-33.5OE-35.OOE-3B.OOE-31.10E-21.4OE-21.8OE-22.40E-23.OOE-24.00E-25.00E-2

N(E>(1/MEV)

2.873E-23.797E-24.534E-2S.725E-26.700E-27.545E-28.533E-29.816E-21.093E-11.254E-11.393E-1

182 MANNHART

TABLE VII (cont.)

E(MEV) 1/MEV>

E(MEV>

N(E)(1/M£V>

E(MEV)

N(E)(1/MEV)

S.3OE-26.50E-2d.OOE-29.50E-21.20E-11.50E-12.0GE-12.DOE-1

3.30E--14.30E-15.30E-16.S0E-1a.OOE-19.S0E-11.iOE+O1.50E+02.00E+02.60E+03.30E+04.30E+05.30E+0&.50E+08.00E+09.S0E+G1 . 20EH1.50E+12.OOE+1

1.432E-11.573E-11.728E-11.86SE-12.062E-12.260E-12.523E-12.763E-12.967E-13.161E-13.276E-13.344E--13.353E-13.304E-13.149E-12.S83E-12.370E-11.777E-11.213E-16.676E-23.541E-21.609E-25.864E-32.110E-33.S06E-44.875E-51.S06E-6

5.70E-27.00E-28.50E-21.00E-11.30E-11.6OE-12.20E-12.SOE-13.70E-14.70E-15.70E-17.OOE-1S.SOE-1l.OOE+O1.3OE+O1.60E+02.20E+02.80E+03.70E+04.70E+05.70E+07.00E+0S.50E+01.00E+1i.30E+11.60E+1

1.481E-11.627E-11.77SE-11.9OSE-12.132E-12.318E-12.611E-12.S28E-13.056E-13.215E-13.3O6E-13.355E-13.343E-13.282E-13.0SSE-12.784E-12.164E-11.600E-19.612E-25.199E-22.729E-21.151E-24.171E-31.498E-31.918E-42.461E-5

6.00E-27.50E-29.00E-21.10E-11.40E-1i.SOE-12.40E-13.00E-14.00E-15.00E-16.00E-17.5OE-19-uOE-l1.10E+O1.4OE+O1.80E+02.4OE+O3.00E+04.00E+05.00E+06.00E+07.50E+09.00E+01.1OE+11.40E+11.80E+1

1.516E-11.679E-11.822E-11.987E-12.198E-12.426E-12.691E-12.888E-13.112E-13.248E-13.323E-13.35SE-13.327E-13.222E-12.978E-12.554E-11.966E-11.436E-18.025E-24.295E-22.241E-28.224E-32.967E-37.553E-49.667E-56.286E-6

6. CONCLUSIONS

The results of the present evaluation were used to derive a complete covarianceuncertainty matrix based on integral spectrum data (spectrum averaged cross-sections measurements) and also implicitly taking into account some recent directspectrum measurements (in the prior information). However, these results mustbe updated, and data from direct measurements in particular should be explicitlyincluded in the evaluation as soon as their covariances are available. These datacan easily be combined with the present results. Thus, further steps in theevaluation are necessary in the future in order to obtain an optimum result forthe spectral distribution of 2S2Cf.

PART 1-4 183

REFERENCES

[ 1 ] INTERNATIONAL ATOMIC ENERGY AGENCY, Neutron Cross Sections for ReactorDosimetry (Proc. Consultants Meeting Vienna, 1976), IAEA-TECDOC-208, IAEA,Vienna (1978) 1.

[2] BLINOV, M.V., "Neutron energy spectra of spontaneous fission sources", NeutronSource Properties (Proc. Consultants Meeting Debrecen, Hungary, 1980) (OKAMOTO, K.,Ed.), IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDS)-! 14/GT(1980)79.

[3] The Cf-252 Fission Neutron Spectrum (Proc. Consultants Meeting Smolenice, Czechoslovakia,1983) (LEMMEL, H.D., CULLEN, D.E., Eds), IAEA/International Nuclear Data Committee,Vienna, Rep. INDC(NDS)-I46 (1983).

[4] Nuclear Data for Science and Technology (Proc. Int. Conf. Antwerp, 1982) (BO'CKHOFF,K.H., Ed.), Reidel, Dordrecht (1983).

[5] WAGSCHAL, J.J., MAERKER, R.E., BROADHEAD, B.L., ibid., p. 436.[6] BOLDEMAN, J.W., CULLEY, D., CAWLEY, R.W., Trans. Am. Nucl. Soc. 32 (1979) 733.[7] BENSCH, F., JASICEK, H., "The fast neutron emission spectrum of 2S2Cf", Neutron

Source Properties (Proc. Consultants Meeting Debrecen, Hungary, 1980) (OKAMOTO, K.,Ed.), IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDS)-114/GT(1980)302.

[8] BLINOV, M.V., VITENKO, V.A., YUREVICH, V.I., in Interaction of Fast Neutrons withNuclei (Proc. Int. Symp. Gaussig, German Democratic Republic, 1979), Zentralinstitutfur Kernforschung, Rossendorf bei Dresden, Rep. ZfK-410 (1980) 104.

[9] MON, Jiangshen, et al., Chin. J. Nucl. Phys. 3(1981) 163.[10] POENITZ, W.P., TAMURA, T., in Nuclear Data for Science and Technology (Proc. Int.

Conf. Antwerp, 1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 465.[11] BLINOV, M.V., BOYKOV, G.S., VITENKO, V.A., ibid., p. 479.[12] BOTTGER, R., KLEIN, H., CHALUPKA, A., STROHMAIER, B., ibid., p. 484.[13] MARTEN, H., SEELIGER, D., STOBINSKI, B., ibid., p. 488.[14] BATENKOV, O.I., BLINOV, M.V., BOYKOV, G.S., VITENKO, V.N., RUBCHENYA, V.A.,

"Experimental and theoretical investigation of the energy distribution of californium-5 2spontaneous fission neutrons", The Cf-252 Fission Neutron Spectrum (Proc. ConsultantsMeeting Smolenice, Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds),IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDS)-146 (1983) 161.

[15] LAJTAI, A., et al., "An absolute measurement of 252Cf prompt fission neutron spectrum atlow energy range", ibid,, p. 177.

[16] MANNHART, W., PEREY, F.G., in Reactor Dosimetry (Proc. 3rd ASTM-EURATOMSymp. Ispra, Italy, 1979) (ROTTGER, H., Ed.), Vol. 2, Commission of the EuropeanCommunities, Brussels, Rep. EUR-6813 (1980) 1016.

[17] MADLAND, D.G., NIX, J.R., in Nuclear Data for Science and Technology (Proc. Int.Conf. Antwerp, 1982) (BO'CKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 473.

[18] MADLAND, D.G., NIX, J.R., Nucl. Sci. Eng. 81 (1982) 213.[19] MARTEN, H., NEUMANN, D., SEELIGER, D., "Theoretical analysis of the Cf-252

fission neutron spectrum", The Cf-252 Fission Neutron Spectrum (Proc. ConsultantsMeeting Smolenice, Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds),IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDC)-146 (1983) 199.

[20] PEELLE, R.W., Adv. Nucl. Sci. Technol. 14(1982)11.[21] PEREY, F.G., Oak Ridge National Lab., TN, Rep. ORNL/TM-6062 (1977).[22] PEREY, F.G., Oak Ridge National Lab., TN, Rep. ORNL/TM-6267 (1978).

184 MANNHART

[23] SCHMITTROTH, F., Hanford Engineering Development Lab.. Richland, WA,Rep. HEDL/TME 79-40 (1979).

[24] MANNHART, W., "Approaches for the generation of a covariance matrix for the Cf-252fission neutron spectrum", The Cf-252 Fission-Neutron Spectrum (Proc. ConsultantsMeeting Smolenice, Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds),IAEA/International Nuclear Data Committee,Vienna, Rep. INDC(NDS)-146 (1983) 229.

[25] HEATON, H.T., II.GILLIAM, D.M., SPIEGEL, V., EISENHAUER, C, GRUNDL, J.A.,in Fast Neutron Fission Cross Sections of U-233, U-238, Pu-239 (Proc. NEANDC/NEACRP Specialists Meeting Argonne, IL, 1976) (POENITZ, W.P., SMITH, A.B., Eds),Argonne National Lab., IL, Rep. ANL-76-90 (1976) 333.

[26] GRUNDL, J.A., EISENHAUER, C, in Nuclear Cross Sections and Technology (Proc.Int. Conf. Washington, DC, 1975), US National Bureau of Standards Special Publication425, US Government Printing Office, Washington, DC (1975) 250.

[27] MANNHART, W., in Nuclear Data for Science and Technology (Proc. Int. Conf. Antwerp,1982)(B5CKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 429.

[28] MAERKER, R.E., WAGSCHAL, J.J., BROADHEAD, B.L., Electric Power ResearchInstitute, Palo Alto, CA, Rep. EPRI-NP-2188 (1981).

[29] TAGESEN, S., VONACH, H., STROHMAIER, B., Phys. Data 13-1 (1979).[30] STROHMAIER, B., TAGESEN, S., VONACH, H., Phys. Data 13-2 (1980).[31] TAGESEN, S., VONACH, H., Phys. Data 13-3 (1981).[32] WINKLER, G., SMITH, D.L., MEADOWS, J.W., Nucl. Sci. Eng. 76 (1980) 30.[33] WINKLER, G., PAVLIK, A., VONACH, H., PAULSEN, A., LISKIEN, H., in Nuclear

Data for Science and Technology (Proc. Int. Conf. Antwerp, 1982) (BOCKHOFF, K.H.,Ed.), Reidel, Dordrecht (1983) 400.

[34] PAVLIK, A., WINKLER, G., Evaluation of the s8Ni(n, 2n)S7Ni Cross Sections,IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(AUS)-9/L (1983).

[35] MUIR, D.W., MacFARLANE, R.E., BOICOURT, R. M., in Reactor Dosimetry (Proc.4th ASTM-EURATOM Symp. Gaithersburg, MD, 1982), Vol. 2, US Nuclear RegulatoryCommission, Washington, DC, Rep. NUREG/CP-0029 (1982) 655.

[36] MANNHART, W., "Status and further needs of cross section covariance files", NuclearData for Radiation Damage Assessment and Related Safety Aspects (Proc. AdvisoryGroup Meeting Vienna, 1981), IAEA-TECDOC-263, IAEA, Vienna (1982) 47.

[37] FU, C.Y., HETRICK, D.M., PEREY, F.G., in Nuclear Cross Sections for Technology(Proc. Int. Conf. Knoxville, TN, 1979), US National Bureau of Standards SpecialPublication 594, US Government Printing Office, Washington, DC (1980) 63.

[38] FU, C.Y., HETRICK, D.M., in Reactor Dosimetry (Proc. 4th ASTM-EURATOM Symp.Gaithersburg, MD, 1982), Vol. 2, US Nuclear Regulatory Commission, Washington, DC,Rep. NUREG/CP-0029 (1982) 877.

[39] MANNHART, W., "Information on the Cf-252 fission-neutron spectrum deduced fromintegral experiments", The Cf-252 Fission-Neutron Spectrum (Proc. Consultants MeetingSmolenice, Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds), IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDS)-146 (1983) 213.

[40] MADLAND, D.G., NIX, J.R., Brookhaven National Lab., Upton, NY, Rep. BNL-51778(1983)423.

[41] MADLAND, D.G., LaBAUVE, R.J., NIX, J.R., "Differential and integral comparisonsof three representations of the prompt neutron spectrum for the spontaneous fission of2s2Cf", Nuclear Standard Reference Data (Proc. IAEA-OECD/NEANDC Advisory GroupMeeting Geel, Belgium, 1984), IAEA-TECDOC-335, IAEA, Vienna (1985) 267.

[42] MARTEN, H., SEELIGER, D., "Measurement and theoretical calculation of the 2s2Cispontaneous-fission neutron spectrum", ibid., p.255.

PART 1-4 185

[43] SEELIGER, D.; personal communication, 1985.[44] BLINOV, M.V., BOYKOV, G.S., VITENKO, V.A., "Experimental study of an energy

distribution shape of spontaneous fission neutrons of californium-252", NeutronPhysics (Proc. 6th All-Union Conf. Kiev, 1983), IAEA/International Nuclear DataCommittee, Vienna, Rep. INDC(CCP)-238/L (1984).

[45] MARTEN, H-, RICHTER, D., SEELIGER, D., "Analysis of experimental data on thehigh-energy end of the 252Cf spontaneous-fission neutron spectrum", IAEA/InternationalNuclear Data Committee, Vienna, Rep. INDC(GDR)-28L (1984).

1-5. DECAY DATA FOR RADIONUCLIDESUSED AS CALIBRATION STANDARDS

A. LORENZNuclear Data Section,Division of Research and Laboratories,International Atomic Energy Agency,Vienna

Abstract

DECAY DATA FOR RADIONUCLIDES USED AS CALIBRATION STANDARDS.A tabulation of the most current evaluated values of gamma ray energies and emission

probabilities, used as calibration standards in nuclear data measurements, is given.

1. INTRODUCTION

The most current evaluated values of gamma ray energies and emission proba-bilities of radionuclides used as calibration standards in nuclear data measurementsare presented in Table I. The tabulated data have been selected from the mostrecent available evaluations on the basis of their use by individual groups performingdecay data measurements. This compilation was reviewed by members of the IAEA/International Nuclear Data Committee (INDC) Standards Subcommittee and theIAEA Co-ordinated Research Programme for the Measurement and Evaluation ofTransactinium Isotope Nuclear Decay Data. It is also derived from the 1982 editionof the INDC-OECD/Nuclear Energy Agency Nuclear Data Committee (NEANDC)Nuclear Standards File, published as an IAEA technical report [ 1 ]. The reader isreferred to the first chapter of this Handbook for the corresponding half-lives.

2. SELECTION OF STANDARDS INCLUDED IN THE FILE

The radionuclides chosen to be included in this review were selected on thebasis of their inclusion in the following compilations:

(1) The INDC/NEANDC Nuclear Standards File [2].(2) The list of standards for gamma ray energy calibration recommended by the

International Union of Pure and Applied Physics (IUPAP,) [3].

187

188 LORENZ

(3) The report by the Atomic Energy of Canada Ltd (AECL) Radio isotopeStandardization Group to the Spectrometry Working Group of the Inter-national Committee for Radionuclide Metrology (ICRM) [4].

(4) The list of radionuclides used as standards by groups performing transacti-nium isotope decay measurements.

3. SELECTION OF RECOMMENDED GAMMA RAY ENERGIES ANDINTENSITIES

Following the recommendation of the INDC Standards Subcommittee, allgamma ray energy standards recommended by the IUPAP Commission on AtomicMasses and Fundamental Constants [3] were adopted for those radionuclidesincluded in this file. Beyond this initial criterion, the recommended values of Eand P were selected from the following sources of evaluated data:

(1) Emission probabilities of selected gamma rays for radionuclides used asdetector calibration standards [5].

(2) Evaluations of gamma ray energies and emission probabilities performedspecifically for Ge(Li) spectrometer calibration (see Refs [6-9]).

(3) The Laboratoire de metrologie des rayonnements ionisants (LMRI) tablesof radionuclides [10-15].

(4) The evaluation of gamma ray intensities [16].(5) Nuclear spectroscopy standards listed in the publication Table of Isotopes [17].(6) The report of the AECL Radioisotope Standardization Group [4].(7) The journal Nuclear Data Sheets.(8) The Table of Isotopes (used primarily in those cases where the isotope has

not been evaluated since 1976 [17].

4. KEY TO THE COMMENTS COLUMN IN THE TABLE

The numbers and letters in the comments column should be read individually.

1 — Gamma ray lines of radionuclides included in the list of standards for gammaray energy calibration recommended by the IUPAP [3].

2 - Radionuclides used as standards by groups performing transactinium isotopedecay measurements.

3 - Radionuclides included in the list of gamma ray standards submitted to thea-, j3- and 7-ray Spectrometry Working Group of the ICRM [4].

4 - Radionuclides included as gamma ray standards in the 1982 INDC/NEANDCNuclear Standards File [1 ].

P - Radionuclides considered in Ref. [5] as primary references.5 - Radionuclides considered in Ref. [5] as secondary references.

Text cont. on p. 195.

M MMMMMFOMMMMMMfOMMMMMM MMMUMMM MMMMMMM^ ^ ^ ^ ^ 4 ^ ^ "^ i J ^ ^i ^ ^ ^ ^ 01C71C7) 0^ 010) 0) UI UI UI UI UI Ul UII I I ) I I I I I I f 1 I I I I I I I I I I I I I I I I I I I I I Io nnnonnononnonnnnnon Ti*nTTn"n"n"n 222222so ooooooooooooooooooo mmmmmmm 2zzzzzz1 1 1 1 1 1 1 1 1 J 1 1 1 1 1 1 t i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M M M — — - • —A - — <0 — — —

u A A A-• o>c> M

Zco wrtn

S2-3

1o

_. «CJCOC0<OC0MMMMM —— — — —-.—00 —— -.GJCO-— COMMMM —Cl> CD CO — CD — M — —A U l A M M I O O U t ——OOtOCO-JCOM — O A AMOC0CO(O A OtOO>Ul —CO A 0) M —CD UI -JCO tO

AuiJUtOO(£> COO)JCnCOJCOO> C D ( O ( D I O A K ) ) O CftUlUlM 0> A O MtO W <J1O> 4U A M M I O O U t OOtOCOJCOM — O AAui-JUtOO(£> —— CO-*O)-«JCnCO-JCOO>oo K j w ( O o s a ) o * y t u o 4

U

<OUICD—

O) *J A 05 O-"JO^UICOUIM O» COW

UI OU

I I I I I I I I I I I I I 1 I I I I < I I I 1 I I I I I I I 1 I 1

ooooooooooooooooooo ooooooo oooooooI I

ooI t

oo—oooooooooooooooooo —OONJOOO ooooooohi ** —ooooo oo moo sotinoiA io

c

m3

m

JOam

zDtn2C/3

O

ooooooooooooooooooo ooooooo oooooooooooooooooooooooooo oooooooooooooooooooooooooo ooou>—oo(*>oooo —o —o — —— — —oo—o— -4 —oiocnu —

o o 00 o 00o o 00 o 00— o 0 0 — —o

nmz

2FHC/3

ooooo o oooooo ooooooo ooooooo OO Ototo —

COU OGD O>

-ooio-io OAUIOOOO oooo —roto to oUI^O>IOA<O o w o o o w - o o o — A-JOD to <o toys *J (OtcA M « I O - » U 3 o igu toMoo — uo>otoroa> to o> to to <o coto03O> -4-*fO UI -.oJOOtO «4-*<7>O -J ^i UI ODOD -JtO

UI tO CD UI - J A 0)X»

00

<O(O (O -

toUUI

1 I I I I I

o oooooI I I I I I I I I I I I I t 1 t 1 1 I I

oooooo ooooooo oooooooI I

ooooooooooooOO-—O->u ioa>

oooooo* *

oooooo ooooooo ooooooooooooo o o o o o ooooooo

o o ooO O OOO O OOo <O oo

o oo© O OU> O O

oo

>

aocnr5mc

-* IOIOU1UIO1tji aiwuicn—*— cooaicoai

o-*— wmo

o o o o o o OMMO>CO<JGJ utuuuroroo o o o oK>Jk-J03C0O — (Jl <J) O> J W tO COMOO'-JCOO o (0 O Omatuioomo 01 A{jio>o A K J 0 3 K > W O < 0 AGJ O — o oCOCOA —AO> (DO»UI-JA-JK) MOIOO-J — O — A — —

"J OO(O o ow COM C/3

>z:o

UUUU _(/>WC/» io fO CUG)

CO CO AAA A TDT3

M M M COCOCO CO ""A A A*0"0 "D

681 s-x

CO

m

o

o

en GO 00ODUCD

tot

t t t t > t I 1 t I I I t 1 I I t I t 1 t t I I 1 I t I t 1 I I t t

ooo ooooooooooooooo ooooooooooooooooooo o-*ooooooooooooo(JIOO O OUAOQOOIOOWUAO

coot a> <-j o u ) ( j i i k CJ «J

oo ooo oooo ooo oo

ooo ooooooooooooooo oooooooooooooooo o o o o o o o

o o

m2m>z

is

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

OO OMOMOOKSCDUfrO OOOD OOOOO-'OW'OUl-'OOOO Ul O *O t£(O OoO -*C0OOOO-JO-*J-*O-f*C00DC*) —OOfOOO 0 000 0-*-'Ul<0-'(D*JWO-'0 O O CJ (OtO O O <O O O l>^ y i «* CO 0 3 Cfl IO fO o O W O O ^ CO O CO O CJ1 CO CO "^ CO ^ COO> - * J i C 0 0 J f O CO GO CO

I I I I I t I I t I I I I I I I I I I I I I I I I I I I I I 1 I 1 I I

ooooooooooooooooooo oooooooooooooooo oo ooo oo

ooooooaooaoooooooooOOMO(000)OOUWJQ<JOOO

OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOt ^ ^ ^ ^ ^ j ^ <^ ^ ^ . ^ ^ co c^ 3 m o ^ ^ ^ f^iCOUICJIU ooooocnro fo -*)orocn

OOWONJ KJMfo en

J—A Ol*ktflC0O) —— -

o oo oo ooto

O O OO O Oo o o

o oo oO C X

> V »

2 CH 2

-»J - • O O O M O O O

C• D M

U 0 ) C O < d U U U U U Q C 0 ( O U U U U U U U CJUUUUCJUCOCOUCOCOUCJCJU -• CO CO - * - *K5 K3IOA COCO"0 ^

ZN3HO1 061

! <n

l-N

S-0

! u

' ">

.115

1 O

015

1 O

006 1

I O

I °! "! i1 OI O1 O1 O1 CO

1 it1 U1 (01 <J1

1 U1 (J

9-IN

-115M

336.23

o

AUI

1

o

002 )

0.'

GO

u

A9-IN

-1

i

39

1

*j

ow

1

o

00

4

o

00

1 |1

oenA(O

o

002 )

0

.30

8 I

u•o

(OCOCO

t 1 t

zzz1 1 1

UI l O -

1 ( 1

— o oo o

o o o—oo0 3 - "en en aa

w w ^

O O

• (0(0

t 1O OooIOW

oo

- C Ococo

A A A

e-co-1

a

86.

03

41 ^

io

00

11

o

00

1

|

oo

CO

1

o

n

(

sooo

UI<o

roATl

t 1 1 1 I 1 I i I 1 1 1 1 I 1O O O O O O Q O Q O O O O O O1 1 I I 1 1 1 I 1 I I 1 1 I I

iiisimiiiiiii

— — -*-*(Ooooo-j*j-gocncno)A

Soooo"01"* w^w^o—

t i i i i t i i i i i i i i ioooooooooooooooOOOOOOOOOOOOOOOooooooooooooooo

o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo—

oooooooooooooooO —OW0J-4OWO—O —<£>OO

a " " O < " - ' »<°oo*oo<o.o

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

oooooooooooooooOOOOOOOOOOOOOOOooooooooooooooo^3 j ^ i j ^^ Cv' i* 5 3 "^ i.iLi ^ ^ 3 7

ooooooooooooooo

«j <sl — O O CJ O-J — M O> (0 O> "J O)

tn t/Knt/x/i t/> co (/> c/i to (/> i/i (/*

) 1 1>r»>

ooo

III

toto(0

1 1 1

oooooooooAAA

o o ooooooo

o o o

CD CO CDo—o

1 1 1

ooooooooo

ooo

KJC0CO

3-T

C-

(0

Oft

.51

1 <

1

o

00

1

o

00

1 |1

o

09(0o

Io

00

2

)

o.:

UI

in

1-NB

-

(0

765

.80

7 ^

o

900

o

oo

o

to(OCD

o

o

00

02

)

Q.

o

•o

1 1

03 031 1

(0(0AA

CD-4- J O

.64

5 H

.11

9

•<

1 1

oooooo

o o)

00

0I t

oo

o oCD CDCO CDCD CD

o o

oooooo

oo

o o

r o u

1 1 1 1 1

3)3)33 33 33I 1 1 1 1

(0(0(0(0(0mmuiuiut

sssss

.12

A.6

9

J

.66

•. 1

99 H

.72

9 H

1 I 1 1 1oooooooooo

oooooooooooooo —W—AC0O

oooooUIAOOOA AOOO

o

1 1 1 1 1ooooooooooooooomoom —

A

A —COOOO-JCO

(0Uo->C0

CO CO CO CO CO

cococoCD CD CD

1 1 1

1 1 1030303cococo

CO CO CD.04

26

.06

34

.08

7 H

1 1 1

oooooo00 — O

o o o,00

0

10

01

[0

03

|i

o o o

oto to0<OA

1 1 1ooo

00

4

)

0.

0005

)

0.

00

07

)

9.

M o m

124P124P124

CO8-S

R-

03UI

51

4.0

09 <

1

o

eio

o

ooro

o

(0a>CD

1

o

00

5

)

0.

oOl

23

4P

6-K

R-

a>

(51

4.0

09

1

o

01

2

o

00

2

|i

o

00

43

7

o

00

01

1 )

2.

u

NU

CL

IDE

DE

CA

YM

OD

EL

EV

EL

oAT

A

UN

CE

IE

NE

RG

Y(T

AIN

TY

ke

V)

PE

R

CE

NT R

EF

mm

Tl

o•>

t>

MIS

SIO

N

PR

OB

AB

ILIT

Y

:RTA

INTY

P

ER a

- 1

33

mm33T

\

CO

MM

EN

TS

161 S-I XMVd

en en 0101o> o> 01 o>1 1 1 1

tucotD

oi en 01010 en o> o

1 1 1 1E C D a )

en en en tn a i t n m en 0101 en en en en c i en en en

1 1 1 1 1 1 1 1 tnnnnnnnnry(/t/itsnsnnvnn<snn

en enenencntntn en en in en en en en en en en en en en efl en

itXX XX XX *HmmfTtmoim

1 1 1 1 1 1 1 1 1 1 1 1(/> en en en t/> en c n t n t o (/»tft ( / » ( / cG3 03 03 03 03 03 03 03 03 03 03 03 0 03r i i i i i i i i i i i

n

s20omDOm >

ren

(coi

H

OOOOOOOO

OOOOOOOO000-»OO-»OfO-*MtOCDCOO—

C7^CO CO CO •** ^* -^ OD J O)CH C^ CO CO CO K ) — 03 4 (OI-JOOJ cow-* u-*oo(Doo>ff>^i oi c»oiooo(0 o— • • • a>»j> oxJico — uiAtococi ai CJMCOO- • • cotococcpo^c• co^— • • io ui-JCO too ik ooataxjicncnO> ^ « < 8 • • • COODOCOWCO ODODfOOXOKi <D M J 4 J C 0 a ) Jat O K J -»(£>(jiCJXi<Ofocox» enuico-rf^jco — (Dcotn — —wi —O-*CDCDWUICOo ClfOCH -*COACO (0 •& 03 O) O> ««J -* <O -• fO O -• O 0 1 0

en M o co ai w

+ + + + + + + + + + + + + + + + + + + + + + + +

) f i i i i i i i i > i > i t ) t t > i i j i i

O OOO OOOOOOOOO 01 OOOOOO O OOOOOOOOOOOOOO

OOO OOOOOOOOO OOOOOO O OOOOOOOOOOOOOOC0O)N> KJfOfOKJ — fOfOtOlO OO — OO - • O OOOOfOOOOOOO-*00

O COrOCDCOO^^dOirOUlCObOl^UICOlOCO

OCO O

en

OOOOOOOO O OOO OOOOOOOOO -* OOOOOO ooooooooooooooOOOOOOOOoooooo-*o-»o->uitnx». co to

01 000000 o 0000000000000cto 00000— o 0000000000000co -»o en tn * . co — OOOOMOOO — MOC

OOOOOOOO OOOO OOO OOOOOOOOO OOOOOO

Cft ~*O O O CO O C5 C0C3 O O O * OtoCo-Joo-fefcjto eno -»tn O K J Oo co -* Xk oi - * 01 " * N)K)oen ocntoC3 " o Xk j ^^ co en ^ ^ ^^ Xk

1 1 1 1 t 1 1 1 1 1

OOOOOOOO OOOO OOO

OOOOOOOO OOOO OOOOOOOOOOO OOOO OOO— ooooenoo —00— 0*0Xk"JXkN)K) *>4G0 —. Xk O) O CO

I I I I I I I I I

OOOOOOOOO

OOOOOOC300OOOOOOOOOOOOOOOOOO

ooootooooooaoooooouooooi -«jUXOO)

10

I I 1 I 1 I

OOOOOO

OOOOOO

oooooooooooooo

OXkOOOOOOO-»OOO<0

ooo-bCo-*M-« o-^coro mcoco o o o o o o o o - *

o ooooooooooooooO OOOOOOOOOOOOOO

OOOOOO O OOOOOOOOOOOOOOOOOO-*JO -- ocooooooootooo-*-*0000 eo o <o enenxfc*k*K>-»ocoK5oooooo>rocoo

O — — - » — -» — O

—O-JCD o —m—oco-j O - J - J-JOCOCO OUIA

c- • 01 •& O *J —> Cfl CO CO o-* en otoincoo

a j o» CD->O tO->OfO

J O O 3 O C n K 3COCOCOCOCOCO CO IOc/itnt/) c/i c/> c

ZN3H01 Z6I

OOOOOOppp (OOl O1 W O1

O O CD CD

coco coco coco Co coco COCOCC* en COCO COCOWWWWWWWWW (OCO<0<£<OC0(0<0 (O

- j cncfiuiui cnutmcncKJiuicjiuicn

rm<m

_. —_(»COCO(JIAW Qw ——-» —-*<OC0 CO — (OCOOl - . - . — «_.-oA>iuisjio-. o en co- <o — OCJCJ A O^OJCO A-OOOIUO •g-*-j*Joco<Oi • ' to* • * o —cox• • . en«J-»J<o-4-*J o>— w • ACOCO cowot*

J - A ^ - CO-

— co co Io> co co Iui - co

AOCO WCncnuui

O O M cn-o CO-JO. _ .COO A A CD COCOCOACOOO —CO —

fOCO_.ACO —W

oooooo oo ooooooooo

i i i i i i i i i i

oooooooooo oooooooooooooOOO

ooo ooooo ooOOO Oi&

ooooooooooooooooooooooo—oooCOJO»lJ1^0W

o oW CO

o

o o-ui- o— CO CO CO j

OOOOOO OO OOOOOOOOO OOOO OOOOOOOOOO OOOOOOO

oooooo oo ooooooooooooooo -•— ooooooooo-»OO0O0 XkW OOOOO-'OOO

nmz

i^^^iiH^.^,^.^. £L 51 2t51£i2.2. ii w i i^^ i^li^i——»HH i l ^ . ^ i i i i . £1 *

ooooo ooo ooooooooo oooo oooooooooo o oooooo o oOO— OCJl W O O — OCOM — O-'O-ft. o —WOO M —— — — OOKJOM — O O O O O O A -4 (0O ^ A W J CDC) O O A '*A ** J WCO CO C0 O ^^ Q ( J Q A C WO) *^ CD ^ O * O O O O CO CO OACOMcft— ofocp -acotOAocococnco w mo — co oaoi — cofo-* wtnm A o p — o p cow en <o o

ooooo ooo ooooooooo oooo oooooooooo oooooooooooo oooOOOO— OOOcow — Go moo— O01O WOWen Co —

ooooooooooooooooo—-»ococ»Aooiocn

o ooooo — —oo-. —cno —

oooooooooo ooooooooooooooooo oooooooooooooo—ow wo—ooooC0O>C0C0-Jt0W<O-4GJ OUOOOIW 2^:

zo

—<*>W - 'd ) IO - * WKJ W —co o o o o o o o o o o —-j — cUW-gCOW O O U ACOWCO JkCOCO W A- J O d O H 0 1 0 0 1 CDCOCOO —W — -JCO— (O-JKJ-J CD CO A A(OM(OU1 W-JCOCO

CO WACO AO - * COCDCOco wencoco

wwwwww ww

£61 s-i

CO tO tO CO CO tO ( O 0 0 CD CO CO OO CO CO 03 * J * * J -~uiu icn ooo GOGOCO ooooo COCQCI

i i i i i i i i i i i i i i i i i>&>> -*-i-i ODCDCD IIIII >J»13333 III >--"-> OOCTOO CCC

1 I I I 1 1 1 I I ! I I I I I I I I

i>£» jk i , foioro OOO OOOOO COCOCO tOCOCOCOtOCOCOCOCOCOCO 00 CD 03 00 03 CO CO CO 03 03 CD CO CD- * — - . — 090003 -J-J-J OJWVOJOJ CD 03 03 WMNJMfOWMWIOWW W(OK>W(ONJWWIOMtOfO(0

c^ ^ GO i ) ^^ ^ ^ ^^ ^ ^ J J QJ QJ **ij j ^* ^ i co o^ n c^ ^^ ^ GO o" J U O I cnCiA ~*ioay • H J O I W I O O O * J — CO —ooooscn — C

* • O <* * ^J O CO CO • • * • CO C m* fr fO fr CO CO Cn 0

(OiOfOO — —OfJNiCQ-JLHCJ1?O>MAC0(OC0COCno

t i l l l i t

oooo ooo

I ( f

ooo

t I

OO ooo ooooooooooo ooooooooooooo

O OO OOO OOOOOOOOOOOO OO OOO OOOOOOOOOOO— OO fO — — w — — — — — O O O O OK) COCO COCO-* O O 0 > O > O ) f O O 3 C D O 3 U 1 U 1

oooo ooo ooo

3OO OOO OOOtuo ooo oooU GO ^ (O GO ^ -^* 3 ^3

OO OOO OOOOOOOOOOO OOOOOOOOOOOOO

OO OOO OOOOOOOOOOOOO OOO OOOOOOOOOOO

-*— ooo ooooooooooo

ooooooooooooooooooooooooooooooooooooooo

oooo ooo ooo ooooo ooo ooooooooooo ooooooooooooo

G0OOO O O O O-JCO 030000 OOIO OOOOOACDUUOO OO-U->G)OOOOOOOy^OOM OO— Olfr-4 —OlOCTiOJ OOOI OUIOJ Xk<ii-4COtOCOC*iO -*-»-*-JCft(JlC»)GJ-4-»G0(O«^co ^ ^^ ^ ^^ ^ o ^ft ^ to c^ en f^j ^^ ^^ ^^ CD c^ fo i } ** ^ ^ ^ ^^ oo ^ GO "^ GO C^ CJ^ O ^^ GO cn enc^ J^ ^ o* ^^

yi O O fO ^ O GO O fO O COCO *-* (0G) -^ CO O^^^ Q ^^O f O ^ ^WCOCO^O-JO) »4C0C0 M

1 1 ) 1 111

oooo ooo

t i l 1 1 ) 1 1

ooo ooooo

t I t

ooo

t I 1 1 i 1 1 1 1 1 1

ooooooooooo

t I t 1 1 1 1 1 1 t i 1 1

ooooooooooooo

oooo ooo ooo ooooo ooooooo ooo ooo ooooo oooGJQOO ooo ou- oo —ro— ooo

^^ ^ ^ ^^ C ^ *^ O ^^ CO GO CD O j ^

ooooooooooooooooooooooOOOOOKJCJ — — OO

coioai a

I CT^O CO —4 GO tJ l fr ~* O 4CJ1 *^ O GO O) O ^ CJ1 -fr CO GO

O J t O O C n C O t O - b K3U1N3 C D r O U l U l f O CO ( 0 CO 03 CO 0 ) CTI CO CD —

CJIGOO GOOOOOOOOO—Cn -»_»oOOO—— — — — — —

encocnqiaiO)pcoioco —

— o

en

PART 1-S 195

REFERENCES

[ 1 ] INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Data Standards for NuclearMeasurements, Technical Reports Series No. 227, IAEA, Vienna (1983).

[2] INDC/NEANDC Nuclear Standards File, 1978, IAEA/International Nuclear Data Committee,Vienna, Rep. INDC-30/L+Sp (1980).

[3] HELMER, R.G., VAN ASSHE, P.H.M., VAN DER LEUN, C, Recommended standards forgamma-ray energy calibration, At. Data Nucl. Data Tables 24 (1979) 39-48.

[4] RUTLEDGE, A.R., SMITH, L.V., MERRITT, J.S., Decay Data for Radionuclides Usedfor the Calibration of X- and 7- Ray Spectrometers, Atomic Energy of Canada Ltd,Chalk River Nuclear Labs, Chalk River, Ontario, Rep. AECL-6692 (1980).

[5] VANINBROUKX, R., "Emission probabilities of selected gamma rays for radionuclidesused as detector-calibration standards", Nuclear Standard Reference Data (Proc. IAEA -OECD/NEANDC Advisory Group Meeting Geel, Belgium, 1984), IAEA-TECDOC-335,IAEA, Vienna (1985) 403-412.

[6] HELMER, R.G., GREENWOOD, R.C., GEHRKE, R.J., Nucl. Instrum. Methods 155(1978) 189.

[7] GREENWOOD, R.C., HELMER, R.G., GEHRKE, R.J., Nucl. Instrum. Methods 159(1979)465.

[8] HELMER, R.G., CAFFREY, A.J., GEHRKE, R.J., GREENWOOD, R.C., Nucl. Instrum.Methods 188(1981) 671.

[9] SCHOETZ1G, U., DEBERTIN, K., WALZ, K.F., Nucl. Instrum. Methods 169 (1980) 43.[ 10] Table of Radionuclides (LAGOUTINE, F., Evaluator), CEA Centre d'etudes nucleates

de Saclay, Laboratoire de metrologie des rayonnements ionisants, Gif-sur-Yvette (1979).[11] Table of Radionuclides (LAGOUTINE, F., Evaluator), CEA Centre d'etudes nucleates

de Saclay, Laboratoire de metrologie des rayonnements ionisants, Gif-sur-Yvette (1977).[12] Table of Radionuclides (COURSOL, N., LAGOUSTINE, F., Evaluators), CEA Centre

d'etudes nucleaires de Saclay, Laboratoire de metrologie des rayonnements ionisants,Gif-sur-Yvette (1980).

[13] COURSOL, N., Private communication, CEA Centre d'etudes nucleaires de Saclay,Laboratoire de metrologie des rayonnements ionisants, Gif-sur-Yvette, 1981.

[14] COURSOL, N., Private communication, CEA Centre d'etudes nucleaires de Saclay,Laboratoire de metrologie des rayonnements ionisants, Gif-sur-Yvette, 1982.

[15] COURSOL, N., Private communication, CEA Centre d'etudes nucleaires de Saclay,Laboratoire de metrologie des rayonnements ionisants, Gif-sur-Yvette, 1984.

[16] YOSHIZAWA, Y., et a]., Evaluation of Gamma-ray Intensities, Japan Atomic EnergyResearch Institute, Tokyo, Rep. JAERI-M-8811 (1980).

[17] Table of Isotopes, 7th edn (LEDERER, CM., SHIRLEY, V.S., Eds), Wiley, New York(1978).

[18] AUBLE, R.L., Mass chain evaluation A=56, Nucl. Data Sheets 20 3 (1977) 253.[19] ANDERSSON, P., EKSTROEM, L.P., LYTTKENS, J., Mass chain evaluation A=59,

Nucl. Data Sheets 39 4 (1983) 641.[20] HALBERT, M.L., Mass chain evaluation A=64, Nucl. Data Sheets 28 2 (1979) 179.[21] HARMATZ, B., Mass chain evaluation A=l 11, Nucl. Data Sheets 27 3 (1979)453.[22] LYTTKENS, J., et al., Mass chain evaluation A=l 13, Nucl. Data Sheets 33 1 (1981) 1.[23] TAMURA, T., MIYANO, K., OHAYA, H., Mass chain evaluation A=124, Nucl. Data

Sheets 41 (1984) 413.[24] Handbook of Radioactivity Measurement Procedures (MARTIN, M.J., Ed.), National

Council on Radiation Protection and Measurements, Washington, DC, Rep. 58 (1978),Appendix.

196 LORENZ

[25] LEE, M.A., Mass chain evaluation A=153, Nucl. Data Sheets 37 (1982) 487.[26] SHIRLEY, V., Mass chain evaluation A=169, Nucl. Data Sheets 36 4 (1982) 443.[27] SCHMORAK, M.R., Mass chain evaluation A=170, Nucl. Data Sheets 15 3 (1975) 371.

Part 2

NEUTRON ACTIVATION

2-1. THERMAL NEUTRON CROSS-SECTIONSAND INFINITE DILUTIONRESONANCE INTEGRALS

E. GRYNTAKIS, D.E. CULLEN, G. MUNDYNuclear Data Section,Division of Research and Laboratories,International Atomic Energy Agency,Vienna

Abstract

THERMAL NEUTRON CROSS-SECTIONS AND INFINITE DILUTION RESONANCEINTEGRALS.

The compilation comprises recommended values for thermal neutron cross-sections andresonance integrals (including the 1/v contribution) of nuclides (hydrogen to fermium) forneutron capture and fission reactions. The main gamma rays of neutron capture, their absoluteintensities and, for the non-1 /v nuclide, the g(T = 20°C) Westcott factors are also given.

1. INTRODUCTION

The table of resonance integrals presented in this chapter is based on the com-pilations of Gryntakis and Kim [ 1 ], which include all experimental, calculated and recom-mended values of resonance integrals available in the literature up to August 1981.Using the resonance integrals from this compilation, together with some newresults (published up to January 1985), the recommended values of resonance integralsfor nuclides from hydrogen to fermium have been evaluated here. The givenvalues are in most cases the mean values of the existing experimental results, whilethe given error is the standard deviation of these results. In some cases, becauseof the large disagreement between the few existing results, the recommendedvalue was selected based on a single measurement. Whenever possible the isotopicthermal neutron cross-sections and resonance integrals were renormalized in orderto be in agreement with the corresponding values of the natural element. For mostof the thermal cross-sections, the recommended values are those given in Ref. [6].Most of the values of the g(Tn = 20°C) Westcott factors are taken from Ref. [307],in which the g(Tn) functions for about 50 (n/y) and (n,f) reactions of non-1/vnuclides were calculated for the temperature range 0 to 2000°C.

Some radioanalytical laboratories have recently introduced in activationanalysis the concept of the effective resonance energy, first proposed by Ryves(see Ref. [ 1 ] in the Annex) for the correction of the epithermal flux to an ideal

199

200 GRYNTAKIS et al.

1/E flux. A paper by F. De Corte, giving explanations on the calculations of theeffective resonance energies, is included here as an annex.

All of the resonance integrals given in Table II are from the cadmium cut-offenergy (Ec = 0.5 eV) to infinity and include the 1/v contribution. The usershould not confuse these with the excess resonance integrals (the 1/v contributionsexcluded) or with the resonance integrals from /nkT energy. The theoretical andphysical meanings of the different resonance integrals, and the methods for theirdetermination, are explained in Ref. [ 1 ] and for convenience have been reproducedbelow.

2. DEFINITION OF A RESONANCE INTEGRAL

The microscopic cross-section averaged over a pure 1/E flux is the resonanceintegral:

1= / a(E)dE/E (for the 1/E spectrum) (1)

where El and E2 are the lower and the upper limits of the 1/E flux, respectively.When the a(E) function for a specific nuclide reaction is known, the

resonance integral can be easily calculated using Eq. (1). Theoretically, theCT(E) function can be determined from the following Breit-Wigner formula [413],or by similar formulas:

(2)

where X is the de Broglie wavelength, g is a statistical factor, Er is the resonanceenergy and Fn , F and F are the neutron, radiative and total widths, respectively.

In the usual manner of determining the resonance integral experimentally,the target nuclide is irradiated in a reactor spectrum which can be assumed tobe the sum of two components, a Maxwellian distribution corresponding to T(°K)and a 1/E epithermal flux with lower limit jukT, where k is the Boltzmannconstant and n varies with the type of reactor. For D2O reactors, ji is about 5and for some graphite reactors about 3, so that at T = 293.6°K, /ikT will in thesecases be equal to about 0.126 and 0.076 eV, respectively. The two spectra arecontinuous and overlap each other at a neutron energy of about 0.5 eV. Whena nuclide is irradiated in this spectrum, the activation result of the resonanceintegral must be corrected by subtracting the contribution of the Maxwelliancomponent and thus the expression becomes

PART 2-1 201

OO

I', = J [a(E)-g(T)aoV/E^E]dE/E (3)

//kT

where g(T) is a parameter depending on the neutron temperature (see Section 3)and Eo = 0.0253 eV.

The usual experimental method of separating the thermal cross-section dueto the Maxwellian spectrum and the resonance integral due to the 1/E spectrumis to irradiate a nuclide under a Cd filter which absorbs neutrons below theeffective Cd cut-off energy (Ec). Calculations of this cut-off energy for variousshapes and thicknesses of the Cd filter have been made by several authors [207,292, 379]. In these calculations, it is observed that a small cylindrical Cd filterof 1 mm thickness has a cut-off energy of about 0.55 eV. Under this condition,the resonance integral is divided into two parts: one between //kT and Ec andthe other from Ec to «>, so that Eq. (3) becomes

Ec

I'i = A [a (E) -g (T)a o v / E^E]dE/E

+ J [o(E) - g(T)a0

E c

= [AI-AI(l/v)] + [ I - I(l/v)] = AI' + I' (4)

where I' is the epicadmium resonance integral (excluding the 1/v part) and AI'is the part (shielded by a Cd filter) which depends on the neutron temperatureand is negligibly small for nuclides obeying the 1 /v law in the thermal energyregion. However, for those nuclides where a resonance peak lies near the cut-offenergy, such as u3Cd, 151Eu, 176Lu, 182Ta, m I r , 231Pa, 239Pu, etc., the value ofAI' becomes very large and cannot be neglected. When the resonance peak appearsnear the cut-off energy (Er = Ec), AI' can be calculated from the expression [368]:

AI'/I' = {r/irET)[(2/^TT) (VE7 - V T O

V E 7 T ; (5)

where T and Er are the resonance width and the resonance energy, respectively.Since AI' is a temperature-dependent term, its evaluation must follow thetemperature of the neutron spectrum.

202 GRYNTAKIS et al.

TABLE I. RESONANCE INTEGRALS

Symbol Meaning Limits Remarks

I

Kl/v)

I

I'l

Al'

Epicadmium excessresonance integral

1/v part of resonanceintegral

Epicadmium resonanceintegral including the1/v part

Excess resonanceintegral

Excess resonance integralbelow E energy

Ecto°°

Ec to°°

E c to°°

[jkT to °°

to E

Cd filter method: Eq. (4)

Eq. (6)

I = I' + I (1/v)

Method withoutCd filter (Eq. (4))

Al' = I1, - 1 '

The data from available literature on the epicadmium resonance integralrepresent either the value of I' or I, which then includes the 1/v part [I(l/v)].This 1/v tailing can be easily calculated if the cut-off energy is known:

I(l/v) = I - I' = J g(T)a0

Ec

dE/E = 2g(T)a0 (6)

The meanings of the several resonance integrals are summarized in Table I.

3. EXPERIMENTAL MEASUREMENT WITH A Cd FILTER

3.1. The Westcott method

According to Westcott (Ref. [292]), the reaction rate per target atom isgiven by

R = = nv0 a0 [g(T) + r (7)

where

= nv0 is the neutron flux defined as the total neutron density times the2200 m/s velocity;

PART 2-1 203

a(T) is the effective cross-section:a0 is the thermal cross-section for 2200 m/s neutrons;g(T) is the parameter which represents the departure of the cross-section

from the 1 /v law in the thermal region (g(T) = 1 if the nuclideobeys the 1/v law in this energy region) and which can be calculatedfrom the expression:

= ( l / f f 0v 0)J [(4/Vir)(v3/v|)exp(-v2/v|)]ff(v)dv (8)

0

or

g(T) = _ 2 _ / y/E a(E) sfEWj exp(-E/ET) dE/ET (8a)\/iTy/Eoao J

0

where ET = E0T/T0, Eo = 0.0253 eV and To = 293.6°K.The g(T) functions foT about 50 non-1 /v reactions of the (n,7), (n,f) and

(n, abs) types have been calculated in the temperature range from 0 to 2000°Cin Ref. [307]. The r-\/T/T0 is the epithermal index which denotes the strengthof the epithermal flux. It is zero for a pure thermal flux and can be determinedwith the knowledge of the Cd ratio (CR) of a monitor nuclide:

r V T C = g(T)/[(CR-l)s0 + 4g(T)CRVEo/7rEc] (9)

s0 is the parameter which represents the ratio of the resonance integral andthermal cross-section such that

/V 7 r a o(10)

The epicadmium resonance integral (I') can be determined by measuringthe CR of the nuclide of interest at the irradiation position, where the epithermalindex is already known:

(11)

The epithermal index can be determined either using Eq. (9) or from theirradiation without Cd cover of two different monitor nuclides, one sensitiveto thermal activation and the other sensitive to epithermal activation [179, 382]:

204 GRYNTAKIS et al.

= [g,(T)CT01 -g2(T)ao2Ri /2]/(so2CT02R1/2-s01a0i) (12)

where R^2 = 6i/62, which may easily be determined by the activity ratio of

monitors 1 and 2.

3.2. The common method

This method, theoretically less rigorous, but commonly used (see Refs [207]and [146]),defines the reaction rate by

where

CTjjj, I are the subcadmium and epicadmium cross-sections, respectively;4>^ is the neutron flux defined as the thermal neutron density times the

2200 m/s neutron velocity;0 • is the epithermal flux per unit ln(E).

From the knowledge of the Cd ratio of a monitor nuclide the ratio of theepicadmium flux can be determined as

or

0m KCR-1)

From Eqs (7) and (13) it follows that

OQ. = g(T)a0 + — ( 1 -2VE0-E c)g(T)a0 (15)

4

o t h=g(T)ao+-S E[AI (-I(l/v)] (15a)

The quantity [AI' —I(l/v)] results in a positive or negative value dependingon whether a nuclide follows the 1/v law or not. When the activation is performedin a reactor neutron spectrum with low epithermal flux (0epj - 0^), a^ =g(T)a0.The epicadmium resonance integral, including the 1/v tailing, can then be deter-mined with the knowledge of the Cd ratios for the nuclide of interest (x) and themonitor (s):

l)xa ths] (16)

PART 2-1 205

Many authors often assume that a^ = a0 in order to calculate the epicadmiumresonance integral (I). However, such an assumption is not completely justified,unless the nuclide obeys the 1/v law and the activation is undertaken in a wellthermalized neutron spectrum (0 • < 4>^l)- For obvious reasons, it is clear thatthe epicadmium resonance integral thus determined should not be consideredas a constant physical parameter [379]. The quantity of the 1/v tailing includedin the epicadmium resonance integral varies with respect to the Cd cut-off energy(Ec), which is a function of the thickness of Cd, its shape, neutron energy andangle of incidence and also of the neutron temperature (see Eq. (6)).

4. EXPERIMENTAL MEASUREMENT WITHOUT A Cd FILTER

When the evaluation of the resonance integral is very sensitive to the Cdcut-off energy (Ec) due to the presence of low energy resonances which contributesignificantly to the total resonance integral, the use of a Cd filter does not lead toan appropriate differentiation of the thermal cross-section and resonance integral.On the contrary, the measured value of the resonance integral is sharply reducedby the absorption of neutrons near the Cd cut-off energy. The solution to thisproblem relies on the special method which differentiates the neutron spectrumwithout the use of a Cd filter, but with knowledge of the relationship betweenthe two different neutron spectra [179].

Looking at Eq. (7), one notices that the effective cross-section varies as afunction of g(T) and epithermal index (r-y/T/To), which are temperature-dependent quantities. When irradiation is performed in two different neutronspectra having different neutron temperatures and epithermal components, theconstant value s0 can be determined from the knowledge of the ratio betweeneffective cross-sections, provided that g(T) and the epithermal indices are knownfor the two spectra:

s0 =(2v^r)(I'1/a0)= [R1/2g2(T)-g1(T)]/[(rVt7T7)i-Ri/2(rN/T7T7)2](17)

where R ^ is equal to Oi/Sj from two different irradiation positions.With Eq. (17) it is possible to determine directly the Ii value, which other-

wise can only be evaluated through tedious and approximate corrections forneutron attenuation, absorption and perturbation by the Cd filter used.

Explanation of the columnsin Table II is given on p. 248.

TABLE II. RECOMMENDED VALUES FOR THERMAL NEUTRON CROSS-SECTIONS AND RESONANCE

INTEGRALS OF NUCLIDES FOR NEUTRON CAPTURE AND FISSION REACTIONS o\

TARGET NUC

Z-SYMBOL-A

1-H -NAT

1

2

3

2-HE-NAT

3

4

3-LI-NAT

6

7

4-BE- 7

9

10

5-B -NAT

10

1 1

6-C -NAT

LIDE

ABUNDANCE IX)]OR HALF-L IFE 1

-

99.985

0.015

•12.346Y

-

1.3E-4

99.99987

-

7 . 5

92.5

•53.40D

100

•1 .6E+6Y

-

2 0

8 0

-

A+1 NUCLIOE

HALF-LIFE

-

-

12.346Y

-

-

-

-

84 4 MS

1.6E+6Y

13.8S

-

-

0.0203S

-

1S0MERSTATEIT l%l

-

-

-

-

-

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ABS

ACT

N.P

ACT

ACT

AE3S

ACT

N.A

ACT

N . P

N.A

ACT

ACT

ACT

ADS

ACT

ABS

ACT

ACT

THERMALC R O S S - S E C T I O N S

Ib)AND

j ( T ) FACTOR

0.3326+-0.0007

0.3326+-0.0007

<0.5l9*-0.007)E-3

<0.006E-3

(0.040»-0.010)E-9

0.0069*-0.0001

(0.031t-0.009)E-3

533S+-7

0.0

0.0448+-0.0030

70.5t-0.3

0.0385*-0.0030

940+-4

0.0454<-0.0030

48000*-9000

<0. 1

0.0076+-0.0008

<0.001

0.10t-0.09

7674-4

0.5+-0.2

38374-9

0.00554-0.0033

(3.50*-0.07>E-3

RESONANCEINTEGRALS

(bl

0 .1489

0.1489

6.298E-4

0.00314-0.0001

2401 4- 1 0

32

425.5

0.01756

21940

0.O04O+-0.0004

344.4^-2.2

1722+-10

0.0757

(1,55*-0.05)E-3

RESONANCEINTEGRALS:REFERENCES

4 09

4 09

6 409

11

4 09

4 09

4 09

6 409

6 13

6 409

4 09

MAIN GAMMA RAYS FOR A* 1NUCLIOE

ENERGY (keV)(ABSOLUTE INTENSITY: X )

o

2

n

E.

4439( 3 )

TARGET NUC

Z-SYMBOL-A

12

13

14

7-N -NAT

14

15

8 -0 -NAT

16

17

18

L10E

ABUNDANCE 1X1OR H A L F -LIFE

98.89

1.11

•5730Y

-

99.64

0.36

-

99.756

0.039

0.205

A* l NUCLIOE

HALF-L.FE

-

5736Y

2.46S

-

-

7. 14S

-

-

27 . IS

ISOMERSTATEIT IX)

-

-

TYPEOF

REACT1ON

ACT

ACT

ACT

ACT

ABS

ACT

N . P

ACT

ACT

ACT

ACT

N.A

ACT

THERMALCROSS-SECTIONS

IblAND

g(T) FACTOR

( 3 . 5 3 + - 0 . 0 7 I E - 3

( 1 . 3 7 » - 0 . 0 4 ) E - 3

<0.001E-3

0.0747»-0.0073

1.90>-O.O3

0.0750*-0.0075

1.83+-0.03

(O.024 + -O. 008)E-3

( 0. 19»-0.02JE-3

(0 . 190+-0.019)E-3

(0.538 + -0.0651E-3

O.235+-0.010

(0.16 + - 0 . 0 1 ) E - 3

RESONANCEINTEGRALS

Ibl

( 1 . 5 7 - 1 - 0 . 0 5 ) 6 - 3

0 . 0 0 1 7 + - 0 . 0 0 0 2

0.034

4 . 8 + - 2 . 4

0.034

0.00011

0.00036

,0.00036

0.00039

( 0 . 8 7 + - 0 . 0 4 ) E - 3

RESONANCEINTEGRALS:REFERENCES

6 409

6

6

6 13

6

6

6 409

6

6 311

MAIN GAMMA RAVS FOR A * lNUCLIDE

ENERGY IkeVI(ABSOLUTE 1NTENSITY:%)

5298( 6 8 )

6129 7117( 6 9 ) ( 5 )

110 197 1356 1444 1550( 3 ) ( 9 0 ) ( 5 0 ) ( 3 ) ( 2 )

7>

9-F - 19

10-NE-NAT

20

21

2 2

11-NA- 22

23

100

-

90.5

0.27

9.23

•2.60Y

100

11.OS |

-

-

-

3 8 5

-

O.02S

15.03H

-

M1TM00

G

M»G

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

O.0096+-0.0005

0.039+-0.007

0.037+-0.004

O.666+-O.110

0.0455*-0.0060

29000+-1000

0.40+-0.03

0. 13*-0.03

O.530*-O.OO7

0

0

0

0

0

(

0

.039»-0.003

.0188

.0175

.296

.023

170*-30)E»3

,320*-0,015

6

6

6

6

6

6144399

13

3 1 6

101524 09

3 1 2

396

11154

4 0 9

23 47 124 128312 314 315 398

1634( 100)

440(33)

1369 2754( 100M 100)

12-MG-NAT ACT 0.063<-0.005 |0.O38*-O.0O<! 11 14 <>] 4 0 9

O

TABLE II

TARGET NUC

(cont.)

L1DE

Z-SVMBOL-A ABUNDANCE!*)OR HALF-ILIFE

24

25

26

27

13-AL- 27

14-SI-NAT

28

29

30

31

15-P - 31

16-S -NAT

32

33

34

36

17-CL-NAT

78.99

10. 00

11.01

•9.46M

100

-

92.2

4.7

3. 1

•2.62H

100

-

95.0

0.75

4.2

0.015

-

A*1 NUCLIDE

HALF-LIFE

-

-

9.46M

21 . HI

2.246M

-

-

2.62H

280Y

14.30

-

-

-

-

5. 1M

-

1SOMERSTATEIT 1%)

TVPEOF

REACTION

ACT

ACT

ACT

ACT

|ACT

-

-

-

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ABS

N.A

N.P

ACT

N.A

ACT

N.A

N.P

ACT

ACT

ACT

ABS

THERMALCROSS-SECTIONS

Ib)AND

,(T) FACTOR

0.051+-0.005

0.190+-0.030

0.035+-0.002

0.07+-0.02

0.232t-0.003

0. 171+-0.006

0.177t-O.O0G

0. 10U-0.014

0.107*-0.002

0.18+-0.04

0.172*-0.006

0.52+-0.01

0.53+-0.01

0.008+-0.004

<0.015+-0.008)E-3

0.53+-0.04

0.007*-0.004

0.35+-0.04

0. 190*-0.080

0.002+-0.001

0.240+-0.010

0.15+-0.03

33.1+-0.3

33.5+-0.3

RESONANCEINTEGRALS

Ib)

0.032-1-0.004

0.098+-0.015

0.027+-0.002

0. 175 + -0.005

0. 127+-0.018

0. 110*-0.015

0.077+-0.015

0.66+-0.060

0.085+-0.010

0. 10

0.08

0.097

0.534*-0.023

0. 17+-0.04

14.0+-1.0

6

6

6

6312

11

6

6

6

6

1 1

6

6

6

6

6

23

10339

409

312

10

4 09

394

317

1 1

RESONANCEINTEGRALS:REFERENCES

312 339 398 399 432

11 14 22 23 41398 399 4 09

432

1 1 409 432

13 318 409

MAIN GAMMA RAVS FOR A* 1NUCLIDE

ENERGV (keV)(ABSOLUTE INTENS!TV:%)

844 1014(72) (28)31 401 941 1342 1373

(66) (37) (38) (53) (5)

1779( 100)

3102(90)

208G

RY

NT

v>re

TARGET NU(

Z-SYMBOL-A

3 5

3 6

37

18-AR-NAT

3 6

37

3 8

3 9

4 0

4 1

19-K -NAT

3 9

4 0

4 1

LIDE 1 A*1 NUCLIOE

ABUNDANCE IMI HALF-OR HALF- L IFELIFE |

75.77

•3.0F.45Y

24.23

-

0.34

•34.8D

0.07

'269V

99.59

• 1.83H

-

93.3

0.012•1.3E+9Y

6.70

3.0E45Y

-

IS

37.18M

-

34.80

-

-

269Y

-

1 .83H

33V

-

12.36H

1S0MERSTATEIT (XI

MI T - 1 0 0

G

M«G

-

-

1.3E+9Y

TVPEOF

REACTION

N . P

ACT

N . P

N.A

ACT

ACT

ACT

ACT

ACT

ACT

N.A

N.A

N . P

ACT

ACT

ACT

ACT

ACT

ACT

N.A

ACT

N.P

N.A

ACT

THERMALCROSS-SECTIONS

IblAND

, ( T ) FACTOR

0.37t-O.02

43.64-0.4

0.4894-0.014

(0.084-0.04)E-3

< 1 0

0.0474-0.010

0.3764-0.011

0.4234-0.007

0.675*-0.009

5.24-0.5

0.00554-0.0005

19704-330

694-14

0 .8 *0 .2

6004-300

0.6604-0.010

0.5»-0.1

2. 14-0. 1

2. 14-0.2

0. 00434-0. 0005

304-8

4.44-0.3

0.394-0.03

1.464-0.03

RESONANCEINTEGRALS

Ibl

184-2

0.304-0 .06

0.434-0.03

2 . 5 4 - 0 . 5

0 .44 -0 .1

0.424-0.03

1 . U - 0 . 1

1 . 14-0.1

134-4

2 .04 -0 .2

1 .404-0 . 10

RESONANCEINTEGRALS:REFERENCES

6 317

6 21 23 312 399

6 4 09

6

6

6 319

6

6

6

6

6 23 58 65 312 320 399432

MAIN GAMMA RAYS FOR A*1NUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY: X )

1642 2168( 3 2 ) ( 4 4 )

1294(99)

1461(100)

1525( 18)

"0

JO

20-CA-NAT |ACT 1 0 . 4 3 4 - 0 0 2 0 . 2 3 4 - 0 . 0 2

toO

TABLE II (cont.) too

TARGET NUC

Z-SYMBOL-A

4 0

4 1

4 2

43

44

45

46

48

21-SC- 45

4 6

22-TI -NAT

4 6

47

4 8

4 9

5 0

23-V -NAT

5 0

51

LIDE

ABUNDANCEIXIOR H A L F -LIFE

96.94

•1 .3E+5Y

0.65

0. 14

2.08

»165D

0.003

0. 19

100

•84.00

-

8 . 0

7 . 5

73.7

5.54

5 . 3

-

0.25

99.75

A«l NUCLIDE

HALF-LIFE

1.3E»5Y

-

-

-

165D

-

4.54D

8.72M

18.7S

84. 0D

3.420

-

-

-

-

-

5.8M

-

-

3.75M

ISOMERSTATEIT IXI

MIT=100

G

M*G

-

-

TYPEOF

REACTION

ACT

N . A

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

1b)AND

g ( T ) FACTOR

0 . 4 1 + - 0 . 0 2

O.0025*-0.0011

4

0.680+-0.070

6.2+-0.6

0.88+-0.05

15

0.74+-0.07

1.09*-0.14

9.8+-1.1

17.4 + - 1 . 1

27.2+-0.2

8.0+-1.0

6.09+-0.13

0.59+-0.18

1.7+-0.2

7.84+-0.25

2.2+-0.3

0. 179*-0.003

5.07+-0.11

60+-40

4.93+-0.06

RESONANCEINTEGRALS

Ib)

0 . 2 2 * - 0 . 0 2

0.39+-0.04

3.93 + - 0 . 15

0.56+-0.01

0.32*-0 .12

0.90»-0.10

5 . 4 t - 0 . 6

6 .1+-0 .8

11 .5* -0 .5

3 .1+-0 .2

0.30*-0 .09

1.5+-0.2

3 . 9 * - 0 . 2

1.2+-0.2

0.120*-0.015

2 .7+-0 .1

43+-15

2 . 6 * - 0 . 1

6

6

6

6

6

6

6

2312

6

6

6

6

6

2

6

6

3234 05

102

47

312

6399

1 1

6

13

63244 09

RESONANCEINTEGRALS:REFERENCES

4 3 2

10 11 47

13 109

23 312 398

14

10 11 23334 365 398

48 154

3 9 9

312 320399 4 03

MAIN GAMMA RAYS FOR A«1NUCLIDE

ENERGY IkcVI(ABSOLUTE INTENSITY: %)

489( 7 )

3084(92)

889( 100)

159(68)

320(93)

1434( 100)

808(7)

4072(7)

1121100)

609(1)

1297(75)

929(7)

o50•ZH

5>

24-CR-NAT I ACT | 3 . 0 7 t - 0 . ( 6 11 13 324 325 409

TARGET NU

Z-SYM80L-A

50

52

53

54

25-MH- 53

54

55

26-FE-NAT

54

56

57

58

27-CO- 58M

G

59

60M

G

28-N1-NAT

LIDE

ABUNDANCE HIOR HALF-L1FE

4.35

83.79

9.50

2.36

•3.7E»6Y

•312.5D

too

-

5.8

91.7

2. 19

0.31

•8.94H

•70.780

100

• 10.5M

•5.272Y

-

A«1 NUCLIDE

HALF- 1ISOMERLIFE STATS

1 IT IX)

27. 7D

-

-

3. COM

312.5D

-

2.58H

-

2.7Y

-

-

44.60

-

-

10. SM

5.272Y

99. OM

-

-

MIT-99.7

G

M + G

-

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblANO

,(T) FACTOR

15.9»-0.2

0.76+-0.06

18.2+-1.5

O.36+-0.04

70t-10

38

I3.3»-O.2

2.56*-0.03

2.25+-0. 18

2.59+-0. 14

2.48+-0.30

1 .28*-0.05

1400OO*-1O0OO

1880+-I2O

18.80+-1.50

18.65+-1.70

37.45+-0.45

58.*-8

2.0»-0.2

4.49*-0. 16

RESONANCEINTEGRALS

Ib)

8. l-t-0.5

0.33t-0.04

9.5+-1.0

0.08+-0.03

30.5*-5.0

17

13.8+-0.4

1.4«-0.2

1.2+-0.2

1.4+-0.2

1.6*-0.2

1.4 + -0.1

540000+-200000

6890

39.7*-4.3

31.4+-4.8

71 .1+-1.8

230*-50

4. 1 •-1.0

2.8+-0.3

2398

6

6

6

6

6

241

266327

64 09

6

6

6

2312

275

G

339

339

21253284 03

6

6

61 17

6399

324

324

324

645

309328

1 1

6398

34 1

9

6129329409

344

344

1 14 09

RESONANCEINTEGRALS:REFERENCES

46

325

325

325

1060312329

13

47

342

1 1146337

444

13

58

11122314330

14

48

13154338

14

312

13125320331

41

58

45166339

17

324

14128322332

45

154

47312340

41

325

22152326333

336

156

96314377

45

MAIN GAMMA RAYS FOR A* 1NUCLIDE

ENERGY IkeV)(ABSOLUTE INTENSITY:*)

320( 10)

835

847(99)

192(3)

181 1(27)

1099(56)

826 1333(3)(100)1173 1333

( 100M 100)

67(86)

909(3)

21 13(14)

1292(44)

"0s

TABLE II (cont.) toto

TARGET NUC LIDE

Z-SYMBOL-A ABUNDANCE IX)OR HALF-

ILIFE

5 8

59

6 0

61

6 2

6 3

64

65

29-CU-N/lT

6 3

6 5

6 6

30-ZN-NAT

6 4

6 5

6 6

67

6 8

6 7 . 7 6

'7 .5E+4Y

2 6 . 4 2

1 . 16

3 . 7 1

M00Y

0.95

•2.52H

-

69.1

30.9

'5.10M

-

48.9

•265D

27.8

4. 1

18.6

Atl NUCLIDE

HALF-LIFE

7.5E*4Y

-

-

-

100Y

-

2.52H

54 . 6H

-

12.7H

5. 10M

61 . 9H

-

2650

-

-

-

1 3 . 9 1 1

ISOMERSTATEIT IX]

-

-

MIT-99

TYPEOF

REACTION

ACT

N.A

ACT

ABS

N . P

N.A

ACT

ACT

N.A

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

N.A

ACT

N.A

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

g ( T ) FACTOR

4 . 6 + - 0 . 3

< 0 . 0 0 0 0 3

7 7 . 7 + - 4 . 1

9 2 + - 4

2 . 0 + - 0 . 5

1 2 . 3 + - 0 . 6

2 . 9 + - 0 . 2

2 . 5 + - 0 . 8

< 0 . 0 0 0 0 3

1 4 . 5 + - 0 . 3

2 4 . 4 t - 3 . 0

1 . 5 8 + - 0 . 0 4

2 2 . 4 + - 2 . 0

3 . 7 8 + - 0 . 0 2

4 . 5 0 + - 0 . 0 2

2 . 1 7 + - 0 . 0 3

1 3 5 + - 1 0

1 . 1 1 + - 0 . 0 2

0 . 7 6 < - 0 . 0 2

2 5 0 + - 1 5 0

0 . 8 5 » - 0 . 2 0

< 0 . 0 0 0 0 2

6 . 8 + - 0 . 8

0 . 0 7 2 * - 0 . 0 0 4

2

RESONANCEINTEGRALS

Ib)

8+-0.3

1 4 0 + - 2 8

2

1

8

1

4

4

2

2

1

1

10+-0.21

5»-0.4

1+-0.4

19+-0.06

13*-0.08

94t-0.10

32+-0.08

8+-0.2

401-0.05

77

2 5 . 2

0 . 2 4 4 - 0 . 0 3

6

6

6

6

6

6

6

64 5

6154

6314

6

6399

6

6

47432

4 0 9

3 9 5

3 2 4

102

23

430

10117

1 1312

1 1

1 1

4 7

58

RESONANCEINTEGRALS:REFERENCES

3 1 2

1 14 09

23313

2 3

13

1 0 9

1 1 9

339

12

123314

124

14

146

146

3 9 9

13

124321

145

4 1

156

156

4 3 2

14

128400

3 1 2

3 1 2

3 1 2

4 1

145

3 1 3

3 4 5

3 9 9

MAIN GAMMA RAYS FOR A* lNUCLIDE

ENERGY (keV)(ABSOLUTE INTENSITY:* )

366( 5 )

511(37)

1039( 8 )

91(7 )

1 1 16(51)

574( 100)

11 16(15)

1346( 0 . 5 )

93(16)

1482(23)

185(49)

z

TARGET NU

Z-SYMBOL-A

70

72

31-GA-NAT

69

71

72

32-GE-NAT

70

72

73

74

76

LIOE

ABUNDANCE IVOR HALF-LIFB

0.62

•46.SH

-

60

40

• 14. 1H

-

20.7

27.5

7.7

36.4

7.7

A*.

HALF-LIFE

56M

3.9H

2.4M

23.5S

-

21. 1M

36MS

14. 1H

4.8H

-

20MS

11.20

0.53S

-

48S

83M

54S

1 1 .3H

NUCLIOE

ISOMERSTATEIT IX)

G

M4G

MIT-0G

M4G

-

MIT•100

G

M+G

-

MIT=100G

MiG

MIT-100

G

MtG

MI T =99

G

M4G

MIT-19.8

G

M*G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblAND

j(T) FACTOR

1.04-0. 1

1.072+-0. 100

0.00B7+-0.O005

0. 083»-0.005

0. 0924-0. 005

0.059

2.94-0. 1

1.68+-0.07

0.154-0.05

4.56t-0.23

4.714-0.23

4.25

2.34-0.2

0.28*-0.07

3.154-0.16

3.43*-0.2

0.98*-0.09

15.*-2.

0.17*-0.03

0.344-0.08

0.51*-0.08

0.104-0.01

0.06»-0.01

0.16*-0.02

RESONANCEINTEGRALS

Ibl

3.364-0.3

3.64-0.3

0.864-0.06

0.07

21.74-1 .5

15.54-1.5

"31. 14-2.9

25.7

6.04-1.0

1 .50

0.76

63.7

0.4 1 4 - o. 07

0.594-0.2

1.04-0.2

1.24-0.2

0.84-0.2

2.04-0.4

6

6

26

6

6

6

26

6

6

6

6

6

6

6

20

6

109

13

10

10

13

19

24

24

25

25

24

RESONANCEINTEGRALS:REFERENCES

409

11

11

24

26

26

92

29

26

57 312

57 312 399

26 32

32

32 92 312

32 92 312

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkcV)(ABSOLUTE INTENSITY:

386(93)122(3)

175(0.2)

630(25)

297(80)

140(34)199(H

215(26)211(29)

487(62)390(4)

1039(0.5)

834(96)

326(11)

265(11)

216(27)

512(28)512(32)

894( 10)

739<4)

264(51)

596(28)910(8)

2202(26)

768(1)

416(21)

A4 1

%)

620(57)1 120(2)

2508( 13)

1065( 1)

558( 15)

90Hto

TABLE II (cont.) t o

TARGET NUC

Z-SYMBOL-A

77M

G

MtG

3 3 - A S - 75

76

77

34-SE-NAT

74

76

77

78

79M

G

MtG

80

82

L I D E

ABUNDANCE HIOR H A L F -LIFE

•54S

•11.3H

1 0 0

•26.4H

•38.8H

-

0.9

9 .0

7.5

23.5

•3.9M

*6.5Et4Y

50.0

9 . 1

AH HUCLIDE

HALF-LIFE

88M

26.4H

38. 8H

1 .5H

-

12 0. 00

17.5S

-

3.9M

6.5Et4Y

-

-

-

57. 3M

IBM

69S

22. 4M

ISOMERSTATEIT IK)

-

MIT=IOO

G

MtG

MIT-100

G

MtG

MIT »99

G

MtG

M

G

MtG

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

, ( T ) FACTOR

1 .48

4 . 4 8 4 - 0 . 1 1

6 0 . 8

12.69

11.7+-0.2

51.84-1.2

22t-1

634-7

854-7

42+-4

O.38+-O.2

O.05t-0.1

O.43+-0.2

3.28

0.084-0.01

0.53t-0.04

0.610+-0.045

0.0394-0.003

0.00524-0.0004

0.044t-0.003

RESONANCEINTEGRALS

Ib)

7 . 0 1

61-4

216. 1

68.25

12.6

514t-65

17+-2

23.3

40.3

324-3

3.74-0.6

1.064-0.80

4.76t-0.60

16.0

36—26

0.42 — 0. 1 1

1.28 — 0.32

1.704-0.30

O.OBt-0.04

26

653

432

26

26

6

2

6

6

6

6

6

32

26

6

6

6

1057

13

6

24

19

32

19

27

3 1 2

19

2 4

RESONANCEINTEGRALS:REFERENCES

11125

2 0

26

24

369

20

20

25

IB128

312

32

25

24

24

27

19312

3 4 5

26

25

25

24376

26

26

26399

27

27

MAIN GAMMA RAYS FORNUCLIDE

ENERGY (keVI(ABSOLUTE INTENSITY:

277(96)

559(45)

239(2)614

• (54)

121(17)

260(96)

357< 17)225

(32)

294(4)

657(6)

695(17)

136(59)

276100)

67 4(15)357

(69)

1213(2)

828(9)

265(59)

988( 15)510

(44)

1216(4)

1240(6)

280(25)

1030(21)718

( 16)

i t ,

1229(1 )

1309( 12)

401(12)

2051(11)799

(16)

o

In

35-8R-NAT ACT 6.9+-0.2 I91+-6 6 13 40

TARGET NUCL10E

Z-SYMBOL-A ABUKOANCf HIOR H A L F -

ILIFE

76

79

8 1

82M

G

M+G

36-KR-NAT

7 8

8 0

0 2

83

84

8 5

•16.2H

SO.69

49.31

•6 . 1M

'35.34H

-

0.35

2.25

11.6

11.5

57.0

• 10.76V

A«1 NUCLIDE

HALF-LIFE

57H

4.42H

18M

6. 1M

35.3411

2.40H

-

5 OS

34.911

13.3S

2. 1E*5Y

1 . fl3H

-

4 . 4 8 H

1 0 . 7 6 Y

-

ISOMERSTATEI T (%P

IT-100M

IT-100G

M+G

M

IT *97.6G

M*G

-

M

IT=100G

M'G

M

IT ** 100G

M i G

MI T - 1 0 0

G

M»G

Mi r -2 i .2

G

M«G

TYPEOF

REACTION

N.P

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

(b)AND

« ( T | FACTOR

224+-42

2.4+-0.6

8.6+-0.4

11.0*-O.7

2.431-0.4

0.26

2.7+-0.2

18.09

24.5*-3.5

0. 17*-0.02

6.03+-0.90

6.2+-0.9

4.55*-0 .65

6.95+-0.82

11.5«-0.5

14.0+-2.5

16+-10

30*-10

180*-30

0.090+-O.O13

0.042+-0.O04

0. 110+-0.O15

1,66t-0.2

RESONANCEINTEGRALS

(b)

3 5 . 7 * - 4 . 0

9 5 . 7 + - 1 0

131+-11

41 .3

8.9

50.2*-5.9

90.46

49+-4

20*-1

56*-7

190+-20

210*-30

2.4

0.8

3.2+-0.5

1.8*-1.0

6

6

6

3 4 7

347

626

432

26

6

6

6

6

634

25

25

6

6

23

23

10

1827

4 2 0

2-1

19

1938

19

24

RESONANCEINTEGRALS:REFERENCES

11

1928

3 4 8

24

24384

24

26

18

2038

4 2 0

25

25424

26

27

24

23312

26

26

27

28

4 3 2

24347

27

28

390

25399

28

38

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY

37(36)616(7)

698I 11\ t 1554

(71)

529(1)

261(13)

151(95)

666( 13)

776(8)619

(43)

300(2)

698(28)

306(3)

776(84)

398(9)

A * 1

%)

1317(27)

606(8)

s

TABLE II (cont.)ON

TARGET NUC

2-SYMBOL-A

86

87

37-RB-NAT

84

85

86M

G

M»G

87

88

38-SR-NAT

84

86

87

88

89

L1DE

ABUNDANCEl»lOR HALF-LIFE

17.3

•76.3M

-

•32.9D

72. 17

' 1.02M

•18.7D

27.83

'17.8M

-

0.56

9.9

7.0

82.6

•50.50

Atl HUCLIDE

HALF-LIFE

76. 3M

2.80H

-

1 .02M

18.7D

47E*9Y

17.8M

15.4M

-

67. 7M

64. 9D

2.81H

-

50.5D

28.5Y

ISOMERSTATEIT IV

-

MIT-100G

M+G

M

Q

MUG

-

MIT-87G

G+0.87M

M+G

MIT-99.7

G

G+M

TYPEOF

REACTION

ACT

ACT

ACT

N.P

ACT

ACT

ACT

ACT

ACT

ACT

ABS

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

(blAND

g(T) FACTOR

O.003+-0.002

<12600

0.35+-0.01

12t-2

0.053+-0.005

0.427+-0.011

0.48+-0.01

4.92

0.120+-0.030

1.0+-0.3

1 .28 + -0.06

0.60+-0.06

O.35+-0.07

0.87+-0.07

O.95+-0.07

0.84t-0.06

0.20»-0.03

1.04+-0.07

16+-3

0.058-1-0. 004

0.42*-0.04

RESONANCEINTEGRALS

Ibl

0.1+-0.On

'270

4.6+-0.4

1.744-0.10

3.76*-0.50

5.50t-0.50

33+-10

2.2+-0.3

10.0t-2.6

4.59*-0.15

6.6*-l.1

10.6*-1.1

1 1.2 + -1 . 1

4.79+-0.24

0.38

5.17

120*-15

0.06*-0.01

0.56<-0.22

6

27

6

312

228

24

6312

6

6

6

6

24

6

6

24

24

13

647

26

19

11

92

47

26

25

19

24

26

RESONANCEINTEGRALS:REFERENCES

26

40

1948

24

13

312

312

312

24

25

27

27 28

109

24 25 26 27312 345

25 26 27 28

17

25

26 27 28

MAIN GAMMA RAYS FORNUCLIDE

ENERGY (keV)(ABSOLUTE INTENSITY:

4 03(50)196

(26)

1077

(9)

898( 14)

658( 10)

151(95)514(98)

388(83)

845(7)835( 13)

1836(21)

1032(58)

2012 2555(3) (9)1530 2196(11) (13)

2678(2)

1248 2196(43) (13)

A*1

X)

2558(4)

2392(35)

2570( 10)

o7)•2H

E55a

TARGET NU

S-SVKIBOL-A.

90

91

39-Y - 89

90

91G

93

40-ZR-NAT

90

91

92

93

94

95

96

97

41-NB- 93

:LIDE A«l NUCLIDE

ABUNDANCE HII HALF-OR HALF- LIFELIFE |

'28.5V

•9.5H

100

•64.1H

'58.5D

•10.IH

-

51 .4

11.2

17. 1

•1 . 5E*6Y

17.5

•61.OD

2.8

• 16.8H

100

9.5M

2.71H

3. 19H

64. IH

49. 7M

58.5D

3.54H

19M

-

1 .5E»6Y

640

-

16. 8H

30.7S

6.2M

2.0E+4Y

ISOMERSTATEIT 1%I

MIT =99G

M*G

MIT-100G

M*G

-

M11-99.5

G

M+G

TYPEOFREACT1ON

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

0

0

0

1

1

THERMALCROSS-SECTIONS

(b)AND

j(T) FACTOR

.9»-0.5

. 148

.00H-0.0002

.279t-0.020

.28*-0.02

<6.5

1

0

0

0

1

0

2

0

0

0

0

1

.4+-0.3

.078

. 185*-0.003

.01U-0. 005

.24*-0.25

.220+-0.060

.6+-1.4

.0499+-0.0024

.49

.0229+-0.0010

.202

. 15+-0.05

RESONANCEINTEGRALS

Ib)

0.47+-0.07

0.62

0.85+-0.15

1.6

1 .4

3.0+-I.5

1.6+-0.5

0.99

1.18+-0.16

0.21+-0.09

6.8+-1.3

0.63+-0.11

2O»-IO

0.30+-0.07

6.5+-1.4

5.6+-0.9

1.55

8.2+-1.5

24

26

627

32

24

24

26

64 09

6365

6349

6

6

228

24

228

26

634

398

26

1028

26

26

10418

19

19357

19

19

638

26

638

1041

4 09

RESONANCEINTEGRALS:REFERENCES

27

1 140

27

11431

24

24365

24

24

1992

34

1992

1 157

432

28

1957

32

13

25

25

25

25

24312

384

24350

14312

24312

41

26

26

26

26

25350

25393

17352

25

45

27

27

27

27

26365

26

18353

26

365

32

28

28

28

27393

27

24354

MAIN GAMMA RAYS FORNUCLIOE

ENERGY (keV)(ABSOLUTE INTENSITY.

556(56)242(3)

448(2)550(6)

724(45)

355(2)

871( 100)7 03

(100M

653(8)431(3)

561(2)751(3)

757(55)

5 08(5)

871100)

750(24)953(4)

844(1)918(73)

1021( O

926(4)

1 142(3)

934(14)1139(7)

1 148(3)

A*l

X)

1024(33)1384(90)

1405(5)1669(3)

1750( D

s

TABLE II (cont.)0 0

TARGET NUC

Z-SYMBOL-A

94

9 5

42-MO-NAT

9 2

9 4

9 5

9 6

9 7

9 8

9 9

1 0 0

4 3 - T C - 98

99M

G

LIDE

ABUNDANCE HI!OR H A L F -LIFE I

•2.0E+4Y

•35 .15D

-

14.8

9 . 1

15.9

16.7

9 .5

24 .4

•66.OH

9 . 6

•4.2E<6Y

' 6 . OH

•2.1E+5Y

A+l NUCLIDE

HALF-LIFE

86 .6H

35.15D

23.4H

-

6 .9H

3.5E+3Y

-

-

-

-

66 . OH

-

14. 6M

6. OH

2.1E*5Y

15.8S

ISOMERSTATEIT (XI

M1 T - 9 7 . 5

G

M+G

-

MIT-99.8

G

M»G

MIT-99

G

M»G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblAND

, ( T ) FACTOR

0.6+-0.1

I4.9+-1.0

20+-1.0

< 7

2.55+-0.05

0.019

0.015

14.0+-0.5

0.5+-0.2

2. 1+-0.5

0.13O+-0.006

1.733

0.199+-0.003

0.93t-0.2

1.67+-1.3

2 . 6 + - 1 . 3

1.62

2 0 * - 1

RESONANCEINTEGRALS

Ibl

I2O* - IO

24*-2

25*-1

0.81

0.86

108*-4

24t-4

15*-1

7.3*-1.8

26*-2

4.2*-0.5

26.7

230+-50

24

24

645

6

6

627

6

628

628

124432

24

628

358

26

6

352

26

1 1115

2 4

1428

19

15341834

147440

26

1834

400

15

RESONANCEINTEGRALS:REFERENCES

3 5 3

3 4

13117

1534

24

19384

1938

148

34

1940

432

26

384

14120

1940

25

24

2417

312

24109

27

17355

24384

26

25

2558

314

25117

28

404 09

25

27

26

261 17356

26124

4 0

4 1

26

27

27119400

27312

4 2 4

MAIN GAMMA RAYS FORNUCLIOE

ENERGY (keVI(ABSOLUTE INTENSITY:

7 6 6

( 1 00)

460(29)

41( D

192( 1 9 )

540( 7 )

669( 5 6 )

140( 5 )

506( 1 2 )

691( 6 )

778( 9 7 )

181( 6 )

591( 1 6 )

850(21 )

739( 1 2 )

696( 7 )

A + l

X )

1091( 4 9 )

778( 4 )

1012(13 )

o

H

ACT 2 . 5 7 + - 0 . 2 1 6 53

TARGET NU(

Z-SYMBOL-A

96

98

9 9

100

101

102

103

104

105

106

45-RH-103

104M

G

105G

•LIDS

ABUNDANCE I UOR HALF-LIFE

5.5

1.9

12.7

12.6

17. 1

31 .6

'39.350

18.6

•4.44H

•3680

1 0 0

•4.4M

M 2 S

•35.5H

A-H

HALF-LIFE

2.9D

39.350

-

4.44H

3680

3.8M

4.4M

42S

45S

35. 5H

45S

35.5H

2.2H

3 OS

NUCLIDE

IISOMERSTATE

I IT (XI

MIT=99.8

G

MiG

MIT-100

G

MtG

MIT-100

G

M«G

MIT»O

G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

j ( T ) FACTOR

0.29»-0.02

<8.0

7. U-1.0

5.01-0.6

3.4*-0.9

1 .2U-0 .07

7.71

0.32»-0.02

0.391-0.06

0. 1461-0.045

10+-I

1351-2

1451-2

8001-100

39.53

0.47

4 01-30

50001-1000

1 1000+-3OOO

160001-3160

RESONANCEINTEGRALS

Ib)

5 . 8 1 - 1 . 2

1661-20

1 1 .01-0.7

88*-17

4.6+-0.9

601-20

5.2* -0 .5

6.4*-1.4

1.8+-0.4

83*-6

9931-631076*-63

360

4.6

364.6

16500+-2500

0

6

6

634

690

24

6360

24

638

6

626

148

27

25

6360

3 1 2

24

24

15359

24109

26

24384

2 6

24361

147

1027

362

24364

RESONANCEINTEGRALS:REFERENCES

3 5 9

3 5 9

25

24384

25312

34

26

27

25372

148

1 128

384

25384

26

25

26359

3 8 4

27

3 4

26384

3 1 2

1540

389

26410

27

26

27384

2 8

3 8 4

27

3 6 2

1955

27

3 5 9

27

2 8

34

28

2496

3 4

28

34

312

34

25147

3 8

MAIN GAMMA RAYS FORNUCLIDE

ENERGV IkeVI(ABSOLUTE INTENSITY:

216(86)

497(89)

130(6)

194(11)

357( 13)358

306(5)

306( 5 )

451( 25 )

512(21)

325( 10)

610( 6 )

316( 1 H

374(4 )

74 1( 10)556( 2 )

319( 19)

319( 19)

512(87)622

( 10)

469( 17)

463( 4 )

759( 1 1 )

616(21)1050(2)

676( 15)

579(3)

768(77)

717(29)

A » l

X ,

724(47)

848(6)

1237(49)

1047(31)

46-PO-NAT IACT | 6 . 9 * - 0 . 4 11 40 53

TABLE II (cont.) totoo

TARGET NU

Z-SYMBOL-A

102

104

105

106

107M

G

108

109M

G

110

112

47-AG-NAT

107

109

LIDE

ABUNDANCE (HIOR H A L F -LIFE

1 .0

11

22.2

27.3

•21.3S

•6.5E*6Y

26.7

•4.69M

M3.46H

11.8

'20 .1H

-

51.83

48. 17

A*1 NUCLIOE

HALF-L1FE

17.0D

-

-

21.3S

6.5Et6Y

-

-

4.69M

13.4GH

-

-

5.5H

22M

1 .6M

-

127Y

2.41M

250 . ID

24. 6S

ISOMERSTATEIT 1%)

MIT=100

G

MtG

MIT-100

G

MtG

MIT=71

G

M+G

-

MI T - 8 . 5

G

MtG

MI T - 1 . 5

G

MtG

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

9 ( T ) FACTOR

3 . 4 + - 0 . 3

0.6+-0.3

20*-3

0.013+-0.002

0.292+-0.029

0.305+-0.029

1.8+-0.2

0.183*-0.033

8.3*-0.5

8.483*-0.501

5.24

O.037+-O.O06

0. 190*-0.030

0.227+-0.031

0.29

63.3+-0.4G(T)=1.0034

0.33+-0.08

3 7 . 2 7 t - l . 2 0

37.6+-1.2

4 .7 * -0 .2G(T)-1.004886.3+-3.0

91.0+-1 .0

RESONANCEINTEGRALS

Ib)

10+-2

16+-2

83»-9

5.90+-0.53

77*-72.26+-0.04

224.74t-25.00

227+-25

60.6

0.6+-0.2

4.50+-0.63

5.1+-0.6

10*-5

748*-20

1 .26 + -0.19

93.74+-6.00

95+-6

72.8*-5.01377.2*-55.01450+-55

6

6

634

634

6

312

432

6312

26

6

24

25

6

6

6145

25425312

625

19

19384

19360

2 4

4 3 2

19

3 4

RESONANCEINTEGRALS'.REFERENCES

2 4

2 4

24384

26

24

3 1 2

25

2 6

1 134 0

4 2 5

10312

46426

1026

26

13363

1 1409

312427

1 127

26

25

25

27

25

27

14

24

351

1428

27

2 6

26

28

26

28

4 0

27

367

1534

27

27

34

27

312

45

34

3C8

1938

28

28

384

28

96

57

4 07

2440

MAIN GAMMA RAYS FORNUCLIOE

ENERGY (keV)(ABSOLUTE INTENSITY:

70(31)

434(99)434

658(96)658(5)

391(20)

614(98)619(9)

764(23)

575 633(12) (13)

723(99)633(2)

885 937(74) ( 3 5 )

A+1

X )

694( 7 )

1384( 2 5 )

oJO

E.

TARGET NU

Z-SYMBOL-A

110

111M

G

48-CO-NAT

106

108

109

110

111

1 12

113

1 14

1 15M

G

116

LIDE

ABUNDANCE IKIOR HALF-LIFE

•250.ID

•1 .2M

•7.50

-

1.2

0.9

M53D

12.4

12.8

24.0

12.3

28.8

•44.80

•53.38H

7.6

A*l NUCLIDE

HALF- llSOMERLIFE STATE

I IT (XI

1.2M

7.6D

3. 12M

-

6.5H

4B30

49M

-

14.6V

9.0E*15

44.8D

53.38H

-

-

3.31H

2.42H

MIT-99.7

G

M«G

-

MIT9100G

M+G

MIT»O.1

G

M*G

M

1 T = 0G

G*M

MIT-0G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

N.A

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

,(T) FACTOR

82*-l1

3+-2

2520»-50

1

1 . 1

700»-100

O.05

0. 14t-0.05

10.9

1 1*-1

24*-3

2.2»-0.5

20600+-400G(l)«!.3266O.036+-0.OO7

O.30*-0.02

O.336*-0.021

31.2

5.43

O.025 + -O.O1O

O.050+-O. 080

RESONANCEINTEGRALS

Ib)

41.3

105+-20

69.6»-5.7

4

1 1

2.5+-1

40.5+-7.5

53*-7

13.5»~1 .9

38S+-45

3.1+-1.5

19.9*-2.5

23+-2

195.9

79.9

0.422+-0.248

0.928*-0.514

343

25

6

3

6

6

6

6

6

6

19

25

629

24

26

398

4 09

25

6

24

29

19

19

19

24

398

19346

26

RESONANCEINTEGRALS:REFERENCES

38 408

4 09

398

24 26 27

24 25 26

24 26 27

26 27 28

24 25 26

398

27 28

28

34 384

27 28

MAIN GAMMA RAYS FORNUCLIDE

ENERGY (keVI(ABSOLUTE INTENSITY:

171(17)245(1)

607(3)

93(5)88

(4 )

934(2)261(2)

564(15)273(28)

245(71)342(7)

617(43)

336(16)

1029(12)344( 18)

507(6)

695(3)

492(8)

1066(23)434

( 10)

620(17)

1388(5)

528(27)

1433(13)1303(18)

A*1

%)

753(6)

1614(3)

1997(26)1577(11)

to

TABLE II (cont.)

TARGET NUCLIDE | A+l NUCLIDE

Z-SVMBOL-A ABUNDANCEl«!| HALF- 1S0MEROR HALF- LIFE STATEILIFE I I IT IX)

TYPEOF

REACTION

THERMALCROSS-SECTIONS

Ib)AND

g(T) FACTOR

RESONANCEINTEGRALS

Ibl

RESONANCEINTEGRALS:REFERENCES

MAIN GAMMA RAYS FOR A*!NUCLIDE

ENERGY (keV)(ABSOLUTE INTENSITY:*)

49-IN-NAT

113

115

50-SN-NAT

112

1 14

115

116

1 17

118

-

4.3

95.7

-

1 .0

0.66

0.35

14.4

7.G

24. 1

-

42MS

49.5D

7 1.9S

2.2S

54M

14S

-

2OM

1150

-

14. OD

-

-

2450

G+M

-

M2IT-100Ml

M14M2IT-=96.7

G

G4M14M2

M2IT-100Ml

MHM2IT-0G

G*M1+M2

-

MI T39 1G

G4 0.91M

G*M

MIT*100G

M«G

MIT=100G

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

0.0754-0.081

193.84-1.5

3.1+-0.7

S.0+-I.0

8.14-0.8

3.94-0.4

12.0+-1.1

814-8

81.34-8.0

162.3+-0.7

40+-2

202.34-2.0G(T)»1.O175

0.626+-0.009

0.304-0.04

0.714-0. 10

0.984-0.10

1.014-0.11

0. 1 15+-0.030

30+-7

0.0064-0.002

0.1344-0.030

0. 140+-0.030

2.34-0.5

0.0104-0.006

0. 21*-0.05

.35*-0.45

31334-75

220+-15

90t-33

3104-30

26054-115

655+-30

32604-150

6.4+-0.5

344-4

354-4

5.14-1.5

274-5

0.494-0.10

13.214-2.50

13.7+-2.5

15.74-2.1

1 .26

5.04

6

6

6

6

11312124

628129

6

6

6

6

6

6

6

25

25

24

13

109

10

23326374

10401S2

11

312

24

58

19

19

26

14

312

1 1

25373

1541266

13

398

26

312

24

24

27

40

371

24

124374

1960330

14

423

25

25

32

45

125

24123366

41

429

26

26

96

133

26124374

4 09

27

1

165

27125375

558( 102 ) (

558(13)

417(29)

1294( D

255(2)

725101)

819 1097 1294 2112(11) (56) (84) (16)

392(64)

o71

TARGET NUC

Z-SYMBOL-A

119

120

121M

G

MtG

122

123M

G

M t G

124

125M

G

MH)

126

51-SB-NAT

121

LIOE

ABUNDANCE HIOR H A L F -LIFE

8 .6

32 .8

'55Y

•27 . OH

4 . 7

'40.1M

•129.2D

5 . 8

•9.5M

•9 .640

'(1E+5Y)

-

57.3

A*l NUCL1DE

HALF-L1FE

-

55Y

27. OH

-

-

-

40 . 1M

129.2D

-

-

-

9.5M

9.640

( IE<5Y)

4.4M

2 . 1H

-

4.2M

2.7D

ISOMERSTATEIT 1X1

MtG

MIT-0

GMtG

MIT-0

G

MtG

MI T - 0

GM«G

MI T - 0

G

MtG

-

MI T - 1 0 0

G

MtG

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

»<T> FACTOH

O.22t-0.052.2t-0.5

0.001t-0.0010. 140t-0.0300.141t-0.030

5.77

O.OOU-0. 001

O.180t-0.020

o. ieit-o.o2o

O.033

0.130t-0.005

O.004t-O.O02

0.134t-0.006

0.55

0.297

5. 1t-0. 1

0.06t-0.015 .8<n-o .2o

5 . 9 « - 0 . 2

RESONANCEINTEGRALS

Ibl

6 . 3 t - l . 5

4 . 2 t - 0 . 9

1 . 2 5 t - 0 . 3

26.29

O.84t-o.10

2.53

8.5t-0.80.032

8.532t-0.800

14.26

0. 195

170t-2013t-1

189t-i5

202+-15

6

6

6

26

6398

24

25

25

6

24

24

6

6

6

19

19

19

24429

26

92

24

26

2 6

12

10

RESONANCEINTEGRALS:REFERENCES

24

24

24

25

312

26

32

13

1 1

26

25

25

26

4 0 0

27

3 8

18

27

26

26

27

4 04

3 9 8

19

27

27

32 312

23 2-1

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY:

37(6)

160(86)

332(100 )

822( 4 )

22(1)

491(90)806(8)

564( 7 2 )

916( 4 )

23(7 )

1348(5 )823

(11)

693( 4 )

1067( 9 )

64( 10)

1564( 4 )859(8 )

1 141(31)

1089(4 )

87(9)

1096( 19)

A * 1

%)

2002(2 )

88(37)

1 1 14(38)

TABLE II (cont.) toto

TARGET NUC

Z-SVMBOL-A

122M

C

M+G

123

124

125

126M

G

M+G

127

128M

G

M*G

52-Tt-NAT

120

LIOE

ABUNDANCE III!OR HALF-LIFE !

•4.2M

•2.7D

42.7

•60.30

•2.77Y

•19.0M

•12.40

•3.85D

•10.4M

•9. OH

-

0.09

A*1

HALF-LIFE

-

-

-

2 0M

1.6M

60.30

2.77Y

19. OM

12.40

3.850

10. 4M

9.011

4.32H

-

1540

16.80

NUCLIDE

llSOMERSTATEIII 1%)

M2ITMOOMl

IT=80G

GfO.8Ml+ 0.8M2

G+M!*M2

MIT-14G

M*G

MIT-3.6G

MtG

-

MIT-90.2

G

TYPEOP

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

(b)AND

, <T) FACTOR

21.5

O.OI9*-O.O1O

0.037t-0.010

4. 1+-0.1

4. 145+-0.101

4. I56+-0. 10)

17.4+-2.8

0.97

5.81

0.92

1 . 14

4.7+-0.1

0.34+-0.06

2.0+-0.3

RESONANCEINTEGRALS

Ibl

159.0

128+-10

22.83

0.62

19.38

20

64.5

14.7

15.9

54-t-4

25312

26

238

6

9

32

24

24

26

26

6

26399

646

19

24

26

26

1 1

RESONANCEINTEGRALS:REFERENCES

27432

1048

24

26

27

13

38 47 60 92

11 18 23 2560 109 312 432

26 27

14

MAIN GAMMA RAYS FORNUCLIDE

ENERGY (keV)(ABSOLUTE INTENSITY:

498 603 646(99H100X100)603 646 723(98) (7) (11)

176 428(7) (29)414 620

(100) (2)(415 666(84)(1OO)(

252(8)314(95)314(61)

545( 18)

37(8)470(D

463( 10)666100)695100)

1 101(2)

1691(49)

601(18)695(96)697(29)

A+1

X)

2091(6)

636(11)1035(2)720(54)

412 473 686 784(4) (25) (35) (15)594 743 754 788(3)(100)(100) (7)526 636 743 754(45) (36)(100)(100)

684(12)

1 102(22)508

( 18)

813(43)

573(80)

915(20)

1030( 13)

TARGET NU

Z-SYMBOL-A

122

123M

G

124

125M

G

126

127M

G

128

129M

G

130

131M

L1DE

ABUNDANCE (WOR H A L F -LIFE

2 . 4

•119.70

0.87•12E*12Y

4 . 6

•68D

7 . 0

18.7

•109O

•9.35H

31.8

•33.60

•69.6M

34.5

•3011

A*l NUCLIDE

HALF-LIFE

119.70

12E+12Y

-

-

58D

-

1090

9.35H

-

-

33.60

69. 6M

-

-

3 OH

25. OM

78H

ISOMERSTATEIT IW

MtG

MIT"1OO

G

MtG

MIT-100

G

MtG

M

ITB97.6G

M>G

MIT=63.4

G

*HG

MIT=18

G

M*G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

2 .

1 .

2 .

3 .

4 2

THERMALCROSS-SECTIONS

Ib)AND

, (T ) FACTOR

344-0.31

14-0.5

34-0.7

4*-0 .5

.89

418*-30

0.

6.

6 .

1 1

1 .

0 .

0 .

1 .

0404-0.025

764-1.31

8*-1.3

. 09

554-0.16

135+-0.023

904-O. 15

0354-0.15

33804-510

2 .

0.

0.

0 .

1 .

0 .

0.

0.

0.

0 .

76

0154-0.001

19971-0.0080

2M7J-0 .008!

11

37

024-0.01

274-0.06

29*-0.06

1 1

RESONANCEINTEGRALS

Ibl

6 4 * - 1 2

273 . 1

5547*-113

5 .94-1 .5

78.85

19+-3

1 .04

8.56

9 .64 -1 .6

11404-170

48.2

0.0774t-0.0050

1.54*-0.11

1.624-0.11

20.51

7.41

0.0485

0.446

0.494-0.05

0. 16

6

26

6

6

26

6

25

629

6

26

6

6

6391

24

26

25

25

632

26

19

19

19

19

19

24

370

25

19

26

20391

RESONANCEINTEGRALS.REFERENCES

24

24

24

24

24

26

3 7 0

24

24

25 26

25 26

26

25 26

25 26 27 28

26 27 28 29

26 27 28 29

MAIN GAMMA RAYS FORNUCL10E

ENERGY (keVI(ABSOLUTE INTENSITY:

5 8

(21 )

696( 9 )

774(50 )

150( 6 9 )

50( 14)

730( 2 )

794( 18)

452( 18)

1 12(2)

852(27)493(5 )

116(2)

1125( 15)6 02(4 )

228( 8 8 )

A * 1

%)

1207( 1 3 )1 147

( 5 )

Hto

TABLE II (cont.) toON

TARGET HU

Z-SYMBOL-A

G

132

53-1 -125

126

127

129

130

131

133M

G

M*G

135

54-XE-NAT

124

125

L1DE

ABUNDANCE(HIOR HALF-LIFE

•25.0M

•78H

•60.20

•12.BD

100

•1.6E+7Y

• 12.4H

•8.050

•9S

•20.3H

•6.68H

-

0.096

•16.8M

A+1 NUCLIDE

HALF-LIFE

55.4M

12.5M

12.8D

24.99M

9.0M

12.4H

B.05D

83.6M

2.3H

3.5M

52. OM

45. OS

84. OS

-

55. OS

16. 8H

-

ISOMERSTATEIT IX)

MIT-17G

MIT-83G

M4G

M

G

MtG

M

G

M<G

-

M

G

M»G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

N.A

THERMALCROSS-SECTIONS

(b)AND

«(T) FACTOR

0.04

8944-90

5960

6.2+-0.2

18*-2

9t-l

27.0+-2.2

18+-3

0.7

0.003

0.022

23.9+-1.2

28+-5

137+-21

165+-20

<0.03

RESONANCEINTEGRALS

(b)

0.05

0.06

137304-2000

40600

1484-5

374-5

178

8.54-1.2

0.005

0.023

2624-45

6004-100

25454-650

3146+-645

26

24

6

6

6162340

627

24

24384

26

24

6

6

6

26

8

9

101724400

1528

26

25

26

35

RESONANCEINTEGRALS:REFERENCES

111825432

1630

32

26

34

36

12 1319 2026 27

19 2431 40

27 33

364

142128

25

34

152229

26

38

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY:

262( 14)312(71)

389(78)

443(17)

536( 100)

418(34)

80(3)175

(63)523( 16)

234(68)595(11)

197(78)1313(67)

55(6)

647(34)4 08(30)

491(7)

527(2)

586(7)536(99)

284(6)600100)630( 14)

847(99)622

(11)

864(29)(720(7)

666(59)

743(2)

1 122( D669(96)

364(81 )614( 18)(668(99)

884(99)847(95)

370 381( 17)(100)1321 2290(25) (11)

188(55)

243(29)

913100)787(6)

754(7)

1614(3)739(82)

637

668100)773(76)

884(65)

750(6)

24 15(7)

454(4)

A*l

X)

915( 19)1333( 10)

880(2)

1157(11)

723(2)773(99)955(18)

1073(15)

1313100)2634(7)

846( 1)

2

TARGET NUC

Z-SYMBOL-A

126

127

128

129

130

131

132

133

134

135

136

55-CS-133

134

LIDE

ABUNDANCE HIOR H A L F -LIFE

0.090

•36.410

1.919

26.44

4.08

2 1 . 18

26.89

•5.270

10.4

•9.14H

8.87

100

'2.05Y

A*l NUCLIDE

HALF- IISOMERLIFE (STATE

I I T l%l

75. OS

36.410

-

8.9D

-

1 1 .8D

-

-

2.260

5.270

-

15.6M

9. 14M

-

3.9M

2.89H

2.05Y

2.3E*6Y

MIT=100

G

M*G

MIT-100

G

HUG

M

G

M*G

MIT=100

G

M*G

MIT-99

G

M*G

MI T - 1 0 0

c

TYPEOF

REACTION

ACT

ACT

ACT

N.A

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

) ( T ) FACTOR

0.45*-0.13

3.05+-0.81

3 . 5 * 0 . 8

<O.01

0.46*-0 . 10

6.02* -1 .5

6.5»-1 .5

21*-5

0.45»-0.10

6 + -1

6.45»-1

85+-10

O.O50+-O.O1O

0.400+-0.061

O.450+-O.O6O

190*-90

0.003*-0.001

0.262+-0.020

0.265+-0.020

(2 .65+-O.11) f *6

O.26»-0.02

2.5»-0 .2

29.0* -1 .5

140*-12

RESONANCEINTEGRALS

Ibl

8*-2

42*-15

50*-15

20*-10

85»-22

105*-20

252*-17

1 . 17

13.72

14.89

890+-120

0.9*-0.2

3.7+-0.6

4 . 6 ' - 0 . 6

356.3

0. 1

0.29

0.30

7475*-275

0.74+-0.21

30*-6

407*-24

422*-23

54.2

6

6

6

25

6

19

25

25

6

15

6

25

6

24

25

25

6

6

6

23

14

22846

6

37

25

24

24

25

24

26

24

19

24

29

19

63847

24

RESONANCEINTEGRALS:REFERENCES

26

26

3 5

2 6

2 7

26

24

2 6

432

25

134048

26

3 2

3 2

27

3 2

27

26

27

29

154150

27

28

34

28

27

28

34

2442

4 1 1

32

3 8 4

35

3 2

47

2643

412

39

34

432

2745

MAIN GAMMA RAYS FORNUCLIDE

ENERGY (keVI(ABSOLUTE INTENSITY:

58( 1 )

16412)

233( 10)

81(37)

787( 100)

250(90)

456(30)

569(15)

145(4)

1133(5)608(3)

605(96)

172126)

1358(5)

796(85)

203(68)

802(9 )

A * 1

375(17)

847100)

to

TABLE II (cont.) to00

TARGET NUC

Z-SYMBOL-A

135

136

137

56-BA-NAT

130

132

134

135

136

137

136

139

100

LIOE

A8UNDANCEIVOR HALF-LIFE

•2.3E+6V

•13.7D

•30.OY

-

0. 101

0.097

2. 42

6.59

7.81

11 .32

7 1 .66

•83.3M

•12.79D

A»1 NUCLIOE

HALF-LIFE

13.7D

3 0. OV

2.9M

32. 2M

-

11. 5M

11.60

391)

10. 5Y

29H

O.32S

2.6M

-

83. 3M

12.79U

IBM

ISOMERSTATEIT IX)

M

G

M+G

-

MIT-100

G

M*G

MIT-99

G

M<G

MIT=100

G

M+G

Mn-ioo

G

MlG

MIT=100G

M+G

TYPEOF

REACTIOM

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

j(T) FACTOR

8.7+-0.5

1.3

0. 110*-0.033

1 .2*-0.1

2.5+-0.3

8.8+-0.9

11.3+-1 .0

0.5

6.5+-0.0

7.0+-0.8

0.I58+-0.024

i .844-1 .e

2.0+-1.6

0.0139+-0.0007

5.78+-0.90

5.8+-0.9

0.010+-0.001

0.39+-0.40

0.4+-0.4

5.1+-0.4

0.360+-0.036

6.2+-1.6

1 6+-0.3

RESONANCEINTEGRALS

Ib)

66+-B

44+-15

0.43+-0.15

9+-2

235+-25

3.3+-0.5

24t-4

13+- 1 1

37+-10

0.465+-0.070

I09.5+-17.0

110+-17

0.75+-0.04

0.85+-0.30

1.6+-0.3

4.8+-0.6

0.32+-0.07

13.2+-O.8

634

6

24

C

2

6

6

6

6

29

G

6

629

638

2449

24

26

1 1

6

29

29

24

24

19

19

20400

2451

RESONANCEINTEGRALS:REFERENCES

25384

26

27

13

29

32

25

25

24

2-1

244 09

25

26

20

17

47

26

25

?5

25

26

27

34

18

26

26

26

27

28

27

27

27

29

30

32

28

32

MAIN GAMMA RAYS FORNUCLIOE

ENERGY IkeVI(ABSOLUTE INTENSITY:

177( 14)

112(8)463(31)

124(29)

81(33)

268( 16)

662(90)

166(22)

30(11)190

(46)

341 818(49)(100)

192(81)547(11)

21G(20)

276(7)

163(6)277(23)

324(6)1010(30)

249(3)

303( 18)

305(4)304(25)

1048(80)

463(98)1436(76)

373( 13)

356(62)

424(3)344(14)

A«1

%)

1235(20)

1436100)2218( 15)

496(44)

384(9)

537(24)648(6)

z

TARGET NUC

Z-SYMBOL-A

57-LA-NAT

138

139

140

58-CE-NAT

136

138

139

140

141

142

143

144

59-PR-14 1

142

143

LIDE

ABUNDANCE<MOR HALF-LIFE

-

0.089

99.911

•40.22H

-

0. 193

0.25

•137.20

88.48

•32.50

1 1 .07

•33H

•284D

100

•19.2H

•13.59D

A«1 NUCLIOE

HALF-LIFE

-

-

40.22H

3.87H

-

34.4H

9. OH

55. OS

137.2D

-

32. 5D

-

33H

2840

3.0M

14.6M

19. 2H

13.590

17.27M

1S0MERSTATEIT (»>

-

-

MIT-99.2

G

M*G

MIT-100

G

M+G

M

G

M«G

TypeOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

,(T) FACTOR

8.97*-0.05

57.2*-5.7

8.93»-0.04

2.7+-0.3

O.63*-O.04

0.95»-0.25

6.3*-1 .5

7. 25*- 1.52

0.015+-0.005

1.1+-0.3

1 .115+-0.300

500

0.57*-0.04

29»-3

O.95*-0.O5

6.0<0.7

1.0»-0.1

3.9*-0.3

7.6+-0.3

11.5+-0.3

20*-3

90<-10

RESONANCEINTEGRALS

Ibl

12.7*-0.8

548*-96

12.24-0.8

69*-3

0.67*-0.05

58+-12

0.48+-0.04

23.7+-4.5

1 . 14*-0.04

40

2.6+-0.2

17.8<-3.B

144

185+-15

1 1

6

22756

388

24

6

6

228

6

629

24

6388

62547

24

664

12

388

62857

399

25

13

388

629

24

2062

26

24

102652

26

24384

RESONANCEINTEGRALS:REFERENCES

52

428

152958

26

2047

26

24388

27

25

1127

384

32

25388

53

193459

27

2448

27

25

32

26

1228388

26

54

244060

38

2561

34

26

27

1529

412

27

55

2547

383

56

2662

384

27

39

1934

34

2648

384

388

27388

28

63

2440

38

MAIN GAMMA RAYS FORNUCLIDE

ENERGV (keVI(ABSOLUTE INTENSITY:

329(21)

1355(3)

169(27)447( 1 >

166(80)

145(48)

57(12)

80( D63

(15)

642(12)

696( 1)

487(46)

762( 15)

293(42)

134(11)284(9)

1576(4)

616(24)

825(34)

351(3)

440(6)

925(7)

835(8)

665(5)

724(59)

A-U

%)

1596(95)

1005(2)

722(5)

1 148(9)

3

TABLE II (cont.) too

TARGET NUCLIDE A*1 NUCLIDE

Z-SYMBOL-A ABUNDANCE ML HALF-OR HALF- L I F E

I L I F EF'*] IS0M6R

STATEIT 1%)

TYPEOF

REACTION

THERMALCROSS-SECTIONS

IblAND

,(T) FACTOR

RESONANCEINTEGRALS

Ib)

RESONANCEINTEGRALS:REFERENCES

MAIN GAMMA RAYS FOR A«lNUCLIDE

ENERGY |keV)(ABSOLUTE INTENSITY: \)

•5.98H 24.OM ACT 118.44 |445. 1 26

60-NO-NAT

142

143

144

145

146

147

148

150

61-PM- 146

147

148M

G

149

151

-

27. 13

12.20

23.87

8.29

17. 18

•11.060

5.72

5.60

•5.53Y

•2.62Y

•4 1.3D

•5.370

•53.1H

•28.4H

-

-

-

-

-

11.06D

-

I.8H

12M

2.62Y

41 .3D

5.37D

53. 1M

2.68H

15M

7.5M

4.2M

-

MIT-4.65

G

M*0

M2

M1

G

M2«M1+G

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

50.5+-2.0

18.7+-0.7

325+-10

3.6+-0.3

42+-2

1 .4 + -0.1

440+-150

2.5+-0.2

1.2+-0.2

8400+-1680

B5+-5

96t-2

181+-7

22000+-2500

2000*-1000

1400+-300

173

43.5+-5.5

8.5+-1.0

136+-35

5*-l

255«-40

2.7*-0.4

540*-150

14.0+-1.5

14.5+-2.0

1045+-265

)320*-85

2230^-70

3600-»-2400

43500+-4500

825+-50

1400*-400

6

6

627

6388

627

436

647

24

659

659

6

6414

634

388

6388

24

24

24

12

24

1428

24

1428

2462

26

2462

2462

25

254171540435

24

26

26

26

55

25

1534

25

1534

2565

34

2565

2565

34

38

1969

26

27

27

34

26

1940

26

1940

2666

384

2666

2666

G9

69

2470

27

34

34

384

32

24384

27

24384

27388

437

2767

27388

70

70

2672

34

69

384

388

25388

2B

25388

28

28388

28

388

71

2773

69

384

417

26

38

26424

29

29

29

414

388

28384

384

91(28)

1 14( 19)

117(47)

550(98)550

(23)

286(3)

334(69)

122(45)122

( 16)

319(2)

211(27)

139(8)

630(93)61)( D

832(12)

245(78)696( 1)

440( 1)

270(11)

175(8)

726(34)9!5(13)

876(7)

340(31)84 1(2)

531(13)

424(9)

256(17)

915(20)1465(22)

1 166(16)

1097(29)961(2)

541(8)

1 181(15)

1014(21)

1325(18)

1437(23)963(2)

o

•z>

TARGET NIK

Z-SYMBOL-A

62-SM-NAT

144

147

148

149

150

151

152

153

154

1 5 6

63-EU-NAT

151

152

153

154

LIDE A t !

ABUNDANCE l%ll H A L F -OR H A L F - L I F ELIFE |

-

3.16

15.07

11.27

13.82

7 .47

• 93Y

26.63

" 1 6 . 8H

22.53

*9.4H

47.77

52.23

•8.5Y

-

34 OD

-

-

93 Y

-

46 . 8H

-

23. SM

B.OM

96M

9.3H

12. 7Y

-

8.5Y

4.65Y

MUCL1DE

ISOMERSTATEIT <*l

-

M2

IT * 100Ml

IT-0G

IT-0G+MI+M2

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblAND

g ( T ) FACTOR

5800*-100

0.7

64 + -5

2.7*-0.6

41000*-2000G(T)=1.5860

102*-5

15000*-1800

206+-6

334.5

5.5<-1.1

17.16

4600+-100G(T)"0.90694.2*-2 .0

321l*-82G(T)«0.8936

5935»-73G(T)=0.90229146»-)09G(T)*0.8992

2313

603»-23G(T)"1.0290

15O0*-4OO

RESONANCEINTEGRALS

Ib)

I430+-120

650+-50

27t-14

3700*-400

280*-30

3100+-500

3960+-150

3700*-2000

29<-7

331.9

4346+-I70

1823*-146

35S2+-264

5367*-263

3414*-197

15OO»-450

6

634

424

674

676

634

418

628

102647

412

24

683

2 6

6

1086

48

659

62682

6442

13

1438

2475

1941 1

1974

1634

1 12779

432

26

24388

53

1487

59

1882

1 12783

24

RESONANCEINTEGRALS:REFERENCES

2440

26384

2 4

2476

1938

142880

34

26

55

2988

84

2483

142884

26

2575

27388

26

2577

24135

152981

3 8 4

2 7

8 4

58392

85

2784

152985

27

26384

2 8

27

26384

25384

183482

28

85

59

392

2985

1934

392

32

27387

3 4

28

27387

26388

1940

384

29

4 09

8 4

34392

2440

424

34

28388

3 8

3 4

2838B

27411

2441

388

8 2

8 5

53432

2553

3 8 4

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeV)(ABSOLUTE INTENSITY:

61(12 )

70( 5 )

104(75)

122( 2 6 )

122(39)

123(40)

45( 1)

103(28)

)41(2)

344(3)344

(95)

185(20)

60( 1)

246(4)

842(52)779

(46)

723(20)

87(31)

963(43)964

(20)

1005(18)

105(21)

A»1

%>

1389(3 )

1408(29)

1274(35)

TABLE II (cont.) towto

TARGET NUC

Z-SYM80L-A

155

156

157

64-G0-NA1

152

154

155

156

157

158

159

160

LIOE |

ABUNDANCE IX)OR HALF-LIFE

•4.65Y

•15.4D

•15.1H

-

0.20

2. 15

14.7

20.47

15.68

24.9

• 18. OH

21.9

A H NUCLIDE

HALF-LIFE

15.4D

15. 1H

46M

-

242D

-

-

-

18. OH

-

3.7M

ISOMERSTATEIT (XI

-

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)ANO

g(T) FACTOR

4040*-125

480

190

49000»-1000

1 I 00*-100

85+-12

61000+-500G(T)»0.8387

1.5+-1.2

254000+-2000G(T)=0.8561

2.5+-0.5

16.3

0.77+-0.02

RESONANCEINTEGRALS

Ibl

1680+-300

1660*340

1350+-380

420+-15

3000+-300

280»-60

1570+-40

I00+-20

850+-100

80+-15

186.7

7 + -I

689

24

24

6

6

6392

689

678

678

647

56

689

24384

26

26

13

47

24

24384

2489

1989

2459

24392

RESONANCEINTEGRALS:REFERENCES

26442

28

34

78

89

25

26

2590

24384

2578

25

27

34

384

89

392

75

27

26392

26

2683

26

28

384

4 09

83

28

27

27

2789

32

34

89

34

28

28

28392

78

78

SO

78

75

34

29

83

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY:

89(9)

79(11)

70(2)

58(2)

56(5)

812(10)

898( 10)

97(28)

364(11)

102( 16)

1153(7)

944(25)

103(20)

283(7)

1231(9)

977( 14)

315(24)

Atl

%)

1242(7)

1108(4)

36(65)

65-TB-159

160

161

66-DY-NAT

156

158

160

161

100

•72.ID

•6.9D

-

0.0524

0.0902

2.294

18.88

72. ID

6.9D

7.48M

-

8. 1H

1440

-

-

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

23.2+-0.5

525*-100

96.6

1000+-40

33«-3

43 + -6

95+-10

510+-30

400»-25

1135

G55.9

1520+-80

960+-80

120+-20

1240+-140

1300«-100

228145

24

26

6

6

6

5

6392

629

392

26

93

97

97

6

19424

1847

432

32

94

12

24

1948

95

13

25

2462

96

95

26

2591

424

75

2692

96

87(13)

26(21)185

(16)

182(2)58(2)

299(27)

49(15)260(79)

326(95)

879(29)

57(2)808(45)

966(25)

75(10)882(12)

1 178( 15)

888(39)

oJO<

TARGET NU

Z-SYMBOL-A

162

163

164

165

67-H0-165

68-ER-NAT

162

164

166

167

168

170

171

69-TM-169

LIOE

•SUNDANCE HIOR H A L F -LIFE

25.53

24.97

28. 18

•2.35H

1 0 0

-

0. 136

1.56

33.4 1

22.94

27.07

14.88

•7.52H

100

AO NUCLIDE

HALF-LIFE

-

-

1 . 15M

2.35H

81 .5H

1200Y

27. 2M

-

75. 1M

10.34H

2.35S

-

9.6D

7.52H

49.511

0.004MS

130D

ISOMERSTATEIT (*l

MI T - 9 7 . 7

G

M4G

MIT-0

G

-

MITM00

G

M*G

M

IT•100G

M*G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblANO

, | T ) FACTOR

245t-40

305+-25

1700»-250

1O00t-150

2700+-7S

3900'-300

3.5* -0 .5

61.2+-1.1

64.7* - 1 .2

162+-8

19t-2

13*-2

1S*-2

20*-2

35»-4

670»-30

1.95+-0.05

5.7»-0.2

280»-30

8+-1

95*-2

IO3»-3

RESONANCEINTEGRALS

(b)

2500t-250

1700*-200

650+-100

22000+-3000

55+-25

660*-35

715«-55

745+-25

480*-30

120*-10

125*-15

3000+-150

35*-5

24 + -4

1710+-70

6392

6392

686

424

6

18145

6

3

6

6

6

6

6

6392

6136

19424

19424

1995

97

25432

19

6

9 9

9 9

24

24

83

18432

19392

RESONANCEINTEGRALS'.REFERENCES

24

24

2497

29

24

9 1

3 9 2

3 9 2

75

83

99

29

29

25

25

2698

32

26

83

101

101

59

4 7

26

26

29145

47

55

101

136

136

83

9 1

75

75

34381

59

392

3 9 2

3 9 2

3 9 2

99

97

95

95

59392

142

409

136

102

MAIN GAMMA RAVS fOKNUCLIDE

ENERGY IkeV)(ABSOLUTE INTENSITY'

82( 13)

81(13)

81(6 )

112( 2 1 )

79( 3 )

184( 7 5 )

117( 2 )

84( 3 )

280 712( 3 0 ) ( 6 0 )

124 296( 9 ) ( 3 0 )

A* 1

X )

810(64)

308(66)

7)

to

TABLE II (cont.) N)

4

TARGET HUC

Z-SYMBOL-A

170

171

70-YB-NAT

168

W O

171

172

173

174

176

71- IU-NAT

175

176

L1DE

ABUNDANCE 1(1OR H A L F -LIFE

•130D

•1.92Y

-

0. 140

3.03

14.31

21 .82

16. 13

31.84

12.73

97.40

2.60

•3.3E10Y

A*1 NUCLIOE

HALF-LIFE

1 .92Y

63.6H

-

46S

31 .8D

-

-

-

67MS

4.20

6.5S

1 .9H

3.69H

3.3E 1 OY

0.160MS

155D

6.74D

ISOMERSTATEIT 1X1

-

MIT-100

G

NHG

Mn»ioo

GM+G

MU-100

G

M+G

MIT-0

G

M*G

Ml

M2IT-22

G

MHM2IG

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)ANO

» ( T ) FACTOR

92 + -4

4.5+-0.2

36.6+-2.0

3470*-100

1O»-1

50+-4

1.3»-0.B

19+-2

46*-4

19*-6

65+-5

2.4+-0 .2

77 + -3G(T)«1.496815. 10+-1.24

7*-1

2 2 . I + - 1 . 6

315+-60

2.1+-0 .7

1778+-75

2100*-50G(T)-1.6914

RESONANCEINTEGRALS

Ib)

460+-50

1 18*-6

195+-15

30500+-2500

270+-60

380t-45

25.2+-1.6

450»-55

34.5+-4.5

8. I+-1 .6

732+-63

523+-57

202+-30

725*-65

3.8«-1.0

1017+-45

6

6

6

6103

75

6

6

6

6103

6

6

29

6

3 3 9

6

136

136

9 1

2939?

83

75

75

75

29392

29

12

59

53

29

RESONANCEINTEGRALS:REFERENCES

103

4 7

103

B3

0 3

103

4 7

59

53

86

83

5 3

83

392

101

101

392

83

83

339

88

86

92

103

103

9 7

9 7

3 9 2

8 8

9 7

3 9 2

3 9 2

101

103

4 3 3

9 8

102

102

392

4 3 3

MAIN GAMMA RAYS FORNUCLIOE

ENERGY IkeV)(ABSOLUTE INTENSITY:

63( 4 4 )

114( 2 )

122( 3 )

88(9)88

(13)

113( 2 8 )

113( 6 )

1 10( 1 7 )

283(3)

139( 1 )

202( 8 4 )

2 08( 7 9 )

2 08( 1 1 )

177( 2 1 )

396( 6 )

150( 2 0 )

307( 93 )

228(48)

198(35)

1080(5 )

379(36)

A + i

%)

308(11)

1241(3)

419( 2 6 )

71

>

TARGET NU(

Z-SYMBOL-A

72-HF-NAT

174

176

177

178

179

1 8 0

181

73-TA-NAT

180

161

182

74-W -NAT

LIDE

ABUNDANCEHIOR H A L F -LIFE

-

0. 163

5.21

18.66

27. 1

13.75

35.22

•12.5D

-

0.0123

99.9077

• 115. ID

-

A<1 NUCLIDE

HALF-LIFE

-

7 00

-

4.3S

25 . 10

18.6S

5.5M

4 2 . 5D

61.5M

9E<6Y

-

-

16.5M

1 1 5 . I D

5.0D

-

ISOMERSTATEIT (XI

-

MH • 100

G

M*G

M21T-100

Ml1T=1OO

G

M*G

MIT-100

G

MtG

M

a

M*G

-

MI T m 1 0 0

G

MtG

-

TVPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

(b)AND

) ( T ) FACTOR

1 0 2 * 2

390*-55

38*-6

1 . H-0. 1

363*9

365*-20

53*-6

33*-8

86*-7

O.34*-0.03

44.66

45*-5

12.6*-0.7

40»-30

21.6»-0.7

700*-200

O.013*-0.003

21.5*-0.6

21.5*-0.6

8530+-45O

1 8 . 5 t - 0 . 5O ( T ) » 1 . 6 8 8 0

RESONANCEINTEGRALS

Ib)

2020*-65

288*-24

428*-55

7478<-244

1914+-95

4.75+-0.16

563+-55

568*-55

33.6*-3.2

717*-25

600*-200

0.415+-0.110

717+-25

717*-25

977t-58

352»-23

645

l «

6

6

G

6

29

6

94

3138

6

29

180

6112

2

3116

1094

2 9

94

94

94

94

6104

13142

339

432

10113

6

61 17

RESONANCEINTEGRALS:REFERENCES

1 1104

108

104

104

104

104

10105

14

3 9 8

1 1114

110

121 18

12105

105

105

105

105

1 1106

41

4 3 2

18139

1 14

13120

13106

106

106

106

106

29108

53

29144

180

144 09

14107

108

108

108

108

47109

1 10

47180

9 3

41108

4 8

1 1 ,

484 09

1 15

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY:

133(43)

1 14(12)

1 14(3)

68(41 )

108(11)

136(6)

340( I D

156(7)

100(14)

161(12)

137(2)

603(10)270

(80)

1121(35)

244(9)

346(14)

600(18)

1 189(16)

246(27)

A * !

X )

482(86)

943(37)

1221(27)

354(11)

>

H10

wI/I

TABLE II (com.)

TARGET NU

Z-SYMBOL-A

180

102

1 8 3

184

186

187

75-RE-NAT

185

187

76-OS-NAT

184

186

187

188

189

L1DE

ABUNDANCE HIOR H A L F -L I F E

0. 135

26.4

14.4

30.6

28.4

•23.9H

-

37.07

62.93

-

0.018

1.59

1 .64

13.3

16. 1

A + l

HALF-LIFE

1210

-

-

1 . 62M

750

23. 9H

69. 4D

-

88.911

18.7M

16. 7H

-

93.60

-

5.7H

10M

NUCLIDE

1S0MERSTATEIT 1X1

MI T - 1 0 0

G

-

MI T - 1 0 0

G

M*G

-

MI T - 1 0 0

G

M K i

MI T - 1 0 0

G

M»G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ABS

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

, ( T ) FACTOR

3 . 5

20.7*-0 .5

10.2+-0.3

0.002+-0.001

1.8*-0.2

1,8t-0.2

37.0+-1.5

64+-10

88.7t -3 .8

112<-3

7S + -4

1.6+-0.3

75>-4

15.3+-0.7

3005t-122

0.001

336*-17

4.31-1 .0

0.26+-0.03

22.74*-4.00

23 + - 4

RESONANCEINTEGRALS

Ib)

2 0 0

591+-45

367»-38

13.4+-2.5

49O'-15

2670+-550

82S+-36

1718+-45

8 .8+-0 .8

296.2+-10.0

305*-10

172»-35

1354+-52

89n*-100

135*-35

0.013+-0.001

750*-50

750+-50

6

6

6

6140

686

124400

6

6

6134

2 9

64 09

13

2 9

6

6

2 9

6

8 3

8 3

2 9

1093

125432

126

1 3 0

10137

10

5 3

146

RESONANCEINTEGRALS:REFERENCES

1 1 8

1 1 8

8 3

1 1116126

141

1 114 1

1 1

93 1 16

18 29118 121127 128

416

29 131409

29 132

118

58122129

132

137

121

83123143

133

141

MAIN GAMMA RAYS FORNUCLIDE

ENERGY tkeVI(ABSOLUTE INTENSITY:

72(11)

155( 15)

592(1)

134( 9 )

4 7 8

( 1 )

646(81 )

480(21 )

6 3 3( 1 )

717( 4 )

618( 6 )

875(7 )

A * l

X )

686(26 )

881(5 )

<

TARGET NUC

Z-SYMBOL-A

190

192

193

77-IR-NAT

191

192

193

78-PT-NAT

190

192

194

195

196

LIDE

ABUNOANCt { ( ]OR HALF-LIFE

26.4

41.0

•31.5H

-

38.5

•74.2D

61.5

-

0.0127

0.78

32.9

33.8

2 5 . 2

A4 1

HALF-LIFE

15H

151)

31 .5H

6.0Y

-

24 IV

1 .4M

74.20

17 ID

19H

-

3.0D

4.40

(BO)V

4 . ID

-

1 .5H

1811

NUCLIDE

ISOMERSTATEIT (*!

M

G

M»G

-

M2IT-100Ml

IT-99G

MtG

MIT-0

G

M4G

-

MIT=100

G

M'G

M1T-100

G

M i G

MIT»96.7

G

M«G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

Ib)AND

g(T) FACTOR

13 .204 -0 .31

3 . 9 + - 0 . 8

17 . l t - 0 . 9

1 .974-0 . 11

1540

4264-4G ( T ) - 1 . 0 3 2 00.32* -0 .17

300+-30

6244-20

9244-53G(T) = 1.032611004-400

5 .84-2 .0

1104-15

112.54-7.5G(T) = 1.0218

10.04-0.2

1504-150

2 .24 -0 .8

< 14

0.0904-0.013

1.11

1.24-0.9

274-2

0.0504-0. 10

0.744-0.08

RESONANCEINTEGRALS

Ibl

2 6 . 5 4 - 2 . 5

3 1 . 7 4 - 2 . 5

58.24-3.7

5.4+-1.3

26064-120

10604-150

35354-250

45954-290

13624-33

1284-15

834-10

44-2

3554-50

8.34-2.0

29

29

6

6

6

147

29

6

6

6

6

6

6

6

146

29

13

148

86

10

10

11

29

RESONANCEINTEGRALSREFERENCES

146

53

11 46 147 148

11 29 86

14 41 142 4 09

57

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeV)(ABSOLUTE INTENSITY:

129(26)

73(3)43

(2)

2 06(70)

328(93)294(3)

82(5)

130(3)77

( 17)

139(4)

308( 3 D

483(97)328

(13)

172(4)

202(1)191(4)

322(1)

316(87)

562(70)645(1)

360(6)

279(71)

387(1)

468(50)

600(62)

4 09(8)

A 4 1

* )

460(4)

485(67)

688(59)

539(14)

•vso

- 4

TABLE II (cont.) t

00

TARGET NUC

Z-SVHBOL-A

198

199

79-AU-197

198

80-HG-NAT

196

198

199

2 0 0

2 0 1

2 02

2 0 4

LIDE

ABUNDANCE(XIOR H A L F -LIFE

7. 19

•31M

100

•2.7D

-

0. 146

10.02

16.84

23.73

13.22

29.80

6.85

A * 1

HALF-LIFE

M S

3 I M

1 1 .5H

2.70

3. 150

-

24H

65H

43M

-

-

46 .90

5.6M

NUCLIDE

ISOMERSTATEIT l%l

M

IT"100G

M»G

-

MIT -93 .5

G

M+G

MIT-100

G

M»G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblAND

«<T) FACTOR

0.0274-0.003

3.673

3.7+-0.2

1.5+-1.0

98.84-0.3G(T)-1.0038

267364-850

3754-5

1204-13

30804-200

32004-200

0.0184-0.004

1.8824-0.200

1.94-0.2

20004-1000

< 6 0

< 6 0

4.94-0.1

0.434-0. 10

RESONANCEINTEGRALS

(bl

5 5 . 6 4 - 2 . 5

15514-13

-(412404-4190)

734-10

58.94-2.4

4134-15

471.94-15.2

1.84-0.3

68.24-30.0

704-30

1534-30

4.434-0.25

0.804-0.04

6

2149

4 1 7

6

6

6

155

2 9

6

6

6

2 9

18

3150

1 1

29

29

29

RESONANCEINTEGRALS:REFERENCES

29 57 119 123 432

6 86 88 123 129151 153 154 409 446

12 13

155

155

46 155 156

MAIN GAMMA RAYS FORNOCLIDE

ENERGY (keVI(ABSOLUTE INTENSITY

77( 2 )

60( 2 )

412(95)

158(37)

130(?7

( 18)

279(81)2 04(2)

186(3)

76( 13)676(D

208(8)

202(D

317( 5 )

136(3 )

279(71)

494(6)

227(2)

A4 1

K )

543( 1 5 )

244( 3 )

o

81-TL-NAT

2 03

204

2 05

29.50

<3.78V

70.50

ACT

ACT

ACT

ACT

3.44-0 .5

11.0>-0.5

21.64-2 .0

0. 104-0.03

12.34-2.5

404-2

864-17

0.74-0.2

6

6

6

6

6

r>

9 6

10

10

1 l

157

1 1

1 1

14

102 157

40982-PB-NAT

2 04

ACT

ACT

0.1704-0.002

0.6614-0.070

0.164-0.05

1 .74-0 .5

TARGET NUCLIDE

Z-SVM80L-A ABUNDANCE 1*OR HALF-

ILIFE

206

207

208

83-BI-209

210

84-P0-210

25. 1

21.7

52.3

100

•5.01D

•138.40

A+1 NUCLIDE

HALF- llSOMERLIFE STATE

(IT (%l

3.3H

3.5E<6V

5.01D

2. 16M

25. OS

0.52S

MIT>0

G

M4G

MIT-0

G

TYPEOF

REACTION

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

ACT

THERMALCROSS-SECTIONS

IblAND

g(T) FACTOR

0.O305*-0.008

0.709*-0.010

0.487*-0.030

O.OI9*-0.002

0.0KH-0.003

0.033+-0.004

0.054+-0.005

< 0.0005

<O.030

RESONANCEINTEGRALS

Ib)

0 . 2 * - 0 . 1

0 . 4 t - 0 . 2

0 . 2 0 * - 0 . 0 6

0 . 2 0 * - 0 . 0 2

RESONANCEINTEGRALS:REFERENCES

6

6

6 11 14 41

158

MAIN GAMMA RATS FOR A*1NUCLIOE

ENERGY (keV)(ABSOLUTE INTENSITY:* )

266 305 650( 5 0 ) ( 2 8 ) ( 4 )

351( 1 3 )

85-AT-21 1

86-RN-220

222

87-FR-223

•7 .21H

•55 .6S

•3.8R

'22.OM

122M5

25. OM

4 3 . OM

2.7M

ACT

ACT

< 0 . 2

0 . 7 2 « - 0 . 0 7

63(8)

150 186 217 254 265( 6 ) ( 2 6 ) ( 3 ) <10) ( 5 )

8 8 - R A - 2 2 3

2 2 4

2 2 6

2 2 8

• 1 1

' 3 .

. 4 3 0

6 4 0

•1600Y

• 5 . 75Y

3 .

14

4 1

4 .

6 4 0

.8D

.2M

OM

ACT

ACT

ACT

ACT

130»-20

12.0*-0.5

1 1 . 5 » - 1 . 5G ( T ) > 1 . 0 7 0 836*-5

241( 4 )40

( 2 9 )27

( 17)277 284 300 3 0 3( 3 ) ( 3 ) ( 5 ) ( 5 )

Hto

8 9 - A C - 2 2 7 I - 2 1 . 7 7 Y I 6 . 1 3 H |ACT |762-»-29 I 159 160 209 338 911 965 969(5) (12) (29) (5) (17)

90-TH-227

228

18.7201 1.913Y

1.913Y

734 OY

FISS

FISS

200*-20

<0.3

123*-15

30.5»-3.0G(T)-1.049454»-C

>1O13

350»-B0

1000*-175

6

6 177 415

G

31 86 137 194 211(4) (3) (2) (5) (3)

TABLE II (cont.) toO

TARGET NUC

Z-SVMBOL-A

2 3 0

2 3 1

2 3 2

2 3 3

2 3 1

91-PA-230

231

232

2 3 3

LIDE

ABUNDANCE (VOR H A L F -L I F E

•8E44Y

•25.6M

100

•22.12M

• 2 4 . ID

• 1 7 . 4 0

•32500Y

• 1 .31D

•27.OP

A i l NUCLIDE

HALF-LIFE

25 . 6H

-

22.12M

2 1 . ID

6.9M

32500Y

1 .31D

2 7 . 0 0

1 . 17M

6.67M

ISOMERSTATEIT 1*1

M

IT = 0 .13G

M*G

TYPEOF

REACT1DN

ABS

FISS

ACT

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

F I S S

ACT

FISS

FISS

ACT

FISS

ACT

ABS

ACT

ACT

FISS

ACT

THERMALCROSS-SECTIONS

Ib)AND

j ( T ( FACTOR

8 4 . 5 4 - 6 . 7

<O.OOI2

2 3 . 2 + - 0 . 6

2 6 . 6 8

160. 1

186.78

(394-4)E-6

7.404-0.08

7.40+-0.08

15*-2

1500+-100

1515

<0.01

1 .84-0.5

I500+-200

0.0064-0.001G(T)-1.0670219+-6G(T)-1.03787004-100

464+-95

1 164+-135

21*-3

20*-3

<0. 1

4 U - 3GIT) = 1.0579

RESONANCEINTEGRALS

Ibl

13504-190

990+-40

156.2

837.6

993.8

0.0746+-0.0016

82.3+-2.4

82.44-2.1

84

408+-75

4924-75

0.0494-0.013

1 0404-40

2894-67

4254-33

4404-48

8054-35

6

4 09

4 09

4 0 9

1C4

6165207

3174

4 09

6

4 09

180

3

180

3 0

175

6415

161

4 09

1 1166239

13176

2 0 7

6

17B

184

3 8

RESONANCEINTEGRALS:REFERENCES

162

22167109

14235

4 0 9

1 8 0

184

175

163

29168415

22302

181

115

184

178

38169

454 09

182

186

4 1 5

17170

172

183

2 0 7

4 4 8

48171

173

4 4 8

3 8 5

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeV)(ABSOLUTE INTENSITY:

26( 1 5 )

29(2 )

63( 4 )

150( 1 1 )

87( 2 )

131( 2 0 )

84(6)

86(3)

9213)

454(9)

300( 6 )

569( 1 4 )

459(1)

93(3 )

819( 7 )

312( 3 6 )

883( 12)

894( 2 0 )

340( 4 )

926( 1 1 )

A+1

%)

969( 4 2 )

416(2)

946( 12)

oJO><z>

TARGET NUCLIDE

Z-SYMBOL-A ABUNDANCE IVOR H A L F -

ILIFE234M

G

92-U -NAT

2 3 0

2 3 1

232

233

234

2 3 5

• 1 . I7M

•6.67H

-

'20.8D

' 4 . 3 0

«72Y

•162E+3Y

0.005•2.4E*5Y

0.720•7.1E + 8Y

A*I NUCLIDE

HALF-LIFE

23. 7M

-

4.30

72Y

I62000Y

247000Y

7.1E»8Y

239E-.Y

ISOMERSTATEJT |K)

-

TYPEOF

REACTION

FISS

FISS

FISS

ACT

ABS

FISS

FISS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

THERMALCROSS-SECTIONS

IblAND

j ( T ) FACTOR

<5000

<500

4. W - 0 . 0 1

3 .35* -0 .02

7.S4+-0.02

25+-10

400t-300

G(T)-0.973973. 1+-1.5G(T)»0.9932147.1+-3.4G(T)«0.9836522.6+-2.8G(T)-0.9963

47.7+-2 .0GU1-1.0152

578.8+-2.0G(T).0.9977

<0.65

100 .2+- I .5

101+-2G(T)-1.OOI582.2+-1.3G(T)=0.9757

93.6+-1 .5G(T)"1.0052

680.8+-1 .3G(T)»0.9801

RESONANCEINTEGRALS

Ib)

34S+-35

280+-15

62B+-38

7 8 3 . 4 * - 7 . 8

1 3 8 . 1 + - 4 . 6

9 2 1 . 5 + - 9 . 1

5 .96

678+-38

684+-38

2 7 6 . 3 + - 2 . B

14 1 . 8 + - 4 . 2

4 1 8 . 1 * - 5 . 1

3

3

3

3189196204

3196415

3200

226

3415

228

3191207214

32 032184 09

32 09225

C

6

415

61901972 06

6197

38203

228

6

4 09

6193208215

6207221415

38210287

RESONANCEINTEGRALS:REFERENCES

180

182

38191199207

38200

192204

4 09

38

291962 09216

11209222

19321 1381

4 15

188

169192200260

190203

1932 07

2 07

38197210217

38210223

196212409

415

1801932014 09

192204

195409

2 2 7

8820321 1218

193212225

197214415

185194202415

193207

196415

2 2 8

124205212219

196214287

2 03218

187195203

1954 09

197

4 09

154206213220

197216381

207224

MAIN GAMMA RAYS FOR A* 1HUCL1DE

ENERGY IkeVI(ABSOLUTE INTENSITY: %)

109 144 163 186 205(1 ) ( 1 0 ) ( 5 ) ( 5 4 ) ( 5 )

>7)

TABLE II (cont.) toto

TARGET NUC

Z-SYMBOL-A

2 3 6

2 3 7

2 3 8

2 3 9

24 0

LIDE

ABUNDANCE IX)OR H A L F -L I F E

•239E»5Y

•6.7BD

99.275•451EWY

'23.5M

•14 . 1

A*l NUCLIDE

HALF-LIFE

6.75D

451E<7Y

2 3 . 5M

14 . !H

1S0MERSTATEIT (XI

TYPEOF

REACTION

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

THERMALCROSS-SECTIONS

IblAND

j ( T ) FACTOR

0 . 0

5 . 2 + - 0 . 3

5 . 2 + - 0 . 3G ( T ) - 1 . 0 0 7

2 .

41 1+-100

413+-100

<0.0005

2 . 7 0 + - 0 . 0 2G ( T ) - 1 . 0 0 9

2 . 7 0 + - 0 . 0 2

14 + -3

22 + -5

36«-6

0 . 0

1 .524

1 .524

RESONANCEINTEGRALS

Ibl

2

358t-8

360*-8

95.60

373.3

468.9

0.0013»-0.0002

276.3»-2.7

276.3+-2.7

264.2

156.6

420.8

1 .62

176.2

177.82

2 2 5

207

225234

2 2 6

6

2 2 5

397

3124238415

4 09

4 09

4 0 9

4 0 9

4 09

4 09

226

227

6228236

4 09

4 09

4 0 9

409

6168239419

RESONANCEINTEGRALS:REFERENCES

228 409

228 409 4 15

15 30 38229 230 2314 09

11 14 29207 217 218240 24 1 242

448

1 13232

38219287

217233

472374 09

MAIN GAMMA RAYS FOR A+1NUCLIDE

ENERGY (keVI(ABSOLUTE INTENSITY: %)

26( 2 )

44( 4 )

44

( 2 )

60 65 165 208( 3 3 ) ( 1 ) ( 2 ) ( 2 2 )

75(50) z

IP-

93-NP-234

2 3 5

236G

2 3 7

• 4 . 4 D

•396D

•129E+4Y

•214E*4Y

396D

22 . 5M

129E*4Y

214E+4Y

2 . 12D

MI I - O

G

M*G

FISS

ACT

ACT

ACT

FISS

FISS

ACT

ABS

900+-300

1600+-200

184+-4

1784

2500^-150

0 . 0 1 9 * - 0 . 0 0 3G ( D - 1 .0015169+-3G ( l 1 - 1 . 0 0 7 2169»-3G O 1 - 1 . 0 0 7 2

6 . 5 » - 1 . 2

8 2 1 . 5 + - 5 8 . 0

S28+-58

38

41

64 09

151 409

228 409 415 448

14 38 53 113 2?5 243

642( 2 )100(6 )

924( 3 )

104(8 )

984(24)

160(30)

1026 1029( 8 ) (17)

TARGET NU(

Z-SYMBOL-A

238

239

94-PU-236

237

238

239

24 0

:LIDE

ABUNDANCE HIOR HALF-LIFE

'2.I2D

•2.350

•2.85Y

•45.6D

•87.BY

'24390Y

'6450Y

A«l NUCLIDE

HALF-LIFE

2.35U

7.5M

65M

45.60

87.8Y

24390Y

6450Y

15Y

ISOMERSTATEIT l«l

M1T=.113

G

M*G

TYPEOF

REACTION

FISS

ACT

ABS

ACT

ACT

FISS

ACT

FISS

ACT

ABS

FISS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

THERMALCROSS-SECTIONS

IblAND

S(T) FACTOR

22O0»-2O0

43

2243t-200

3 1*-6

14»-14

<1

45+-15

165*-20

33

195

240CH-300

16.5+-0.5

547+-20

564*-20

744.4+-1.7G(T)=1.0489

268.8+-3.0G(TI-1.1686

1013.2*-3.5G(T)-I.O8I2

O.O30+-O.O45

289.5+-1.4

289.53*-1 .41

RESONANCEINTEGRALS

Ibl

1454+-150

29

1483

960

197

1 157

24.2*-2.7

154+-9

178.2+-9.4

312.2+-8.2

191+-16

503.2+-18.0

5

8460*-305

8465+-305

6

38

3

226

226

6246

6247

6247

3197213252

3217261

32184 09

262

3243268

4 09

38

225

38

30247

38248

38249

6199216253

6218287

38243415

4 09

G261269

415

RESONANCEINTEGRALS:REFERENCES

225

226

225

384 09

2254 09

225250

38202217254

38243409

88246

415

14263287

243

243

243

225415

228415

228409

88203218255

88246415

203251

38264304

244

228

243

243415

154206243257

203251

207252

412654 09

243

245

245

1912 07246258

207252

216254

207266415

2-15

246

246

193208251259

216254

217287

228267

MAIN GAMMA RAYS FORNUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY:

106(23)

263(1)

448( 18)

229(8)

104(4)

210(3)

3 03( 1)

566(29)

280(22)

149(8)

228(11)

555(22)

601(22)

299(16)

278( 14)

597( 12)

896( 14)

313(6)

A»l

*>

316(2)

818(D974(23)

321( 13)

>

CO

TABLE II (cont.)

TARGET NUC

Z-SYMBOL-A

24 1

2 4 2

2 4 3

244

245

95-AM-24 1

242Ml

G

2 4 3

LIOE

ABUNDANCEHIOR H A L F -L I F E

• 15Y

•387E43Y

•4.96H

'8.3E47Y

'10.5H

•433Y

' I52Y

•16.02M

•7370Y

A4 1 NUCLIDE

HALF-LIFE

387E43Y

4.96H

8.3E47Y

10. 5H

10.850

13. OS

152Y

16.02H

7370Y

26M

10. 1H

ISOMERSTATEIT (XI

M2

MlIT=9

G

M4G

M

I T a 0G

M4Q

TYPEOF

REACTION

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

ACT

ACT

ACT

ACT

ACT

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ACT

FISS

THERMALCROSS-SECTIONS

IblAND

, ( T ) FACTOR

10094-8G ( T ) - 1 . 0 4 2 1

3684-10G(T)-1.0314

13774-10G(T)-1.0388

<0.2

18.54-0.4

18.74-0.4

180

87.4

267.4

1.74-0.1

1504-30

(104-5)6-5

83 .84-2 .6

7484-20

3.154-0 .10G(T)=1.02878324-20GU>"1 .0020836.15G(T)-1.002166004-300

14004-860

80004-800

29004-100

75 .24 -1 .8

4. 14-0.2

0.204-0.11

RESONANCEINTEGRALS

Ibl

5584-18

1614-13

7194-22

5

11314-57

11364-57

5 1 8

2 6 7

7 8 5

394-6

2204-40

2084-18

13304-117

2 1 . 5 4 - 1 . 7

15384-118

1559 .54-118 .0

22604-200

1 1004-000

33604-540

3 0 0

20894-11

1I1+-10

134-2 .5

32074 09

3246

3268

6

6

3276

2 7 3

2 7 3

2 7 3

6

6

6

6

6

228

228

6415

243

6

2 8 1

6

228

6208415

6268

3827 1

2 7 2

2 0 7

243277

4 09

4 09

4 09

2 7 9

243

243

2 2 8

281

278

243

246

243

4 1 5

113

272

RESONANCEINTEGRALS'.REFERENCES

38228

384 09

2034 09

2 7 3

2 2 8

245278

279

279

281

283

281

246

4 09

24G

422

273

191243

203415

207415

409

248

268306

281

281

301

409

409

284

279

301

197246

2 0 7

2 2 8

4 1 5

2 7 5

2724 09

282

282

4 09

415

415

286

4 09

4 09

202268

2 2 8

243

4 0 9

2 7 3

4 2 1

4 1 5

301

4 1 5

203270

243

2 4 6

4 1 5

274

434

4 3 4

4 09

4 3 4

MAIN GAMMA RAYS FOR ANUCLIDE

ENERGY IkeV)(ABSOLUTE INTENSITY:»

84( 2 3 )

308( 5 )

28( 4 )

49( 4 1 )

44( 5 )

99( 5 )

327( 2 5 )

44( 2 5 )

67( 5 )

75( 6 0 )

154( 18)

377( 3 )180

( 1 0 )

87( 8 )

746( 6 6 )

492( 3 )224

(23)

110(5)

900(27)

• 1

. )

560(5)

163(5 )

TARGET NUC

Z-SYMBOL-A

244M

G

96-CM-242

2 4 4

2 4 5

2 4 6

24 7

LIDE A4I NUCLIDE

ASUNOANCEIKII H A L F -OR H A L F - L I F ELIFE 1

•26M

• 10.1H

M63D

•28Y

' 17.9Y

•8.5E4 3Y

•4760Y

M54£*5Y

2.07H

28Y

17.9Y

8.5E43V

4760Y

154E + r>Y

3.5E45Y

ISOMERSTATEIT <«>

TYPEOF

REACTION

ACT

ABS

FISS

FISS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

ACT

ABS

FISS

THERMALCROSS-SECTIONS

Ib)AND

) ( T ) FACTOR

7 9 . 3 » - 1 . 8

7 9 . 5 4 - 1 . 8GUI-0.9182

1600*-300

23004-300

5

16t-5

!K-S

6724-60

1364-10

810*-61

1 .24 -0 .1

13 .9 * -1 .0

15. 1

20204-40

3454-20

23654-45

0. 174-0. 10

1 .34 -0 .3

1 .474-0 .32

804-7

RESONANCEINTEGRALS

(bl

22004-15

22134-15

33

1564-35

1894-35

15274-142

214+-17

17414-143

1 3 . 4 4 - 1 . 5

632.64-32.0

646*-32

605+-80

101+-8

9064-80

1 1.34-1 .2

121 .34-7.5

132.64-7.6

7544-60

6281

113415

2 2 6

6

243

6

2 4 3

6

6273415

627344 1

228278

6293

6291

2434 09

64 09

6296

243438

6294

228306

228

243

226

4 09

243

4 02

243

228276

228276

243289

243294

2434 09

273415

243415

2434 09

2 7 3

243301

RESONANCEINTEGRALS:REFERENCES

2434 09

2 4 7

4 09

243

438

288

4 09

290

243278

243278

245290

272301

272415

27644 1

272

272415

2 7 6

2724 09

248415

2 7 3

2 7 9

2 8 9

4 0 9

245289

245279

246306

2734 09

273441

278

273

27344 1

278

273415

272422

2 7 6

4 09

4 02

246294

246289

2474 09

276415

2 7 6

2 7 9

2 7 8

2 7 9

306

278

273434

205

4 09

247301

2474 09

273415

2 7 8

2 7 8

2 8 9

2 9 4

2 8 9

4 09

2 8 9

2 7 4

4 0 9

4 3 9

2724 09

272415

276438

2 8 9

2 8 9

2 9 0

3 0 1

2 9 1

4 1 5

2 9 3

MAIN GAMMA RAYS FOR A+1NUCLIDE

ENERGY IkeVI(ABSOLUTE INTENSITY: X)

210(3)

133(5)

278( 3 )

228( I D

174( 5 )

287( 2 )

278( 1 4 )

346 402( 1 ) ( 7 2 )

s73H

TABLE II (cont.)

TARGET NUC

Z-SYMBOL-A

2 4 8

2 4 9

97-BK-249

2 5 0

98-CF-249

2 5 0

2 5 1

2 5 2

LIDE

ABUNDANCEl*lOR H A L F -LIFE

•3.5E*5Y

•64M

•311D

'3.22H

•350.6Y

• 13. IV

•900Y

•2 .63Y

A»l NUCL1DE

HALF-LIFE

64M

11300Y

3.22H

57M

13. 1Y

900Y

2.63Y

17.8D

ISOMERSTATEIT IW

TYPEOF

REACTION

ACT

ABS

FJSS

ACT

ABS

ACT

FISS

ACT

ABS

FISS

FISS

ACT

ABS

FISS

ACT

ABS

PISS

ACT

ABS

FISS

ACT

ABS

THERMALCROSS-SECTI0HS

IblAND

B ( T ) FACTOR

604 -15

1404-17

0.34t-0.07

4 + - 1

4 . 3 4 4 - 1 . 0 0

1 . 6 4 - 0 . 8

3

1300+-3

13034-300

9604-150

1676+-51

4924-28

21684-58

350

20304-200

23804-200

43004-300

28504-150

71504-350

324-4

20.44-1 .5

52.44-4.3

RESONANCEINTEGRALS

Ibl

650+-250

1404*-257

13.14-1.5

2754-75

288.14-75.0

5

1170*-80

1175*-80

2157+-70

7434-65

29004-96

85

1 16004-500

1 16854-500

54004-1500

16004-30

70004-1500

1104-30

43.54-3 .0

153.54-30.1

6415

2 4 3

6415

64 09

2 7 3

2 7 2

243

6

6301

6

2 4 3

2 7 2

2 4 3

6

6415

64 09

243

6415

6415

243415

243441

2 7 3

2 7 2

243415

2 7 8

2 7 3

272

273

2434 09

2 4 3

2 7 3

2 7 3

2 7 2

2 7 3

2 4 3

243415

2 7 3

2 4 3

2 4 3

2 7 3

RESONANCEINTEGRALS:REFERENCES

2 7 2

2 7 8

2 7 3

27244 1

4 09

4 09

273

276

273434

2 7 3

2 7 8

4 09

2 7 3

2 7 6

2 7 2

2 7 2

2 7 6

2 7 2

2 7 2

2 7 6

273 278

269 4 09

278 294

273 289

415 438

415

409 434

278 4 09

278 293

278 386

4 09

415

386 4 09

278 409

273 276

273 276

278 4 09

273 278

273 278

278 299

2 8 9

4 1 5

3 0 1

2 9 5

294

4 09

4 1 5

4 1 5

2 7 8

2 7 8

4 1 5

2 9 7

3 0 5

3 0 3

4 09

4 09

2 9 6

2 9 8

4 3 4

4 4 1

4 09

3 8 6

4 09

4 09

4 09

MAIN GAMMA RAYS FOR A4INUCLIDE

ENERGY (keVI(ABSOLUTE INTENSITY: X )

634(D

890( 2 )

177( 1 8 )

929 989 1029 1032( 1 I ( 4 5 ) ( 5 ) ( 3 6 )

227 285( 6 ) ( 1 )

ow

>

n

TARGET NU

Z-SYMBOL-A

253

254

99-ES-253

254M

G

255

100-FM-254

255

256

257

LIDE

ABUNDANCE I I IOR H A L F -LIFE•17.80

•60.5D

•20.470

•39.3H

•276D

•390

•3.24H

•20.1H

•2 .63H

•100 .50

A*l NUCLIOE

HALF-LIFE

60. 5D

39.311

276D

390

20. 1H

2.63M

100.50

0.38MS

ISOMERSTATEIT <%l

MIT»O

0

M«G

TYPEOF

REACTION

FISS

ACT

ABS

FISS

ACT

AGS

ACT

ACT

FISS

ACT

FISS

ACT

ABS

FISS

ACT

ABS

ACT

ACT

FISS

ACT

ABS

ACT

FISS

ACT

ABS

THERMALCROSS-SECTIONS

IblAND

j ( T ) FACTOR

1300<-240

17.6<- 1 .8

13I7.6*-24O.O

2

88*-30

90»-30

• 55<-20

3

O.O

I58*-2O

1840t-80

1 .3

184 1.3

2830*-130

4 0

2870+-I3O

43*-10

7 6

3400*-170

26*-3

3426*-170

45

2950»-16O

3150

6100*-6OO

RESONANCEINTEGRALS

Ibl

2117

13

2130

28

1650

1678

3009* -168

4299+-216

0 .0

7308*-275

1000

2200+-90

5000

RESONANCEINTEGRALS:REFERENCES

272 273 278 415

272 273 278

273 278

272

272

278

6 256

6 256

273

256

256

6 300

4 0 1

MAIN GAMMA RAYS FOR A«1NUCLIOE

ENERGY (IteVI(ABSOLUTE INTENSITY:* )

71 177 212 649 694(13) (17) (29) (29) (25)

63(2 )

81

( 1 )

62 179 241(11 (9 ) ( 10 )

SO

248 GRYNTAKIS et al.

5. EXPLANATION OF THE COLUMNS IN TABLE II

Column 1 - Atomic number, symbol and mass number of the target nuclides.M signifies a metastable state and G the ground state.

Column 2 — Per cent abundance of natural nuclides. Data with an asteriskrepresent the half-lives of radioactive nuclides.

Column 3 - Half-lives of A -I- 1 nuclides.Column 4 - Metastable state (M), ground state (G) and per cent internal

transition (IT) of the upper to the next lower state, taken inmost cases from Ref. [310].

Column 5 - Type of thermal cross-section and resonance integral.Column 6 — Thermal cross-sections at 2200 m/s neutron velocity

(Eo = 0.0253 eV). For the non-l/v nuclides, the g(Tn = 20°C)Westcott factor is also given.

Column 7 - Resonance integrals I (from Ec = 0.5 eV), including the1/v contribution.

Column 8 - References for the resonance integrals.Column 9 — Main gamma rays and their absolute intensities, taken in most

cases from the Evaluated Nuclear Structure Data File library[447] and from the Table of Isotopes [310].

ACKNOWLEDGEMENTS

The authors are grateful to H. Lemmel and K. Okamoto of the NuclearData Section of the IAEA for their assistance and co-operation in the preparationof this compilation.

REFERENCES

1 . E.M. GRYNTAKIS, J. I .KIM, J . RAD1OANAL .CHEM. ,76( 1983)341 .2. A.AHMAD,ANN.NUCL.ENERGY,10(1983)41.3. M.K.DRAKE.NUCLEONICS.24( 1966)NO.8.108.4. H.ALBINSON,IAEA.TECHNICAL REPORTS SERIES NO.156,VIENNA.1974 P.15.5. P.RIBON,J.KREPS.73 BOLOGNA,REVIEW PAPER NO.10(1973) OR IAEA-169,

FISSION PRODUCT NUCLEAR DATA,1(1974)235.6. NEUTRON CROSS SECTIONS.BNL-325.3RD EO..VOL.1, 1973.AND VOL.1PART A.1981.7. CINDA 79,IAEA,VIENNA.1979.8. M.BRESESTI, A.M.BRESESTI DEL TURCO. H..NEUMANN.E .ORVINI . J . INORG . NUCL .

CHEM.,26(1964)1625.9. M.F.ELGART,THESIS,CITY UNIV.OF NEW YORK,1971.UNIV.MICROFILMS ORDER

NO.72-988.DA/B32.3245,1971 .10. S.P-HARRIS.C.O.MUEHLHAUSE.G.E.THOMAS.PHYS.REV..79(1950)11.11. R.L.MACKLIN.H.S.POMERANCE.PROC.CONF.PEACEFUL USES OF ATOMIC ENERGY.

GENEVA,5(1956)96.12. P. E.SPIVAK.B.G.EROZOLIMSKY.V. I. LAVERENCHIK . PROC .CONF . PEACEFUL USES

OF ATOMIC ENERGY,GENEVA,5(1956)91.13. V.B.KLIMENTOV.V.M.GRIAZEV. J.NUCL.ENERGY,9( 1959)20.TRANSL. FROM AT.

ENERG. (USSR)3(1957)507.14. R. B. T ATTERS ALL. H. ROSE. S.K.PATTENDEN,D.JOWITT,J. NUCL. ENERGY. 12( 1960)32

PART 2-1 249

15. E.A.NEPHEW,REP.ORNL-2869.REACTORS-POWER TID-4500(15TH E D . ) . 1 9 6 0 .16. N.J.PATTENDEN.NUCL.SCI.ENG.,17(1963)371.17. YU.A.PROKH0R0V.INDSWG-64,1964,P.75.18. OFFICE OF ATOMIC ENERGY FOR PEACE,BANGKOK. CERTAIN ACCOUNTS ON THE

UTILIZATION OF THE THAI RESEARCH REACTOR.BANGKOK CONF.REP.THAI-AEC-10,1967.

19. M.A.PALMUCCI.COMITATO NATIONALE ENERGIA NUCLEARE,RT/FI(67)4.ROMA.196720 . M.D.RICA8ARRA.R.TURJANSKI.G.H.RICABARRA.C.B.BIGHAM, CAN J.PHYS..46

( 1968)2473.21 . D.BRUNE.RADIOCHIM.ACTA,12(1969)119.22 . L . BREITENHUBER.H.HEIMER.M. PINTER. ATOMKERNENERGIE, 15( 1970)83 (SEE ALSO

EANDC(OR)-68.1968.P.10).23 . T.B.RYVES. J.NUCL.ENERGY.24(1970)35.24 . R.E.SCHENTER, PRIVATE COMMUNICATIONS TO NEA/DATA BANK, CALCULATIONS

FROM ENDF/B-IV LIBRARY.HANFORD ENG. DEVELOPMENT LABORATORY,RICHLAND,WASH.USA,1975.

25. W.H.WALKER,AECL-3037,PART 1,1972.26 . E.CLAYTON,AUSTRALIAN AEC,REP.AAEC/TM619(1972).27 . H. H. SAK ATA. S.NAGAYAMA, JAP. ATOMIC ENERGY RESEARCH, TOKAI . UNPUBLISHED

(SEE REF.5) .28 . G.LAUTENBACH,REP.RCN-191.1973.29 . R.VAN DER LINDEN,F. DE CORTE.J.HOSTE.J.RAOIOANAL.CHEM. ,20(1974)695

(SEE ALSO 73PARIS, IAEA,2(1973)241.3 0 . T . A . E ASTWOOD, A. P . BAERG. C . B. BIGHAM. F . BORWN. M. J . CABELL , W. E . GRUMMITT.

J.C.R0Y,L.P.R0Y.R.P.SCHUMAN.2N0 PROC-CONF.PEACEFUL USES OF ATOMICENERGY,IAEA.GENEVA,16(1958)54.

31 . J.C.ROY.D.WUSCHE,CAN.J.CHEM..36(1958)1424.32. T.R.ENGLAND.WAPD-TM-333.1965.33. J.HALPERIN.R.E.DURSCHEL.0RNL-3488.1963,P.15.34. A.L.POPE,AEEW-M-1266.1974(SEE ALSO AEEW-M-1234,1973 AND AEEW-M-1191.

1973).35. T. A. E AS TWOOD. F. BROWN, EANDC( CAN),16(1963)6.36. M.BRESESTI.F.CAPPELANI.A.M.DEL TURCO.E .ORVINI. J . INORG. NUCL .CHEM. ,26

(1964)9.37. M.BRESESTI.F.CAPPELANI.A.M.DEL TURCO.H. NEUMANN.E .ORVINI. J . INORG.NUCL.

CHEM.,27(1965)1175.38. 0. J.EDER.M.LAMMER. NUCLEAR DATA IN SCIENCE AND TECHNOLOGY . IAEA . 73PARIS

1.1973.P.233.39. E.S.STIPPEL.0RNL-TR-1365,1965.40. J.D.GARRISON.B.W.ROOS.NUCL.SCI.ENG..12( 1962)115.41. H. ROSE. W. A. COOPER, R.B.TATTERSALL. 2ND PROC . CONF . PEACEFUL USES OF

ATOMIC ENERGY,IAEA.GENEVA.1(1958)16.42. A.P.BAERG,R.M.BARTHOLOMEW.CAN.J.CHEM.,38(1960)2528.43. F.BROWN.P.J.CAMP ION,B.H.OLIVER,J.NUCL.ENERGY,13A(196 1 ) 14 1 .44. R.VIDAL.E.CARDOSO-MARTINHO.CEA-R-2840.1965 (SEE ALSO CEA-R-2486.

1964 AND REF.45).45. J.C.CARRE.R.VIDAL,NUCLEAR DATA FOR REACTORS . IAEA. 66PARIS . 1 ( 1966 )479

(SEE ALSO REF.44,68).46. G.H.E.SIMS.D.G.JUHNKE.J.INORG.NUCL.CHEM.,30(1968)349.47. E.STEINNES.J.INORG.NUCL.CHEM.,34(1972)2699.48. A.ALIAN.H.-J.BORN,J.I.KIM,J.RAOIONAL.CHEM.,15(1973)535.49. A.P.BAERG.F.BROWN.M.LOUNSBURY.CAN. J.PHYS.,36(1958)863.50. H.M.EILAND.F.B.FEHR.E.C.HANSEN, J.L.MEWHERTER.KAPL-2000-1 1 , 111-30. 196051 . J.HALPERIN.J.S.ELORIDGE.H. A.O'BRIEN. JR. , R .E -DRUSCHEL .ORNL-4164 . 1. 196752. V. A. KONKS.YU. P. POPOV, F.L. SHAPIRO. J . EXPERIM. THEORET . PHYS . ,46( 1964)80.53. J.W.ROGERS.J.J.SCOVILLE.TRANS.AM.NUCL.SOC. . 10( 1967)259(SEE ALSO REF .

55) .54. H.SHWE.R.E.COTE,W.V.PRESTWICH,PHYS.REV..159(1967) 1050.55. J.J.SCOVILLE,J.W.ROGERS.IN-1195.1968 (SEE ALSO REF.53).56. H. A. O'BRIEN. JR. , J . S -ELDRIDGE ,R.E .DRUSCHEL . J .HALPERIN, J . INORG. NUCL .

CHEM.,29(1967)584.57. T.B.RYVES,J.NUCL.ENERGY.25(1971)129(SEE ALSO REF.304).58. F.DE CORTE.A.SPEECKE.J.HOSTE.J.RADIOANAL.CHEM.,9( 1971 )9.59. E.STEINNES.J.INORG.NUCL.CHEM.,37(1975)1591.60. E.ORVINI.G.GAGGERO.L.LESCA.A.M.BRESESTI.M.BRESESTI , J. INORG. NUCL.

CHEM..30(1968)1353.61 . P.M.LANTZ,C.R.BALDOCK,L.E.IDON,NUCL.SCI .ENG. ,20( 1964)302(SEE ALSO

TRANS.AM.NUCL.SOC..6(1963)44).62. J.ALSTAD.T. JAHNSEN.A.C.PAPPAS.J.INORG.NUCL.CHEM. ,29( 1967 )2155(SEE

ALSO INDC(NOR)-1/G.1972.P.1).63. P.M.LANTZ.NUCL.SCI .ENG..13(1962)289.64. J.C.ROY.L.P.ROY,CAN.J.PHYS.,37(1959)907.65. J.I.KIM,E.M.GRYNTAKIS,RADIOCHIM.ACTA,17(1972)191.66. M.D.RICABARRA.R.TURJANSKI.G.H.RICABARRA, CAN. J.PHYS. ,51 ( 1973)1454.67. C.P.RUITZ,J.P.PETERSON.JR.,B.F.RIDER.TRANS.AM.NUCL.SOC.,7( 1964)270.68. R.VIDAL.EANDC(E)-57,1965.P.170(SEE ALSO EANDC(E)-57,1965.P. 171

AND REF.45).69. R.P.SCHUMAN,J.R.BERRETH,NUCL.SCI.ENG. .12( 1962)519.70. N.C.FENNER.R.S.LARGE,J.INORG.NUCL.CHEM..29(1967)2147(SEE ALSO

EANDC(UK)-75-5.1966).71. M.J.CABELL.J.INORG.NUCL.CHEM..32(1970)3433.72. J.E. CODDING. JR. . R . L . TROMP .F . B .SIMPSON, NUCL .SCI .ENG. ,43( 1971)58.

250 GRYNTAKIS et al.

73 . G . J . KIROU AC , H. M. E I LAND. C . A. CONRAD, R . E . SLOVACEK , K . W. SEE MAN. NUCL .SIC.ENG.,52(1973)310.

74. H.M.EILANO.S.WEINSTEIN.K.W.SEEMAN,NEUTRON CROSS SECTION AND TECHNO.,PROC.OF THE 3RD CONF.(CONF-710301)0F UNIV.OF TENESSEE.KNOXVILLE.1971.P.673.

75. R.DOBROZEMSKY.F.PICHLMAYER.F.P.VIEHBOECK. INTERN. J. MASS SPECTROM. IONPHYS.,6(1971)435(SEE ALSO REF.100).

76. K. L.AITKIN.F.W.CORNISH,J.INORG.NUCL.CHEM. .17(1961)6.77 . J . HAL PER IN, R. E . DRUSCHEL , C . R . BALDOCK , TRANS . AM. NUCL . SOC .,5(1962)376 .78. S.F.MUGHABGHAB.R.E.CHRIEN, PHYS. REV. , 180( 1969)1 131 .79. W.H.WALKER.R.E.GREEN,CAN.J.PHYS.,39(1961)1184.80. R.E.CHRIEN.CAN.J.PHYS..39(1961)1193.81 . M.S.CABELL.J.INORG.NUCL.CHEM.,24(1962)749.82. F.J.RAHN,C.HO.TRANS.AM.NUCL.SOC..12(1969)749.83. F.J.RAHN,H.S.CAMARDA.G.HACKEN.W.W.HAVENS,JR. ,H.I.LIOU.J.RAINWATER .

M.SLAGOWITZ.S.WYNCHANK.NUCL.SCI.ENG..49(1972)219.84. G.H.E.SIMS.O.G.JUHNKE,J.INORG.NUCL.CHEM.,29(1967)2671.85. J.I.KIM.E.M.GRYNTAKIS.H.-J.BORN.RADIOCHIM.ACTA,22(1975)20.86. P.P.DAMLE.A.FABRY.H.VAN DEN BROECK.BLG-421.CEN-SCK,MOL(1967).87. F.V.ORESTANO.F.PISTELLA.NUCL.SCI.ENG.,37(1969)478.88. A.GIBELLO.F.V.ORESTANO.F.PISTELLA.E.SANTANDREA.NUCL.SCI.ENG..40

(1970)51.89. S. J.FRIESENHAHN.M.P.FRICKE,D.G.COSTELLO,W.M.LOPEZ.D.CARLSON,NUCL.

PHYS.,A146(1970)337.90. P.M.LANTZ.C.R.BALDOCK.L.E.IDOM.ORNL-3832.1965.P.7.91. J.J.SCOVILLE.J.W.ROGERS,TRANS.AM.NUCL.SOC.,8(1965)290.92. G.H.RICABARRA,R.TURJANSKI,M.D.RICABARRA,CN-26/1,1970(THE SAME AS 70

HELS.2(1970)589).93 . J . J . SCOVILLE,D.W.KNIGHT.E.FAST,TRANS.AM.NUCL.SOC..5(1962)377.94. J.J.SCOVILLE.E.FAST.D.W.KNIGHT,NUCL.SCI.ENG..18(1964)400.95. J.J.SCOVILLE.E.FAST.J.W.ROGERS,NUCL.SCI.ENG.,25(1966)12.96. G.HUETTEL.KERNENERGIE,!4(1971)73.97. J.ALSTAD.A.C.PAPPAS.T.SYVERSEN.INDC(NOR)-1/G,1972.P.2.98. W.L.ZIJP,NUCLEAR DATA IN SCIENCE AND TECHN..IAEA.VIENNA.2(1973)271.99. O.GLOMSET,A.C.PAPPAS.INDC(NOR)-1/G.1972.P.3.

100. R.DOBROZEMSKY,F.PICHLMAYER,F.P.VIEHBOECK.SGAE-PH-104. 197KSEE ALSOREF.75 AND ALSO EANDC( OR)-68,1968.P.11).

101 . H.LIOU.F.RAHN.C.HO.J.RAINWATER,W.W.HAVENS,JR..TRANS AM.NUCL.SOC.,13(1970)300.

102. G.H.E.SIMS,D.G.JUHNKE, J.INORG.NUCL.CHEM.,32(1970)2839.103. S.F.MUGHABGHAB.R.E.CHRIEN.PHYS.REV.,174(1968)1400.104. J.W.ROGERS.J-J.SCOVILLE,NUCL.SCI.ENG.,33(1968)350.105. J.T.REYNOLDS.C.R.LUBITZ.I.ITKIN,D.R.HARRIS,KAPL-3327(ENDF-112),1967.106. R.H.FULMER.L.J.ESCH.F.FEINER,T.F.RUANE.WASH 68 E20.1968.107. M.DEMMELER.R.HECKER.H.IONAS,K.KLEINSCHNITTGER.D.V.S.RAMAKRISHNA.

ATOMWIRTSCHAFT,16(1971)532.108. H. JONAS,R.HECHER.W.GIESSER,ATOMKERNENERGIE.25(1975)271.109. M.D.RICABARRA.R.TURJANSKI,G.H.RICABARRA,CAN.J.PHYS.,47(1969)2031.110. G. E. STOKES,R.P.SCHUMAN,0.0.SIMPSON.NUCL.SCI.ENG.,33(1968)16(SEE ALSO

TRANS.AM.NUCL.SOC..6(1963)41).111. S.LATEK,J.TOPA.NUKLEONIKA,13(1968)881.112. L.LESAGE.R.SHER.REACTOR PHYSICS IN THE RESONANCE AND THERMAL REGIONS.

PROC.ANSMATH.TOP.MEET.SAN DIEGO,CALIF.,2(1966)175.113. R.P.SCHUMAN,J.R.BERRETH.IN-1296,1969.114. E.H.OTTEWITTE.J.M.OTTER.P.F.ROSE,C.L.DUNFORD.AI-AEC-12990.1971.115. ARGONNE NATIONAL LAB.,ANL-6580,1962,P.32.116. E.FAST.J.J.SCOVILLE.IDO-16781,1962,P.2.117. S.P.KAPCHIGASHEV.YU.P.POPOV.AT.ENERG.(USSR).15(1963)120.118. G.JOANOU,C.STEVENS,GA-5885,1964.119. P.W.DE LANGE.C.B.BIGHAM.NUCL.APPL.,4(1968)190.120. H. HEIMEL.M.HEINDLER,ATOMKERNENERGIE,20(1972)135.121. C.R.PIERCE.D.F.SHOOK,NUCL.SCI.ENG.,31(1968)431.122. CM. JACKS,DP-608.1961 .123. J.W.CONNOLLY,A.ROSE,T.WALL.AAEC/TM 191,1963.124. N.P.BAUMANN.DP-817,1963.125. M.BRESESTI.A.M.BRESESTI-DEL TURCO,A.ROTA,AERE-R-4500,PART 111,1964,

P.221.126. J.H.GILLETTE.ORNL-4013,1965.P.5.127. L.BELLER.D.LATHAM.J.OTTER.NORTH AMERICAN ARIATION.INC -,NAA-SR-12500,

1967.128. G.BORCHARDT.JUL-503-RX,1967.129. T.WALL,AAEC/TM466,1968.130. R.A.KARAM.T.F.PARKINS0N.66WASH,1966,P.171.131. R.SHER.L.LESAGE.T.J.CONNOLLY.H.L.BORWN,TRANS.AM.NUCL.SOC..9(1966)248.132. D.F.SHOOK,C.R.PIERCE.TRANS.AM,NUCL.SOC.,10(1967)261.133. H.L.BROWN.JR..T . J .CONNOLLY,W.K.FOELL.TRANS.AM.NUCL.SOC.,5(1962)375.134. H.L.BROWN.DISSERTATION ABSTRACTS SECTION B.27(1966)1244.135. G.J.KIROUAC.H.M.EILAND.PHYS.REV.C,11(1975)895.136. J.H.GILLETTE.ORNL-4155,1967.137. S.J.FRIESENHAHN.D.A.GIBBS.E.HADDAO.F.FROEHNER,W.M.LOPEZ.J.NUCL.

ENERGY,22(1968)191.138. C.R.PIERCE,D.F.SHOOK.D.BOGART.NASA-TN5628,1970.

PART 2-1 251

139. V.MARKOVIC.A.KOCIC.BULL.BORIS KINDRIC INST.NUCL.SCI.NUCL.ENG. .22(1971 ) 1 .

140. R.E.COTE BULL.AM PHYS.SOC.,6(1961)417.141 . C.R.PIERCE.NASA/0-4938.1968.142. R.SHER,PERSONAL COMMUNICATION CITED IN NEA/DATA BANK INTERNAL

FILE(SEE ALSO "KEY TO NOTES" NO.16).143. P.P.DAMLE.A.FABRY.R.JACQUEMIN,EANDC(E)-76.1967.P.107.144. G.WOLF.NUKLEONIK.2(1960)255.145. T.B.RYVES.K.J.ZIEBA,J.PHYS.A.7(1974)2318.146. J.I.KIM,F.ADAMS,RA0I0CHIM.ACTA.9(1968)61.147. W.KOEHLER,E.SCHNEIDER,NUKLEONIK,12(1969)197(SEE ALSO REF.148).148. E.SCHNEIDER.EANDC(E)89.1968.P.43.149. K.JIRLOW,E.JOHANSSON,J.NUCL.ENERGY,PART A.11(1960)101.150. R.A.BENNETT.NUCLEAR PHYSICS RESEARCH QUARTERLY REP..HW-63576 ,

1960,P.26.151. M.BROSE,DISSERTATION TECHNISCHE HOCHSCHULE KARLSRUHE,1960ISEE ALSO

NUKLEONIK,6(1964)134).152. G.BEN-DAVID.B.HUEBSCHMANN.J.NUCL.ENERGY.PARTS A/B,16(1962)291 .153. E.JOHANSSON,DISS.CHALMERS TEKN.HOGSKOLA.G0TE80RG.1966.154. R.L.SIMONS,W.N.MC ELROY,BNWL-1312(UC-34)1970.155. J.I.KIM.F.ADAMS,RADI0CHIM.ACTA.8(1967)165.156. D.BRUNE.K.JIRLOW,J.NUCL.ENERGY,17(1963)350.157. V.A.KONKS.F.L.SHAPIRO.SOV.PHYS..JETP,20(1965)531.158. J.HALPERIN.J.H.OLIVER,ORNL-3320,1962,P.2.159. M.J.CABELL.CAN.J.CHEM.,37(1959)1094.160. M.MONSECOUR.P.DE REGGE,J.INORG.NUCL.CHEM.,37(1975)1841.161 . R.W.ATTREE.M.J.CABELL,R.L.CUSHING.J.J.PIERONI.CAN.J.PHYS.,4 0( 1962)194162. R.E.COTE.H.DIAMOND,J.E.GINDLER,H.L.A.SHWE,PHYS.REV..176(1968)1421 .163. S.M.KALEBIN.P.N.PALEJ.P.N.IVANOV,Z.K.KARALOVA,G.M.KUKAVADZE .

Z.I.PYZH0VA,G.V.RUK0LAJNE.68DUBNA,ACC-61/18.1968,P.18(SEE ALSO ATOM-NAYA ENERGIYA.26(1969)507 AND SOVIET ATOMIC ENERGY,26(1969)588).

164. J.R.DEEN.E.LINN DRAPER,JR.,J.J.CHROMIK,TRANS.AM.NUCL.SOC..16(1973)316165. G.G.MYASISCHEVA.M.P.ANIKINA.L.L.GOLO'DIN.B.V.ERSHLER.AT.ENERG. (USSR) .

2(1957)22(TRANSL.IN SOVIET ATOMIC ENERGY,5(1957)230).166. F.J.JOHSTON,J.HALPERIN,R.W.STOUGHTON.H.NUCL.ENERGY,11(1960)95.167. L.I.TIREN.J.M.JENKINS,UK AEE REPORT AEEW-R.1962.P.163.168. J.B.SAMSON.GA-3069.1962.169. J.HARDY,NUCL.SCI.ENG..22(1965)121.170. M.BROSE,NUCL.SCI.ENG..19(1964)244.171. N.M.STEEN.WAPD-TM-971.1970.172. W.K.FOELL.T.J.CONNOLLY.NUCL.SCI.ENG.,21(1965)406.173 . M. ASGHAR . C. M. CHAFFEY , M. C . MOXON. N. J . PATTENDEN, E . R . RAE . C . A. UTTLEY . NUCL .

PHYS.76(1966)196.174. M.R.BHAT.R.E.CHRIEN,PHYS.REV.,155(1967)1362.175. R. R. SMI TH.T.O.PASSEL.S.D.REEDER.N. P. ALLEY, R.L. HEATH. IDO- 16226, 1955.176. H.DERRIEN.NEANDCtE )163U. 1975. P. 73.177. YU.YA.KONAKHOVICH.M.I.PEVZNER.AT.ENERG. (USSR) .8( 1960 )47( TRANSL . IN

SOVIET ATOMIC ENERGY.8(1961)39).178. M.J.CABELL.CAN. J.PHYS. .36( 1958)989.179. E.M.GRYNTAKIS,J.I.KIM.J.INORG.NUCL.CHEM.,36(1974)1447 (SEE ALSO

REF. 180).180. E.M.GRYNTAKIS,THESIS,TECHNICAL UNIVERSITY OF MUNICH,DM-6909, 1976

(SEE ALSO REF. 179).181 . F.B.SIMPSON. W.H.BURGOS, J.E.EVANS. H.W. KIRBY . NUCL .SC I. ENG. . 12( 1962)243.182. M. K . DRAKE . P . F . NICHOLS . GA-7462 ,1967.183. B.M.ALEKSANDROV.M. A . BAK . A . S . KR IVOKHATSK 11 ,E . A . SHLYAMIN . SOVIET ATOMIC

ENERGY,32(1972)203.184. T.A.EASTWOOD, R.W.WERNER, CAN. J.PHYS. ,38( 1960)75 1 .185. J.HALPERIN, R.E.DRUSCHEL.R.W.STOUGHTON, A. E.CAMERON, R.L. WALKER,

ORNL-3320.1962.P.2.186. J. C. CONNOR, R.T. BAYARD, D.MAC DONALD .S . B .GUNST ,NUCL .SCI .ENG. ,29( 1967)

408.187. F.B.SIMPSON,J.W.CODDING.JR.,NUCL.SCI.ENG.,28(1967)133.188. J.HALPERIN, C.R.BALDOCK, J.H.OLIVER. NUCL. SCI. ENG. .21 ( 1965)257 (SEE ALSO

REF.275).189. M. S. MOORE.L.G.MILLER.O.D.SIMPSON,PHYS.REV..118(1960)714.190. J.HALPERIN, F.J. JOHNSTON, R .W. STOUGHTON. J.H.OLIVER. E.L.BLEVINS.

R.E.DRUSCHEL,A.L.HARKNESS.B.A.SWARZ,NUCL.SCI.ENG. , 16( 1963)245.191. C.B.BIGHAM.AECL-1910,1964 (SEE ALSO CRRP-1 1 83 , 1964 ).192. L.J.ESCH.F.FEINER.TRANS.AM.NUCL.SOC. ,7( 1964)272.193. F.FE1NER.L.J.ESCH.66 SAN DIEGO,2(1966)299.194. T. YASUNO.NUCL.SC I .TECHN. ,2( 1965)532.195. N.L.SNIDOW.ADVANCED PRODUCTS ENG.DEPART..BAW-393-5.1966.196. D.E.CONWAY,S.B.GUNST.NUCL.SCI.ENG. ,29( 1967)1 .197. H.H.HENNIES.66PARIS 1 1 . I A E A , 1 9 6 7 , P . 3 3 3 .198. M.J.CABELL.66 PARIS I I . I A E A , 1 9 6 7 . P . 3 .199. J .HARDY.JR . ,NUCL .SC I .ENG. .27 (1967 )135 .200 . L.W.WESTON.R.GWIN.G.DE SAUSSURE . R. R.FULLWOOD.R.W. HOCKENBURY, NUCL. S C I .

ENG. .34 (1968)1 (SEE ALSO TRANS.AM.NUCL.SOC. .10(1967)220) .201 . M.G.CAO.E.MIGNECO, J . P. THEOBALD, M.MERLA, J . NUCL .ENERGY , 24( 1970) 1 1 1 ( SEE

ALSO NUCL.DATA FOR REACTORS,VOL . I . IAEA-CN-26 /19 .1970 .P .419 . ) .202 . M. A. BAK, K . A. PETRZHAK , YU . G. PETROV . YU. F . ROMANOV , E . A . SHLYAMIN, AT . ENERG .

(USSR) ,28(1970)359(TRANSL. IN SOVIET ATOMIC ENERGY,28(1970)460) .

252 GRYNTAKIS et al.

203. H.M.EILAND.L.S.ESCH.F.FEINER.J.L.MEWHERTER,NUCL.SCI.ENG. ,44( 1971 ) 180.204. A.OKAZAKI.M.LOUNSBURY,R.W.DURHAM,CHALK RIVER REP..AECL-2148. 1964 .205. E.CLAYTON,AECD-4167.1955.206. C.G.CAMPBELL,R.G.FREEMANTLE,M.J.POOLE.PROC.2ND INTERN.CONF.PEACEFUL

USES ATOMIC ENERGY.GENEVA.16(1958)233.207. R.W.STOUGHTON.J.HALPERIN.NUCL.SCI.ENG.,6(1959)100.208. J.HARDY.JR..D.KLEIN.G.G.SMITH.NUCL.SCI.ENG.,9(1961)341.209. G.H.HANNA.W.H.WALKER.EANDC(CAN)-20.1963.210. K.PARKER.AWRE-O-82/63.1963.2 1 1 . G .J0AN0U.GA-5944 ,1964 .2 1 2 . R.G.FREEMANTLE.REP.AEEW-M-502.1965.2 1 3 . HELLSTRAND.NUCKLEONIK,8(1966)1(SEE ALSO AKTIEBOLAGET ATOMENERGI

REPORTS.AE-181.1965) .2 1 4 . G.DE SAUSSURE.L.W.WESTON.R.GWIN.R.W. INGLE. J.H.TODD,NUCLEAR DATA FOR

REACTORS . ( PROC . CONF . PAR IS , 1966 ) . IAE A. 2 ( 1966 ) 233 .2 1 5 . A. J.DERUYTTER.C.WAGEMANS.68WASH. 1( 1968)475 .2 1 6 . UY.V.RYABOV.SO DON-SIK,N.CHIKOV.N.YANEVA.AT.ENERG.(USSR).24(1968)351

(TRANSL. IN SOVIET ATOMIC ENERGY,24(1968)435) .2 1 7 . E. M.P AGE .K.L.MAHNA. NEUTRON CROSS SECTIONS AND TECHNOLOGY , PROC .OF THE

3RD CONF.(CONF-710301) OF UNIV.OF TENNESSEE.KNOXVILLE.1971,P.469.2 1 8 . J.GADO.CENTRAL RESEARCH INSTITUT FOR PHYSICS.BUDAPEST.REP.KFKI-74-45.

1974 .2 1 9 . G.K.UNDERHILL,DISSERTATION ABSTRACTS SECTION 8 . 3 4 ( 1 9 7 4 ) 6 0 2 6 .2 2 0 . C.WAGEMANS.A.J.DERUYTTER.PERSONNAL COMMUNICATION CITED IN NEA DB

FILE (SEE "KEY TO NOTES".NR.16) . 1976 .2 2 1 . R.W.JONES,EAN(CAN)13/4 .1962.2 2 2 . I .H.CROCKER,EAN(CAN)17/4 ,1963.223 . R.W. DURHAM . G . C . HANNA. M. LOUNSBURY .C . B . BIGHAM , R . G . HART . R.W. JONES .

66PARIS I I , I A E A , 1 9 6 7 . P . 1 7 .2 2 4 . I .V.G0RDEEV.V.Y.PUPK0.PR0C.2ND INTERN.CONF.PEACEFUL USES OF ATOMIC

ENERGY.IAEA.GENEVA.16(1953)141.2 2 5 . E. J.HENNELLY,W.R.CORNMAN,N.P.BAUMANN,68WASH-1271 , 1968.2 2 6 . B.HINKELMANN.2ND INTERN.CONF.ON NUCLEAR DATA.HELSINKI ,CN-26 /15 .1970 .2 2 7 . V.E.PILCHER.D.J.HUGHES.J.A.HARVEY.BULL AM.PHYS.SOC. .1 (1956)187.228. S.PEARLSTEIN.CONFERENCE ON NEUTRON CROSS SECTION TECHNOLOGY.

CONF-660303,BOOK 1,P.251.WASHINGTON 22-24 MARCH 1966.229. J.HARVEY,R.SCHWARTZ,PROGRESS IN NUCL ENERGY,PHYS.AN0 MATH..VOL.2

(PERGAMON PRESS,LONDON.1958)P.51 .230. M. J.CABELL. T.A.EASTWOOD, P. J. CAMPION, J. NUCL. ENERGY, 7 ( 1958)81.231. J.HALPERIN,J.H.OLIVER,PROC.2ND INTERN.CONF.PEACEFUL USES ATOMIC

ENERGY.IAEA GENEVA.16(1958)64.232. J.R.BERRETH.R.P.SCHUMAN.WASH-1041 , 1962, P. 37.233. A. OKAZAKI.M.LOUNSBURY. R.W. DURHAM, I . H . CROCKER , AECL-1965, 1964.234 . N. P . BAUMANN. J . D. HALFORD. D. J . PELLARIN , NUCL . SCI. ENG. . 32 ( 1968) 265 .235. B.R.SEHGAL.TRANS.AM.NUCL.SOC..6( 1963)41 .236. A. D. CARLSON. S. J . FRIESENHAHN. W.M.LOPEZ, M.P. FRICKE. NUCL. PHYS. A, 141

(1970)577.237. H.L.ANDERSON.PHYS.REV.,80(1950)499.238. J.A.HARVEY.D. J.HUGHES, R.S. CARTER, V.E.PILCHER. PHYS. REV. ,99( 1955) 10.239 . R . L . MACKL IN. H. S . POMERANCE , J . NUCL . ENERGY , 2 ( 1956 ) 243 .240. L.M.BOLLINGER.R.E.COTE,D.A.DAHLBERG,G.E.THOMAS,PHYS.REV. , 105( 1957)661241. J.HARDY.JR.,G.G.SMITH,D.KLEIN.NUCL SCI.ENG..14(1962)358.242. J.W.WEBSTER.ORNL-TM-1448.1966.243 . S . H. EBERLE . H. J . BLEYL , H. BRAUN. A. V. BAECKMANN . L . KOCH, REPORT KFK-1453

(EUR-4726D). 1972.P. KSEE ALSO REF.280).244. J.D.SPENCER,N.P.BAUMANN.TRANS.AM.NUCL.SOC. 12( 1969)284.245. C.L.DUNFORD.H.ALTER.NAA-SR-12271 , 1967.246. H. IHLE. H. MICHAEL, A. NEUBERT, A. J. F.BLAIR. P. DAMLE .M. V. BODNARESCU . J .

INORG.NUCL.CHEM.,34(1972)2427.247 . L . P . ABAGYAN. A . G. DOVO JENKO . S . N. ZAKHAROVA. V . F . KAPUSTINA,M. N. NIKOL AEV .

D.V.PETROVA,PROC.2ND SOVIET CONF .,73KIEV,1(1973)246.248. J. P. BUTLER, M. LOUNSBURY, J.S.MERR IT. CAN. J. PHYS. ,35( 1957)147.249. F.B.SIMPSON.R.P.SCHUMAN.TRANS.AM.NUCL.SOC. ,6( 1963)43.2 5 0 . T. E. YOUNG. F . B. SIMPSON, J . R . BERRETH. M.S. COOPS. NUCL. S C I . ENG. . 3 0 ( 1 9 6 7 ) 3 5 52 5 1 . L.M.BOLLINGER.R.E.COTE,G.E.THOMAS,PROC 2ND INTERN.CONF . PEACEFUL USES

ATOMIC ENERGY (PROC. CONF. GENEVA. 1958) . 15( 1958 )127 .2 5 2 . P.J .PERSIANI .J .J .KAGANOVE.A.E.MC ARTY,T ID-18590 ,1963 .2 5 3 . M. J .CABELL, M.WILK INS, J . INORG.NUCL.CHEM. ,27 ( 1965)2481 .2 5 4 . J . J . S C H M I D T , K F K - 1 2 0 . 1 9 6 6 .2 5 5 . L.G.PONCELET.ARGONNE CODE CENTER ABSTRACT 249.WCAP-6073.1966.2 5 6 . R.M.HARBOUR.K.W.MAC MURDO,J.INORG.NUCL.CHEM..35(1973)1821 .2 5 7 . T .YASUNO.NUCL.SCI .TECHN. ,4 (1967)43.2 5 8 . G. C - HANNA. C. H. WESTCOTT . H. 0 . LEMMEL . B.R.LEONARD. JR. , J . S . STORY.

P.M.ATTREE.IAEA.ATOMIC.ENERGY R E V . , 7 ( 1 9 6 9 ) 3 .2 5 9 . A.PRINCE.68WASH,2(1968)951(SEE ALSO REF.272 ) .260 . J . I .KIM,R.BECK,E.M.GRYNTAKIS.R.ZAGHLOUL.NUCLEAR INSTRUMENTS AND

METHODS.165( 1 9 7 9 ) 5 6 5 .2 6 1 . F.W.CORNISH,M.LOUNSBURY.CRC-633.1956.262 . M .W.DYOS.NUCL.SCI .ENG. ,34 (1968)181 .263 . B.G.EROZOLYMSKY. I .E . KUTIKOV. Y . P . DOBRYNIN.M. I . PEVZNER ,L .S .DANELYAN ,

S.S.MOSKALEV,J.NUCL.ENERGY.4(1957)86 .264 . P.A.KRUPCHINSKY.J.NUCL.ENERGY.6(1957)155.2 6 5 . B .R .LEONARD,JR. ,E .J .SEPPI . W. J .FRIESEN,NUCL.SCI.ENG. , 5 ( 1 9 5 9 ) 3 2 .

PART 2-1 253

266. W. H. WALKER. C.H. WES TCOTT. T.K.ALEXANDER, CAN. J.PHYS. , 38 ( 1960)57.267. W.H.NICHOLS.NUCL.SCI.ENG. .17(1963)144(SEE ALSO 1RANS.AM.NUCL.SOC. .5

(1962 )374 ) .268. M.K.DRAKE,GA-6576.1965.269 . J . L . COOK , A. L . WALL . AAEC/TM362 . 1966 .270. C.WAGEMANS.A. J .DERUYTTER , NUCL . SCI .ENG . ,60( 1976)44(SEE ALSO 75WASH.GB

17,1975).271 . D. S. CRAIG,C.H.WESTCOTT.CAN.J.PHYS. ,42(1964)2384.272. A.PRINCE,TRANS.AM.NUCL.SOC..10(1967)228(SEE ALSO REF.259).273. R.W.BENJAMIN.V.D.VANOERVELDE.T.C.GORELL.F. J.MC CROSSON. 75WASH, 1975,

P.224.274. R.E . COTE, L.M. BOLL INGER.R.F. BARNES. H. DIAMOND . PROC . 2ND INTERN. CONF.

PEACEFUL USES ATOMIC ENERGY,IAEA.GENEVA,16(1958)77.275. J.HALPERIN. J.H.OLIVER.ORNL-2679. 1964.P. 13.276 . R . L . FOLGER, J . A. SMITH. L . C . BROWN . R . F . OVERMAN. H. P . HOLCOMB. 68WASH.2(1968)

1279.277 . T . E . YOUNG, S . D. REEDER , NUCL . SCI . ENG . . 40( 1970) 389 .278. B.C.RUSCHE. TRANS. AM. NUCL. SOC. , 14 ( 1971 )344 .279. R.P.SCHUMAN.WASH-1136.1969.PAGES 51 ,53 AND 53(SEE ALSO REF.113.

REF.288 AND I N - 1 3 1 7 , 1 9 6 9 ) .280. S.H.EBERLE.KFK-1544,1972,P.62(SEE ALSO REF.243) .2 8 1 . M. A. BAK. A. S . KRIVOKHATSK11 , K . A. PETR2HAK , YU . G . PETROV. YU . F . ROMANOV,

E. A.SHLYAMIN.AT.ENERG. (USSR) ,23( 1967 )3 16( TRANSL . IN SOVIET ATOMICENERGY,23(1967)1059).

282. R.M.HARBOUR,K.W.MAC MURDO.F.J.MC CROSSON.NUCL . SCI .ENG . . 50( 1973 )364 .283. J . J.SCOVILLE.E. FAST, WASH- 1053. 1964, P. 78 .284 . S . T . PERK INS . G. F . AUCHAMP AUGH. R . W. HOFF . C . D . BOWMAN. NUCL . SC I . ENG. . 32

( 1 9 6 8 ) 1 3 1 .285. 0 . D. S IMPSON, F . B. SIMPSON. J . A . HARVEY , G. G. SLAUGHTER. R. W. BENJAMIN,

C.E.AHLFELD,NUCL.SCI.ENG.,55(1974)273.286. C D . BOWMAN. G.F . AUCHAMP AUGH, S .C.FULTS .R.W.HOFF .PHYS.REV. , 166( 1968) 12 19287. R.C.KIIKALA.W.L.PURCELL, J . R .WORDEN, 66WASH, 1( 1966)75 .288. R.P.SCHUMAN.WASH-1124,1968.P.72(SEE ALSO REF.113,279 ) .289. M.C. THOMPSON. M.L.HYDER.R. J.REUL AND, J.I NORG . NUCL. CHEM. ,33( 1971 )1553.290. J . R . BERRETH.F.B.SIMPSON.B.C.RUSCHE.NUCL.SCI.ENG.,49(1972)145.291 . J.HALPERIN. R.E. RUSCHE, R.E.EBY.ORNL-4437. 1969. P. 20.292. C.H.WESTCOTT.W.H.WALKER,TK.ALEXANDER,2ND INT .CONF . PEACEFUL USES OF

ATOMIC ENERGY.IAEA,GENEVA.16(1958)70.293. J.HALPERIN. J.H.OLIVER,R.W.STR0UGHT0N.0RNL-4581 , 1970.P.37.294. R.W.BENJAMIN,K.M.MAC MUROO, J.D. SPENCER. NUCL . SCI .ENG . ,47( 1972>203<SEE

ALSO 3RD CONF.NEUTRON CROSS SECTION AND TECHN..KNOXVILLE.TENNESSEECONF-710301,2(1971)843).

295. CHETHAM-STRODE.ORNL-3832.1965.P. 1 .296. R. W.BENJAMIN. C.E.AHLFELD, BULL. AM. PHYS. SOC. . 19( 1974)599.297. J.HALPERIN. J.H.OLIVER,R.W.STOUGHTON.ORNL-4706. 1971 .298. C.E . BEMIS. JR. . J .W. T . DABBS .G. D . JAMES , N.W. HILL .M. S .MOORE . A . N .ELLIS .

0RNL-4976.1974.P.36.299. M.S.MOORE.J.H.MC NALLY,R.D.BAYBARZ.PHYS.REV.C,4(1971)273.300. K.W.MAC MURDO.R.M.HARBOUR. J. INORG.NUCL.CHEM. ,34( 1972)449.301 . K.D.ZHURAVLEV.N. I . KROSKIN . A . P . U JETV JER IKOV . AT . ENERG . (USSR) .39( 1975)

285.302. O.GRENECHE,NEANDC(E)163U,1975.P.43.3 03. B.GORDON.E.V.WE INSTOCK.WASH-1093. 1968.P.28.304. P.E.SPIVAK ET AL.,PROC.OF INTERN.CONF.ON PEACEFUL USES OF ATOMIC

ENERGY.GENEVA.5(1956)172.305. J. HALPERIN. C.E. BEMIS. R.E.DRUSCHEL.J.R. STOKELY.NUCL.SC I. ENG. .37( 1969)

228.3 06. J.A.SMITH.C.J. BAN ICK .R.L.FOLGER.H.P.H.P. HOLCOMB. I. B . RITCHE R . 68WASH. 2

(1968)1285.307. E.M.GRYNTAKIS. J. I .KIM, RADIOCHIMICA ACTA. 22( 1975) 128 .308. IAEA,TECHNICAL REPORTS SERIES NO.107.VIENNA.1970.309. N.P.BAUMANN, WASH-1046. P.49,1964.310. C.M.LEDERER,V.S.SHIRLEY.TABLE OF ISOTOPES .SEVEN EDITION 1978.

(ALSO 6TH ED.1967). WILEY-INTERSCIENCE PUBL..NEW YORK.311 . W.BLASER.A.WYTTENBACH.P.BAERTSCHI . J. I NORG. NUCL .CHEM. ,33( 1971 )1221 .312. R.VAN DER LINDEN,F.DE CORTE.P.VAN DEN WINKEL,J.HOSTER.J.RADIONAL.

CHEM. .11(1972)133.313. R.A.BENNETT.NUCLEAR PHYSICS RESEARCH OUATERLY REP..HW 68389(1961)50.314. R.DAHLBERG.K.JIRLOU.E.JOHANSSON,J.NUCL.ENERGY.14(1961)53.315. T.E.STEPHENS0N,BNL961(T-401).1965.316. G.H.SIMS. J.INORG.NUCL.CHEM. ,29( 1967)593.317. G.H.E.SIMS.D.G. JUHNKE, J. INORG. NUCL .CHEM. .31 ( 1969)3721 .318. N. T . KASHUKEEV. YU . P. POPOV, F . L . SHAPIRO. J . NUCL .ENERGY . PART . A/B.

14(1961)76.319. R.L.D.FRENCH,B.BRADLEY.NUCL.PHYS. ,65( 1965)225.320. W.K0HLER,H.SCHMELZ,NUKLE0NIK,9( 1967)270.321. L.L.ANDERSON.HEALTH PHYS . , 1 O( 1964 )315 .322. R.G.BARDES.R.K.LANGE.J.B.SAMPSON.L.J.TOOT,REPORT GA 3069.1962.323. K.W.GEIGER.L.VAN DER ZWAN.NUKEONIK . 1 0( 1967 )277 .324 . R.G.STIEGLITZ.R.W. HOCKENBURG, R. C . BLOCK . NUCL . PHYS . , A163 ( 1971 ) 592 .325. S.P.KAPCHIGASHEV.YU.P.POPOV.AT.ENERG. (USSR) . 16( 1964)256.326. W.E.LAMB.PHYS.REV.,55( 1939)190.327. T.B.RYVES.J.B.HUNT.I . W.GOODIER. J.NUCL.ENERGY.22(1968)465.

254 GRYNTAKIS et al.

328. J.J.SCOVILLE ET AL..WASH-1041.1962.P.37.329. J.R.BERRETH.R.P.SCHUMAN,REPORT IDO-16827.1962.P . 18.330. F.FEINER.REP.KAPL 2000-16.1961.331. E.J.AXTON.J.NUCL.ENERGY,17(1963)125.332. R.C.BARR ALL, W.N.MCELROY, IAEA , PROC . SYMP . VIENNA, 1965. P. 251 .333. P.LOUWRIER.A.ATEN.JR..J.NUCL.ENERGY.PARTS A/B.19(1965)267.334. R.O.BAROES,J.BROWN,M.DRAKE,J.SAMPSON, TRANS.AM.NUCL . SOC . .4 (1961)276 .335. T.NANJYO.J.NUCL.SCI.TECHN.,7(197 0)126.336. 0.0.M0X0N.AERE-PR/NP14.1968,P.12.337. F.FEINER.L.J.ESCH.REP.KAPL2000-12.1960.338. T.A.EASTWOOD,R.D.WERNER,CAN.J.PHYS..41(1963)1263.339. E.M.GRYNTAKIS,J.I.KIM,J.RADIOANAL.CHEMISTRY , 46 ( 1978)159.340. LESAGE,R.SHER,PROC.ANS NAT.TOP.MEET.SAN DIEGO.CALIF.,1966.P.4 .3 4 1 . C.H.HOGG.L.D.WEBER.E.C.YATES,IDO-16744.1962.342. I.A.KONDUROV.A. I .EGOROV.M.KAMINKEV.E .M.KOROTKIN. A.M. NIK I T IN , AT .ENERG.

(USSR).24(1968)533.343. J.S.STORY,REP.AEEW-M122,1961.344. C.H.HOGG.L.D.WEBER.IN-1024,1966.345. G.H.SIMS.D.G. JUHNKE . J . INORG. NUCL .CHEM. ,29( 1967)2853.346. S.PEARLSTEIN,R.F.MILLIGAN.NUCL.SCI.ENG.,26(1966)281 .347. J.F.EMERY.J.INORG.NUCL.CHEM.,27(1965)903.348. J.G.BRADLEY.W.H.JOHNSON,NUCL.SCI.ENG.,47(1972)151.349. W.SKOLNIK.N.C.FRANCIS,TRANS.AM.NUCL.SOC. ,2( 1959)121 .350. R.H.FULMER,D.P.STRIKOS.T.F.RUANE.NUCL.SCI.ENG..46(1971)314.351. R.NILSSON.NUCLEAR PHYSICS.29(1962)66.352. R.P.SCHUMAN.100-1676 0,1961,P.13.353. R.E.DRUSCHEL,J.HALPERIN,ORNL-4306,1968.P.2.354. E.HELLSTRAND,G.LUNDGREN.NUKLE0NIK,4(1962)323.355. H.SHWE.R.E.COTE.PHYS.REV..179(1969)1148.356. M.J.CABELL.J.INORG.NUCL.CHEM..21(1961) 1 .357. H.F.FEINER.TRANS.AM.NUCL.SOC.,2(1959)121.358. M.J.CABELL,J.NUCL.ENERGY,PARTA,12(1960)172.359. J.HALPERIN ET AL..ORNL-3832.1965.P.4.360. P.M.LANTZ.ORNL-3679,1964.P.10.361. R.D.WERNER.T.A.EASTWOOD,NUCL.SCI.ENG.,21( 1965)20.362. W.H.WALKER.L.A.COPLEY.CAN.J.PHYS.,44(1966)1985.363. V.MARKOVIC.A.KONIC.BULLETIN BORIS KIDRIC INST . NUCL . S C I . . NUCL .ENG. .

18 (1967 )11 .364. J.HALPERIN ET AL. .ORNL-3994,1966.P.2 .365. S.P.KAPCHIGASHEV.AT.ENERG.(USSR).19(1965)294.366. J.J.SCOVILLE.E.FAST,T.F.PARKINSON,REACTOR PHYS.CONST.CENTER NEWS

LETTER NO.10,1965.367. F.LUX.W.KOHLER.PROGRESS REPORT IN NUCLEAR DATA RESEARCH IN THE

EURATOM COMMUNITY,1964,EANDC(E)57"V",1965 . P. 28.368. A.M.BRESESTI .M.BRESESTI , H. NEUMANN. J . INORG, NUCL .CHEM. ,29( 1967)2477.369. H.H.KRAMER.W.H.WALL,NUCL.SCI.ENG.,22(1965)37337 0. V.MAXIA,E.ORVINI,M.A.ROLLIER.NUCL.SCI.ENG.,35( 1969)88.3 7 1 . F.DE CORTE. A. SPEECKE . J . HOSTE . J . RADIOANAL. CHEM. ,3( 1969)205.372. J.HALPERIN,R.E.DRUSCHEL,ORNL-3679,1964,P. 15.373. D.A.KLOPP.W.F.ZAGOTTA.TRANS.AM.NUCL.SOC.,5( 1962)337.374. K.H.BECKURTS .M. BROSE ,M. KNOCHE .G.GRUGER ,W. PON ITZ .H.SCHMIDT .NUCL .SCI .

ENG..17(1963)329.375. C.N.KLEBER,NUCLEONICS,20(1962)162.376. E.K.S0K0L0WSKI.R.BLADH.REP.AE-351,1969.377. A . P . JA IN, R.E.CHRIEN. J.A.MOORE. H. PALERSKY.NUCL.SC I . ENG. , 17( 1963)319.378. I.E.DAYTON,W.G.PETTUS.NUCLEONICS.15(1957)86.379. T. A. EASTWOOD. E .MATYAS.D. J .HNATOWICH , CAN. J . PHYS . ,41 ( 1963) 1519.380. H.D.LEMMEL.C.H.WESTCOTT,J.NUCL.ENERGY,21 ( 1967 ) 4 17 .3 8 1 . L.J.ESCH.F.FEINER, TRANS.AM.NUCL.SOC., 7 (1964)78 .382. R.G.HART.G.B.BIGHAM.F.C.MILLER,AECL-1503.1962.383. R.E.COTE ET AL..PHYS.REV.,159(1967)1050 .384. 8NL/NNDC.PRIVATE COMMUNICATION TO NEA/OATA BANK, USA,1971.385. J.C.CONNOR, WAPD-TM-837,1970.386. J.HALPERIN.C.E.BEMIS. JR. .R.E.DRUSCHEL,R.E.EBY.ORNL-4706.1971,P.47. •387. H. M. E ILAND, S. WE INS TEN. K.W. SEEMAN.NUC.SC I . ENG. ,54( 1974) 286 (SEE

ALSO REF.74) .388. A.F.FEDOROVA,J.I.PISANKO,G.M.NOVOSYELOV,REPORT KIYAI -76-6 .1976 .

INSTITUTE JADERNYKH ISSLEDOVANIJ,KIEV/USSR .389. M.FRICKE,A.CARLSON,GULF-RI-A-10739.197.390. C.E.BEMIS. JR. R.E.DRUSCHEL, J.HALPERIN, J.R.WALTON, NUC. SCI . ENG. .

4 7 ( 1 9 7 2 ) 3 7 1 .3 9 1 . W.BROWNE,B.L.BERMAN,PHYS.REV./C.8(1973)24 (SEE ALSO UCRL-74840.1973).392. A.F.FEDOROVA,J.I.PISANKO.G.M.NOVOSYELOV.REPORT K IYA I -76 -7 .1976 .

INSTITUTE JADERNYKH ISSLEDOVANIJ.KIEV/USSR.393. D.C.SANTRY,R.D.WERNER.CAN.J.PHYSICS.51(1973)2441.394 . G. F . AUCHAMPAUGH. J . HALPE RIN . P . L . MACLIN, W. M. HOWARD. PHYS . REV . / C .

12(1975)1126.395. G.J.KIR0UAC.H.M.EILAND.75WASH.2(1975)776.396. M.F.ELGART.H.F.FINSTON,R.RUNDBERG,E.T.WILL IAMS.NUC.SCI. ENG. ,

58(1975)291 (SEE ALSO 75WASH,2(1975)792).397 . R . E . SLOVACEK , D. S . CRAMER . E . B . BE AN . R . W. HOCKENBURY . J . R . VALENTINE .

R.C.BLOCK,NUC.SCI.ENG..62(1977)455 (SEE ALSO BULL.AM.PHYS.SOC..20(1975)581).

PART 2-1 255

398. L.SAGE,A.K.FURR,TRANS.AMER.NUCL.SOC..23(1976)501.399. G.GLEASON.RAOIOCHEMICAL AND RAOIOANAL.LETTERS,23( 1975)3 17 .400. W.GLEASON.PRIVATE COMMUNICATION TO NEA/DATA BANK.ORL.USA.1977.4 01 . C.E.BEMIS.JR.R.E.DRUSCHEI I.HALPERIN,R.D.BAYBARZ.ORNL-4581 , 1970, P. 43.4 02. C.E.BEMIS.JR.J.H.OLIVER,R.EBY.J.HALPERIN.NUCL.SCI.ENG.,63( 1977)4 13.4 03. J.B.GARG,J.RAINWATER.W.W.HAVENS. JR.NUCL.SCI.ENG..65(1978)76 (SEE

ALSO CR-1860.1964) .404. G.GLEASON.RAOIOCHEMICAL AND RADIOANAL.LETTERS.26( 1976)39.4 05. R.R.WINTERS,R.L.MACKLIN,J.HAL PER IN.PHYS.REV.C.18(1978)2 092.406. R.SHER.68WASH.1(1968)253.4 07. S.A.REYNONS.W.T.MULL INS,ORNL-4466.197 0,P.74.4 08. R.E.DRUSCHEL.J.HALPERIN.ORNL-3994,1966.P.6.409. ENDL : TABULAR AND GRAPHICAL PRESANTATION OF 175 NEUTRON-GROUP

CONSTANTS DERIVED FROM THE LLL EVALUATED-NUCLEAR DATA LIBRARY.E.E.PLECHATY.D.E.CULLEN,R.J.HOWE RTON,J.R.KIMLINGE R. REPORTUCRL-50400.VOL.16.REV.2. 1978.

410. P.LANTZ.C.BALDOCK.R.STOUGHTON.L.IDOM,ORNL-3994,1966,P.2.411. D.BIDIN0STI.H.FICKEL.R.T0MLINS0N.58GENEVA.15(1958)459.412. E.FEHR.E.HANSEN.KAPL-2000-12,I,1960.P.33 (SEE ALSO KAPL-2000,

1,I960.P.30).413. G.BREIT.E.WIGNER,J.PHYSICAL REVIEW 49(1936)519.414. R.W.STOUGTON.J.HALPERIN.R.E.DRUSCHEL.F.J.JOHNSTON,P.M.LANT2 .

J.H.OLIVER,G.W.PARKER.60VIENNA.1960.P.239.415. BIPAL : A DATA LIBRARY FOR COMPUTING THE BURNUP OF FISSIONABLE

ISOTOPES AND PRODUCTS OF THEIR DECAY, E.KRAZOVCOVA,J.HEP,V.VALENTA,REPORT ZJE-227(1978),NUCL.POWER CONSTRUCTION DIVISION,INFORMATION CENTRE.PIZEN.CZECHOSLOVAKIA.

416. R.A.KARAM.T.F.PARKINSON.M.F.PANCZYK,AD-402668,FLA.USA. 1963.417. M.J.CABELL.M.WILKINS,AERE-R-6384,1970.418. W.SKOLNIK.N.C.FRANCIS.TRANS .AMER.NUCL.SOC.,2(1959)135 .419. N.P.BAUMANN.D.J.PELLARIN.TRANS.AMER.NUCL.SOC..(1964)27.420. H.T.MAGUIRE JR.H.M.FISHER,R.C.BLOCK.INT.CONF. ON NEUTRON

PHYSICS AND NUCLEAR DATA FOR REACTORS AND OTHER APPLIEDPURPOSES. AERE HARWELL. 25-29 SEPT.1978,PAGE 472.

421. R.A.DEAL.R.P.SCHUMAN.WASH-1053,1964,P.76.422. R.P.SCHUMAN.IN-1126,MTR,USA.1967,P. 19.423. W.LYON.H.ROSS,ORNL-4196,1967,P.66.424. M.LUCAS.R.HAGEMANN,R.NAUDET.C.RENSON,C.CHEVALIER,

MEETING ON THE TECHN. COMMITTEE ON NATURAL FISSION REACTORS,PARIS 19-21 DEC.1977, 1(1979)431.

425. T.B.RYVES. NUCLEAR SCIENCE AND ENGINEERING, 72(1979)357.426. J.OLSEN, RISO-M-1516,1972.427. J.K.AALDIJK.H.M.M.KORSTJENS,W.L.ZIJP,RCN-176.1972.428. H.MICHAEL,A.NEUBERT.R.WAGNER,A.J.BLAIR,NEANDC(E)-172U , 176 , P . 43429. W. MAENHAUT.F.ADAMS.J.HOSTE. J.RADIOANAL.CHEMISTRY.16(1973)39.430. T.SEKINE.H.BABA, J . INORG.NUCL.CHEMISTRY,40(1978)1977.431 . A.KOCICV.MARKOVIC.BULL. INST.BORIS KIDRIC.VOL. 18.NUC.ENG. . 19( 1968)13.432 . V . HAYODOM, W. BOONKONG, S . MAHAPANY AWONG , C . CHAIMONKON . BANGKOK , THAILAND .

THAI-AEC-23 PROGRESS REPORT,1969.433 . E.ABUL-ELA,I.HAMOUDA.AREAEE-165,CAIRO.UAR.1973.434 . V.D.GAVRILOV, V. A.GONCHAROV. V. V. IVANENKO. V.P . SMIRNOV . V . N . KUSTOV ,

75KIEV,6(1975)71.435. V.A.ANUFRIEV.T.S.BELANOVA.YU.S.ZAMJATNIN.A.G.KOLESOV.S.N.NIKOLSKIJ.

V. A. PORUCHIKOV. S . M. KALEBIN. V . S . ARTAMONOV, R. N. IVANOV. 76L0WELL ,2(1976).1252.

436. V.A.ANUFRIEV.A.G.KOLESOV.S.I . ,BABICH,V.A.SAFONOV,PROCEEDING OFTHE INTERN. CONF. ON NUCLEAR CROSS SECTIONS FOR TECHNOLOGY.KNOXVILLE 22-26 OCT. 1979. PAGE 877.

437 . V. A. ANUFRIEV .S.I. BABICH. V. N. NEFEDOV, V. A. PORUCHIKOV. V . S . ARTOMONOV ,R.N.IVANOF.S.M.KALEBIN, PROCEEDING OF THE INTERN.CONF. ON NUCLEAR CROSS SECTIONS FOR TECHNOLOGY. KNOXVILLE 22-26OCT. 1979, PAGE 907.

438. S.I.BABICH.N.G. KOCHE RYGIN, A. G. KOLESOV, V. A. PORUCHIKOV. V. A. SAFONOV.V.N.NEFEDOV.V.S.ATTOMONOV.T.S.BELANOVA.R.N.IVANOV,S.M.KALEBIN,PROCEEDING OF THE INTERN. CONF. ON NUCLEAR CROSS SECTIONS FORTECHNOLOGY, KNOXVILLE 22-26 OCT. 1979, PAGE 908.

439. K.D.ZHURAVLEV.N.I.KROSHKIN. SOVIET ATOMIC ENERGY 47(1979)565.440. M.KUROSAWA.K.SHIMIZU.J.ATOMIC ENERGY SOC.JAPAN.21(1979)505.441 . V.D.GAVRILOV, V. A.GONCHAROV, ATOMN AY A ENERGIYA(USSR ) ,44( 1978)246.

(SEE ALSO REPORT JADERNO-FIZICHESKIE ISSLEDOVANIJA,YFI-25( 1979)49 ).442. V.A.ANUFRIJEV,A.G.KOLESOV,V.N.NEFJODOV,R.N.IVANOV,S.I.BAB ICH,

A.P.CHE TVERIKOV.V.A.PORUCHIKOV,V.A.SAFONOV,V.S.ARTAMONOV,S . M.KALEBIN.ATOMNAYA ENERGIYA(USSR),46(1979)158 (SEE ALSO REPORT JADERNYEKOSTANTY.OBNINSK(USSR),YK-1.32.1979,P.24).

443. V.A.ANUFRIJEV,A.G.KOLESOV.S.N.NIKOL'SKIJ,V.A.SAFONOV.ATOMNAYAENERGIYA(USSR),47(1979)269.

444. V.A.ANUF RIJEV.S.I.BABICH,A.G.KOLESOV.V.N.NEFJODOV,V.S.ARTAMONOV.R.N.IVANOV,S.M.KALEBIN.REPORT JADERNYE KONSTANTY.OBNINSK(USSR).YK-1,32,1979,P.19.

445. U.N.SINGH.R.C.BLOCK.Y.NAKAGOME, NUCL.SCIENCE ENGINEERING.67( 1980)54.446. N.E.HOLDEN.REPORT BNL-NCS-51388,1981.

256 GRYNTAKIS et al.

447. "EVALUATED NUCLEAR STRUCTURE DATA FILE" (ENSDF) EDITED ANDMAINTAINED BY THE U.S NATIONAL NUCLEAR DATA CENTRE, BROOKHAVENNATIONAL LABORATORY, ON BEHALF OF THE INTERNATIONAL NETWORK FORNUCLEAR STRUCTURE DATA EVALUATION (JUNE 1984).

448. L.N.JUROVA. A.A.POLJAKOV, V.P.RUKHLO. JU.E.TITARENKO.S.F.KOMIN, O.V.SHVEDOV, B.F.MJASOEDOV. A.V.DAVYDOV,S.S.TRAVNIKOV, REPORT JADERNYE KONSTANTY, OBNINSK (USSR).ISSUE 1(55) (1984) P.3.

Annex

EFFECTIVE RESONANCE ENERGY VALUES

F. De CorteRijksuniversiteit Gent, Gent, Belgium

Many significant discrepancies in resonance integral data can be explainedby the fact that the epithermal neutron flux distribution is not proportional to1/E, but rather to l/E1+a, where a is a positive or negative constant close to zerowhich can be determined for the irradiation facility used. The correspondingcorrection to the infinite dilute resonance integral requires a tabulation of'effective resonance energy' values, which is given here.

The concept of the effective resonance energy (Er) - first developed byRyves [ 1 ] and later introduced in the field of (n,7) activation analysis byMoens et al. [2] and Jovanovic et al. [3] - is associated strictly with the assum-ption of a 1 /E1+<* epithermal neutron flux distribution, where a is consideredto be independent of neutron energy. For nuclides which obey the a(v) ~ 1/vlaw up to 1-2 eV, it can be shown that it is possible to calculate, with acceptableaccuracy, an a-independent Er value (in eV) [2, 3]:

with

PART 2-1 257

Here Er i is the energy of the ith resonance (in eV);gj is the statistical weight factor;Fn j is the neutron width;F j is the radiative width;Fj is the total width of resonance.

Er thus calculated is a useful parameter for the description of the epicadmiumreaction rate in a l /E1 + a epithermal neutron flux distribution:

/ECd

(EineV)

with 0e equal to the conventional epithermal flux

I o - 0.429 q0 0-429 q0

+(E r)a (2a+l ) (0 .55) a

where aQ is the 2200 m/s (n/y) activation cross-section and Io is the usuallytabulated (n,7) activation resonance integral integrated from the effective Cdcut-off energy (= 0.55 eV), and with the 1/v tail included, valid for an ideal 1/Eepithermal neutron flux distribution

/ _ r a(E)dE\

In the analysis outlined above, Er is an indispensable parameter in the conversionof experimentally determined I0(a) values to Io (which can be tabulated) and theconversion of tabulated Io values to practically useful Io (a) values. Thus, Io

tabulations should be accompanied by Ef values. It should be noted that simplemethods have been described for experimental a determination that are suitablein ordinary radioanalytical laboratories [4, 5]. Finally, the above-mentionedassumptions and approximations were shown to yield fairly satisfactory resultsin the practice of (n,7) activation analysis [5-7].

Table A-I lists calculated Er values for the (n,7) reaction on 128 targetisotopes which are of interest in (11,7) activation analysis [8]. Calculation isbased mainly on resonance parameter data from Brookhaven National Laboratory,Upton, New York [10, 11].

258 GRYNTAKIS et al.

TABLE A-I. CALCULATED Ef VALUES FOR THE (n, 7) REACTION ON128 TARGET ISOTOPES

Targetisotope

18O

"F23Na

26Mg

"Al

MSi

3.p

3 6 S

37C1

«Ar

*'K

46Ca

48Ca

4$Sc

50Ti5 'V

5 o a

s5Mn

58Fe

59Co

*Ni

w Cu65CuMZn

^ Z n

69Ga71Ga

"Ge

76Ge

75As

74Se

76Se

78Se

(eV)

1 140 000 + 80 000

44 700 ± 2200

3380 ± 3 7 0

257 000 + 33 000

11 800 ± 7 0 0

2280 ± 10

38 500 ± 6900a

13 700+ 1900

31000± 5600

2960 + 210a

1 330 000 ± b

5130 + 870

63 200 + 2500

7230 ±290

7530 ±830

468 ±51

637± 153

136 ± 7

14200± 1700

1040 ± 5 0

766± 130

2560± 260

590 ± 60

201 + 16

154 ± 18

3540 ±280

583 ±23

106 + 36

29.4 ± 1.2

577 ± 4 6

501 ± 35

Targetisotope

^Se

82Se

' 'Br

81Br

85Rb87Rb

MSr86Sr

89y

wZr96Zr

" N b

98Mo

10oMoM Ru

'0 2Ru

!04Ru

103Rh

106pd

108pd

110Pd

107Ag109Ag, 0 8 C d

"°Cd

" 4 Cd

" 6 Cd

u 3 In

" s In

" 2 Sn

" 6 Sn

122Sn

124Sn

(eV)

2940 ± 4 1 0

8540 ± b

69.3 ± 6.2

152 ± 14

839 ± 5 0

364 ± 11

469 ±33

795 ± 16

4300 + 340

6260 ± 2 5 0

338 ±7

574 ±46

241 ±48

672 ± 94

776± 124C

18! ± 7

495 ±50

1.45 ±0.01

282 ±6

39.7 + 2.0

950 ±86

38.5 ± 1.9

6.08 ± 0.06

243 ± 24

125 ± 16

207 ±39

726 ± 87

6.41 ±0.96

1.56 ±0.03

1.07 + 3

128 ±4

424 ± 59

74.2 ± 5.2

PART 2-1 259

Targetisotope

121Sbn 3 S b!20Te

123TeI24Te

126TeIJ8Te

l30Te, 2 7 ,

.33 C s

1 3 0Ba

l 3 2 Ba

134Ba

136Ba

138Ba

13»La

1 3 8Ce

1 4 0Ce

1 4 2Ce

141pr

1 4 6Nd

1 4 8Nd

1 5 0 Nd

l s 2 S m

154Sm153Eu158Gd

'«Gd

15»Tb

• « D y

' " H o

' " E r

170Er

(eV)

13.1 ±0.5

28.2 ± 1.7a

92.3 ±3.7

1210+ 100

285 ± 20

738 ± 52

2950 ±210

57.6 ± 2.3

9.27 ± 1.02

69.9 ±3.5

143 ± b

115 ±6

545 ± 38

15 700 ±500

76.0 ±3.0a

7200± 1300

1540± 1850

296 ± 12

874 ± 52

236+ 14

173 ± 21

8.53 ± 0.09

142 ± 10

5.80 ±0.23

48.2 ± 3.9

480 ± 34

18.1 ±0.9

224 ± 11

12.3 ±0.4

59.3 ±4.2

129 + 3

Targetisotope

169Tm

i68Y b

' " Y bW6Y f e

1 7 5 I .u

1 7 4 Hf

1 7 7 Hf

1 7 8 Hf

1 7 9 H f

1 8 0 Hf

181Ta

1S2W

18*W

1 8 5 R e

1 8 7 R e

1 8 9 O s

1 9 0 O S

1 M O s

" 3 I r

!90pt

.96p t

" 8 p t

" 7 A u

' " H g

" 8 H g

202Hg

2 M H g

2 O 3T1

2OST1

206pb

2 O 8 p b

J09Bi232Th

"8u

Er(eV)

4.80 ±0.10

0.61 ±0.01

602 ±48

412 ±21

16.1 ±0.8

29.6 ± 2.1

2.08 ± b

8.01 ±0.16

16.2 ± 1.9

115 ± 7

10.4 ±0.6

9.20 ±0.55

20.5 ±0.2

3.40 ±0.14

41.1 ± 1.6

12.3 ±0.4

114 + 2

89.7 ±3.6

2.21 ±0.20

27.6 ±0.6

291 ±4 4

106 ± 3

5.65 +0.40

93.5 ±0.1

39.3 ± 2.8

1960± 160a

276 ± 28

2960 ± 360

10 500 ± 1200

145 000 ±4000

1210 ± 60

54.4 + 0.5

16.9 + 0.2

No resonance data available.No error assignment possible.Experimental value (see Ref. [9]).

260 GRYNTAKIS et al.

REFERENCES TO THE ANNEX

[1] RYVES, T.B., MetrologiaS (1969) 119.[2] MOENS, L., DE CORTE, F., SIMONITS, A., DE WISPELAERE, A., HOSTE, J.,

J. Radioanal. Chem. 52 (1979) 379.[3] JOVANOVIC, S., DE CORTE, F., MOENS, L., SIMONITS, A., HOSTE, J., J. Radioanal.

Nucl. Chem. Articles 82/2 (1984) 379.[4] DE CORTE, F., et al., J. Radioanal. Chem. 62 (1981) 209.[5] DE CORTE, F., JOVANOVIC, S., SIMONITS, A., MOENS, L., HOSTE, J., in Use and

Developments of Low and Medium Flux Research Reactors (Proc. Int. Symp. Cambridge,MA, 1983), Supplement to Atomkernenerg. Kerntech. 44 (1984) 641.

[6] DE CORTE, F., et al., J. Radioanal. Chem. 72 (1982) 275.[7] MOENS, L., et al., J. Radioanal. Nucl. Chem. Articles 82/2 (1984) 385.[8] JOVANOVIC, S., Ph. D. thesis, Rijksuniversiteit Gent, 1984.[9] SIMONITS, A., JOVANOVIC, S., DE CORTE, F., MOENS, L., HOSTE, J., J. Radioanal.

Nucl. Chem. Articles 82/1 (1984) 169.[10] MUGHABGHAB, S.F., DIVADEENAM, M., HOLDEN, N.E., Neutron Cross Sections:

Neutron Resonance Parameters and Thermal Cross Sections. Part A:Z = 1-60, Vol. 1,Academic Press, New York (1981).

[11] MUGHABGHAB, S.F., Neutron Cross Sections: Neutron Resonance Parameters andThermal Cross Sections. Part B:Z = 61-100, Vol. 1, Academic Press, New York (1984).

2-2. DATA FOR 14 MeVNEUTRON ACTIVATION ANALYSIS

Z. BODY, J. CSIKAIInstitute of Experimental Physics,Kossuth University,Debrecen, Hungary

Abstract

DATA FOR 14 MeV NEUTRON ACTIVATION ANALYSIS.Suggested reactions for analysis are presented, together with their characteristic data,

for almost all natural elements. In addition, 337 recommended cross-sections at 14.5 MeVare also given for the (n, 2n), (n, p) and (n, a) reactions.

1. INTRODUCTION

One can advantageously use low-voltage neutron generators [ 1 ] as fast (andoccasionally thermal) neutron sources in neutron activation analysis. The energyof neutrons produced in the 3H(d,n)4He reaction depends on Ed, the bombardingdeuteron energy, and on the emission angle. The neutron energy and the relativeyield, as functions of the angle at Ed = 175 keV (commonly used with low-voltage accelerators) are given in Table I for thick targets. The effective cross-section values for the 27Al(n, a) standard reaction are also given there.

TABLE I. NEUTRON ENERGY AND RELATIVE YIELD VERSUS THEANGLE AT Ed = 175 keV FOR A THICK TARGET3

Angle

0

30

60

90

120

150

180

Average neutron"energy (MeV)

14.774(0.17)

14.678(0.15)

14.417(0.12)

14.069(0.08)

13.730(0.10)

13.487(0.12)

13.400(0.13)

Relative intensity

1.049

1.043

1.025

1.000

0.976

0.958

0.951

<Jeff (mb) forAl-27(n, a)

112.3

113.1

116.0

121.9

124.0

125.1

127.2

The cross-sections are taken from Refs [2,3],

261

262 BODY and CSIKAI

Although comparison with a standard is preferred for absolute measurementsin neutron activation analysis, knowledge of nuclear data — and of cross-sections,in particular — is important in order to choose the most favourable reaction orto estimate the expected activity and the role of interfering reactions. Taking intoaccount nuclear data only, the most effective identifying reaction is given foreach element in Table II.

2. THE ACTIVATION PROCESS

Let N be the number of radioactive nuclei, a the cross-section of the reaction,4> the neutron flux, n the number of target nuclei and X the decay constant of theradionuclides formed. The following differential equation can then be described:

(1)dt

where the first term on the right-hand side gives the increase in N because of theactivation process, while the second term gives the decrease owing to decay.

The general solution of this first-order linear inhomogeneous differentialequation is

N(t) = e" C + an /$(t)e+Xtdt (2)

where C is a constant of integration. Restricting the solution to a constant flux$ = 4>0 and assuming the initial condition N = 0 for t = 0 yields

N(t) = -J— (l-e-Xt) (3)A.

from which the activity at time t (i.e. the number of decays per unit time) will be

= <f>oan(l -e"Xt) (4)

The specific activity, i.e. the activity per unit target mass (m) - in disintegrationsper second per gram ((dis/s)/g) - will then be given as

A(t) , aa*0 -= 6.02 XI(T6 ^ l - e " " ) (5)

m M

PART 2-2 263

where a is given in mb, the atomic weight of element M is in grams and the targetisotopic abundance a is in per cent.1 This specific activity has been calculated fordifferent reactions assuming a flux of $0 = 109 neutrons-cm"2 s"\ as well asirradiation times of t = 10 min and t = 1 h, respectively (columns 9 and 10 ofTable II. The saturation values are also given in column 11 under the heading't = °°')- It should be noted here that this neutron flux value is a realistic onefor fast neutrons if they are produced by a neutron generator of average intensity,while for thermal neutrons (produced by the same generator) this value is too high,the overestimation being about two orders of magnitude.

Another consideration also has relevance if the final nucleus has more than asingle final state and if the ground state activity is used for analysis. In such a case,instead of Eq. (1), as many differential equations would have to be solvedsimultaneously as the number of the final states. For example, for two stateswe have

dt

and

dNc

d N mm =<Da m n-X r a N m (6a)

(6b)

where m and g indicate metastable and ground state quantities, respectively, andP is the ratio of the internal transition (IT) events (leading from the metastableto the ground state) to all decay events of the metastable state. All other quantitiesare the same as before.

Assuming again a constant flux <f> = $ 0 a nd initial condition Nm = Ng = 0

for t = 0, the solution of Eq. (6) will be

$ oamn l ( - e m t)Nm(t) = - 2 J 5 ^ (7a)

K

and

Ng(t) = *onxg xg xm

(7b)

1 1 disintegration per second s 1.00 X 10° Bq (becquerel).

Explanations of Tables II-Vare given on pp. 300 and 301.

TABLE II.

Atomic No./Element

5-B

7-N

8-O

9-F

10-Ne

11-Na

12-Mg

13-A1

14-Si

15-P

16-S

RECOMMENDED

Atomicweightofelement

10.811

14.0067

15.9994

18.9984

20.183

22.9898

24.312

26.9815

28.086

30.9738

32.064

REACTIONS

Targetisotopicabundance(%)

80.2

99.63

99.76

100

90.51

100

78.99

100

92.23

100

4.21

FOR ACTIVATION

Reaction

B-ll(n,p)Be-ll

N-14(n,2n)N-13

O-16(n,p)N-16

F-19(n,2n)F-18

F-19(n,p)O-19

Ne-20(n,p)F-20

Na-23(n,tt)F-20

Na-23(n,p)Ne-23

Mg-24(n,p)Na-24

Al-27(n,p)Mg-27

Al-27(n,a)Na-24

Si-28(n,p)Al-28

P-31(n,a)Al-28

S-34(n,a)Si-31

ANALYSIS WITH

Cross-section(mb)

3.3(0.6)

7.1(0.6)

35(4)

55(4)

19(2)

92

150(15)

35(4)

181(8)

75(4)

116(0.7)

226(30)

118(15)

138(35)

SMALL NEUTRON GENERATORS

Half-life

13.81(8) s

9.963(9) min

7.13(4)s

109.72(6) min

26.76(8) s

10.996(20) s

10.996(20) s

37.6(1)s

14.959(7) h

9.462(12) min

a 14.959(7) h

2.2405(3) min

2.2405(3) min

2.62(l)h

Gammaenergy(keV)

2124.8(7)

Annihilation

2741.2(5)6129.2(1)

Annihilation

197.1(1)1356.8(1)

1633.7(1)

1633.7(1)

439.9(2)

1368.5(1)2754.9(1)

843.7(1)1014.43(1)

1368.5(1)2754.9(1)

1779.0(1)

1779.0(1)

1266.1(1)

264

wo

Sa.oin

>

Atomic No./Element

Gammasperdecay

(dis/s)/g(t = 10 min)

(dis/s)/g(t= 1 h)

1.47

2.99

1.31

5.50

6.02

2.48

3.93

9.17

1.60

1.65

1.17

4.47

2.29

?..S4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10s

10s

106

10s

10s

106

106

10s

105

105

105

106

106

in4

(dis/s)/g((=oo)

Interfering reactions

5-B

7-N

8-0

9-F

10-Ne

11 -Na

12-Mg

13-A)

14-Si

15-P

16-S

33.0

200.

0.7668.8

194.

95.950.4

100.

100.

33.0

100.99.9

71.828.2

100.99.9

100.

100.

0.07

1.47 X 10s

1.52 X 10s

1.31 X 106

1.07 X 10s

6.02 X 10s

2.48 X 106

3.93 X 106

9.17 X 10s

2.72 X 10"

8.69 X 10s

1.99 X 10"

4.27 X 106

2.19X 106

4.71 X 103

1.47 X 10s

3.04 X 10s

1.31 X 106

1.74 X 106

6.02 X 10s

2.48 X 106

3.93 X 106

9.17 X 10s

3.54 X 106

1.67 X 106

2.59 X 106

4.47 X 106

2.29 X JO6

1.09 X 105

N-15(n,7); F-19(n,a); 0-17(n,d)

O-18(n,7)

F-19(n,7); Na-23(n,a); Ne-21(n,d)

F-19(n,7); Ne-20(n,p); Ne-21(n,d)

Ne-22(n,7)

Na-23(n,7); Al-27(n,a); Mg-25(n,d)

Mg-26(n,7); Si-30(n,«)

Na-23(n,7); Mg-24(n,p); Mg-25(n,d)

Al-27(n,7); P-31(n,a); Si-29(n,d)

Al-27(n,7); Si-28(n,p); Si-29(n,d)

Si-30(n,7); P-3l(n,p)

5

TABLE II (cont.)

Atomic No./

Element

17-C1

18-Ar

19-K

20-Ca

21-Sc

22-Ti

23-V

24-Cr

25-Mn

Atomicweightofelement

35.453

39.948

39.102

40.08

44.956

47.90

50.942

51.996

54.9380

55.847

Targetisotopicabundance

24.23

99.60

6.73

2.09

100

73.7

99.75

83.79

100

91.8

Reaction

Cl-37(n,p)S-37

Ar-40(n,p)CI-40

Ar-40(n,a)S-37

K-41(n,p)Ar-41

K-41(n,a)Cl-38

Ca-44(n,p)K-44

Sc-45(n,2n)Sc-44g

Ti-48(n,p)Sc-48

V-5 1(n,p)Ti-51

Cr-52(n,p)V-52

Mn-55(n,a)V-52

Mn-55(n,7)Mn-56

l ;e-56(n,p)Mn-56

Cross-section(mb)

28(3)

16(2)

10.0(1.5)

51(8)

33.5(2)

39(4)

188(14)

66(6)

33(3)

102(20)

32(5)

13 300(200)

98(7)

Half-life

4.99(2) min

1.32(2) min

4.99(2) min

1.827(7) h

37.24(5) min

22.15(2) min

3.927(8) h

43.67(9)h

5.752(7) min

3.760(8) min

3.760(8) min

2.5785(6) h

2.5785(6) h

Gammaenergy(keV)

3103.3(2)

1460.8(1)2840.2(3)

3103.3(2)

1293.7(1)

1642.4(1)2167.6(1)

1157.0(1)2150.8(1)

1157.0(1)

983.5(1)1312.1(1)

320.1(1)

1434.1(1)

1434.1(1)

846.8(1)1810.7(1)

846.8(1)1810.7(1)

toO NO N

WO:O

So

Atomic No./Element

17-C1

18-Ar

19-K

20-Ca

21-Sc

22-Ti

23-V

24-Cr

25-Mn

26-Fe

Gammasperdecay

(%)

94.1

77.529.9

94.1

99.1

31.642.4

58.222.8

99.9

100.100.

93.0

100.

100.

98.927.2

98.927.2

(dis/s)/g(t = 10 min)

8.65 X 10"

2.39 X 105

1.13 X 10s

3.24 X 103

5.90 X 103

3.30 X 103

7.30 X 10"

1.62 X 103

2.73 X 105

8.34 X 105

2.95 X 105

6.39 X 106

4.25 X I04

(dis/s)/g( t = 1 h)

1.15 X 105

2.40 X 10s

1.50 X 105

1.67 X 10"

2.34 X 104

1.04 X 104

4.08 X 105

9.63 X 103

3.89 X I0 5

9.89 X 105

3.51 X 10s

3.44 X 107

2.29 X 10s

(dis/s)/g(t=oo)

1.15 X 10s

2.40 X 10s

1.50 X 105

5.30 X 104

3.47 X 104

1.22 X 104

2.51 X 106

6.12 X 105

3.89 X I05

9.89 X 10s

3.51 X 10s

1.46 X 108

9.71 X 10s

Interfering reactions

S-36(n,7); Ar-40(n,a)

S-36(n,7); Cl-37(n,p)

Ar-40(n,7); Ca-44(n,a)

Cl-37(n,7); Ar-38(n,p)

V-51(n,a); Ti-49(n,d)

Ti-50(n,7); Cr-54(n,a)

V-5 l(n,7); Mn-55(n,a); Cr-53(n,d)

V-51(n,7); Cr-52(n,p); Cr-53(n,d)

Fe-56(n,p); Co-S9(n,a); Fe-57(n,d)

Mn-55(n,7); Co-59(n,a); Fe-57(n, d)

JOH

to

TABLE II (cont.)00

Atomic No./Element

27-Co

28-Ni

29-Cu

30-Zn

31-Ga

32-Ge

33-As

34-Se

35-Br

36-Kr

Atomicweightofelement

58.9332

58.71

63.54

65.37

69.73

72.59

74.9216

78.96

79.909

83.80

Targetisotopicabundance

100

26.1

68.3

69.2

30.8

48.6

60.1

7.8

100

9.0

50.69

17.3

Reaction

Co-59(n,7)Co-60m

Co-59(n,a)Mn-56

Co-59(n,2n)Co-58m+g

Ni-60(n,p)Co-60m

Ni-58(n,2n)Ni-57

Cu-63(n,2n)Cu-62

Cu-65(n,p)Ni-65

Cu-65(n,2n)Cu-64

Zn-64(n,2n)Zn-63

Ga-69(n,2n)Ga-68

Ge-76(n,2n)Ge-75m+g

As-75(n,2n)As-74

As-75(n,p)Ge-75m+g

Se-82(n,2n)Se-81m

Br-79(n,2n)Br-79m

Kr-86(n,2n)Kr-85m

Cross-section(mb)

18 800(1500)

29(2)

720(50)

95(10)

30(3)

551(11)

25(5)

931.8(13.l)b

178(27)

945(50)

1148(120)

1061(100)

19.2(2.0)

1008(120)

974(50)

350(35)

Half-life

10.47(2) min

2.5785(6) h

70.78(10) d

10.47(2) min

36.16(1 1) h

9.74(2) min

2.520(2) h

12.701(2)h

38.1(l)min

68.1(2) min

82.80(4) min

17.78(5) d

82.80(4) min

57.28(5) min

6.46(4) min

4.480(8) h

Gammaenergy(keV)

58.6(1)

846.8(1)1810.7(1)

810.8(1)

58.6(1)

1377.6(1)

Annihilation

1481.8(1)

Annihilation1345.8(1)

669.6(1)

1077.4(1)

264.6(1)

595.8(1)

264.6(1)

103.1(1)

613.7(1)

151.2(1)

wuD»aoV.

\

Atomic No./Element

27-Co

28-Ni

29-Cu

30-Zn

31-Ga

32-Ge

33-As

34-Se

35-Br

36-Kr

Gammasperdecay

2.02

98.927.2

99.4

2.02

77.9

196.

23.5

35.80.48

8.40

2.93

11.3

60.3

11.3

9.79

13.6

75.0

(dis/s)/g(t = 10 min)

9.31 X 107

1.30 X 10"

5.00 X 102

1.23 X 105

6.69 X 102

1.84 X 106

3.27 X 103

2.46 X 104

1.32 X 10s

4.75 X 10s

5.94 X 104

2.33 X 103

1.24 X 104

7.89 X 104

2.45 X 106

1.1 1 X 104

(dis/s)/g

(t = 1 h)

1.89 X 108

6.99 X 104

3.00 X 103

2.50 X 10s

3.98 X 103

3.57 X 106

1.76 X 104

1.44 X 10s

5.30 X 105

2.24 X 106

2.91 X 10s

1.39 X 10"

6.09 X 104

3.57 X 10s

3.72 X 106

6.24 X 10"

(dis/s)/g( t = o o )

1.92 X 10s

2.96 X 10s

7.35 X 106

2.54 X 10s

2.09 X 10s

3.62 X 106

7.30 X 10"

2.72 X 106

7.97 X 105

4.91 X 106

7.38 X 105

8.53 X 106

1.54 X 10s

6.92 X 10s

3.72 X 106

4.35 X 10s

Interfering reactions

Ni-60(n,p); Cu-63(n,a);

Mn-55(n,7); Fc-56(n,p);

Ni-S8(n,p)

Co-59(n,7); Cu-63(n,a);

Ni-64(n,7); Zn-68(n,a)

Cu-63(n,7); Zn-64(n,p)

Ge-74(n,7); As-75(n,p);

Se-74(n,p)

Ge-74(n,7); Ge-76(n,2n)

Se-80(n,7); Br-81(n,p);

Kr-78(n,p)

Kr-84(n,7); Rb-85(n.n):

Ni-61(n,d)

Fe-57(n,d)

Ni-61(n,d)

Se-78(n,tt)

; Se-78(n,a)

Kr-84(n,o)

Sr-88(n,a)

to

TABLE II

Atomic No./Element

37-Rb

38-Sr

39-Y

40-Zr

41-Nb

42-Mo

44-Ru

45-Rh

46-Pd

47-Ag

(cont.)

Atomicweightofelement

85.47

87.62

88.905

91.22

92.906

95.94

101.07

102.905

106.4

107.870

Targetisotopicabundance

72.17

9.8

100

51.5

100

9.6

5.5

100

11.8

51.83

Reaction

Rb-85(n,2n)Rb-84m

Sr-86(n,2n)Sr-85m

Y-89(n,2n)Y-88

Y-89(n,n'7)Y-89m

Zr-90(n,2n)Zr-89m

Nb-93(n,2n)Nb-92m

Mo-100(n,2n)Mo-99

Ru-96(n,2n)Ru-95

Rh-103(n,n'7)Rli-103m

Rh-103(n,7)Rh-104m

Pd-110(n, 2n)Pd-109m

Ag-107(n,2n)Ag-106g

Cross-section(mb)

505(34)

247(22)

966(100)

438(44)

86(8)

482(35)

1420(150)

700(100)

216(26)

10(1) X 103

510(35)

870(100)

Half-life

20.5(2) min

67.66(7) min

106.61(2) d

16.06(4) s

4.180(1) min

10.150(2) d

66.02(1) h

1.65(2) h

56.12(1) min

4.34(7) min

4.69(1) min

24.0(1) min

Gammaenergy(keV)

215.6(1)248.0(1)463.6(1)

231.9(1)

898.0(1)1836.0(1)

909.2(1)

587.8(1)

934.5(1)

181.1(1)739.4(1)

336.4(1)

20. IX39.7(1)

51.4(1)97.1(1)

188.9(1)

511.9(1)621.9(1)

270

wa

?ao»

Atomic No./Element

Gammas

per

decay

(dis/s)/g(t = 10 min)

(dis/s)/g

(t = 1 h)

ldis/s)/g( t = o o )

Interfering reactions

37-Rb

38-Sr

39-Y

40-Zr

41-Nb

42-Mo

44-Ru

45-Rh

46-Pd

47-Ag

26.459.035.4

84.4

94.099.4

99.1

89.5

99.1

6.0812.1

70.8

6.370.0684

48.23.00

55.7

16.80.312

7.36 X 105

1.62 X 10"

2.95 X 102

2.97 X 106

2.37 X 10s

1.49 X 103

1.50 X 103

1.55 X 10"

1.47 X 10s

4.68 X 107

2.63 X 10s

6.32 X 10s

2.23 X 106

7.64 X 10"

1.77 X 103

2.97 X 106

2.92 X 105

8.88 X 103

8.94 X 103

7.87 X 104

6.62 X 105

5.86 X 107

3.41 X 105

2.07 X 106

2.57 X 106

1.66 X 10s

6.54 X 106

2.97 X 106

2.92 X 10s

3.12 X 106

8.56 X 10s

2.29 X 10s

1.26 X 106

5.86 X 107

3.41 X 105

2.52 X 106

Sr-84(n,p)

Sr-84(n,7)

Zr-90(n,d)

Mo-92(n,a)

Mo-92(n,p)

Mo-98(n,7); Ru-102(n,a)

Pd-104(n,d)

Pd-104(n,p); Ag-107(n,a); Pd-105(n,d)

Pd-108(n,7); Ag-109(n,p); Cd-112(n,a)

Cd-106(n,p)

>

3

TABLE II

Atomic No./Element

47-Ag

48-Cd

49-In

50-Sn

51-Sb

52-Te

53-1

54-Xe

(cont.)

Atomicweightofelement

112.40

1 14.82

118.69

121.75

127.60

126.9044

131.30

Target

isotopic

abundance

(%)

48.17

24.1

95.7

5.64

1.01

57.3

42.7

34.5

100

8.9

Reaction

Ag-107(n,2n)Ag-106m

Ag-109(n,2n)Ag-108g

Cd-1 12(n,2n)Cd-l 1 lm

In-115(n,7)ln-l 16m

In-115(n,n'7)In-l 15m

Sn-124(n,2n)Sn-123m

Sn-112(n,2n)Sn-ll 1

Sb-121(n,2n)Sb-120gd

Sb-123(n,2n)Sb-122m

Te-130(n,2n)Te-129g

I-127(n,7)1-128

I-127(n,2n)I-126

Xe-136(n,2n)Xe-135m

Cross-section(mb)

600(80)

840(150)

725(5O)c

162 300(700)

63(6)

547(23)

1180(120)

1080(90)

731(73)

570(30)

6200(200)

1550(100)

750(50)

Half-life

8.46(10)d

2.37(1) min

48.6(3) min

54.12(5) min

4.486(4) h

40.08(7) min

35.3(8) min

15.89(4)° min

4.21(2) min

69.6(5) min

24.99(2) min

1 3.02(7) d

15.6(1) min

Gammaenergy(keV)

451.0(1)

633.0(1)

150.8(1)245.4(1)

416.9(1)1097.3(2)1293.5(1)

336.2(1)

160.3(1)

762.0(1)1153.0(1)

1171.2(3)

61.4(1)76.1(1)

459.6(1)

442.9(1)

388.6(1)666.3(1)

526.6(1)

toto

WO:D•<3O.OVI

>

Atomic No./Element

Gammasperdecay

(dis/s)/g( t= 10

9.87 X

2.14X

1.24 X

9.79 X

8.02 X

2.49 X

1.08 X

1.08 X

1.25 X

8.80 X

7.12X

2.72 X

1.10 X

min)

102

106

105

107

103

104

104

106

106

104

106

10'

10s

(dis/s)/g( t= 1 h)

5.91 X

2.26 X

5.78 X

4.37 X

4.51 X

1.01 X

4.19 X

2.84 X

1.54X

4.18X

2.39 X

1.63 X

2.85 X

103

106

105

108

10"

105

104

106

106

10s

107

104

105

(dis/s)/g(t = »)

1.74

2.26

9.36

8.14

3.16

1.57

6.05

3.03

1.54

9.28

2.94

7.36

3 06

X

X

X

X

X

X

X

X

X

X

X

X

X

106

106

105

108

105

10s

104

106

106

10s

107

106

10s

Interfering reactions

47-Ag

48-Cd

49-In

50-Sn

28.4

1.75

30.394.0

29.256.284.4

45.8

85.6

51-Sb

52-Te

53-1

54-Xe

1.402.51

1.69

57.519.6

7.14

16.0

32.231.3

80.5

Cd-106(n,p)

Ag-107(n,T); Cd-108(n,p)

Cd-110(n,7); Sn-114(n,a)

Sn-116(n,p); Sn-117(n,d)

Sn-115(n,p); Sn-116(n,d)

Sn-122(n,7); Sb-123(n,p).; Te-126(n,a)

Te-120(n,p)

Sb-121(n,7); Te-122(n,p); Te-123(n,d)

Te-128(n,7); Xe-132(n,a)

Xe-128(n,p); Xe-129(n,d)

Xe-126(n,p)

Xe-134(n,7); Ba-138(n,a)

"0>JO

toI

to

TABLE II (cont.)

Atomic No./Element

55-Cs

56-Ba

57-La

58-Ce

59-Pr

60-Nd

62-Sm

63-Eu

64-Gd

65-Tb

66-Dy

Atomicweightofelement

132.905

137.34

138.91

140.12

140.907

144.24

150.35

151.96

157.25

158.924

162.50

Targetisotopicabundance

100

71.7

99.911

88.5

0.19

100

5.6

3.1

47.9

21.8

100

0.10

Reaction

Cs-133(n,2n)Cs-132

Ba-138(n,2n)Ba-137m

La-139(n,7)La-140

Ce-140(n,2n)Ce-139m

Ce-136(n,2n)Ce-135m+g

Pr-141(n,2n)Pr-140

Nd-150(n,2n)Nd-149

Sm-144(n,2n)Sm-143m

Eu-153(n,2n)Eu-152m

Gd-160(n,2n)Gd-159

Tb-159(n,2n)Tb-158m

Dy-158(n,2n)Dy-157

Cross-section(mb)

1603(100)

1020(70)

8930(40)

963(120)

1600(140)

1660(120)

1906(160)

652(38)

72(6)

1960(180)

450(65)

1950(170)

Half-life

6.974(14)d

2.5513(7) min

40.27(5)h

56.44(48) s

17.76(31) h

3.39(1) min

1.73(1) h

66(2) s

96(1) min

18.56(8) h

10.5(2)s

8.1(l)h

Gammaenergy(keV)

667.5(1)

661.6(1)

328.8(1)487.0(1)

754.2(1)

265.6(1)300.1(1)

Annihilation306.9(2)1596.5(1)

114.3(1)211.3(1)

754.0(2)

89.8(1)

363.6(1)

50.3X5 1 . 7 X

110. (1)

326.2(2)

tdQc

I( .>

Atomic No./Element

Gammasperdecay

(dis/s)/g(t = lOmin)

5.40 X

2.99 X

1.11 X

3.66 X

8.47 X

103

106

10s

106

10'

(dis/s)/g(t = 1 h)

3.23 X

3.20 X

6.60 X

3.66 X

5.00 X

104

106

10s

106

in2

(dis/s)/g(t = °°)

7.26

3.20

3.87

3.66

1.31

X

X

X

X

X

106

106

107

106

104

Interfering reactions

55-Cs

56-Ba

5 7-La

58-Ce

59-Pr

60-Nd

62-Sm

63-Eu

64-Gd

65-Tb

66-Dy

97.4

89.9

20.745.9

92.4

42.422.9

98

0.190.50

19.025.9

89.9

69.9

10.8

7.702.200.881

93.2

6.18 X 106

2.88 X 104

8.10 X 104

9.52 X 103

1.02 X 104

1.71 X 106

1.02 X 102

7.09 X 106

1.47 X 10s

8.11 X 10"

4.81 X 104

6.00 X 10"

1.71 X 106

5.93 X 102

7.09 X 106

4.45 X 105

8.11 X 104

1.37 X 105

1.64 X 106

1.71 X 106

7.23 X 103

Ba-132(n,p)

Ba-136(n,7); Ce-140(n,a); La-138(n,d)

Ce-140(n,p)

Ce-138(n,7); Nd-142(n,a)

•a

90

Nd-148(n,7); Sn-152(n,a)

Eu-151(n,7)

Gd-158(n,7); Tb-159(n,p); Dy-162(n,a)

Dy-158(n,p)

Dy-156(n,7)

TABLE II

Atomic No./Element

66-Dy

67-Ho

68-Er

69-Tm

70- Yb

71-Lu

72-Hf

73-Ta

74-W

(cont.)

Atomicweightofelement

164.930

167.26

168.934

173.04

174.97

178.49

180.948

183.85

Targetisotopicabundance(%)

28.1

100

1.56

100

12.6

97.39

0.16

5.2

99.9877

0.13

Reaction

Dy-164(n,r)Dy-165m

Ho-165(n,2n)Ho-164m

Er-164(n,2n)Er-163

Tm-169(n,2n)Tm-168

Yb-176(n,2n)Yb-175

Lu-175(n,2n)Lu-174m

Lu-175(n,7)Lu-176m

Hf-174(n,2n)Hf-173

Hf-176(n,2n)Hf-175

Ta-181(n,2n)Ta-180m

W-180(n,2n)W-179m

Cross-section(mb)

1.7(0.25) X 106

1211(180)

1820(270)

1971(152)

2150(230)

627(52)

15 100(1240)

1886(145)

2076(150)

1258(50)

490(50)

Half-life

1.257(6) min

37.3(5) min

75.1(4) min

93.1(1) d

4.19(1) d

142(2)d

3.684(6) h

24.0(5) h

70(2)d

8.11(2)h

6.7(3) min

Gammaenergy(keV)

108.2(1)

56.6(1)99.0(1)53.8X436.1(1)1113.5(3)

198.2(1)815.9(1)

282.5(1)396.3(1)

63.OX67.1(1)

88.3(1)

123.7(1)297.0(1)

343.4(1)

63.2X93.3(1)

222.0(1)

to- iO\

©

go

\

Atomic No./Element

66-Dy

67-Ho

68-Er

69-Tm

70-Yb

71-Lu

72-Hf

73-Ta

74-W

Gammasperdecay(%)

3.01

6.670.14

12.50.0280.049

50.046.3

3.086.55

3.107.44

8.86

82.733.8

86.6

11.64.28

8.59

(dis/s)/g(t = 10 min)

1.77 X 109

7.50 X 10s

9.01 X 103

3.64 X 102

1.08 X 103

7.12 X 101

1.56 X 10'

4.85 X 10'

2.50 X 101

5.91 X 104

1.35 X 103

(dis/s)/g(t = 1 h)

1.77 X 109

2.97 X 106

4.35 X 10"

2.18 X 103

6.48 X 103

4.27 X 102

8.66 X 10'

2.90 X 102

1.50 X 102

3.43 X 10s

2.08 X 103

(dis/s)/g(t=oo)

1.77 X 109

4.42 X 106

1.02 X 10s

7.03 X 106

9.43 X 10s

2.10 X 106

5.04 X 107

1.02 X 104

3.64 X 105

4.18 X 106

2.09 X 103

Interfering reactions

Ho-165(n,p); Er-168(n,o)

Er-164(n,p)

Er-162(n,7)

Yb-168(n,p)

Lu-176(n,p); Hf-178(n,a)

Hf-176(n,p); HM77(n,d)

HM74(n,7)

W-180(n,p)

"0

5

K)

TABLE II

Atomic No./Element

74-W

75-Re

76-Os

77-Ir

78-Pt

79-Au

80-Hg

81-Tl

(cont.)

Atomicweightofelement

186.2

190.2

192.2

195.09

196.967

200.59

204.37

Targetisotopicabundance

(%)

28.6

62.60

41.0

37.3

7.2

100

23.1

29.5

Reaction

W-186(n,2n)W-185m

Re-187(n,2n)Re-186g

Os-192(n,2n)Os-191m

Ir-191(n,2n)Ir-190m

Pt-198(n,2n)Pt-197m

Au-197(n,n'-y)Au-197m

Au-197(n,2n)Au-196m

Au-197(n,2n)Au-196m+g

Hg-2OO(n,2n)Hg-199m

Tl-203(n,2n)TI-202

Cross-section(mb)

642(60)

1720(160)

1067(318)

220(26)

910(60)

280(64)

150(20)

2160(35)g

789(120)"

2065(150)

Half-life

1.67(8) min

90.64(9) h

13.10(5) h

3.25(20) h

94.4(8) min

7.86(4) s

9.7(l)h

6.183(10) d

42.6(2) min

12.23(2) d

Gammaenergy(keV)

131.5(1)173.7(1)

63.0X137.2(1)

63.0X71.3X74.4(1)

186.7(l)Df

361.KDD502.6(l)D616.1(2)D

346.5(2)

279.0(1)

147.8(1)188.3(1)

333.0(1)355.7(1)

158.4(1)374.1(1)

439.6(1)

to-J00

as©

1n

>

Atomic No./

Element

74-W

75-Re

76-Os

77-Ir

78-Pt

79-Au

80-Hg

81-T1

Gammasperdecay(%)

4.343.30

1.929.20

4.141.430.074

69.9

95.297.898.5

11.2

70.9

42.537.4

22.986.9

52.513.8

91.4

(dis/s)/g

(t = 10 min)

5.92 X 10s

4.44 X 103

1.22 X 104

8.98 X 103

1.43 X 104

8.56 X 10s

5.43 X 103

5.14X 103

8.22 X 10"

7.06 X 102

(dis/s)/g

( t = l h)

6.01 X 10s

2.65 X 10"

7.14 X 10"

4.94 X 104

7.21 X 10"

8.56 X 105

3.17X 10"

3.08 X 104

3.41 X 10s

4.23 X 103

(dis/s)/g

6.01 X 10s

3.48 X 106

1.39 X 106

2.57 X 105

2.02 X 105

8.56 X 10s

4.59 X 10s

6.60 X 106

5.47 X 10s

1.80 X 106

Interfering reactions

W-184(n,7); Re-185(n,p);

Re-185(n,7); Os-186(n,p)

Os-190(n,7); Ir-191(n,p);

Pt-190(n,p)

Pt-196(n,7); Au-197(n,p);

Hg-198(n,d)

Hg-196(n,p)

Hg-196(n,p)

Os- 188(n, a)

Os-I87(n,d)

Pt-194(n,a)

Hg-200(n,a)

to

to00o

TABLE II (cont.)

Atomic No./Element

82-Pb

90-Th

92-U

Atomicweightofelement

207.19

232.038

238.03

Target

isotopicabundance(%)

1.42

100

99.275

Reaction

Pb-204(n,n'7)Pb-204m

Th-232(n,2n)Th-231

U-238(n,2n)U-237

Cross-section(mb)

51(10)

1259(50)

745(30)

Half-life

66.9(1 )min

25.52(l)h

6.752(2) d

Gammaenergy(keV)

374.7(1)899.2(1)911.7(2)

84.2(1)163.1(1)

101.IX208.0(1)

BO

DY

and C

r

Atomic No./Element

82-Pb

90-Th

92-U

Gammasperdecay

94.299.291.1

6.600.16

23.821.7

(dis/s)/g(t = 10 min)

(dis/s)/g(t = 1 h)

(dis/s)/g(t=oo) Interfering reactions

2.07 X 102 9.75 X 102 2.11 X 103

1.48 X 104 8.76 X 10" 3.27 X 106

1.33 X 103 7.99 X 103 1.87 X 106

Htoi

to

a This cross-section is taken from Refs [2,3].b This cross-section is taken from Ref. [12].c This cross-section contains a contribution from the Cd-111 (n, n'7) reaction.d No transition has been observed between the two states; this may also be the m state.e Must be separated by the half-life taken from Sb-120m.

Gammas from the 9.9(1) min daughter (Os-190m). Intensities are those observed in transient equilibrium.8 The cross-section at 14.70 MeV is taken from Ref. [13] (it is the same as that at 14.5 MeV, within error).11 This cross-section contains a contribution from the Hg-199 (n,n'7) reaction of a cross-section less than 80 mb.

TABLE III. RECOMMENDED (n, 2n) CROSS-SECTIONSto00to

Target nucleus

F-19

P-31

S-36

Ca-48

Sc-45

Sc-45

Ti-46

Cr-50

Cr-52

Mn-SS

Co-59

Co-59

Ni-58

Cu-63

Cu-65

Zn-64

Zn-66

Zn-70

Ga-69

Ga-71

Ge-70

Final nucleus

F-18

P-30

S-35

Ca^»7

Sc-44g

Sc-44m

Ti-45

Cr-49

Cr-51

Mn-S4

Co-58m+g

Co-58m

Ni-57

Cu-62

Cu-64

Zn-63

Zn-65

Zn-69m

Ga-68

Ga-70

Ge-69

o (mb)(Ref. [5])

55(4)

10.5(1. )

-

920(180)

188(14)

149(12)

38(4)

26(3)

304(20)

890(60)

720(50)

402(41)

35(3)

593(36)

926(60)

200(23)

605(55)

754(96)

1007(63)

1085(280)

588(75)

o (mb)(Ref. [4])

49(2)"

12.5(4. )"

20

1000(100)

-

116(23)"

39.4(4)"

20(4)"

357(30)°

809(35)"

788(230)'

473(140)"

30(3)"

550(11)"

968(30)"

178(27)"

690(70)"

-

945(50)"

1146(70)"

605(40)"

Product half-life

109.72(0.06) min

2.498(0.004) min

87.51(0.12) d

4.5401(0.003) d

3.927(0.008) h

2.442(0.004) d

3.08(0.01) h

41.9(0.3) min

27.703(0.004) d

312.2(0.1) d

70.78(0.10) d

9.15(0.10) h

35.99(0.12) h

9.74(0.02) min

12.701(0.002) h

38.1(0.3) min

244.0(0.2) d

13.76(0.02) h

68.1(0.3) min

21.10(0.07) min

39.05(0.10) h

Internal transitionto ground state (%)

98.61

-100

00O:O

»9B.OV>

53

Target nucleus

Ge-72

Ge-76

Ge-76

As-75

Se-74

Se-76

Se-78

Se-80

Se-82

Br-79

Br-81

Br-81

Kr-78

Kr-80

Kr-80

Kr-82

Kr-86

Rb-85

Rb-85

Rb-87

Final nucleus

Ge-71

Ge-75m+g

Ge-75m

As-74

Se-73m

Se-75

Se-77m

Se-79m

Se-81m

Br-78

Br-80g

Br-80m

Kr-77

Kr-79m+g

Kr-79m

Kr-81m

Kr-85m

Rb-84m+g

Rb-84m

Rb-86m+g

o(mb)(Ref. [5])

_

1151(137)

790(80)

970(80)

197(50)

944(66)

<738

680(100)

1008(120)

1070(120)

437(30)

737(74)

721(50)

810(60)

415(50)

160(15)

350(35)

1093(105)

505(34)

1550(150)

o(mb)(Ref. [4])

1022(300)a

1148(120)"

730(100)

1061(100)a

35

879(90)"

800

90

900

974(50)"

-

665(50)a

245(20)

810(60)

415

-

350

1123(100)"

350

1195(180)"

Product half-life

11.8(0.4)d

82.78(0.04) min

47.7(0.7)s

17.79(0.05) d

39.8(1.3) min

119.78(0.01) d

17.4S(0.10)s

3.91(0.05) min

57.28(0.05) min

6.46(0.04) min

17.68(0.02) min

4.42(0.01) h

74.4(0.6) min

35.04(0.10) h

50. (3. )s

13. (1. )s

4.480(0.008) h

32.87(0.1 l )d

20.49(0.17) min

18.82(0.02) d

Internal transitionto ground state (%)

99+

~100

~100

~100

~100

s

IN)00

TABLE III (cont.) 00

Target nucleus Final nucleus a (mb)(Ref. [5])

o (mb)(Ref. [4])

Product half-life Internal transitionto ground state (%)

Rb-87

Sr-84

Sr-86

Sr-88

Y-89

Zr-90

Zv-90

Zr-96

Nb-93

Mo-92

Mo-92

Mo-94

Mo-100

Ru-96

Ru-98

Ru-I04

Rh-103

Pd-102

Pd-108

Pd-110

Pd-110

Rb-86m

Sr-83m+g

Sr-85m

Sr-87m

Y-88

Zr-89m+g

Zr-89m

Zr-95

Nb-92m

Mo-91m+g

Mo-91m

Mo-93m

Mo-99

Ru-95

Ru-97

Ru-103

Rh-102m

Pd-101

Pd-IO7m

Pd-109m+g

Pd-IO9m

584(40)

-

247(22)

246(22)

907(68)

768(78)

80(6)

1529(141)

512(46)

219(19)

17(3)

3(1)

1390(60)

569(30)

790(94)

1230(146)

522(45)

637(45)

448(32)

1884(136)

510(35)

580

1054(100)'

340

318(45)"

966(100)"

764(38)"

86(8)

1400(100)

482(3S)a

192(20)"

14.5

560

1420(150)

700(100)

1050(100)

1440(100)

-

650(60)

500

1500(150)

500

1.020(0.002) min

32.4(0.2) h

67.66(0.07) min

2.81(0.01) h

106.6(0.2) d

78.43(0.08) h

4.18(0.01) min

63.98(0.06) d

10.15(0.02) d

15.49(0.01) min

65.2(0.8) s

6.95(0.05) h

66.02(0.01) h

1.65(0.02) h

2.88(0.04) d

39.35(0.05) d

207. (3. )d

8.47(0.06) h

21.3(0.5)s

13.427(0.014) h

4.69(0.01) min

-100°

94

50

w

o

InCA

~ioo

Target nucleus

Ag-107

Ag-107

Ag-I09

Cd-108

Cd-112

Cd-116

Cd-116

In-113

In-115

In-115

Sn-112

Sn-114

Sn-114

Sn-118

Sn-120

Sn-122

Sn-124

Sn-124

Sb-121

Sb-121

Sb-123

Final nucleus

Ag-106g

Ag-106m

Ag-IO8g

Cd-107

Cd-lllm

Cd-115g

Cd-115m

In-112m

In-114g

In-114m

Sn-111

Sn-ll3m+g

Sn-113m

Sn-117m

Sn-119m

Sn-121g

Sn-123g

Sn-123m

Sb-120g

Sb-120m

Sb-122m+g

o(mb)(Ref. (5J)

870(100)

600(80)

840(150)

915(85)

725(50)

830(80)

790(80)

1317(200)

269(20)

1515(100)

1275(100)

1239(130)

-

966(100)

1444(210)

875(135)

900(180)

547(23)

1080(90)

427(20)

1542(80)

0 (mb)(Ref. [4])

937(280)*

400

-

-

675

-

820

790

-

1223(120)a

1180(120)*

1300(200)

1050

1200

-

-

-

-

-

610

1420(140)a

Product half-life

24.0(0.1) min

8.46(0.10) d

2.37(0.01) min

6.50(0.02) h

48.6(0.03) min

53.46(0.10) h

44.6(0.3) d

20.9(0.2) min

71.9(0.!)s

49.51(0.01) d

35.3(0.8) min

115.10(0.17) d

21.4(0.4) min

14.0(0.3) d

293.0(1.3) d

27.06(0.04) h

129.2(0.4) d

40.08(0.07) min

15.89(0.04) min

5.76(0.02) d

2.681(0.003) d

Internal transitionto ground state (%)

~0

9C

~0

96.7

91

~0

~0

~0

-100

i

00

TABLE III (cont.)

Target nucleus

Sb-123

Te-t20

Te-120

Te-122

Te-122

Te-124

Te-128

Te-128

Te-130

Te-130

1-127

Xe-124

Xe-126

Xe-126

Xe-128

Xe-128

Xe-130

Xe-132

Xe-134

Xe-136

Xe-136

Final nucleus

Sb-122m

Te-U9g

Te-119m

Te-121g

Te-121m

Te-123m

Te-127g

Te-127m

Te-129g

Te-129m

1-126

Xe-123

Xe-125m+g

Xe-125m

Xe-127m+g

Xe-I27in

Xe-129m

Xe-I31m

Xe-133m

Xe-135m+g

Xe-135m

a(mb)(Ref. [5])

731(73)

68S(80)

535(85)

725(40)

890(100)

980(100)

780(60)

940(100)

570(30)

885(45)

1649(80)

997(80)

1480(130)

410(125)

1446(140)

317(25)

1435(130)

775(65)

665(80)

-

750(50)

a(mb)(Ref. [4])

1000

-

-

-

700

-

-

900

-

1000

1550(100)a

1200(100)

1400(100)

700

1550(150)

840

-

770

665

1750(100)

750

Product half-life

4.21(0.02) min

16.05(0.05) h

4.68(0.05) d

16.78(0.35) d

154. (7. )d

119.7(0.1) d

9.35(0.07) h

109. (2. )d

69.5(0.5) min

33.52(0.12) d

13.02(0.07) d

2.08(0.02) h

17.3(0.4) h

57. (1. )s

36.4(0.1) d

69.2(0.9) s

8.89(0.02) d

1 1.770(0.012) d

2.19(0.03) t)

9.1O4(O.O2O)h

15.65(0.10) min

Internal transitionto ground state (%)

~ 0

90

97.6

63

~100

~100

99+

286

w©«<

1oen

Target nucleus

Cs-133

Ba-132

Ba-134

Ba-136

Ba-138

Ce-136

Ce-138

Ce-140

Ce-140

Ce-142

Pr-141

Nd-142

Nd-142

Nd-148

Nd-150

Sm-144

Sm-I44

Sm-154

Eu-151

Eu-153

Eu-153

Final nucleus

Cs-132

Ba-131

Ba-133m

Ba-135m

Ba-137m

Ce-135m+g

Ce-137m

Ce-139m+g

Ce-139m

Ce-141

Pr-140

Nd-14lm+g

Nd-I41m

Nd-147

Nd-149

Sm-l43m+g

Sm-143m

Sm-153

Eu-150m

Eu-152m,

Eu-152m2

o(mb)(Ref.(5J)

1620(150)

1576(100)

783(56)

<1150

1020(70)

1604(148)

974(88)

1810(85)

900(120)

1774(140)

1710(120)

1692(120)

591(45)

1950(150)

1906(160)

1678(185)

652(38)

1882(130)

467(43)

-

72(6)

o(mb)(Ref. [4])

1603(100)*

1600(100)

940

700

1250

1600(140)

970(90)

175O(7O)a

963(120)a

1760(70)a

1660(120)a

1701(120)a

600(50)

1710(500)"

169O(50O)a

1488(450)a

-

1870(550)"

-

500(100)

70

Product half-life

6.474(0.014) d

12.0(0.1) d

38.9(0.1) h

28.7(0.2) h

2.554(0.002) min

17.76(0.31) h

34.4(0.4) h

137.65(0.03) d

56.44(0.48) s

32.50(0.01) d

3.39(0.01) min

2.50(0.08) h

61.5(2.0) s

10.98(0.01) d

1.73(0.01) h

8.83(0.01) min

65. (3. ) s

46.8(0.1) h

12.55(0.05) h

9.32(0.01) h

96. (1. ) min

Internal transitionto ground state (%)

~100d

~100

99.97

99.8

0.0e

00

TABLE III (cont.) OOOO

Target nucleus

Gd-152

Gd-154

Gd-160

Tb-159

Dy-156

Dy-158

Dy-160

Ho-165

Er-162

Er-164

Er-166

Er-168

Er-170

Tm-169

Yb-168

Yb-170

Yb-176

Lu-175

Hf-174

Hf-176

Hf-179

Final nucleus

Gd-15l

Gd-153

Gd-159

Tb-158m

Dy-155

Dy-157

Dy-159

Ho-164m

Er-161

Er-163

Er-165

Er-167m

Er-169

Tm-168

Yb-167

Yb-169

Yb-175

Lu-174m

Hf-173

Iif-175

Hf-I78m

o(rab)(Ref. [5])

1867(233)

1995(280)

1975(185)

451(65)

1852(143)

1990(167)

2020(218)

1211(180)

1927(130)

1824(270)

1954(147)

690(110)

1900(135)

1971(152)

1913(217)

1985(151)

2166(230)

627(52)

1886(145)

2076(150)

-

o (mb)(Ref. [4])

1800(200)

1900(150)

1960(180)

450(65)

1850(150)

1950(170)

2000(200)

1050(300)a

1900(130)

1820(270)

1960(150)

1000

1930(130)

2070(600)*

1920(150)

1940(150)

2150(230)

558(17O)a

1900(150)

2050(150)

900

Product half-life

120. ;20. )d

241.6(0.2) d

18.56(0.08) h

10.5(0.2) s

10.0(0.3) h

8.06(0.08) h

144.4(0.2) d

37.5(1.0) min

3.24(0.04) h

75.0(0.4) min

10.34(0.05) h

2.28(0.03) s

9.40(0.02) d

9 3 . 1 ( 0 . 1 ) d

17.7(0.2) min

32.022(0.008) d

4.19(0.01)d

142. (2. )d

24.0(0.5) h

70. (2. )d

4.3(0.1 )s

Internal transitionto ground state (%)

esO:O

p

g.O

Target nucleus

Hf-180

Ta-181

W-180

W-180

W-182

W-184

W-186

W-186

Re-185

Re-185

Re-187

Os-184

Os-186

Os-192

Os-192

Ir-191

Ir-191

lr-193

Pt-192

Pt-196

Pt-198

Final nucleus

Hf-179m

Ta-180m

W-179m+g

W-179m

W-181

W-183m

W-185m+g

W-185m

Re-184g

Re-184m

Re-186g

Os-183m

Os-185

Os-191m+g

Os-19lm

Ir-190g

lr-l90m

lr-192

Pt-191

Pt-I95m

Pt-197m+g

o (mb)(Ref. [5])

_

1150(100)

1866(176)

490(45)

2162(140)

790(90)

2272(250)

642(60)

1430(220)

260(100)

1720(160)

488(39)

2000(120)

1993(200)

1067(318)

1716(125)

220(26)

2062(121)

2026(168)

460(55)

-

o (mb)(Ref. (4))

600

1258(5O)a

2100(600 )a

490(50)

2O2O(6OO)a

1600

1840(550)a

600(60)

1500(450)a

300(90)a

1700(200)

-

-

2120(150)

-

-

370

2048(1 50)a

2030(100)

460

2300(200)

Product half-life

18.67(0.04) s

8.00(0.05) h

37.5(0.5) min

6.4(0.1) min

120.95(0.02) d

5.4(0.1)s

75.1(0.3) d

1.67(0.03) min

38.0(0.5) d

169. (8. )d

90.64(0.09) h

9.9(0.3) h

93.6(0.5) d

15.4(0.1) d

13.10(0.05) h

11.78(0.10) d

3.2(0.2) h

74.1(0.2) d

2.9(0.1) d

4.020(0.009) d

18.3(0.3) h

Internal transitionto ground state (%)

99.69

~100

75

~100 f

- 1 0 0

5g

97

00O

TABLE III (cont.)

O

Target nucleus

Pt-198

Au-197

Au-197

Hg-196

Hg-198

Hg-200

Hg-204

Tl-203

Pb-204

Pb-204

Th-232

U-238

Final nucleus

Pt-197m

Au-196m+g

Au-196m

Hg-195m

Hg-197m

Hg-I99m

Hg-203

TI-202

Pb-2O3m+g

Pb-2O3m

Th-231

U-237

0 (mb)(Ref. [5])

910(60)

-

150(20)

1617(160)

910(85)

789(120)

2030(140)

1950(200)

-

860(180)

1320(130)

703(50)

a (mb)(Ref. [4])

1200

21O0(15O)a

133(40)a

-

-

-

1924(550)a

2065(150)a

2103(200 )a

1200

1259(50)a

745(30)a

Product half-life

94.4(0.8) min

6.183(0.010) d

9.7(0.1) h

40.0(0.5) h

23.8(0.1) h

42.6(0.2) min

46.585(0.008) d

12.23(0.02) d

52.02(0.05) h

6.09(0.10) s

25.52(0.03) h

6.75(0.01) d

Internal transitionto ground state (%)

~100

-100

' This is a value of the respective excitation function at 14.5 MeV.b The half-life of Sr-83m is 4.95(0.15) s.c The half-life of Ag-108m is 127. (21. ) years.d The half-life of Ce-135m is 20. (2. ) s.e Internal transition to the mi state.f The half-life of Re-186m is 2 X 10s years.8 The 3.2 h half-life state decays partially to the ground state across an intermediate state with a 1.2 h half-life.

00

§

O• 2

TABLE IV. RECOMMENDED (n, p) CROSS-SECTIONS

Target nucleus

N-15

0-16

0-17

F-19

Ne-20

Na-23

Mg-24

Mg-25

Mg-26

Al-27

Si-28

Si-29

Si-30

P-31

S-32

S-33

S-34

S-36

Cl-35

Cl-37

Final nucleus

C-15

N-16

N-17

0-19

F-20

Ne-23

Na-24

Na-25

Na-26

Mg-27

Al-28

Al-29

Al-30

Si-31

P-32

P-33

P-34

P-36

S-35

S-37

o(mb)(Ref. [5])

38(3)

35(4)

5.5(2. )

19(2)

-

35(4)

181(8)

56(6)

39(11)

75(4)

226(30)

129(15)

95(20)

97(15)

254(25)

134(22)

78(8)

-

125(15)

28(3)

o (mb)(Ref. [4p

16(4)

40(3)a

35

20(2)a

92

44(13)a

188(8)a

45(13)a

25(5)

74(22)a

256(20)a

115(15)

-

88(4)a

230(70)a

190(57)a

73(10)a

50

110(10)

20(5)

Product half-life

2.449(0.004) s

7.13(0.02) s

4.173(0.004) s

26.76(0.08) s

10.996(0.020) s

37.24(0.12) s

15.020(0.007) h

59.6(0.7) s

1.072(0.009) s

9.462(0.011) min

2.2406(0.0005) min

6.56(0.06) min

3.60(0.06) s

2.622(0.005) h

14.26(0.04) d

25.34(0.12) d

12.43(0.08) s

3. s

8 7 . 5 1 ( 0 . 1 2 ) d

5.05(0.02) min

Internal transitionto ground state (%)

s

VO

TABLE IV (cont.)

Target nucleus

Ar-38

Ar-40

K-41

Ca-42

Ca-43

Ca-44

Ca-46

Sc-45

Ti-46

Ti-46

Ti-47

Ti-48

Ti-49

Ti-50

V-51

Cr-52

Cr-53

Cr-54

Mn-55

Fe-54

Fe-56

Final nucleus

Cl-38

Cl-40

Ar-41

K-42

K-43

K-44

K-46

Ca-45

Sc-46m+g

Sc-46m

Sc-47

Sc-48

Sc-49

Sc-50

Ti-51

V-52

V-53

V-54

Cr-55

Mn-54

Mn-56

a(mb)(Ref. [5])

75(1.5)

16(2)

51(8)

178(12)

101(13)

46(5)

-

57(6)

-

48(8)

116(15)

53(6)

23(5)

12(2)

33(3)

80(6)

48(7)

18(3)

57(7)

332(30)

98(7)

a (mb)(Ref. [4])

100(20)

18

43(5)a

153(2O)a

100(10)

39(4)a

52(15)a

58(6)a

242(30)a

-

107(15)a

66(6)a

29.5(5. )a

16.5(3. )a

31.5(3)a

102(20)a

43(5)

16(3)

44(13)a

365(30)"

106(30)a

Product half-life

37.24(0.05) min

1.32(0.2) min

1.827(0.007) h

12.360(0.003) h

22.3(0.1) h

22.13(0.19) min

107. (10. )s

165.1(0.7) d

83.83(0.02) d

18.72(0.06) s

3.422(0.004) d

43.67(0.09) h

57.00(0.18) min

1.71(0.01) min

5.80(0.03) min

3.746(0.007) min

1.60(0.05) min

43. (3. )s

3.52(0.03) min

312.2(0.1) d

2.5785(0.0006) h

Internal transitionto ground state (%)

~100

to

OO

Target nucleus

Fe-57

Fe-58

Co-59

Ni-58

Ni-58

Ni-60

Ni-61

Ni-62

Ni-62

Cu-65

Zn-64

Zn-66

Zn-67

Zn-68

Ga-69

Ga-69

Ga-71

Ga-71

Ge-70

Ge-72

Ge-73

Final nucleus

Mn-57

Mn-58

Fe-59

Co-58m+g

Co-58m

Co-60m

Co-61

Co-62g

Co-62m

Ni-65

Cu-64

Cu-66

Cu-67

Cu-68m

Zn-69g

Zn-69m

Zn-71g

Zn-71 m

Ga-70

Ga-72

Ga-73

a (mb)(Ref. [5])

55(4)

7(1.5)

73(10)

375(22)

190(18)

95(10)

95(10)

-

21(2.5)

27(5)

160(12)

72(8)

38(6)

16.5(2.5)

38(5)

26(2)

8(1)

12.5(1.5)

73(8)

31(3)

27(4)

a(mb)(Ref. [4])

56(16)a

17(5)

60(10)a

378(110)a

147(44)a

59(18)a

85(25)a

22(7)a

22(7)a

25(5)a

164(10)a

68(13)a

45(5)

-

34(3)

25(2)a

12(4)

11(1)

77(23)a

41(12)a

22(7)a

Product half-life

1.54(0.05) min

65.3(0.7)s

45.54(0.05) d

70.78(0.10) d

9.15(0.10) h

10.47(0.04) min

1.650(0.005) h

1.50(0.04) min

13.91(0.05) min

2.520(0.001 )h

12.701(0.002) h

5.10(0.02) min

62.01(0.14) h

3.75(0.05) min

55.6(1.6) min

13.76(0.02) h

2.45(0.10) min

3.94(0.05) h

21.10(0.07) min

14.10(0.2) h

4.87(0.03) h

Internal transitionto ground state (%)

~100

~ 0

99+

~ 0

H

TABLE IV (cont.)

Target nucleus

Ge-74

As-75

As-75

Se-74

Se-76

Se-77

Se-78

Se-80

Br-79

Br-81

Kr-80

Kr-82

Kr-83

Rb-87

Sr-84

Sr-84

Sr-86

Sr-88

Y-89

Zr-90

Zr-91

Final nucleus

Ga-74

Ge-75m+g

Ge-75m

As-74

As-76

As-77

As-78

As-80

Se-79m

Se-81m

Br-80m

Br-82

Br-83

Kr-87

Rb-84m+g

Rb-84m

Rb-86m+g

Rb-88

Sr-89

Y-90m+g

Y-91m+g

o (mb)(Ref. [5])

11(2)

29(2.5)

16(1.5)

134(13)

75(6)

35(5)

17(2)

16(4)

10(3)

15(2)

55(9)

23(4)

14(3)

12(1.3)

96(8)

47(7)

44(4)

13.5(1.5)

28(6)

-

29(4)

o (mb)(Ref. [4])

12(4)a

19.2(2)a

18

147(30)a

55(5)

35(5)

18(4)

10

15(2)

-

23(4)

-

10(2)

96(8)

47(7)

44.5(4)a

15(2)a

24.6(3)a

45(3)a

32.5(3)a

Product half-life

8.25(0.05) min

82.78(0.04) min

47.7(0.7) s

17.79(0.05) d

26.37(0.07) h

38.83(0.05) h

90.7(0.2) min

15.2(0.2) s

3.91(0.05) min

57.28(0.05) min

4.42(0.01) h

35.30(0.03) h

2.39(0.03) h

76.31(0.62) min

32.87(0.1 l )d

20.49(0.17) min

18.82(0.02) d

17.78(0.11) min

50.55(0.09) d

64.06(0.11) h

58.51(0.06) d

Internal transitionto ground state (%)

99+

~100

~100b

99+c

-100

60O=O<

o

Target nucleus

Zr-91

Zr-92

Zr-94

Mo-92

Mo-95

Mo-95

Mo-96

Mo-97

Mo-98

Ru-96

Ru-96

Ru-99

Ru-100

Ru-101

Rh-103

Pd-104

Pd-105

Pd-105

Pd-106

Ag-107

Ag-109

Final nucleus

Y-91m

Y-92

Y-94

Nb-92m

Nb-95m+g

Nb-95m

Nb-96

Nb-97m+g

Nb-98g

Tc-96m+g

Tc-96m

Tc-99m

Tc-lOO

Tc-101

Ru-103

Rh-104m

Rh-105m+g

Rh-105m

Rh-106g

Pd-107m

Pd-109m+g

a(nib)(Ref. [5])

14.2(1.2)

19.5(2.5)

11(1)

60(5)

31(4)

-

19(2)

14(1.8)

-

170(30)

-

<16

15(6)

-

17(3)

31(6)

31(3)

23(8)

16(4)

15(2)

10(3)

a (mb)(Ref. [4])

14(2)

18.5(5.5)a

9.6(2.8)a

64(19)a

38(1 l)a

24

2O.3(6)a

12.5(3.7)a

11(4)

150(20)

62

15

-

36(4)

16(1)

-

38(8)

-

-

15

14(2. l)a

Product half-life

49.71(0.04) min

3.54(0.01) h

18.7(0.1) min

10.15(0.02) d

35.05(0.10) d

86.6(0.8) h

23.35(0.05) h

72.1(0.7) min

2.86(0.06) s

4.28(0.07) d

51.5(1.0) min

6.007(0.002) h

15.8(0.1) s

14.2(0.1) min

39.35(0.05) d

4.41(0.02) min

35.36(0.06) h

45. s

29.80(0.08) s

21.3(0.5) s

13.427(0.014)11

Internal transitionto ground state (%)

97.5

~100d

~ 0 e

98

~100

~ 0 f

~100g to

TABLE IV (cont.)

to

Target nucleus

Cd-106

Cd-106

Cd-110

Cd-110

Cd-111

Cd-112

In-115

Sn-116

Sn-117

Te-122

Xe-128

Nd-142

Nd-143

Sm-144

Ho-165

Final nucleus

Ag-106g

Ag-106m

Ag-llOg

Ag-llOm

Ag-11 lm+g

Ag-112

Cd-115g

In-116m

ln-117g

Sb-122m+g

1-128

Pr-142m+g

Pr-143

Pm-144

Dy-16Sm+g

o(mb)(Ref. [5])

76(24)

54(20)

23(4)

-

19(2)

12(2)

18(4)

11(1.3)

10(1.2)

10.5(1.5)

27(4)

13(2)

11(2)

19(4)

-

a (mb)(Ref. [4])

_

76

27(5)

20

22(5)a

16(2)

15(5)

11

-

12(2)

-

14(2)

12(2)

-

40(12)a

Product half-life

24.0(0.1) min

8.46(0.10) d

24.42(0.14) s

249.8(0.1) d

7.45(0.01) d

3.14(0.02)h

53.46(0.10) h

54.15(0.06) min

43.8(0.7) min

2.681(0.003) d

24.99(0.02) min

19.2(0.1) h

13.59(0.04) d

363. (14. )d

2.334(0.006) h

Internal transitionto ground state (%)

~ 0

1.5

99.7h

~ 0 '

47*

~100k

-1001

97.76m

WO:O<

a.o

E

a This is a value of the respective excitation function at 14.5 MeV.b The half-life of Rb-86m is 1.020(0.002) min.c The half-life of Y-90m is 3.19(0.01) h.d The half-life of Nb-97m is 60. (8. ) s.e The half-life of Nb-98m is 51.3(0.3) min.f The half-life of Rh-106m is 130. (2. ) min.8 The half-life of Pd-109m is 4.69(0.01) min.h The half-life of Ag-111 m is 64.8(0.8) s.' The half-life of Cd-115m is 44.6(0.3) d.' The half-life of In-117m is 1.93(0.02) h and a(n,p) leading to this isomeric state is approximately 6.5 mb.k The half-life of Sb-122m is 4.21 (0.02) min.1 The half-life of Pr-142m is 14.6(0.5) min.m The half-life of Dy-165m is 1.257(0.006) min.

"8

TABLE V. RECOMMENDED (n,a) CROSS-SECTIONS00

Target nucleus

F-19

Na-23

Mg-26

Al-27

Si-30

P-31

S-34

S-36

CI-35

Cl-37

Ar-40

K-41

Ca-40

Ca-44

Ca-46

Sc-45

Ti-48

V-51

Cr-54

Mn-55

Fe-54

Final nucleus

N-16

F-20

Ne-23

Na-24

Mg-27

Al-28

Si-31

Si-33

P-32

P-34

S-37

Cl-38m+g

Ar-37

Ar-41

Ar-43

K-42

Ca-4S

Sc-48

Ti-51

V-52

Cr-51

a(mb)(Ref. [5])

15(5)

150(30)

77(8)

121(6)

70(10)

118(15)

138(35)

-

117(15)

36(10)

10.0(1.5)

39(8)

138(20)

35(6)

-

56(6)

31(3)

16(1)

14(1.2)

32(5)

100(10)

o (mb)(Ref. (4])

33(7)"

150(15)"

75(22)a

119(36)a

89(27)"

110(10)*

134(67)"

15

117(10)"

45(13)a

11.3(2.0)"

33.5(2)"

115(35)"

36(5)"

21(6)"

55(5)"

40(12)"

16(2)"

12.4(3.7)"

29(9)"

119(20)"

Product half-life

7.13(0.02) s

10.996(0.020) s

37.24(0.12) s

15.020(0.007) h

9.462(0.011) min

2.2406(0.0005) min

2.622(0.005) h

6.18(0.18) s

14.26(0.04) d

12.43(0.08) s

5.05(0.02) min

37.24(0.05) min

35.04(0.04) d

1.827(0.007) h

5.37(0.06) min

12.360(0.003) h

165.1(0.7) d

43.67(0.09) h

5.80(0.03) min

3.746(0.007) min

27.703(0.004) d

Internal transitionto ground state (%)

~100b

WO:©

nV)

Target nucleus

Fe-58

Co-59

Ni-62

Cu-63

Cu-65

Zn-68

Ga-69

Ga-71

Ge-76

As-7S

Br-79

Sr-88

Mo-92

Rh-103

Ag-107

Cd-106

Nd-144

Final nucleus

Cr-55

Mn-56

Fe-59

Co-60m

Co-62m

Ni-65

Cu-66

Cu-68

Zn-73

Ga-72

As-76

Kr-85m

Zr-89m+g

Tc-100

Rh-104m

Pd-103

Ce-141

o(mb)(Ref. [S])

21(2)

30(2)

20(3)

23(3)

16(4)

9(1)

34(4)

-

-

10(1)

16(2)

75(30)

22(3)

11(2)

-

-

10(1)

a(mb)(Ref. [4])

21(6)a

29(2)a

21(3)a

21(6)a

7.2(2.1)"

11.6(2.3)a

18(2)

60(4)

14(4)a

11.6(l)a

12.0(1.8)"

-

25(3)

11(2)

ll.3(3.4)a

100(40)

-

Product half-life

3.52(0.03) min

2.5785(0.0006) h

45.54(0.05) d

10.47(0.04) min

13.91(0.05) min

2.520(0.001) h

5.10(0.02) min

31. (1. )s

23.5(1.0) s

14.10(0.2) h

26.37(0.07) h

4.480(0.008) h

78.43(0.08) h

15.8(0.1) s

4.41(0.02) min

16.96(0.02) d

32.50(0.01) d

Internal transitionto ground state (7c)

94C

a This is a value of the respective excitation function at 14.5 MeV.b The half-life of Cl-38m is 0.715(0.003) s.c The half-life of Zr-89m is 4.18(0.01) min.

to

300 BODY and CSIKAI

Now, while the result for Nm (Eq. (7a)) is just the same as that for N (Eq. (3)),Ng is a rather complicated function of the parameters and of time. However, thereare limiting cases where Ng is proportional either to (am + ag) or to ag.Asymptotically, Ng will always be proportional to (fiom + ag), but one can only usethis fact to advantage if either Xm > Xg or Xg > Xm. In the former case, if it isalso true that 0 = 1 (IT « 100%), one can use the (am + ag) 'total' cross-sectionin calculating ground state activity. Now, of course, a cooling time of t c > T™2

has to be chosen in order to obtain exponential decay. On the other hand, ifXg > Xm and, in addition, the inequality omfikmt < a% also holds, then one canuse ag for the same purpose. A short cooling time ( t c < T™2) is appropriate. InTables III-V the (am + ag) or the ag values are presented according to whetherthe final nucleus is denoted either by X - A m + or X — A , respectively, whereA is the mass number and X is the symbol of the element. If neither of theinequalities between Xm and Xg hold, then no cross-section (involving the groundstate) is given, unless |3 * 0 (that is, unless the two states are totally separated fromeach other).

However, it has to be noted that the use of ground state activity (if ametastable state is also present) should be carried out with care or, preferably, beavoided whenever a proper substitution is possible.

3. EXPLANATION OF THE NUCLEAR DATA IN TABLE II

Details on the origins of the data in Table II, as well as on the errors, aresummarized as follows. The (n, 2n), (n, p) and (n, a) cross-sections are eitherfrom Refs [4] or [5]. The (n, n'7) cross-sections are from Ref. [5] in every case,while the thermal (n,7) cross-sections are from Ref. [7].

The cross-sections, except (n,7), are determined nominally at a neutronenergy of 14.5 MeV. Data for isotopic abundances were taken from Ref. [8],half-life data from Ref. [9] and gamma energies and intensities from Ref. [10].Errors in the last digit(s) of the half-life values are placed within parentheses, asare the energy errors: the uncertainty is in the last digit of the energy value(0.1 keV is the minimum error by definition). The energy errors may be replacedby the symbol X for an X-ray of known intensity which is associated with thedecay of the nuclide.

The 'Gammas per decay' column denotes the number of photons emitted in100 decays of the nuclide. Here the number of digits given is a measure of theaccuracy of the value, i.e. a three-digit figure (e.g. 90.1 or 9.23) signifies anuncertainty of <10%, while a two-digit figure (90 or 9.2) signifies an uncertaintyof between 10 and 20%. A one-digit figure (9., 0.9, 0.09) signifies a level of 20% orgreater uncertainty. Further information (e.g. for IT values) can be found inTables III-V.

PART 2-2 301

4. EXPLANATION OF THE CROSS-SECTION TABLES

The (n, 2n), (n, p) and (n, a) cross-sections are given in Tables III, IV and V,respectively. They are the recommended values of Bychkov et al. ([4] or [6]), as wellas of Qaim [5]. The cross-sections are assigned nominally to 14.5 MeV. However,this energy value (which is not the best one from the point of view of the measuringtechnique) is of use only in some of the cases, i.e. where a great deal of independentexperimental data are available or an excitation function has been measured (markedby superscript 'a' in column 4 of Tables III—V). In some cases, measurements at14.1 or 14.8 MeV are also included.

The tables present cross-section values (based on experimental data) only incases where the following two conditions are both fulfilled:

(1) The half-life of the product nucleus is within the one second and the one yearinterval.

(2) The cross-section (according to at least one of the references) is greater than10 mb.

The half-lives in these tables are very recent and are taken from Ref. [11]. Thevalues of the internal transitions (leading to the ground state) are taken fromRef. [9]. The 'Product half-life' column presents the ground state value wheneverthe final nucleus is either X - A m + g or X - A g .

TABLE VI. SOME VERY PRECISE CROSS-SECTIONS AT 14.7 MeV FROMA SIMULTANEOUS EVALUATION( The proton scattering cross-section of hydrogen is also included because it is afrequently used standard. The data were taken from Refs [12,13].)

Reaction

Al-27(n,a)Na-24

Fe-56(n,p)Mn-56

Cu-63(n, 2n)Cu-62

Cu-65(n, 2n)Cu-64

Au-197(n,2n)Au-196m+g

Nb-93(n, 2n)Nb-92m

S-32(n,p)P-32

H-l(n,n)H-l

Cross-section(mb)

113.7

107.8

537

962

2160

451

215

650

Uncertainty(%)

0.6

0.6

1.2

1.2

1.6

1.6

1.5

1.4

302 BODY and CSIKAI

TABLE VII. ISOTOPIC AND ELEMENTAL CROSS-SECTIONS AT14.7 MeV FROM A RECENT EVALUATION [14]

Reaction

Al-27(n,p)Mg-27

Si(n, X)Al-28

Ti(n, X)Sc-46

Ti(n, X)Sc-47

Ti(n, X)Sc-48

V-51(n,p)Ti-51

V-51(n,a)Sc-48

Cr(n, X)V-52

Mn-55(n,a)V-52

Mn-55(n, 2n)Mn-54

Fe(n,X)Mn-54

Fe-54(n,a)Cr-51

Co-59(n,p)Fe-59

Co-59(n,a)Mn-56

Co-59(n, 2n)Co-58

Cu-65(n,p)Ni-65

Zn(n, X)Cu-64

Zn-64(n,2n)Zn-63

Isotopiccross-sectionsa

(mb)

70.5

257.3

294.8

223.1

60.6

31.87

15.89

72.49

31.21

816.7

284.4

87.9

56.60

30.17

747.7

20.46

165.4

162.2

Elementalcross-sections(mb)

Same

237.3

24.18

16.51

44.67

31.79

15.85

60.74

Same

Same

16.50

5.096

Same

Same

Same

6.303

80.4

78.8

Standarddeviation(%)

2.0

2.5

2.3

17.2

2.4

4.4

2.4

4.4

4.2

2.6

2.0

2.7

16.2

1.4

2.4

7.0

2.6

2.4

Calculated by assuming that the yield is attributed to that single isotope which isresponsible for the dominant portion of the yield.

Finally, it should be mentioned that it is not too essential whether data fromRefs [4] or [5] are used. The difference between these two sets of data is greaterthan their summed errors in about 8% of all cases, while this number is reduced to1.4% if only those data are included which were taken from excitation functions(Refs [4,6 ]). Therefore, a preference for the value of Bychkov et al. is suggested ifthis value is taken from an excitation function (although the errors seem to beslightly overestimated here in some cases).

The results of a simultaneous evaluation of some important cross-sectionsat 14.7 MeV are presented in Table VI. These are very precise values and areused frequently as standards [12, 13]. In Table VII, some cross-sections — alsomeasured at 14.7 MeV — are given from a recent evaluation, including elementalcross-sections [14].

PART 2-2 303

ACKNOWLEDGEMENTS

The authors are very much indebted to H. Vonach for his useful remarks.

REFERENCES

[1] CSIKAI, J., At. Energy Rev. 11 3(1973)415.[2] TAGESEN, S., VONACH, H., Physics Data, Vol. 13-1, Fachinformationszentrum,

Karlsruhe (1981).[3] VONACH, H., "The 27Al(n,a) cross-section", Nuclear Data Standards for Nuclear

Measurements, Technical Reports Series No. 227, IAEA, Vienna (1983) 59.[4] BYCHKOV, V.M., MANOKHIN, V.N., PASHCHENKO, A.B., PLYASKIN, V.I., Cross

sections for neutron induced threshold reactions, Energoizdat, Moscow (1982) (in Russian).2

[5] QAIM, S.M., "14 MeV neutron activation cross sections", Handbook of Spectroscopy,Vol. 3, CRC Press, Boca Raton, FL( 1981) 141.

[6] MANOKHIN, V.N., PASHCHENKO, A.B., PLYASKIN, V.I., BYCHKOV, V.M.,PRONYAEV, V.G., Chapter 2-3, this Handbook.

[7] GRYNTAKIS, E.M., MUNDY, G., CULLEN, D.E., Part 2-1, this Handbook.[8] YOSHIZAWA, Y., HARIGUCHI, T., YAMADA, M., Chart of the Nuclides, Tokai,

Ibaraki(1980).[9] Table of Isotopes, 7th edn (LEDERER, CM., SHIRLEY, V.S., Eds) Wiley, New York

(1978).[10] REUS, U., WESTMEIER, W., At. Data Nucl. Data Tables 29 2 (1983) 205.[11] LORENZ, A., Nuclear Data Section, IAEA, private communication, 1984.[12] WINKLER, G., RYVES, T.B., Ann. Nucl. Energy 10 (1983) 601.[13] RYVES, T.B., "A simultaneous evaluation of some important cross-sections at 14.70 MeV",

Nuclear Standard Reference Data (Proc. IAEA-OECD/NEANDC Advisory GroupMeeting Geel, Belgium, 1984), IAEA-TECDOC-335, IAEA, Vienna (1985) 431.

[141 EVAIN, B.P., SMITH, D.L., LUCCHESE, P., Argonne National Lab., IL,Rep. ANL/NDM-89( 1985).

2 If an excitation function is presented in Ref. [6], then this value is accepted instead ofa value from Ref. [4], even in the case when the new error is greater than the old one.

2-3. ACTIVATION CROSS-SECTIONSINDUCED BY FAST NEUTRONS

V.N. MANOKHIN, A.B. PASHCHENKO,V.I. PLYASKINInstitute of Physics

and Power Engineering,Obninsk,Union of Soviet Socialist Republics

V.M. BYCHKOV*Department of Safeguards,International Atomic Energy Agency,Vienna

V.G. PRONYAEV*Nuclear Data Section,Division of Research and Laboratories,International Atomic Energy Agency,Vienna

Abstract

ACTIVATION CROSS-SECTIONS INDUCED BY FAST NEUTRONS.Evaluated cross-sections for the most important activation reactions induced by fast

neutrons have been compiled on the basis of internationally available evaluated data libraries.The computer file includes evaluated neutron cross-section data for 206 (n, 2n), (n, p) and(n, a) reactions in the energy range from threshold to 20 MeV, leading to well specified radio-activities. The data are presented in the form of graphical plots and tables. An estimate of theaccuracy of the evaluated data is also given in the tables wherever possible. The file can beobtained on magnetic tape in the ENDF-V computer format upon request from the NuclearData Section of the IAEA.

1. INTRODUCTION

The present compilation of fast neutron induced activation reaction cross-sections, covering energies from threshold to 20 MeV, is based on evaluated datataken from different evaluated data libraries and individual evaluations. Themajority of these evaluations were prepared by using available experimental data

* Present address: Institute of Physics and Power Engineering, Obninsk, Union of SovietSocialist Republics.

305

306 MANOKHIN et al.

for selecting the parameters needed in theoretical computations and for normalizingthe results of such computations. Theoretical calculations were also used forthe interpolation and extrapolation of experimental cross-section data.

The significant progress achieved over the last ten years in the theoreticaldescription of these activation reactions must be emphasized, especially since theprevious edition of this Handbook [ 1 ] included only a compilation ofexperimental data. The reasons for this progress are (1) development of statisticaland pre-equilibrium decay models [2-4] and (2) a better understanding of nuclearlevel density problems [5].

2. PROCEDURE FOR FILE PREPARATION

The following libraries and individual files of evaluated neutron cross-sectiondata were used for the selection of the activation cross-sections: the BOSPORLibrary [6], the Activation File of the Evaluated Nuclear Data Library [7], theEvaluated Neutron Data File (ENDF/B-V) Activation File [8], the InternationalReactor Dosimetry File (IRDF-82) [9] and individual evaluations carried outunder various IAEA research contracts [ 10, 11 ]. All of the evaluated data curveswere compared with experimental data that have been reported over the last fouryears. Only those cross-sections not in contradiction with the latest experimentaldata were retained in the present activation data file. In cases of several conflictingevaluations, that evaluation was chosen which best corresponded to the experi-mental data. A few evaluated curves were renormalized in accordance with theresults of the latest precision measurements.

The file of selected reactions contains 206 evaluated cross-section curves ofthe (n, 2n), (n, p) and (n, a) reactions which lead to radioactive products and maybe used in many practical applications of neutron activation analysis. Somecompeting activation reactions, usually with low cross-section values, are givenfor completeness.

3. PRESENTATION OF THE DATA

A graphical form was chosen for the presentation of the data. The computercodes Linear and Evalplot [12] were used for plotting the figures. To providemore information, and to make it possible to use this Handbook for simpleestimates, tables of numerical values of the cross-sections, in neutron energy stepsof about 1 MeV, were added to the figures. Whenever possible, an estimate of theaccuracy of the evaluated curves is also given in the tables. If the accuracy of anevaluation is not given, it is supposed, in most cases, that the accuracy is ±30%or lower.

PART 2-3 307

The computer file of the cross-sections (plus the covariance matrices ofthe uncertainties in a few instances) for all compiled activation reactions in theENDF/B-V format is available from the Nuclear Data Section of the IAEA and maybe obtained upon request either on magnetic tape or in the form of listings. Thisfile contains more detailed information about the energy dependence of the cross-sections (a 100 keV energy mesh is normal) and some additional bibliographicinformation.

An attempt has been made to specify clearly the activity created by a givenreaction. In the case of the formation of an isomeric state, the term 'Isomericstate' is given in the figure. In the case of a cross-section for the independentformation of ground state activity of the residual nucleus (without populationthrough internal transitions from an isomeric state) the term 'Ground state' is used.No label on a figure means that the radioactive residual nucleus has no isomericstate. If it does have an isomeric state, then the sum of m + g is given only if it isequal to the cumulative cross-section of formation of ground state activity. Thiswill only be the case if the half-life of the isomeric state is much smaller than thehalf-life of the ground state, the branching ratio for the internal transition from theisomeric state is close to 1 and the cooling time for measurement of this activityis chosen which is much larger than the half-life of the isomeric state. Cumulativecross-sections of formation of ground state activity for activation analysis purposesshould therefore be used with great care.

4. RELATIONSHIPS WITH OTHER SECTIONS OF THIS HANDBOOK

Owing to limitations of space, it is not possible in this section to give moredetailed information on the decay properties of residual nuclei. It is assumed thatthis information can be taken from other chapters of this Handbook, or from otherpublications [13].

Regarding the degree of consistency with data presented in Part 2-2,it should be emphasized that the 14 MeV values from both sets agreed within thelimits of the estimated errors.

ACKNOWLEDGEMENTS

The authors are greatly indebted to the staff of the Nuclear Data Section,IAEA, for their help in the preparation of this chapter.

308 MANOKHIN et al.

REFERENCES

[ 1 ] INTERNATIONAL ATOMIC ENERGY AGENCY, Handbook on Nuclear ActivationCross-Sections, Technical Reports Series No. 156, IAEA, Vienna (1974).

[2] INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Theory for Applications(Proc. Course Trieste, 1978), IAEA-SMR-43, IAEA, Vienna (1980).

[3] INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Theory for Applications-1980(Proc. Interregional Advanced Training Course Trieste, 1980), IAEA-SMR-68/1, IAEA,Vienna (1981).

[4] INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Theory for Applications-1982(Proc. Course Trieste, 1982) IAEA-SMR-93, IAEA, Vienna (1984).

[5] Basic and Applied Problems of Nuclear Level Densities (Proc. IAEA Advisory Group,Mtg. Upton, NY, 1983) (BHAT, M.R., Ed.), Rep. BNL-NCS-51694, BrookhavenNational Lab., Upton, NY (1983).

[6] BYCHKOV, V.M., MANOKHIN, V.N., PASHCHENKO, A.B., PLYASKIN, V.I., CrossSections for the (n, p), (n, a) and (n, 2n) Threshold Reactions, Rep. INDC(CCP) -146/LJ(1980);BYCHKOV, V.M., ZOLOTAREV, K.I., PASHCHENKO, A.B., PLYASKIN, V.I.,Establishment of the BOSPOR-80 Machine Library of Evaluated Threshold ReactionCross-Sections and its Testing by Means of Integral Experiments,Rep. INDC(CCP) - 183/L (1982), Nuclear Data Committee, IAEA, Vienna. (Englishtranslations from Yad. Konstanty 1 32(1979)27; 2 33(1979)51; 4 35(1979)21;3 42(1981)60.)

[7] The LLNL Neutron Activation Cross-Section Library of 1982, documented inRep. UCRL-50400, Vol. 18, 17 October 1978, Lawrence Livermore National Laboratory,Livermore, CA (1978).

[8] The ENDF/B-V Neutron Activation Cross Section Files, documented inRep. BNL-NCS-50496, Brookhaven National Laboratory, Upton, NY (1979).

[9] CULLEN, D.E., KOCHEROV, N., McLAUGHLIN, P.K., The International ReactorDosimetry File (IRDF-82) in Energy Dependent Form, Internal Rep. IAEA-NDS-48,IAEA, Vienna, 1982.

[10] ADAMSKI, L., HERMAN, M., MARCINKOWSKI, A., Evaluation of the cross-sectionsfor the 28Si(n, p)28Al and the 181Ta(n,2n)18(>ra reactions, Final Report, IAEA ResearchContract No. 2741/RB, 1983.

(11] IVASCU, M., AVRIGENAU, M., AVRIGENAU, V., Nuclear Model Calculations of(n, p) and (n, n'p) Reactions on Molybdenum Isotopes, NP-28-1983, Final Report,IAEA Research Contract No. 2983/RB, 1983.

[12] CULLEN, D.E., Program LINEAR (Version 78-1): Linearize Data in the Evaluated NuclearData File/Version B (ENDF/B) Format, Rep. UCRL-50400, Vol. 17, Part A, Rev. 1, 1978;Program EVALPLOT (Version 79-1): Plot Data in the Evaluated Nuclear Data File/Version B (ENDF/B) Format, Rep. UCRL-50400, Vol. 17, Part E, 1979, University ofCalifornia, Berkeley.

[13] Table of Isotopes, 7th edn (LEDERER, CM., SHIRLEY, V.S., Eds) Wiley, New York(1978).

PART 2-3

CROSS SECTIONS

309

3 - L I - S

1|nxMevT3ii8T47o6T51ooT6726T7iooT87o6T9iooTioioTii.oTi|7oII g.Bb T0.O0T35.0T3O7H21.oTl6.8Tu.7Tl3.5Tl2.3Tll7sTl0751

I EnlMevTll70n4i0Tl5.0116.0117.0118.0119.0120.01I "o,»b~T9. 7OT?7OOT873OT7.7OT7.5OT7.3OT7.06T67801

. 0.02

0 . 0 !

. 0.00

CROSS SECTIONS

ENDL/AI7] 0. 10

: o.o8

0.06

I En,M»Yl0.67T0.74Tl.3oTT750TOOI2.60l27goT3.55T4700T57oO II q,»b 10.00100217.OoTl6.ott57oT9S.oTl55.'fiO57T85.o1t5.Ol

I En1MevT7iOOT9;OOTl21on475T20.01ra.mb~T35.5T22.0Tl5.oTlO.5Ts70OI

HEV7 8 9 , n l

11 -BE-9

310 MANOKHIN et al.

CROSS SECTIONS 5-B -10

5-B-10(N,T)4-BE-8 .^2012TooT37ooTJ7o6T5Too16.ooT77ooT8T6oT97ooTio7pI •

I a.mb To.OoT2O.oT2876T62.5Tr35TTl5O.Tl47TTl3aTTl3lTTl25^

I EnJtevTuToTl2.5T1376114^oTl 5. 5Tl6. STl7^oTl8?gTl9^0120751I I I I i

6-C-12(N,P)5-B-12IEn7MevTl376Tl5?oTl6ToTr7ToTl8ToTl9?OT207oII ~ o x n b j 0 . 0 O T l T 5 0 T 7 . j 7 j r 7 T T 5 T T

Z T ~ 3 O . " J 7 " 2O. " T 100. I

q o. is

. 0. 10

0.04

0 . C 3

0.01

MHT 7 3 0

PART 2-3

CROSS SECTIONS

311

MRT 830

: o . o i o

. 0.008

4 0 . 0 0 6

0.004

7-N-14(N,2N)7-N-132,oli3. oTu7oTi5ToTi6ToTi 7ToTi87oTi 97oT2oTo I

5.9oTOoT9. sotioTTTioTsTio. 1T9T40130^ I 1

j 0 . 0 0 2

0.000

16

MEV

CROSS SECTIONS

7 - N - H i

8 - 0 - 1 6

IN, P!

6OSPOR 161

8-O-16(N,P)7-N-16En^MevUO.2111.0112.0

o nb |0.00|7.00|50.0A«,t 1 20.

13.032.0

14.0115.0116.0117.0118.0119.0120.045.5|37.3|32.O

10. 1 8.27.5124.5123.0122.0

20.

0.06

0.02

. 0.00

-To1-0 -16

312

MfIT 920

MANOKHIN et al.

CROSS S E C T I O N S 9-F -19

IRDF [91

9-F-19(N,2N)9-F-18

0.06

lEn,Mevlll.o|l2.oTl3.o'n47oTl5.oTl6.oTl77oTl87oTl97oT2o7ol 1 n n ,! ?!**!? .j°-20!6.09T2074T40.9T57.5T68.8T77.2f8378p3.5T83751 "• '

MEV

CROSS SECTIONS

9-F-19(N,P)8-O-19

I EnjHey 14?26T5755T67ooT7TooT87ooT97ooTio7oTiiToTi2T0T157oII "o.mb To7ooiT75oT20. oT327oT4o7oT43• 5T42.5T38.5T3375T27.51I Z£~l 457 T is? *

l"5,mb T22.5fl8.0Ti5.0Ti2.5Tll.0T9.60T8.001^ 2o

. o.ou

, 0 . C 3

0 . 0 0

MEV

MHT 9 3 0

PART 2-3

CHCSS S E C T I O N S 9-F

IN fi! PHC

BOSPOR 16]

-19

)

-i n

1

. 0.

1

?n

i s

313

J 0. 10

9-F-19(N,A)7-N-1611EnJ^iev11.60U.001 5 7 M T | 7 O O T 7 7 O 6 T 8 7 O O T 9 7 O O 7 I O 7 5 T I I 7 O T I 2 7 O I

I"o,ab~To7o5T48 • 5794. pTl947Tl377TlOO.T827oT6875T5|7oTJl7o I N12e£z__[_ 30. I ~~ ^9"~—~~T" ~-.l2i.

iTi37oTT47oTI|7oTi67oTi77oTI|7oTi|l2T2o7o]I "o^mb | 4 4 7 O T 3 6 . O T 3 1 . (^267072170118^0114^0113^0

375^4^157^16^071772718.^1978ll2li5iiIIIi2ll§iF"7iT8673T9874

. 0 . 0 6

J Q . C 2

j 0 . 0 0

MEV20

-Nfi-23

314

MHT 1 1 3 0

MANOKHIN et al.

CROSS S E C T I O N S

ll-NA-23(N,P)10-NE-23

I En2fievT3T75T5T00T6T06T7T00T8T00T9T06T16T6T11T0TI2T6T13T01

I Z2x5feIl2l29lLl2liZIIIIll2liIl2ll I • IIUIIIIZIIII1IIII !I°11 |nIBIiTni9Tl57oTii7oTi7ToTi8ToTi?7oT267g II S^IIillili^oIlzoTglToTloToTiAITioo!

0.02

J 0.00

MEV

CROSS SECTIONS

II-NB-23

11 -Nfl-23

(N,flLPHP)

BOSPOR [61

U-NA-23(N,A)9-F-20

I|nIffiJT47o3T77ooTlTooT97o6TIo7oTiI7oTr276Ti37oTr47oTi 5751I _?i°b.To^.ooT7. 5oT327oT65.679875T130. Ti48TTi547Ti537Tl45711 ?il—I.. Z|o H _ i r n • IIIII-II_2o7~"~~TI~~"io7"""~ 1

1IsIsI5Ti67oTi77oTi87oTi97oT2o7o1I oimb_Tl247Tl637T827oT6l7oT4276Ii&?Ir~Illlllllliiiiiir 1

0. 15

0.05

. 0.00

MEV

MPT 1 2 2 0

PART 2-3

CROSS SECTIONS

315

12-MC-24(N,P)ll-NA-241En7MevT479oT575oT67ooT776oT8766T97o6Tio7oTiI76Ti27oTi57oII ~;,Sb~TS7oiTo7o2TI79n5577TIo67Tu97Tu8.Tl587Ti827Ti9871l4LIZZIZZZZZZl2ZZZZZZIZZZZZZZZZZZ-ZZZZZZZZZZZZIZIZZIZ2iZl

I|n^MevTr47oTi576Ti675Ti77oTi87oTi97oT267o|I ;,ib"Tl977Tl787Tl407Tl227Tll4.T977IT977IIlAo.r~T~i.~l 4. "T 57 T~2o7|

0.20

0. IS

S

MflT 1236

10MEV

CROSS SECTIONS

15 2012-MG-2U

12-MG-2S

0. 05

. 0 . 0 0

12-MG-25<N,Pni-NA-25I En2ffivT4757T4787T5747T|75oT775OT875OT975oTir7oTi375Tl57o I1 -?i55.i5i22liiI2i*Zn22l2l42l2'''487oT527oT|57oT557oT4o751

lEnJJevTl77oT2o76|I Zii.5iZIIli2ll2l21

0.05

0.03

0.02

0.0!

MEV 12-MG-25

316

MflT 1235

MANOKHIN et al.

CROSS SECTIONS 12-MG-26

ENDL/A [7]

lEn^MevTs.reTsTilTioToTii.oTi.oTisToTis^onoTolI ~"*i»~~TO7OOT2786T357OT7~7OTB87OT887OT~0• Oi l5 • 51

0.08

0.04

(N,fllPHfl)

0.00— _

MEV

CR05S SECTIONS

12-MG-26

13-3L-27

. 0 . 10

J 0.00

PART 2-3 317

MBT 1340 CROSS • 3 - R L - 2 7

MEV

ROSS S E C T I O N S

14-SI-28(N,P)13-AL-28

7 p o T 7 7 p o T 8 T o o T | 7 o o T I p p lo.OOl2O.5T84.6T23l7T2847T263TT2947T318.T356.T319. I

j j)\ lOTnToTIOTi 97oT2o7610,mb~T2837T229TT212.Tl637

|AO,Z"T"47"T 8 . 1 17. T"l3. I

4 0 . 1 2

j 0 . C 5

: 0 . C 2

MEV U - S I - 2 8

318 MANOKHIN et al.

CR35S SECTIONS

ENDL/AI7]

U-SI-30(N,A)12-MG-27T 7|TiI7oTIi71TO"iTiIl2Ti67ITl7lITilII!

i L l 7 J T j 7 J I E l l IllnTjievTwTiTloTolr<>,ob"T38.lT33.1l

J 0 . 0 8J

. 0 . 0 6

0 . 0 4

j 0 . 0 2

1j

• /

t /!W,R| PHf l !

-. 0.00

ItHEV

CROSS SECTIONS

IB 20

1 - S I - 3 0

I S - P - 3 1

'- 0.05

: o.oi

i 2 7 7 T i 3 7 o T l 4 7 o T n 7 o T 7 T 7 T T T l-To^OOTon5T87°5Tl675T24;_5T337oT4noT4775T52_. 51

T~ 507 T"25.T_~__Z_I_I 50; I

. 0.02

0 . 0 1

0.00

MflT i 5

PART 2-3

CROSS S E C T I O N S

319

MflT ! 5 3 O

|En,McvTi7561276613.061^.061570016.601770018^0019700115^01 'I "a,Bb'TI.10T9783T6675T8579Tl25.Tl427Tl337Tl397Tl397Tl43.1 ]

l4?lOIIlIIISIIIliIIII~II~II"~ZlIIII"IIII~-II-I I 1IEii7MevTIi7oTi275TI37oTi47oTI575TI675TI775TI§76Ti97oT|o7oIl"S,;b"TT387Tl227TiO7.191.911173174.3166^7166.215475149771IAS.Z ~T5rrr"T A . T J T T 57"T"87"T"ig7T ZYT iL__ I

5 6 7 8 9

MEY

CROSS S E C T I O N S

10'1S-P -31

I S - P - 3 !

IN.RLPHfl]

BOSPOR 161

15-P-31(N,A)13-AL-28I Ei2S7r27orr576oT67Mr7766T8To6T97goTio7oTii76Ti |76Ti3761I olmb_Tp_:00T3i00T23.0T55.6T85.6Tll77Tl357Tl4l7Tl397Ti307l

0. 12

0. 10

0 . 0 8

I EnTjievTUToTI sToTKToTI 77oTi876Ti 97oT2o761I" \ S b ~ n i 77Tio3j8776T7T76T5 775T4 37oT357o Il l o , ! ~T~ i57 T 557 I

15H C . O O

15-P -31

320

MflT ; 630

MANOKHIN et al.

CROSS SECTIONS 16-S -32

. 1.5

. l . C

/

/

16

16-S-32<N,2N)16-S-31

IEnJievTlS.6TI6.0Tl7.6Tl8.0Tl9.0T201"o^nb'To. 00T0T1IT0.66T1T16T1T51T1TlAo^Z T 30. T 50.

17 18 19

.0172|

1 •j

:

2C

0.5

MEV

CROSS SECTIONS

16-S -32

16-S -32

; <r,mb i4J2l:5B|'i328l!15i-i2i0iC 8 : Jl

. 0 . 4

J 0. 1

16-S -32

MfiT 1635

PART 2-3

CROSS SECTIONS

321

16-S -33

IN.PI

ENDL/A 17]

16-S-33(N,P)l5-P-32I Ei2Mi;TI700T2768T3728T47l8T5738T6728Tu77Ti276Tl276Tl4741

I l2i5iIIO9llOni2lIiIlI]il|7Il?IIIl99ini!IIlllin2?I II En7jievTl67oTl 7^671875119.0120^011'"••i~Ts575T»o. 0T2s75Ti87ofi3.0[

0.2

0. I

I En7EvT47 A5T77ooT87ooT97ooTio7oTiroTi2. oTn7oTl47oTi 1751! ILsiltoIo^ironZlpJSnoTlo^pJIz^pT? 070^0178^0168701

I Eg7ite^Ti67oTiroTr87oTi975T2o7o I! _2i.55ITlZIIin4liniIIiiiIIi92i I

0.08

0.06

0.0U

0.02

0.00

12 mMEV

18 20

16-S -3U

322

MBT 1610

MANOKHIN et al.

CROSS SECTIONS 1 6 - S - 3

I En^SevTu. 5Tl57oTl67oTl 776Tl87oTl97oT2o76 II " ? Jmb"Tl4 57Tl227T117oT667oT38J.oT2o7gT87551

17-CL-35CN,2N)17-CL-34-M

I EnJ15evTi37iTi47oTi 57oTi|7oTi77oTI|7oTi976T|o7o II"o^b T6.o6T47ooTi7ooTi2.3Ti67oTi9.7T2375T27751l&».z"T~~557" "T"i57T _ ~ ~ ZI

. 0. 15

4 o. io

0.05

0.00

. 0.025

J 0.O20

'. 0.015

0.010

1 0.C05

0. 000

17-CL-35

PART 2-3

Cf lDSS S E C T I O N S

323

( N . 2 N ) BOSPOR {61

17-CL-35(N,2N)17-CL-34-M+G

IEn7MevTl37lTl476Tl5ToTl6ToTl776Tl87oTl9ToT2o7oIi:E"T75T7TI17JT7l|7iT|7!TSr7|Tl7Sl

MST 1 730

(N.RLPHA!

BOSPOR [61

lb

MEV

CROSS SECTIONS

17-CL-35(N,A)15-P-32

17 - C L - 3 5

0.02

0.0!

0. IS

0. 10

' IE^fi^T278or37ooT47ooT57ooT676oT775oT87ooT97oorio7olTr7oIToSb To766T476oT3i.oT687oTii87Ti567Tl7i7Ti777Ti797Ti777l

14hi::i:::::::~:::~~:::::i2i::::::::::::~:::;~::: iI|n25evTr27oTi376Tl47oTn7oTl67oTl77oTi87oTl97oT2o7oII «;b~jr7o7Ti527rr297TIo47T757oT567oT3276Ti:576T57oo|

0.00

MEV 17-CL-3S

324

MRT 1735

MANOKHIN et al.

CROSS SECTIONS

IN.flLPHH!

ENDL/A17]

I EiOtevTS. 66T6. 96T7TS6T8T76T5.O6T57367l1. 27T3^3714^2716^31

I l l l l l l I I I I l l l H l l l I l l 'j ^ l 7721187471970720^01

I 0.mb~T21.67l87o7l774Tl7.ll

o.os

o.ou

0.01

CROSS SECTIONS 18-flR-W

IN.2N)

ENDL/A (7)

18-AR-40(N,2N)18-AR-39

i I?2»ili2l22i2l»?Ii22lI5§5IIIHII15nil2iIIIilIl3p"T3or71

0.5

0.3

0.2

Jo..

: o.o20

MEV 18-HR-1J0

PART 2-3

CROSS SECTIONS

325

(N.2N) IS0MER1C STflTE

19-K-39(N,2N)19-K-38-MT6Ti4T2Ti5"o[ i6.oTr?7oTi87oTi9ToT2oT51

T T7

I"fi»b"To.0OTo.35Tl.35T3703T4.8oT6.80T6.7OTl0.iI

(N.2N) GROUND STflTE

19-K-39(N,2K)19-K-38-G76Ti67oTi77oTi8T6TI57oT2o761

t0.000

MEV 19-K -39

326 MANOKHIN et al.

CROSS SECTIONS 19-K -39

IEn,MevTl.OoT27ooT37do 4.OPTS.001670017.00T8.0019.OoTlO-Ol0.0OI70.0I16O.I2477T2957T3257T3357T340.T342.T335.307 ]

lEn1MevTIi1oTl27oTi37oTi47oTi57oTi6ioTi776Ti876Tii.oT20.oll_^o t i T 7 T T j i 7 T 7 T 5 T i 7 T T J 7 llflcr,t

6 / 8 9

MEV

CROSS SECTIONS

19-K -39

19-K -39

(N.fiLPHfi)

BOSPOR [6!0. 12

. 9oTT7poT47ooT5_. O6T6.001770618^0079700170^0^11^61T T 7 T 7 6 T 7 T 7 6 T 7 T 7 T 1 7I "o1mbTo7ooTt76oTl47oT3376T607oT877oTllo7Tl237Tl30.113371

. _«^_T ~imiiizziio7;~~~~ir_i~"i 'I ES7Mg?Tl27oTn7oTi47oTl57oTi67oTr775Ti87oTi97oT257pl1 "OtSTJnlTTIwTTIJo. Tio97T|37oT|3. 0T59. 0T5S.0T42.01IAO^I T so. ~T ~ ~ 3oi_II_~I- I I

0.36

0.04

0.02

0.00

MEV101

19-K -39

MfiT 1 9 H 0

PART 2-3

CROSS SECTIONS

327

19-K - m

19-K-41(N,P)18-AR-41

I En iMevTi i75T4. ooT57ooT67ooT7.1 ""xsil^iOSl6"!?!15 - 5Ti* • onilST*1 - 4l5o7oT567oT|9. 0T58. 0 IiS r ~ 7 ~ TI

I En7.MevTT37oTi47oTi5.0716^011775718.0T1?. 5T2o7ol|

10. 1

MEV

CROSS SECTIONS

lEntMeyl4.30l5.OOI6.OOI7.OOI8.OOT9.OOTlo7oTll7oTl27oTl3.Ol070oH.70l7.70ll3.5Tl8.5l2t77r30.2T34.1T37.5T3T75l

207" 1 20. ~ " "I

I En,MeYli4lol 15.0116.oTl7.oTl8.oTl97oT2O.OII ~a£b~T3575T31.5l27.0l23.0ll9.3Ti6.2Tl3.51

^ 0.06

. 0.01

. 0 . 0 0

0.02

. 0.00

MEV 19-K -41

328

MBT 2035

MANOKHIN et al.

CROSS SECTIONS

(N.flLPHfi) ENDL/A17]

2O-CA-4O(N,A)18-AR-37

I En.MevI 1.001 3.001 3740T4. 4oT577oT7.22T9. 5oTl47oT207ol1 Iijt5S_I2i°2Ji2l2li257Ti|o. T|oo^T20o7TI|o7ti 2o7[6o7o I

MflT 2030

MEV

CROSS SECTIONS

(N.P)

BOSPOR (61

20-CR-40-\ 0.20

J, 0. 15

1 0. 10 £

2Q-CB-H0

^o-CH-^^

. 0. 15

2O-CA-42(H,P)19-K-M

1 Et^MeIT278iT47ogT57o6T|7ooT77ooT87oor97ooTio7oTIi7oTT27oII "o mb"To76oTI7ooTi87oT457oT7LoTi077Ti3o7Ti487Ti6l7Ti6971

IAJJTX ~—Z. 11 nr. 3°II_III_IZI_II zz_i 1 11I |n2MevTn7oTi47oTi57oTi676Ti 77oTl87oTilI5T26761I _o1S"Ti697Tieo7Tl457Ti267TI64 J80.6T58 JjTSlJ. 01|Ao^_~jr3gJ~_n7T_"_ I~IH~50i_II_II ~~\

1 § 5 7 1MEV 20-CR-142

0.05

. 0.00

MRT 20140

PART 2-3

CH35S SECTIONS

329

. o.cm

0.03

- 0 .02

20-CA-44(N,P)19-K-44

I EnTJie vT57oiT77o5Ti7MT57o5Ti57oru75Ti27oTl37oTi47oTi 5751I "oimb"T5755Ti. 5oT3.5oT8. ooti 57OTIB . 5T2i"7T T"~T~~ r T" 7 r~ - ' 'ineTITr

"T I O . n J o . o iI En^MevTuToTl?. 071875119. oT20.01I "3mb~T4576T447oT39.oT3l75T2475li &, r "i 55: i

0.00

MflT 22^0

MEV

CROSS S E C T I O N S

18 2020-CB-44

BOSPOR [61

0.03

20-CA-44(N,A)18-AR-41

IEn2MevT|78iT77ooT|7ooT97goTio7oTi27oTi37oTi47oTi57oTi67oII "o^mbTo. 55T5755T2.40T6740TIl76T25. 4T3078T3476T3774T38781IZ^Z'TJ 211 _ Z«L_~~ T liTT 557 I

I En1MevTl77oTl87oTl5.oT2O751I"o^nb I3775T34.2T28.6T2272II ZR z~l 567 1

0.02

0.00

MEV18 20

20-cn-uij

330 MANOKHIN et al.

CROSS SECTIONS

[N,PLPHfl)

ENDL/A [71

2O-CA-46(N,A)18-AR-43

T i l T T lTo.o6Ti.oST2o7oT3o7ol

MfiT 2038

12 14MEV

CROSS SECTIONS

1N.P)

ENDL/A [7]

20-CA-48CH,P)19-K-48

IEn,Mevll2T0ll3.0Tl5.0l20T5lj"o,mb T0.OoTl.0oTl0.5T2O.0l

16

HEV

0 . 0 2

. 0 . 0 0

IB 2020-Cfl-16

20-CR-181 0.020

0.015

0 . 0 1 0

0.005

18 20

20-Cfl-«8

MB* 2 1 3 0

PART 2-3

CROSS 5 E C T I 0 N S

331

21-SC-45

j D.05

0.00

I En.MevTll.6Tl2.0]l3.oTl47oriS.OTl6.oTl7.oTl8.0119.0120.01-01 HO-12357T33671"39r7n257r45S7T4727T4767l

IS7 "Tio.T~8.~T ~~ ~~ 16.

0.3

16

MEV

332 MANOKHIN et al.

MHT J 1 3 0

1I

8OSPOR

1N.P) |

[61

CROSS SECTIONS

/

21-SC-15

i 0.08

C.06

0.04

I Eii, Me vTo. so 11 • ooTTSoTsTooU. ooTs. ooT5. ooH. ooTI. 00T9. ooTToTo II LsLT 'Loop ' soTi2 . 3T257oT37\ sTso. oT6i7oT7i76T8i. oitoToTJJTB Ii T I " I ~ ~ ~ ^ ZZZZ

I En7_MevTii. 0T12. oTis^oTwToTis. oTi675Ti775Ti875Tl97oT2575| 11 "».»b"T9675T8675T75.oTe3.5l5375T43.5T347oT2'»751ri8.oTl2.51 j

0.00

0.06

0.04

21-SC-45(N,A)19-K-421 Iii7SevT575oT67ooT775oT87ooT97ooTi57oTii7oTi27oTi37oTi47ol

I_ol5b"To755Ti.6oTI5.oT24.5T3875T5o7oT587oT6274T6374T6o7o IlAoiz_[T~I~.~~_I ~.*2L_LZZI_ZI ZZZOSlI

IEn7JevTi575Tl67ori77oTi875Ti975T2o7glI ~o, mb~T4878T367JJ24. OTU^OTTJMT^OO IIA57J_~2 ~~~5o^_~~"_T~ "_5o7~~f_ |

8 10 12 11 16

MEV

J 0.02

0.0C

18 20

21-SC-iiS

MRT 2230

BOSPOR [6]

PART 2-3

CROSS SECTIONS

333

22-TI-46(N,2N)22-TI-45

I En MivTT UsTuToTi sToTiOTi 7T5TT sTgTpToHoTo II"ojmb TooJjTl5.0T65.oTl267Tl7o7T211J232TT238.IlAo,Z~T~ 12. T 10.~ " I

J 0. 10

(N.P)

BOSPOR [6]

MEV

CR05S SECTIONS

0. 15 ^

0. 10

I £^;Ti7l2TE22B:02lll2l''6-ooTII5oT'8-22T9.ooTio;.oTii.oI "2i25li°l29JiiOOI2Il2Ji2i2i~Il222il2381T255j;272iT282i

I En.MeTTr270ll3.0Tl4.gll5.oliroil7^0Tl870Tl9.O.T2OJ3 Irg,mb"T2847T2727T2S3.T2307Il0EIlZ2lIi5°IIl2^,Ii9cl-1• *-*=—••—^ r n r t " ^SiZI. i

0.00

1—rHEV 2 2 - T I - U 6

334 MANOKHIN et al.

CROSS SECTIONS 2 3 - T 1 - 4 7

BOSPOR 161

0. 12

0. 10

0.08

0.06

22-TI-47 (N, P) 21-SC-47/

1En7jtev7o7oi7i7i67276o737og747p6T5766T67op77766787o6T|7ooTip"o I .I"a,mb"7o7oo7o7877l575744.o767.578l7oT97• O7il57712O77l2777l3O71 i^SxJ-III I__iL.IZ I III~Ii°i I_IIZIIi5lI_I I "I Eii]Mev7ii767T2767i37o7iJ757iiI?Ji67o7i 7767i|7o7i97o7267o II"o1^mb"7l2977l28.7l23.7ll277l01i790io780.67737o76876765.0l

I I7 8 ^ T S

MEV

CROSS SECTIONS

22-TI - I J7

2 2 - T 1 - 4 7

(N .N ' ) P

IRDFI9I

22-TI-47(N,N'P)21-SC-46-m<;

IEn7Mev7i6777ii7o7i2767i3767i47o7l57o7i67o7i776Ti8767i97o72o761

0.00

0. IS

0. 10

0.05

- 0.00

MEV18 20

22-T 1-117

MfiT 2250

t- • i

PART 2-3

CROSS SECTIONS

335

22-T

. 0.C6

22-TI-48(N,P)21-SC-480.02

l j T ^ T . i6T6TooT77ooTeT6oT1TpoTio7oni7oTi2. oTnI _o,nb To.OoTo.07T2.OOT775oTl27oTl9.oT2775T36ToT47.oT59.

i 4 L I ~ I I I 1 I ~ " _IZIZZ is:

_ i875Ti?7oT2o.o|;i9nzl9n?l9l*5ll I

- I ? -MEV

CRCSS SECTIONS

(N.H'P) IRDF 19]

22-TI-48(N,N'P)21-SC-47

I En7JivTiI77Til7oTi47oTi575Tn7oTi7liTi87oTl876T2o7o II'",'b'TD.O5T3.55T67OOTI379T2«T8137J 7T49T7TJ9T5T46•9

0.00

0.03

!5

MEV 22-TI-H6

336 MANOKHIN et al.

MflT 2260 CROSS SECTIONS 2 2 - T I - 1 91 0.03

IN.P) i BOSPOR [6]

22-TI-49(N,P)21-SC-49

i incite vTi725T374oT476oT|76oT67ooT77ooT87ooT17o6Tio7oTii7o II "oi5b"To1ooTo7ioTi7ooT3iooT57ooT87ooTIiioTi47oTi2^oT20. o Il42i2LH ZIIZZ ZIZZZ UlI " ~ _ " 11

njMevTT 2^gTi 3. oTI gT i 5. 0T1 S^oTi 77oTil7gTi ITgTfO Io,mb"T22.5T2575T28.5T3076T28.5T267oT22.5T20.0Tl77S IO.Z T i 5 . ~ T ~ 15."" T ~3o7 " "I

0.02

.00

7 6 9 , n l

MflT 2270

IEn2MevT6725T8.ioT97ogTio7oTiI76Ti276Ti|7gTi4. oTi|7oTi67gI iI"5,mb"To7ooTo7o2To76OT27ooT4.06T678oTl0.2Tl474Tl872Tl574! .

I ls7SJvTi77oTI17gTp7oT2o7o II o mb"Tl876Tl67oTl375T9.6O]

I4LIIIIIIIIIIIZZ12IIIIIIIII

. 0.015

j e . o i o

J 0.005

0.000

22-TI-SO

KRT 2330

PART 2-3

CROSS SECTIONS

337

7 B 9 10'

2 3 3 0

MEV

CROSS SECTIONS

t 1 (N,RLPHfl)

BOSPOR 161

23-V -SI

S2SevTi476Ti5TgTi676Ti776Ti8ToTi9ToT2oT6|e mb T3|ToT3i.0T28T0T25T0T2170T17T6T13.61

Z "T ~ I o T ~ T ' 7 ~~ll

23-V -51

23-V -SI

23-V-51(N,A)21-SC-48

I En7SvT27o9T773oT87667976oTio7oTu76Tl276Tl376Ti4"7oTi57o I1 "^b"T67o6To7roTo774T2785T5762T7792Tii76Tu72Til76Tr6741lAOiZ^jz ^ i~nii~i2ii~.iliimi 1

IEn25evTi67oTi7l~Ti876Ti97gT2o7gIr i ; " T 7 T T 7 T T 7

~ I

0.015

0.000

MEV

18 20

23-V -51

338 MANOKHIN et al.

CROSS SECTIONS

C.08

0.02

j 0 . 0 0

24-CR-5O(N,2N)24-CR-49

I En iMevTl3 i2Tl4.0115. 0T16. OU7.0T18 .oTl9;OT20.01I _cr mb To7ooTioToT5iToT5iToT65.|T79.0T91.2T103;|Ao X"j 2(57 T 15T

HEV

CRCSS SECTIONS

24-CR-52(N,2N)24-CR-51

I En,5evTi2. 3Ti2. sTilToTuToTIsToTRToTi 7. oTis7oTi9 . H o oI o.mb To.OoT2i.9T75.oT275TT42lTT497rT52l7T5247T5O77T465.i ^ f ' T " "2oT" T 15TT"§T"T 167"

: 0.5

2i(-CR-52

MHT 2 420

PART 2-3

CROSS SECTIONS

339

24-CR-52

24-CR-52(N,P)23-V-52

IEn"MevT3726T57i6T67o6T7766T87OTT97o6Tio7oTii7oTi27oTl37o |

ro,mb"toTo6To7J3Ti27oT3o7oT4i.oT5576T73ToT897oTi667Tio77l

i l"IIIIIIIIIl2ZIIIIZIII~IZIII~~Il29l I-II~~I-1Iin2MevTi47oTl5ToTi675Ti77oTI|7oTi976T2o7gIro,mb~Tl047T987oT9676T827oT76.6T7i"7oT727o|

I ii, x~T ~Il9lI~"~~~II~II I

0.08

0.06

: o.oo

MEV

CROSS SECTIONS

(N.N'P) ENDL/A [71

24-CR-53(N,NtP)23-V-52

:? Tl576Tl672Tl873Tl9^T20701

T l T T I l i l i l I I I I ! !

0.02

MEV19 20

21J-CR-53

340 MANOKHIN et al.

CROSS SECTIONS 21-CR-St

(N.BLPHPI)

ENDL/A17I

24-CR-54(N,A)22-TI-51

I IsIBiiT9744Tio7oTigI?Ti2TnnioTi472Ti67oTi679TniQTIo"o II o.mb T0.00T0.68T3.72T8.56Tll.0Tl2T3Tl277Tll78T7.09T5764|

0 . Q1 2

0.008

0.002

: o.ooo

MHT 2S30

MEV

CROSS SECTIONS 25-MN-55

25-MN-55(N,2N)25-MN-54

I En7Jevno74TIo7|TIi7oTi|7oTi 37oTI|7oTi 57b7i67oTi773Ti87g II "oimb"To7ooT2|.oT877oT4037T6307T77o7T84g7T8827T|g3it910. I14LIIIL_III_2o7ZIIIIIIi5lIIIiIIIii-II IIZZ_§i ~ I

lEn7J£vTl97oT2o7oll"°iilIT8887T815.lIA3, I T S~ I

o.n

0.2

_, 0.0

MEV 25-MN-S5

MRT 2535

PART 2-3

CROSS SECTIONS

341

2S-MN-55

25-MN-55(N,P)24-CR-54

I En,Mevl5.29T5.59T6.49T7.3918.291971979.79111.6112.5114.311 °.°b*To.O0Tl709Tl574T3S.9T53.9T62.7T65.3T6579T62.9145.41

I ov»f737.5T3575T34.lT33.51

. 0.014

. 0.02

MBT 2535 CROSS SECTIONS

18 202S-MN-S5

2S-MN-S5

IN.BLPHfi)

ENDUA 171

I En.Mevl 8.2018.SOI 9.00110. oTl 1. oTl27oTl3.oi 14.01 is75Tl67o I1 fcl°g°n- 3oT«7ooTlo7oTl675l 21.0125.0T28.0T297oT277o I

I En7SfTiz76Tn7oTil7oT2o7o I*Jl 6fi2.'oT675o I

0.025

0.020

0.015 5

0.010

0.005

IB 20

25-MN-5S

342 MANOKHIN et al.

CROSS SECTIONS 2S-FE-S4

: o .s

I EnTiievT^oTrKgT^oTiOTilIoTiOTnToTiiToTi^ToT^o |I o,nb"T5797T538.T467.T3997T331.T26l7T2037Tl68. TT49.Tl3?71

i ifzzrzzzzzziiizzzzzrziizrzzzzzzzzzzzzzioizzzzzzzzzzzzz i , o . o

MRT 2 6 1 0

26-FE-54(N,A)24-CR-51

IEn~SevT479oT57igT57ogT77ooT87ggT97ooTio7oTri7oTi27oTr376II "o.mb"To7ooTo768T77ooTi4.5T24.5T4g7gT577gT727oT877oTi6I71

557 "_Z

I|n'MevTi476Ti57gTi67gTi776Ti87oTi97gT267gII o,5b"Til47Ti23.T122.Til77Tig87T57.oTsTToII K>JIII~~l2l.ILI-III"IIl32lII I_~ I

i 0 15

MEV 25-FE-54

: o. 12

: o. io

. 0.08

4 0.06 5

: o.Q2

0.00

MPT 2520

PART 2-3

CROSS SECTIONS

343

26-FE-56

. 0 .6

. 0 .0

MfiT 61J31

MEV

CROSS SECTIONS 26-FE-56

IRDF [9]

26-FE-56(H,P)25-MN-56

;En7_M£vX2T9x:J.(ftX57oo;5.ooX7Too;5.ool9T6o";:_«•*•* 4.0iO£!o-oiiii.<?:i2l5i2I'i!£2lTi5i.l:

. j . 2 _!_'_ 1 5 !

JC I i I

o. 10

0.08

O.OB

0.02

0.00

26-FE-5S

344

MflT 5635

MANOKHIN et al.

CROSS SECTIONS

26-FE-57(N,P)25-MN-57

I En7_MevTl678"Tl 777Tlf 7_6T207o II _?j.HiIIlIIlIIIIll3Oi6T28_.91

MflT 2536

12 114

MEV

CROSS SECTIONS

(N.BLPHfll

ENDL/A17I

26-FE-S7

(N.P)

0.02

IB 2026-FE-57

26-FE-58(N,A)24-CR-55

I |n JMevTIo7oTlo73Tl579Tri75Tl274Tl37oTl472Tl478Tr673Tl6791

I _SisiI]5l22l2ll2l?Il5llI*4llII!IllI*l22ZIIin*Illl2lllIi IIEnjSevTl7"5Tr973T2g7oII o,mb"T207lTl279Tl079l

0 . 0 1 5

15 16

MEV

0. 005

. 0.000

18 2026-FE-58

2735

PART 2-3

C33SS SECTIONS

345

2 7 - C 0 - 5 S

4 0.3

27-CO-59(N,2N)27-CO-58-M 1

iEnTiteJTioT7TiiT6TiroTi37oTi476Ti5ToTi6l5Ti77oTi8ToTi97oT5o7ol } 0 . 2|"o,mb"To.OOTr47oTl96.T35o7T4487T497.T525.T5467T5607T5677T56o7| i

\ I

16

CF0S5 SECTIONS

18 202T-C0-S9

27-C0-59

1N.2N1

IRDF [91

J 0.6

27-00- 59(N,2H)27-CO-58-H+O

0.2

HEV18 20

27-C0-S9

346

MHT 2730

MANOKHIN et al.

CROSS SECTIONS 27-C0-S9

. 0.06

27-C0-59(N,P)26-FE-S9

IEn^SevTo7|oT575oT47ooT|7ooT67ogT77o6T§7ooT976oTio7oTn751

^iAoJz~~TZZZZZZ3oZZZZZZIZZZZZZZfZZZZZZZZlilZZZfZZZZfZZZ~~~ iI En^MevTuToTiSToTuToTIsTgTiS. 5Ti7. oTisToTi?. 0T20T01I "crt;b"T55^gT667oT6i7oT58^gT537oT487gT4376T3775T327o IlZ&f"T~ 2|7" T"i57T"_ ~ 30. " 1

j COO

27-CO-59(N,A)25-MN-54

I EniMevT479oT57r6T67ogT77ooT87ooT97ooTig7oTir7gTi27oTl37o II"aimb"Tg7g6To766TiiioT374oT7.4oTi27|Ti67sTi976T247oT2776IiSjZII4o7~ZZIZ__ZZZZZZ52Z_ZZZZ IZZZZZZ 2oT~_~ 1IEn^evTi47oTl57oTi67oTI775TI|7oTI?7oT267oII"oinb"T2973T287oT2478T2i7oTi679Ti3.oTii7sII &CI..Z T 7TT " 307 1

. 0.025

j 0.020

: 0.01s

0.010

0.005

H O.DOO

MEV 27-C0-S9

HBT 2850

PART 2-3

CROSS SECTIONS

347

28 -N I -58

(N.2N)

IRDF [91

". o .oe

r

28-111-58(11,2H)J8-BI-57

0 . C 6

MflT 2B3S

ME'v

CROSS SECTIONS

(N.P) ISOMERIC STflTE

28-NI-58(N,P)27-CO-58-M

I ES"ffivT67S3T05n75oT3noT4r4oT5740T6T6oT77SoT8T56T9T5o |1 IiiiiZl2l2°l2i52ll2l2li2fIIl2lIIll2lin2lIIiiIIli2lIliII IIEn7SevTioT5TiiT5Ti27STi3T6Ti4T6Ti5ToTi67oTi8T5T2o7oII I»i.5iIIl2lIIi!2lIiIlIl2liI[i52lIiIlIIHl2lZlIoT75l21

0.3

0.2

. 0. I

io° '7 8 9 , n l. 0 .0

28-N I -58

348 MANOKHIN et al.

CROSS SECTIONS

(N.P! IROF[9|

28 HI-58(H,P)27-0O-58-ll+O

lEn^MeV^OiW! 0.16^1^00; 2.00^3^00:^.00;_*!** JJJ^OO!o.oiyjci^iPii^:j6o.

f ijTi»s 1410^:^20.1^4^:195.1600^:^82- m^^M^t.'

1 0.6

. 0 .1

, 0 . 0

10'

MRT 2820

MEV

CROSS SECTIONS

28-N1-58

28-NI -58

6.00T7.00TIT00T9.ooTioToTiiTolTl

lEn75evTl27oTl37oTl4igTl5:LOll6.0ll2iOTi8.oll9.oT20.0lI aiib"Ti66TTii5rTii8.Ti2o7Tii57Tio8.T97.oT9o.6T8o.ol

30.

0. 12

0. 10

0.08

0.06

0.02

: 0.008 9

MEV10'

28-NI -58

PART 2-3

CROSS SECTIONS

349

0. I

MflT 2B36

MEV

CROSS SECTIONS

2 8 - N I - 6 0

28-NI-SO

(NI.P) ISOMERIC SlflTE ENDL/A [7|

28-NI-60(K,P)27-CO-6O-M

I EnTSevT27i3T47ooTs755T67ooT77ooT87ooT97ooTio7oTTi7oT12751I I^oQOiOoTj^JJTooT 1^0152701^0173701807011270111^21

I ~;tmbTn7oT637oT557oT4676T

o.on I

- S i, 77JTMEV 28-N1-60

350 MANOKHIN et al.

CROSS SECTIONS 28-NI-SO

. 0. IS

. 0. 10

28-tJI-6O(N,P)27-CO-6O-M+G

A En MevTi. 55T*. ooTs . WbJxfliAiols. 66T9. ooTIo. 6Tii. oTi 2 51I ~Ji3b~ToiogTo7ioTio7oT34. 5T62. oJJIiSTIiI. Ti 3i7Tp8lIi5571

^TJ ~3g7~~ir~_;~i i~nr~ ~ i157^ievTi|7oTi47bTi57oTi 67oTi 77oTi87oTi|7oT2o7o II oxmb"TlS^Tl467Tl247TlOJ7T8|7gT73. oT6675T6l7g I

5IIZETr~II~~ " ~ 7

•I

MHT 2837

28-M-61(N,P)27-C0-61

lEn^MevT2.25T3.O0T4.0OT5.0OT6.OOT7.0OT8.00T970OTlO.OUl.Olo.mb To7ooTS75oT77ooTl57oT23.5T29.oTi5.01 41.oT«9.5TS8.01

I EniMevU2;_gTi3igTi47oTi5igTi6ibTi8igT2g7o 1

. 0. 08

0.06

. O . O U

. 0.02

. 0.00

28-NI -61

MflT 2838

PART 2-3

CROSS SECTIONS

351

26-N1-62

28-NI-62(N,P)27-CO-62-M

I En^fievT67|3T77ooT|TooT97ooTio7oTiiT6Ti I

28-111-62(11,P)27-CO-62-G

I SrTitevT6T56T77ool e. ool 975oTi57oTII7oTi27oTi37bTu75TT~5i -

lEn.ttevll6.bjTOT20.Oll"o nb 125.0118.0 11.01

1 0.025

: o .o ic

, 0.005

0.025

0 . 0 1 0

0.005

MEVIB 20

28-NI -B2

J C . 0 0 0

352 MANOKHIN et al.

CROSS SECTIONS 28-N I-62

0.020

0.015

I EniMcvT4i4oT8iioT97o6Tio75TnT6Ti gToTn^oTIJToTx s^oTiej) I •I o^ib"To.OOTo.4oT47ooT87o6Tl2.oTl5.oTl8.oT20.oT22.oT21.0l 1IAOXZ "T 4o. T 2o7" "T1s7T 3o7 I J

IEn^MevTl776TI87gTl|iOT207oII o,nb"T2075Tl9.0Tl8.0Tl770!

11

MEV

0 . 3 0 5

: 0.aoo

18 202 8 - N 1 - 6 2

MHT 2839 CROSS SECTIONS1 0.008

. 0.006

28-NI-64(N,P)27-CO-64

!liIBii^Il2TiIooTio7oTIi7oTi|7oTi37oTi47oTi57oTi67oTi87oT2o7ol

0.001J

0 . 0 0 2

14

MEV

18 20

28-NI-BU

PART 2-3

CROSS SECTIONS

353

28-NI -S i i

IN .BLPHH] I

ENDL/AI7]

MHT 2S20

IN.2N)

IROF[9]

28-NI-64(N,A)26-FE-61

3T10T4.10T5.50T77I0T7.ioT3?iol

o.oou

O.OQS

0 . 0 0 0

MEV

CROSS SECTIONS

18 202 8 - N I - 6 4

29-CU-63(N,2N)29-CU-62

I EniMevTTlT2li2.Oll3.oll47oTl5iori67oTl77oIl8.0Tl57oT2676lI ~i,.mb"To. 5OTll37T33l7TJ777T|lO.T7377T7777T7857T8267T|2671lio^z ~LI~~77~~TIL T 1UT-i""HlIiri- TLzLJ *• 1

I

0-4 £

0.2

. 0.0

MEV 29-CU-S3

354 MANOKHIN et al.

CROSS SECTIONS 29-CU-63

IN, P]

: o. 12ENDL/AI7]

29-CU-63(N, P) 28-NI-63

IEnlMcvTi76oTi71oT27ooT37ooT47ooT17ooT67ooT77ooT87o6T97ooI11 "^11212215122^127011770174^5189^1110171110711207112|71

0.02

. 0.020

0 . 0 1 5 T.

29-CU-63(N,A)27-CO-60-M

I En Me vT5736T575oT675oT77ooT87ooT97ooTlo7oTII7oTl27oTl37o I1 lHj«.siII°Zo2loIl2llIl2llIioIi°l5lIlUIIil2llIIIIlZllIllII I

I f ij7.Me vTi 47oTI 57oTI 67oTI 77oTI 87oTI 57oT2o7o |I o mb~T23.oT207oTl677Tl372Tlo73T779oT578Ol

. 0.005

; o.ooo18 20

29-CU-63

MRT 29H0

PART 2-3

CROSS SECTIONS

355

29-CU-63

29-O)-63(N,A)27-C0-60-M+<;

»T5736T5752^il2^T772oTIl22T97ooTio7oTu72TiIl2Till2|

0.03

. 0.02

. 0 . 0 !

iI !n7jMe»TT47oTl57ori67oTi 77oTI juST*'~2^o7o I1 ».»b T38.5T32.or3o7oT2i.oTT6.oTi37orio7oI

MHT 2330

12 UMEV

CROSS SECTIONS

18 SO29-CU-B3

: ;.o

En7SevTi67iTl27oTI37oTi475Ti57oTi67oTi7.6Ti87gTl97oT20.o|";.;b"To7ooT45o7T7567T9io7TioioTTo5oTi68oTIiooTiIooTio2oi j o.

0.0

MEV

356 MANOKHIN et al.

CROSS S E C T I O N S 29-CU-653.025

. 0.020

. 0. 0 ! 5

0 . 01 C

lE;iMJvTi7j7T372oT47ooT57ooT6.opT77ooT87ooT97ooTio7oTii7ol j o . cnsyI "o i;b"ToLo5T67ioTi75on i '5oT579oT872oTio76Tn7ITi671H8781 •1 5 , 0 "257"_T_~ Z~I__ZZIZZ.2o7~"__I Z"ZZ"I

I !n7jievTi27gTi37oTC7oTi!7gTi676Ti77oTi8.6Ti9. oT267o |I m b ' T J i . 5T2 374T2478T2478T2376T2i74Ti 575TI776TI5731IAO^J "T 20. IZ10.T __Z"Zl5lZ"ZZZ._ZZ Z I

0 . 0 0 0

8

MEV

CROSS SECTIONS

29-CIH65

29-CU-65

29-CU-65(N,A)27-CO-62-M

I |nJ_Se vT|7 53T77ogT|7ogT97ooTio7gTII7oTi 27oTi37oTl47oTi57o I1 -5j.a£.l2i22l5Z?§Iiii2lll22DZl9llZI°l572gT67igT77goT773 51

IIsIyi2^iII°Ti77oTi|?gTi97gT2g7gI

0 . 0 0 6

. 0 . 0 0 0

18 2029-CU-65

MRT 5936

PART 2-3

CROSS SECTIONS

357

29-CU-SS

29-CU-65(N,A)27-CO-62-G

ToTi 275Ti IToTuToTI 57o ||76oT873oT?79oTiu5TiI711

I En2fievTl|75Tl77oTl87oTl97oT2O761

I Isri.;£lIl2lll2l22lHZ2lIIJ2ll~l2i

: o . o i 2

: o .o io

. 0.008

: o.oos

. 0.000

8 20

29-CU-B5

MflT 3010 CROSS SECTIONS 30-ZN-6I4

IN.2N1

BOSPOR 16)

o.s

0.2

MEV

IB 20

30-ZN-61J

358

MHT 3020

IN.2N)

BOSPOR [61

MANOKHIN et al.

CROSS SECTIONS

3O-ar-64(S.F)29-CU-64

~t~ ' t . x ~'~5.

°0I8I°°!2.£0I1I.°!X1i1 -1208. J211.J2.17i:£70: : :

: 0.25

: 0.20

. 0. 15

: o. io

j 0.05

5 5 7 8 9 , n lMEV

CR05S SECTIONS

30-ZN-64

30-ZN-66

30-ZN-66C N,2N)30-ZN-65

I En~MevTll72TIl73Tl27oTl37oTl47oTl 575Tl67oTI 775Tl 87oTl 97oT2O7o II "oJnbTJo^ooTie. ^ T n j ^ T l T T l T T j T ^ T ^ J I ^ T i ^

z" T ~i57~.~T

0.6

0.4

0.2

0.014 16

MEV 30-ZN-66

PART 2-3

CROSS S E C T I O N S

359

BOSPOR (6)

3O-ZN-66(N,P)29-CU-66

IEn7MevTI788T47soT57ooT67ooT77ooT87ooT97ooTio7oTII7oTi27oII o.mb TO.OOTo720T3.OOTiI7oT2l7oT30.oT41.oT5i75T62.5T71.5lliiJ'T 2o7 I

0.06

0. 04

0.02

MEV

CROSS SECTIONS

30-ZN-66

3O-ZN-68

• ooTTo75Tii7on3. oTu7oTi 3. oTi|7o |

I En7JevTl77oTl|7oTl 976T2O7OIIfimb'Ts. OOl6iOO]I750[37801

~r~" "20." I

H s T T o T i i o T ' • ooTTo75Tii7on3. oTu7oTi 3. oTi|7o |o.ooTo.65T2.oo|3.001t.5oT87ooTio7oTIi7oTi27oTio7ol

12 nrMEV

0.00

0 . 0 1 2

0 . 0 1 0

0.008

0.006 =

0.001J

0.002

0.00018 20

30-ZN-68

360

MHT 3130

MANOKHIN et al.

CROSS SECTIONS 31-Gfl-69

( N . 2 N )

BOSPOR [61

MflT 3130

31-GA-69(N, 2N) 31-GA-68

i l2rSirTo7ootfo7ot55oTT635TTi657tl015Tlll5Tll25Tl220Tl2AfTl2S51 :,_i_5i_J 8^ |

isMEV

CROSS SECTIONS

1.0

18 2031-GB-69

31-GR-69

(N.P) ISOMERIC STflTE

BOSPOR 161

31-GA-69(N,P)3O-ZN-69-M

vTZ^oTI. 5oT67ooT77ooT|7ooT9.ooTio7oTII7oTi27oTi375l -^ ToiooTi76oT57ooT67ooT?_.ogTi37oTi7:_oT227op6ioT277ol

l45i?~I..II_~~I~IIII_I_l2l"~~—II II IIII |n^5evTi47gTi|76n67oTr77oTi87oTi97oT2o71I a,mb~T267of24. 5T22• 5T20• oTI7• 5Tl57oTl37oI\ia z T 1071 " "" 20. I

0.025

0.020

0.015

0.010

0.005

PART 2-3

CROSS SECTIONS

361

MHT 3230

. 1 .2

. 1 . 0

ii7oTi2.oTi3.oTT4.6Ti5.oTi6.oTi"a.ibTO. 00199.0TA73.T752TT965.TiO99Tll8«Tl233Tl250Ti213l

. 0.0

MEV

CROSS SECTIONS

31-GH-71

32-GE-70

IN.2N)

BOSPOR [61

0.6

32-GE-7O-(N,2N)32-GE-69

lEn,MevTllT7Tl27lTl3.oTl4.ori6.6'irto7ooti57ot28s7TinTt8oo7

17.0 ii7oTi97oT267ol8707T860.T8157I

i /

16MEV 32-GE-70

362

MRT 323S

MANOKH1N et al.

CROSS SECTIONS 32-GE-70

. 0.06

32-GE-70(N,P)31-GA-70

6709T6799T7759T87l9T9739Tl370Tl579Tl574|I Iiiili2l22ilIZ5npj5TJ?iiTn76T84i8T|2i4T|37gT87ig7||721

IIsIBIiTi|75Ti77JT2o7oI

0.02

0.00

MBT 3236

12 m

MEV

CROSS SECTIONS

IB 20

32-GE-70

32-GE-72

ENDL/AI7I

32-GE-72(N,2N)32-GE-71

I En~MevTl679Tll .2lTl78Tl274Tl376Tl376Tl472Ti478Tl874Tl97oT2o7o I11™j.5iIl2l°°l32lZ.IS5IIIi52lIl2lIII*§IIiei2.Iio|iri2*°r2lIIIIIIZ I

0 . 6

MEV 32-GE-72

MST 3536

PART 2-3

CROSS SECTIONS

363

.35T3765T6724T7•l!T8.O5T8795T9755

. o .ou

. O . G 3

. O . O 2

0.020

0 . 0 1 5

0.010

0.005

0.000

MEV 32-GE-73

364

HHT 3238

MANOKHIN et al.

CROSS SECTIONS

: o.oio

: coos

J 0.006 ~

. 0.002

MEV

CROSS SECTIONS

32-GE-7U

32-GE-76

IN.2N)

BOSPOR (6)

32-GE-76(N,2N)32-GE-75-M+G

IIiiiMevT975TT978oTio7oTii76Ti27oTi37oTi47oTi576Ti676Tl77oIII"i»I To7ooTi57oTio67T5467T8OO;T99o7Tii55Tii8oTi2ooTi2OOl

LLIIIIIIIIiLIIZI-II.I.III ~~~12lIIZ I_I_I_II IIEn'MevTl|75Tl97oT2o7oII"o.ob Tll0»T9157T6207IIA5, %"1 157 I

1.2

1.0

0.6

0.2

MEV

J 0.0

~20

32-GE-76

PART 2-3

CROSS SECTIONS

365

3 2 - G E - 7 6

32-CE-76(N,P)31-GA-76

2Ti 27iTi3T|Ti|T4Ti6722liII*iniiIlIliIli5oT|786T2Tj7Ti765Ti754

33-AS-75(N,2N)33-AS-74

IEn^MevTi674Ti57sTiI7oTi276Ti37oTi47oTi57oTi67oTI77oTi87o II I?i5lITo7o6T287gTno7T42on?4o7T?8p7Tii3oTi23oTi2?oTi3i51

~~* * to!"""!

0.003

- 0.002

0 .001

J 0.000

J 1.2

. 1 . 0

: o.u

. 0.2

33-RS-7S

366 MANOKHIN et al.

CROSS SECTIONS 33-RS-75

I|n2MevTi37oTi47oTi57oTri7oTi77oTi876Ti97oT2o7o I"T T T T . 7 T i 3 . T I 7 T 1 7 l T 5 7 6

. O.OIS

. 0.005

MEV

CROSS SECTIONS

33-HS-75

33-HS-75

(N.flLPHA)

BOSPOR [6)

33-AS-75(N,A)31-GA-72

I En2MevT27ioT87ooT|7ooTIo7oTii7oTi27oTI375TI475TI57oTi67oIrb"TggoTo2oTo6oT4oT29oT573oT872oTi7oT74To7ir15bTg.goToi2oToi6oTiioT2i9oT573oT872oTii7oTii74Tio15si.zZZLI.ZZ! 30TZ I I 25iZZLi5lIIIIIEZIInlSevTI77oTi87oTi97gTIg7g 1I "aJ.mb"T8740T7760T5:L8gT4i801IAL*~~T « 7 _ ~ _ "I

0.008

0.006

0.0014

0.002

: 0.000

mMEV

18 20

33-BS-75

MRT 3430

(N,P)

BOSPOR [6]

PART 2-3

CROSS SECTIONS

367

314-SE-74

0. 10

34-SE-74(N,P)33-AS-74

IEn7MevTo758T57|oT67ogT77ooT87ooT97ooTig7gTii7gTl276Ti375I' ib'To. 5oT47ooT77ooTi47oT277oT447oT65.0T88.oTIii7Ti3371

ZZIZZZZZZZZZZZZZZZZZZZZIeZZZZZZZZZZZZZZZZZZZZZZZZZZZiI En7jievTi47oTT 57oTi676TI 77oTi87oTi97oT2o7o II"•j.mb n457Tl487Tl457Tl4l7Tl357Tl297Tl207l"" """"""" "~IIIIIIIII|o7IIIIIIIIIIIII I

MEV 3U-SE-7U

CROSS SECTIONS 3H-SE-76

0.05

0.00

[ N . 2 N ]

BOSPOR [61

34-SE-76(N,2N)34-SE-75

I E;7(tevTn73TiI76Ti27oTi3. oTu. oTiroTiroTiz^oTirgTiKoTlgTg II IhBiIToZggTlOIi6g7T52g7Tz|g7T95o7TioIoTio2?Iio25Tigi5Tiooo I

3.6

. 0.0

MEV18 20

3 U - 5 E - 7 6

368 MANOKHIN et al.

CROSS SECTIONS 3S-BR-79

(N.2N!

BOSPOR [6)

: 0.6

35-BR-79(N,2N)35-BR-78

I En^M"vTio7iTii7gTi275Til76Tu7oTi 176Ti675Ti 776Ti875Ti97oT2p7o II "\sb"ToiggTigioT3267T6"o7T89g Jio33Ti673Tig6oT99|7T9ig7T8og71

MflT 3530

16

MEV

CH0S5 SECTIONS

18 20

35-BR-79

012

: o .o io

I ?SiM£iT6i8oT7. 5oT876gT97g6Ti67oTn76Ti27gTi37oTu76Ti57oI ]I »,nb T5.o6T6.3oTo.5oTi.ooT2.o5T4766T77ooTlo7oTi2.oTi27o!I Z ' T 457 T267 T"l57T~o7'

lEnjMevTl6.0U7.gTl8.0Tl9.0T20.0lTi1 "20. I

006 =

TcMEV 35-BR-79

MRT 3510

PART 2-3

CROSS S E C T I O N S

369

BOSPOR (6)

35-BR-81(N,2N)35-BR-8O-M

I En"5evTioT4TiiToTi2ToTi3ToTi4T6TIiToTi6ToTi7ToTi8ToTi9ToT2oTo Iroimb"To7ooT77o6T31o7T500.T6257T6947T729iT74o7T7357Tl957T6357l

l J ~ I I I I I " I ~ ~ l 2 l I I I I I I I I ~ ~ I I Z Z I 2 I I I I

IN.2N) ISOMERIC STRTE

MBT 35H0

16

MEV

CROSS SECTIONS

0.1

18 2035-BR-B1

35-BR-8I

(N.2N!

BOSPOR (61

35-BR-8K N, 2N) 35-BR-80-MK!

I S,Mev|io.3TIOTiOTi3ToTnTo7i5ToTijT5Ti7T5Ti8ToTijToTjoTo I'gTi5.oTi6.oTJ7.oTi8.0T19.oii..Tig8oTii5oTii85Tii95Tii9oT1.2i^J0.OOi25.Ol«07t23Oj96OJl086til50Tll85tll95Tll9ofll401

1 ss?x~i5i:n:uoinTZL jiz^isiz:zz^: 1

1.2

1.0

0.6 £

0.2

: 0.0

35-BR-61

370 MANOKHIN et al.

CR05S SECTIONS

_J 1.2

37-RB-85(N,2N)37-R_-84 1_ _ _ _ _ _ J

l?___-_T____T_2l_T__I_Ti3.oTi4T6Ti57oTi6ToTi77oTilToTi9ioT2o7ol iI b To0oTl20T424T8^87Tl0wTin6Tl216Tl224Tl220Tl216Tll9Ol ]

i<

0.2

12 16

MEV

CROSS SECTIONS

16 20

37-RB-B5

37-RB-87

1.0

37-RB-87(N,2N)37-RB-86-M+G

675Tii7oTi27oTi37oTi47oTi57oTi67oTr77oTi87oTr97oT|o76l•OoTl5Zo7220.T6007T9207Tll20Tl250Tl3OoTl330Tl34ofr350Tl3401

T ioT" T "157 I

c.t

1 C.2

j G.O

m 16MEV

18 2037-RB-B7

PART 2-3

CROSS SECTIONS

371

1 1.5

_ | | T T !I oj»b T0.OOTl5.0T280.T836.Tl22gTl38gTl47gTl50oTl500Ti495l

J T 1 5 ~ ~ T ~ " ~ " " 10. I

. 0.0

MHT 38SD

MEV

CROSS SECTIONS

IN.P)

BOSPOR [6]

38-SR-86(N,P)37-RB-86-M+G

'I|n2MevTnooT67ooT77o6T8755T976oTio7oTii75Ti27oTi37oTi47oII aimb"To75oTo77oT27ooT57ooT97ooTi47oT2r75T2876T367oT427o IIAO.Z T 3o7 T 157 T"o71

0 . 0 3

O.OJ

0 .01

^ 0 . 0 0

"TT"

372

MRT 38140

MANOKHIN et al.

CROSS SECTIONS

BOSPOR |61

38-SR-88(N,2N)38-Sft-87-M

l|n^McvTii7|TiI77Ti27oTi37oTi47oTi576Ti67oTi77oTi87oTi97oT2o76lI <F mb'To7ooTl77oT447otl6o7T2857T33|7T364^T374iT3777T3687T3277[|£o % ~T~ 177 " T " 15. ' ~ ~ ~ ~ r~"l

0.3

[N.JNI ISOMERIC STRTE

]J_; 0 .1

j

I

0.0IB

MEV

CROSS SECTIONS

18 20

38-SR-88

(N.PI

BOSPOR [6]

0.03

0.02

0 .01

n2S5T5TTiiTi2oTi37oTi47oTi576Ti67oTi7l6Tr87oTi976T2o7ol<ji5b"To7ooT6.6oT2.ooT47o6T8.ooTi2.oTi87oT2376T27.oT|9.oT3i75T327o!J j - j ~ ~ 55T T"lI.T" 20. I

38-SR-6

PART 2-3

CROSS SECTIONS

373

39-r -89

(N.2N1

BOSPOR 16] 1.0

0.6

0.2

: o . o16

MEV

CROSS SECTIONS

1839

39

-T

-Y

20-89

-89

(N.P)

BOSPOR [61

39-Y-89(N,P)38-Y-89

2i?«Fo772T|7ooT77ooT|7ooT97ogTIo7oTii7oTi27oTi37oTi47ol

I E^Sj;Tl5:oTi|ToTi7ToTi8ToTl976T26T61Il2i3iITllI5T|s7oTl47gIlil2llll2lIll2I

fa fz iMEV 39-Y -89

0 . 0 2 S

0 . 0 1 5

0 . 0 1 0

0 .00S

0 . 0 0 0

374

MRT 4020

MANOKHIN et al.

CROSS SECTIONS

1N.2N!

IRDF[9]

MHT qO35 CROSS SECTIONS

(N , P]

ENDL/A |7I

W-ZR-90

1.0

o.s £

o.u

: o.o

HO-ZR-92

40-ZR-92(N,P)39-Y-92

I in2MevT|T5iT878iTio7oTiiT2Ti2TiTn76Ti4T|TIol91I i i I l Z l l i n i I l l l l l I l l l I l I

0.015

0.010

0.005

0.000

18 2D

UO-ZR-92

MRT 4035

PART 2-3

CROSS SECTIONS

375

4C-ZR-9I4

-

f1IH PI

ENDL/A171

; /

: /

i /- 1

/ :

I 40-ZR-94(N,P)39-Y-94

/ li5iMevT9.87TlO.2TlI.lTl2.3Tl3.2Tl4.ITl5.6Tl6.8T2O.01 •

-

'. 0.010

MPT 4120

16

MEV

(N.N-I CROSS SECTIONS

I SnjtaVj_12- 0 [ 18^.0^19.0 • 20 .0 J•,~f.mt '22.9.;2O.5'18.7il8.2;

: 5 r J C i T O " ~ " ;

J 0.008

: 0.006

18 2040-ZR-94

m-NB-93

IRDF [9]

0.2

J 0 . 0

MEV I-NB-93

376

MHT 4 1 3 0

MANOKHIN et al.

CROSS SECTIONS

. 0.1

: 0.3

41-NB-93(N,2N)41-NB-92-M

T9To4T9T2oTio7oT|noTII7oTr37oTr4ToTi57oTi676Ti7ToIlo,nbTo7o6T3.65T9475T3007T42o7T4667T483.T4777T4577T4267|

42i5_II L__1 iSilZI L1J"T "•I En7.MivTl87oTl97oT267o |I"5,nb"T39l7T3567T3187II S T "7. I

MEV

CROSS SECTIONS

42-MO-92(N,P)41-NB-92-M

I En2MevT575|T5786T67l6T77o6T'I''T97r|Tro7ITII73Tl272Tl37o I

I I i i l 2 2 2 l I ° 2 l l I i l I I 5 l I l l I I Z I I I I l I l I I I

IEn2SevTi475Tl57oTi67oTi77gTi876Tr976T|o7oIIii5iIII§IZl5878T4876T4077T3475T2976T24.31

. 0.06

. o.on

. 0.02

18 20

H2-M0-92

PART 2-3

CROSS SECTIONS

377

ENDL/AI71

42-MO-94(N,2N)42-MO-93-HH;

IEn2SevT9778Tlo73Tll74Tl27oTl37oTl478Tl779Tl975T2o7oIII?ii5IIol22l[og7T6Oo7T8|g7T9ogj95g7T95o7T85O1T75o7I

1N.2N)

0.1

11 16MEV

CROSS SECTIONS

18 50

142-M0-94

H2-M0-95

42-MO-95(N,P)4l-NB-95-M+<;

I52l^ivT67i5T776gT87;ogT97ogTio7oTii7sTill2Ti37oTi47oTr|iOI

Se;Ti67oTi776Ti87oTi97oT2o7oI

ilHilllSIIllilliliH

12 11

MEV

18 20

U2-M0-9S

378

MHT 1)260

MANOKHINetal.

CROSS SECTIONS

1 0 . 0 5

. 0.014

0.00

MEV

CROSS SECTIONS

IB 2012-M0-96

•42-M0-96

I |n2MevT274|T|7ooT77ogT§7g6T97o6Tig7oTii7oTii7oTn76Tr47g II i I l l l l l l 5 I I I l l 5 l Z I Z l I 5 I I I ? n 2 I

I injSevTI576Ti|76Ti77oTi876Ti975T2o7oI. 3Ti975Ti6T7Ti3. 8TI|7oTii721

. 0.020

. 0.010

. 0.005

142-M0-96

PART 2-3

CROSS SECTIONS

379

^^-M0-^7

( N , N " P ) Ivasculnl

42-MO-97(ti,N'P)'il-NB-96

lEnIJte;T932Tl37oTl4.6Tn7oTl67oTl77oTl8.oTl97oT207ol1 -?i5^-l2l22l2i25Tl1JoT47ooT7760Tl2;|Tl777T2373T29741

o.oso

o . o i s

0.005

. o.ooo16

MFU 14270

MEV

CROSS SECTIONS

18 20U2-MO-97

I N . P ) Ivascu 1111

42-MO-97(N,P)41-NB-97

IEn2MevTiTi6T7702Ti7ooT97ooTio7oTii7oTi275Ti37oTi4"5Ti57o I

I i I o I o o I i l I f T ^ T ^ r T r i r J g T T i r o T i l 751

IEn^5evTl676Tl77oTl87oTl97oT2o76II IL5SlIiIIIIi2l6Tio7oT976oT97|g I

0.012

0.008

. 0.00M

o.oos

6 7 8 9 ]O1o.ooo

MEV1O1 2

U2-M0-97

380

MflT 4280

MANOKHINetal.

CROSS SECTIONS

Lrz

C N . N ' P ] Ivaseu [11]

42-MO-98(l»,K'P)41-!IB-97

IIn2MevT9789Ti4roTi5T6Ti6ToTi776Ti§7oTi9ToT26ToI1_HiiI_l2l°2l°IifeI°I§°IiIllIlIill5lliT8To5Ti575I

'.1 16MEV

: o .o io

- 0.00018 20

U2-M0-98

MflT M335 CROSS SECTIONS0.025

IN.P)

ENDL/AI7]

- 0.020

J 0 . 0 1 5

43-TC-99(N,P)«-MO-99

I En7ScvT375 7T3787T57o7T6727T77r7Tr27oTl279Tl474Tl576Tr678T267o I 1I I§i.iiIl2i22l2lznilIll2OIliIZIl5l2lllIin?IlinilIilI^niIl I

0.0C5

0.000

MEV

PART 2-3

CROSS SECTIONS

381

«-TC-99

ENDL/A [71

43-TC-99(N,A)41-NB-96

vT7754T77||T8TI|T874|Tf7oJTio7oTu71TJoToI

Q " l O l l I l l l I I 2 I I l l i I l

MHT M52O

mMEV

IN.N' I CROSS SECTIONS

. 3 9 . 7 5 KEV ISOMERIC STRTE

IRDF |9l

0.006

. 0.004

. 0.002

J

!N.fllPHfl)

18 2043-TC-99

1S-RH-103

45-HH-lO3(N,H' )45-»H-103-M

;&i.MoV'o.2o;o.4o:i.oo;2.oo!IjTjjS i^.iiTai.iSlSiiSoi. j

!BiTiiV7X3725!j.z5l5T25! 5ol77oo;f.5oX9looi~<rjJS iio3l!ioi6iiio2.;liliiii4i;ni5i.io94.:\K<r.iT \ ~ i l _ i ~ _5~ ~ I ~ i l

O.E

o.s

: o.i

0 .2

9

10" s rrxMEV 45-RH-103

382 MANOKHIN et al.

CROSS SECTIONS •17-HG-107

IN.f l lPHfl] [SOMERIC STfiTE ENDL/A 17)

47-AG-107(N,A)45-RH-104-M

I|n2MevT57|6T776oTig7oTi57oT|g7o II -°i5*-l2-°9l°ll2l5i22lill°"li57o I

"3 0.015

_ 0.010

_j o.oos

12 14

MHT M730

MEV

CR05S SECTIONS

18 20

L|7 -PG-107

47-RG-109

J 0.000

. 0 . 0 1 5

0.00547-AG-109(N,P)46-PD-109-M+G

,eT36T7.5oT87o6T97ooTro7oTii76Ti2.oTi37oTi47oTl57oIc^;b"To7ooTo76oTi7ooT272oT476oT6.0oTis7ooTn76Ti3.otxsTo I

i 5 l I I I I I I I l 3 ° I Z I Z I I " I I I ~ I l I ~ I I I ~ 7 ~ I

IEn^SevTi67oTi77oTi87oTri7oT2o7oIT o mb'Tl574Tl578Tl579Tl5.6Tl57o|

MEV18 20

47-BG-109

PART 2-3

Cf iOSS S E C T I O N S

383

(N.BLPKfi) GROUND STflTE ENDL/AI7]

47-AG-109(N,A)45-RH-106-C

IEn][MevT575gT97ggTio72TiiT2Tl27oTl3T5Ti57oT2o7oI'I?i5iIl2l22l2i2iI4~i8T574iT6758T97i6Ti27|Ti57oI

MHT 61437 IN.N' i CROSS SECTIONS

ii7 - B G - i 0 3

" """" 73 0 . 0 1 S

. 0.00018 20

H7-HG-109

4 9 - I N - i 1 5

. 0.3

. 0.2

,BiJiiVvi7ipo!l.opj.io.o;To78iii.i:i.3T5!i4.3',2o.o;Ijr^rt iJOTi! 2?l.iZ47i! 205.J.115. ',li~O162.0 [54.0''Ld? I _ _ I2 _ I 14 ! 22~ ~ ;

\ 0 . 0

8 9I00 3 1 5 6 7 8 9 , n l

1 9 - I N - l 15

384 MANOKHINetal.

CROSS SECTIONS

BOSPOR (61

49-In-115(N,2N)49-IN-114-M

IEn2ScvT973oT975oTi67oTiI7oTi27oTi37oTi47oTi575Ti67gTi77oI"gimb"T0766Tl07oTl5o7T5707T8867Tl095Tl20OTl245Tl270Tl2751

TIIiIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIII i! |^5evTl875Ti9"6T2o7g II OjOb Tl255Tll95TlO80li S r T " 157 ~ I

• 1 . 0

: 0 . 8

0.6 m

0.2

I N . 2 N I I S O M E R I C S T B T E

0.0

MflT 4940

MEV

CROSS SECTIONS

20U9-IN-1 15

W-IN-! 15

49-IN-115(N,2N)49-IN-114-M+G

IEn25evT|7iiT974gTio7oTii7oTi27oTi37oTi47oTi5loTi67oTi77oII"ai;b"Tg7ooTl275T2757T75O7tll8oTl48OTl66OTl75OTl80ofl825I'" "" " " ' r~T 157I4a.z._l 22i__L

! En"5evTl8. 0Tl975T20701• S " T p T T i

1.0

18 20

1 9 - I N - I I S

MHT 5030

PART 2-3

CROSS SECTIONS

(N.2N1

BOSPOR [6]

50-SN-112(N,2N)50-SN-lll

IEn^MevTig79Tii73Ti27oTr37oTi47oTi57gIi67gTiz76Ti87gTi9l2l?9l9I0Oj5O76T38O.T8

20. T"l57T _ ~_10.

1.2

0.2

MBT 5 1 40

16

MEV

CROSS SECTIONS

50-SN-112

5 1 - S B - l

51-SB-123CN,2N)51-SB-122-M+G

!En7MevT97o4T9.46Tro7oTii7oTfi7oTi37oTi476Ti57oTi67oTl77ol n H

rq.;b"T67o6T257oT28O7T72O7TIO4OTi256Ti384Ti44§Tl472Tl464| i

0.0

MEVIB 20

5 1 - S 8 - 1 2 3

385

386 MANOKHIN et al.

CROSS S E C T I O N S S 3 - I - 1 2 7

^Si^i^^iT^^oTio.oTiiToTinoTis^oTu.oTis.oTu.oTizToll_aimb ToTo6T3oToT2|oTTp0TTl20oTi41oTi52OTl575Tl590Tl59O|l A i "T is . T _ioT T 6.T ~ i o ~ " ~ I

J i .0

^MeTiiloTiloTJg|^mb Tl540jl360Tl200l

III~LL~

MHT 5S30

MEV

CROSS SECTIONS

18 SO

S 3 - I - 1 2 7

S 5 - C S - 1 3 3

55-CS-133(N,2N)55-CS-132

lInxMevT97o5T9.7oTig7oTri7oTI|7oll3.Oll4.Oll.5T0ll6.Oll77olralnb"T0.5oT5o70T2107T7607Tll75Tl45oTr586Tl60OTl520Tl340l

T 157 T" ~ to7 T"57"T

lEniMevTl8.0Tl9.0T20^0lO,mb"Tll36T9767T810"

lAaz T io7 I

0.0

PART 2-3

CROSS SECTIONS

387

S8-CE-1H0

I EnTSevTio. 0T10 J J i i i O T n i o T i S o T u T i s g T L Q T l Q T J i |!"ckinb"ToT0oTlO.oT32O.T66oTT850TT94oTT97O.T94O.T866.T75g7|

SJlII~IIIIilI~~II~ilIIIIiIIIII~I~~iIII'lEn7,MevTl97oT267o!I Oiib'TSooTTSsoTi

v i n is." ~_\

o.u

IN .2N1 ISOMERIC STRTE

0.04 16

MEV

CROSS SECTIONS

18 20

58-CE-1U0

se-CE-mo

(N.2N1

BOSPOR (61

58-CE-14O(N,2N)58-CE-139-H+C

I En2Se»T|727T9T4oTio7oTIIToTi276Tl3loTi4ToTl5ToTi67oTi7761I ^ imrTo7o6720.OT4357T9207Tl28OTl540Tl71oTl750Tl820Tl8151

i £!IIII__IiL_HIII IIIioIIIIIIIZLiilllllZZIIill 11I|n2>tevTl876Tl9"0T2670II Omb"Tl760Tl6l5Tl440|\ i j "T 77 I

1.0

0.5

. 0.0

MEV18 20

58-CE-1U0

388

MflT 5840

MANOKHIN et al.

CROSS SECTIONS 58-CE-112

BOSPOR [61

58-CE-142(N,2N)58-CE-141

TJlTSToOo.mb IO.OOT5007

T 10^ I 7.

I EnTSUTnioTilloTilloTioTo |' a.mb Tl360Tll20T910.T7O0.|

59-PR-141(N,2N)59-PR-140

IEn2MevT9746T977oTio76Trr7oTi27oTi37oTi47oTri7oTi67oTi77oIra,mb"To7o0T45.0T2607T8707Ti250Tl470Tmotr7O0Tr750Tl795l

lAa5.IIII~IIi51.I.Iiri..io7~TI._._.. .. .^

?Ist-Tl79gTl685Tl4751

1.5

0.5

. 0.0

. 1.0

D.S

MEV

MBT 6030

PART 2-3

CROSS SECTIONS

389

60-ND-112

MHT 6050

i i i i i i S Z f I . 1 . 0

60-ND-142(N, 2N)60-ND-141-M+C

I |nifievT9788TIo7niroTi27oTl376Ti476Tl57oTi67oTi77oTp7o Ib~T0766T29.2T3757T935.Tl385Tl630Tl760Tl825Tl870Tl892l

"IliOi-IIIZIIIIIIZIIIIIIIIIIi'

1 En7H=vTl976T2O7o I1854TI7O5I

\2e,z "T 107

. 0 . 5

MEV

CROSS SECTIONS

JOSO-ND-112

60-ND-118

BOSPOR 161

6O-ND-148(N,2N)6O-ffl)-147

I ES7Mevl7.37l7.70T8.00l9.00ll57olll.Oll2.0in7oTi47oTn7o I1 Sl2l22li2l2llZ2l22liS2SinilIiillIi5?2liZ2oil5221

1 -?ia7oril7oTi |7oT2o7o In l l I l l I

l . S

1.0

. 0 .0

MEV!8 20

60-N0-1U8

390MRT 6060

MANOKHIN et al.

CROSS SECTIONS 60-N0-150

BOSPOR 161

60-ND-150(N,2N)60-ND-149

I EniMj;T774iT87ggTfTooTio7oTuT5Ti27oTn7oTu7oTi57oTi67o I1 i i I I i I i 2 i l 8 8 0 Jl27OTl5O5ll66|Tl 725Tl740Tl69gTl|l01

I Ii>IS>vTi7loTi 876Tl97oT2g7o I5 Z I l i l I i i I I

0.5

_; o.o12 14

MEV18 20

60-ND-1S0

CROSS SECTIONS

62-SM-144(N,2N)62-SM-143-tt«;

I |SiMcvTl0. 6Tll7oTl27bTl i10Tl4 ibTl5. OTI6. oTl 7.511875119^0120.01I a.mb To75oT5O.0T65O.TlO85Tl4OoTl56oTl655Tl74oTl8OoTl84Oll86O

. 1.5

MEV

1HT 6260

PART 2-3

CROSS SECTIONS

391

65-SM-152

18 2062-SM-152

1R7 6J70 CROSS SECTIONS

BOSPOR [61

62-SM-154(N,211)62-SM-153

^ToTi 37oTi!ToTi IT0T16T01I!lIlnilil]lIIl

18 2062-SM-1SU

392

HflT 6735

MHT 6735

MANOKHIN et al.

CROSS SECTIONS

ENDL/A (71

67-HO-165(N,2N)67-HO-164-M

TTIT874§T97o8T|7f8Tio7|TiiT8Ti|77Ti4l5Ti|74Ti6To Ii22l lL2l2*Ll623lI l58 Jj;O3|Tl049Tl050TiOO3T||871

I EnTjte vTl772Tl87lTT 975T2O761IIIIII*25TI*IiiI*2 371

(N.2NI ISOMERIC STRTE

0.6

H 0.0

mMEV

CROSS SECTIONS

18 50

67-H0-165

67-H0-165

67-HO-165(N,2N)67-HO-164-G

7iTu7oTii79Ti476Ti575TI 77oTi 5751

. O.£

- 0.2

GROUND STflTEJ j 0 0

18 2067-H0-165

MHT 6930

PART 2-3

CROSS SECTIONS

393

2.0

MfiT 7 1 3 5

. 1 . 5

. 0.5

- 0.0

MEV

CROSS SECTIONS

18 20

69-TM-169

71-LU-175

ENOL/A 171

10.plll.oTl2.0ll3.oTl4.oTl57oTl67oI4ir7T478.T5187T5427T5547T562.T533.I

(N.2NI ISOMERIC STflTE

O.H

0.3

0 . 5

0. 1

0.0

II

MEV

18 20

71-LU-175

394

MHT 7135

MANOKHIN et al.

CROSS SECTIONS 71-LU-17S

ENDUA171

71-LU-175(N,2N)71-LU-174-C1 lslMivT777oT7T8oT|TooT9TooTioToTiiToTi2ToTi3ToTIZToTI|ToII ^mbToiOoTl27oT2|ioT614TT999TJll'5Tl22lTl222Tri98Tll631

vliiToTiTToTiiToTiiToTioToiO.mb flO75T92l7T69O?T5l57T379. I

L:GROUND STflTE

1.2

1.0

0.E

0.S

0 .0

MHT 713S

MEV

CROSS 5ECTI0.NS

71-LU-175

71-LU-17S

(N.3N) ISOMERIC STflTE

ENOL/A171O.S

71-LU-176(N,3N)71-LU-X74-M

1lsIyiiTi472Ti474Ti57oTri79Ti77iTi87oTiiIIT2o7gII a,mb T6.00Tl.10Tl875Tlll7T4127T499.T547.T555.I

J 0.3

\o.

0. 1

0.0

MEV20

71-LU-176

MRT 7 1 36

(N .3N)

-GROUND STflTE

PART 2-3

CROSS SECTIONS 7 1 - L U - 1 7 S

ENDL/A |71

71-LU-176CN,3N)7I-LU-I74-G

IEnTjie vTi47oTi472Ti57oTi57|Ti77iTi87oTi972TIo7o Irg.mb"To.o6Tl7o5T257oTl29.T4127T4997T547.T5557l

17

MEV

CROSS SECTIONS

0 . 3

0.2

2

7 1 - L U - 1 7 6

7 2 - H F - 1 7 9

I N . P I

ENDL/A (71

395

0.003

72-HF-179(N,P)71-LU-179

I En7.MevTio7oTi 573TIo79Tl27iTi3. oTi379Tn7iTi67oTi772Tl87i II oimb"To.OoT6704To734Tl747T2.27T2. 78T5.06T37HT371413.141

|5;iMevTl9"7oT2O.6l

. 0.002

0 .001

. 0.000

MEV

20

72-HF-179

396 MANOKHINetal.

CROSS SECTIONS 72-HF-1B0

MRT 7330

2.0

• 1.5

72-HF-180(N,P)71-LU-180

"o^mb"to.Oofo.03to.5ofl.27fl.97f2.50T2.65t2.7ot2.7lT2.72|

j 0.5

16

MEV

CROSS SECTIONS

18 2072-HF-180

73-TH-18I

Adamski et al. [10]

73-TA-181(N,2N)73-TA-18O-M

I En2MevT7768T872lT972 5TIo73Tu73Tl2T3Tl373TIOTl673Tl873T20761I "o mb'To. O0Ti776T7187TlO85Tl322Tl37|Il352Ti28OTlO62T5O37T36571|/ya z "T 57 _ "T ' 77 LJ7^T I"|7~"J i37l

1.0

0.8

: 0 . 4

1 0 . 2

I N . 2 N I I S O M E R I C S T f l T E

\T mMEV

18 2073-TR-181

MfiT 7330

PART 2-3

CROSS SECTIONS

397

EK:M;vToT24Tio:iTn:oTi2:on3:oTi4ToriroTi6ToTi 7:6Tis:g iro,mb"To7ooTo7o4To.50117151271513.6011^2516^7017.8018.601 -l&uT~T 357 TSo.T io7 '__ _ ~ I 257 _ I

lEn,MevTl970T2070ll"a,;rT9725T9775l1 5 » . ~ T 207 I

4 IBMEV

CROSS SECTIONS

73-TR-181

0.006

O.OOM

0 . 0 0 2

18 2"0

73-TR-]81

ENDL/A[7I

74-W-180(N,2N)74-W-179-M+C

I En^MevT|766T878oT97i6TIo7oTiI76Ti47oTi67oTi77oTi87oT2o7611 1i i I l279n^I i227I i IooT90oT2iooTifooTi45oTi 200T10001

1 .0

Jo.:

/

t-'10 12 14 is 18

[N.2N1 1 .i -

2C711-H -180

398

MHT 7136

MANOKHIN et al.

CROSS SECTIONS 714-W - 1 8 2

IEnjMevTl7^0119. 0120^01

I I§L?On22ll222li22l I

MEV

CROSS SECTIONS

18 2 0

714-W - 1 8 2

CN.N"P) ENDL/A [71

74-W-183(N,N'P)73-TA-182-G+Ml+M2

0.008

o.ooy

. 0.002

MRT 71437

PART 2-3

CROSS SECTIONS

399

J 0 . 0 1 2

J 0 . 0 0 2

j 0 . 0 0 0

URT 71438

M£V

CROSS SECTIONS

(N.P1

0 . 0 1 0

0.008

0.002

0.00018 20

74-H -184

400 MANOKHIN et al.

CROSS SECTIONS

I En1MevTll^0TllT2Tl2. Ojl3.0Tl4.0Tl5. 0jl6.5TT675T18.5119^3120.01

16

MEV

CROSS SECTIONS

0 . 0 0 2

20714-W -181

18 20

7U-W -186

MHT 71439

PART 2-3

CROSS SECTIONS

401

7 1 - H - 1 8 6

ENDUAI7)

74-W-186(N,P)73-TA-186

I ESTSvTiriTriTsTnTiTnTSnsToTiSTnnToTiroTIoTo II I»IsiIIoI5ol9l2ll2ll?IiIi?Ill2ll5iIIIZll«IikiIi*ZI I

0 . 0 1 2

0.010

0.008

0.006

0.002

KHT 7139

16

MEV

CROSS SECTIONS

18 207U-W -186

-186

(N.flLPHfil ENDL/A17]

74-w-186(N,A)72-HF-183

I |nl«e vTII~oTii"2Ti27oTi37oTr4ToTi5ToTi|ToTi675Ti875Ti9T3T2oTo1

0.012

0 . 0 1 0

0.008

0.006

0.00M

0.002

. 0.000

MEVIS 20

74-W -186

402

MflT 7S35

MANOKHIN et al.

CROSS SECTIONS 7S-RE-13S

18 2075-RE-185

CROSS SECTIONS

. 1 . 0

18 207S-RE-185

PART 2-3

CROSS SECTIONS

403

7 9 - H U - 1 9 7

79-AU-197(N,2N)79-AU-196-Ml

IE;"MevT8776T97§oTii7oTl27oTn76Ti47oTr57oTi67oT2o7oI1 Iii»5IT2-°°Ii°-'°'''39^oT7o7oTioo7Ti267Ti4o^Ti.4o1Ti2o^ I

0. 10

o.os

0.06

0.00

2.0

l .S

1.0

0.5

0.0

79-BU-197

404

MBT 8035

IN .P )

ENDL/A [71

MRT 8036

MANOKHIN et al.

CROSS SECTIONS 80-HG-202

2 |1 -?i5i-l2i°°l2i°2lUl§l2l3lIii2ll2l

q 0.003

0.002

. 0.000

16MEV

CROSS SECTIONS

20

80-HG-202

[ N . 2 N ]

ENDL/A 17)

. 2.0

12 nrMEV

-tr

1.0 m

0.5

0.0

MRT 6036

PART 2-3

CROSS SECTIONS

405

80-HC-204 (N, t) 79-AU-204

I En7MevTl379Tl472Tl574Tl67oTl772Tl877Tl973T2O7o I 0 . 0 0 2

0.001

0.000

MfiT 8036

MEV

CROSS SECTIONS

20

80-HG-2014

80-HG-20H

. 0.002

. 0.001

0.000

20

80-HG-2Q4

406 MANOKHIN et al.

CROSS SECTIONS

81-TL-2O3(N,2N)81-TL-202

I En"MivT77zlT8766T97o6Tio7oTIi7oTl276Ti37oTi47oTni2TiS761\~a.mb To.OoT476ST35l7T9587Tl439Tl728Tr5l0T2017T2O80T2O24|

~I_U.7.~TI En JMcvTl77gTll76Tl97oT267o IIZ€i?iITi892Ti6|oTi37ITiigoIIAO.J; T" " "10." "I

MHT 8135

. 0.5

1 0.0

MEV

CROSS SECTIONS

18 20

SI -TL-203

81-TL-203

ENDL/AI7I

0.003

81-Tl-2O3(N,P)8O-HG-2O3

lEn~McvTi67oTio73TIo79Tr27iTi37oTi574Ti67oTI|79Ti87iTr973T267olI "o,mb"To7ooto7l2To799T3723T3799T4720T4.15T3.65T2774T2.25T2716 [

0.002

0.000

20

8 ! -TL -203

HPT 6 1 4 0

PART 2-3

CROSS SECTIONS

407

lEniMevT~58T8.2OT9.OOTlO;oTll.oTl2_10Tl3.oTl3i0Tl5ToTl6TolI lo^siZToTooT^oToTlTO Jll8oTl|7oTl810Tl940T2O0oT2O00tl9501

IAO^J is..I__i ZZ12ZZZZZZ Z iI En^Kvll IToTiiToTI 97oT2o7o II"atobZTl860Tl730Tl520Tl220lIflo.z" T i o 7 ~ "I

2.0

1.5

1.0

0.5

14

MEV

18 2081-TL-2O5

"HT 8 1 3 6 CROSS SECTIONS 31-Tl-205

81-TL-205(N,P)80-HG-205

I |57JpTn7oTu73Tii79Ti37iTiirjTi STiTnToTilTinoTg II <,,ub"To7ooTo766To745Tl. 46Tl. 85TI. 9OTl.i82TLi6Tl.iO51

o.s

0.018 20

81-TL-205

408

MHT 8230

MANOKHIN et al.

CROSS SECTIONS 82-PB-20I4

BOSPOR [6]

82-PB-204(N,2H)82-PB-2O3-M1+M2+C

vI !L44T9.ggTigToTii7ori27oTi3 • oTi* • oTiFToTi 67oTT 7?o Il Q^OoT487oT696TTl2721168oTl920T2064T2130T2148T20761

2.0

1.5

1.0

0.5

. 0.0

HHT 8235

MEV

CROSS SECTIONS

18 2082-PB-201J

82-PB-20M

( N . P )

ENDL/A |7]

82-PB-2O4(N,P)81-TL-204

I EoTfievTiOTio. 'TnToTi^s 1 1 | a I uT5Ti6.71 i776Ti974T2o7oII r?i»fc~l'°-0°T°"°^'0-23'l'l-95T2.54T3.l6T3.32T3.15T2T26T2.021

0.003

0.002

0.001

. 0.000

MEV20

82-PB-20H

HflT 6237

ENDL/A [71

MBT 8240

PART 2-3

CROSS SECTIONS

409

82-PB-2O7 (N, P)81-IL-207->»G

I|i7je7Tii7pTiI73Tl27JTl3TiTi4T5Tl7r3Ti8r2T5oT6|I5tJ°OoTo^JJ7jS2Tn5ni J[HO2liIiiIiI°4' I

IN. P)

16

MEV

CROSS SECTIONS

1.0

20

82-PB-207

82-P8-208

82-PB-208(N,2N)82-PB-207-M

IEn7SevT976oT97ooTio75TIi7oTl27oTI|7oT1475TI575Ti57oTI775I' o1«*"to7ooT25iiT2|o7T54o7T|4o7TiiooTi2l2lil22lil22n2*9!

I En7.MevTl87oTl?76T2O761I "a,mb~Tl15oTlO3oT88O71l i i . z "T 157 I

. 1.2

: i . o

. 0.8

. 0.6

. o . u

. 0.2

MEV18 50

82-P8-208

410

MHT 8330

MANOKHIN et al.

CROSS SECTIONS 83-81-209

. 2.0

83-BI-2O9(N, 2N)83-BI-208

I"o7Bb"To7ooT507oT9757Tl510Tl866T2l6oT2206T2250T2260T2222I

MBT 833S

MEV

CROSS SECTIONS

(N.P) ENDL/A(7I

83-BI-209(N,P)82-PB-209

I lilMe?T|7|oTii7oTiI7oTi3loTi47oTi|7oTiIIoTin<>TiE°Tii7pT|o7o I

2.5

0.0

8 3 - B I - 2 0 9

MBT 9030

PART 2-3

CROSS SECTIONS 9C-TH-232

[N.2N1

BOSPOR (61

90-TH-232(N,2N)9O-TH-231

I En3ivT6746T671oT77o6T87OTT97ooTio7oTn7oTi 27oTi57oTi47o ITO.OOTSO.0T5767Tl27bTl676Tl780Ti860Ti79oTl690Tl450IT „—T ~-:---^io7:~::::;;::~::r47ii

I En^MevTisTbTiOTi 77oTi87oTl975T267o 1I "oJmb_Tl076T700. T5307T4067T300. T23671

l4iJ*-HI~~I_IIiiII~~~II--~ I

MHT 9230

MEV

CROSS SECTIONS

IB 20

90-TH-232

92-U -238

( N . 2 N )

BOSPOR 161

92-U-238CN,2N)92-U-237

I |^ifevTinn|73oTno^T87OTTFMTio7JTn7oTi27oTl37oTu7o II »,nb"T0.OoTlo7oT5057Tl670Tl3l6Tl40oTl420Tl39oTl240T92o7I

i iCE:n~ii2ii~:iix~:~":iii;:~i:~nii i7 1

I£n7SivTr57oTr67oTr77oTi87oTI57oT2o7oIrS.Sb T61O7T46O7T36O7T29O.T2567T21O7|IA^'T Io7 I

O.£

o.u

0.2

MEV18 20

92-U -238

411

2-4. CALIFORNIUM-252 SPECTRUM AVERAGEDNEUTRON CROSS-SECTIONS

W. MANNHARTPhysikalisch-Technische Bundesanstalt,Braunschweig,Federal Republic of Germany

Abstract

CALIFORNIUM-252 SPECTRUM AVERAGED NEUTRON CROSS-SECTIONS.The status of the available experimental data on spectrum averaged cross-section measure-

ments for the neutron benchmark field of 2S2Cf spontaneous fission is reviewed. Particularattention is paid to the uncertainties of the experimental data, in the form of complete covari-ance matrices describing the interdependence of the data on the measurement procedure.Based on this information, a set of recommended data have been derived by generalized leastsquares techniques. The results from calculations of spectrum averaged data, based mainly onEvaluated Neutron Data File (ENDF/B-V) neutron cross-sections, are also given.

1. INTRODUCTION

The use of neutron monitor reactions in power reactors during routine opera-tion for purposes of neutron fluence and flux density determination requires priorestablishment of the measuring techniques and of the reliability of the nuclear data.This can best be carried out using certain neutron benchmark fields which havethe advantage of being relatively simple in structure. Thus, the benchmark fieldsof 235U and 252Cf are quite useful. Even if the field of neutron-induced fissionfor 23SU is more application oriented, owing to the fact that most technical neutronfields are driven by this fission source, the realization of a pure 23SU neutron fieldis hampered by spectrum perturbation effects arising from the epithermal neutronbackground, from wall returns and from scattering effects. This inherent disadvan-tage of a 235U neutron field can be circumvented by using the neutron field of252Cf spontaneous fission. With a compact form of a californium source and ahigh specific neutron yield (2.3 X lO'-s'^mg"1), neutron fields can be realizedwhich are almost free of spectrum distortion effects. The precision attainablein a neutron cross-section measurement in such a field is limited only by theuncertainties of the neutron-source strength determination (about 1%) and theactivation-detector calibration (about 1.5%). Assuming negligible contributionsfrom counting statistics, relative overall uncertainties of the order of 2% can beachieved. This makes 2s2Cf spectrum averaged data very useful for the valida-tion of energy-dependent cross-section evaluations. Owing to their high accuracy.

413

414 MANNHART

2S2Cf spectrum averaged cross-sections can also be applied to variance reductionmethods [ 1 ] with the aim of making possible more precise predictions of radiationdamage in reactor pressure vessels.

2. BASIS OF THE EXPERIMENTAL DATA

Since the last review (that surveyed the status of data available up to 1979[2]), the quantity of data has almost doubled. The data are indicated by thelabel 'Experiment' in column 2 of Table I. Columns 4 and 5 give examples ofrelated experiments: the reference reaction and the spectrum averaged cross-section value, <a>R, used for this reaction are shown. In addition, a brief descrip-tion is given of each experiment. It is also shown that some experiments havebeen superseded by more recent data and that some of the data have been revised.The experiments form two groups: those with a complete uncertainty descriptionand those with incomplete details of the experimental uncertainties. The formergroup of experiments is of particular importance, owing to their suitability foran evaluation of a recommended best set of data, as shown in Sec. 4.

2.1. Experiments with incomplete uncertainty information

The goal of attaining precision in determining spectrum averaged neutroncross-sections can only be justified if a detailed list of uncertainty contributionsis available which makes the information given as trustworthy as possible. Unfor-tunately, this aspect has been neglected in some experiments, which give onlyoverall uncertainties without specifications. It is most difficult to estimate thequality of this data and this further hampers their use for purposes of evaluation.

2.1.1. Experiment by Pauw and A ten [32 ]

The experiment is based on a neutron-source strength determination in amanganese bath and is therefore labelled in column 4 of Table I as 'Absolute'.No further details of the experiment and the activity measurement procedureare given.

2.7.2. Experiment by Kirouac et al. [11]

All data were measured relative either to the 54Fe(n, p) or to the s8Ni(n, p)reactions used for neutron flux density monitoring. The cross-sectionsused for these reactions were 87 and 105 mb, respectively. Unfortunately, theinformation given does not state which of the monitors was used for a specificreaction. While the monitor cross-section of 54Fe(n, p) is relatively consistentwith more recent data, the same is not true of the value of 105 mb used for the58Ni(n, p) reaction.

Text com. on p. 422.

PART 2-4 415

TABLE I. Cf-252 SPECTRUM AVERAGED NEUTRON CROSS-SECTIONS

Type of data Reference

React ion

r-19(n,2n) Experiment (1.08 ^ 0.16)xl0~

(1.63 . 0.05)xl0~

In-115(n,n') 199.4

Ni-58(n,p) 118.0

1977

1982

131

HI

Na-23(n,T)

S-32(n,p)

Calculated

Experiment

CaIculaled

Exp. r i .en t

CaIculatcd

Calculated

Recommended

Calculated

Experiment

Calculated

( 1 . 628.0 .054)x l0 *

( 1 . 6 2 6 . 0 . 0 4 3 ) x l 0 " 2

0.335. 0.015

0.2712

1.94 . 0.092.01 • 0.06

2.159. 0.088

5.11 • 0.434.89 * 0.184.80 . 0.094.70 . D.374.80 . ?

5.137. 0.294

0.86 ^ 0.051.006. 0.0221 .08 . 0.051 .06 *_ 0.08(2o)

1 .021. 0.015

1.059. 0.0581.012. 0.029

72.5 . 3.068.4 . ?

75 .99 . 5.93

I n - I 1 5 ( n , n ' )

A l -27 (n ,a )A l -27(n ,o )

l n - 1 1 5 ( n , n ' )

l n - 1 1 5 ( n , n ' )

I n -115 (n ,n ' )l n - 1 1 5 ( n , n ' )

N i -58 (n ,p )Absolutel n - 1 1 5 ( n , n ' )

Absolute

Al-27(n,a )l n - 1 1 5 ( n , n ' )

a199.4

1.0061.006

199.4*1.006195.0

196

196.4

105

199.4*

1.006200

o(E)from

1977

0<E)fron.

19821982

olOfrom

197619821982

19B21983

o lEKrom

1973197519761977

o(C)f romo(E) f rom

1982

1982

o(E)rrom

. . .

13)

ENOf/B-U

[61HI

( T a 7 9 )

18116)

1*1l«]

[101

ENOf/B-V

[12118)

[131

ENDF/8-U|14|

161[151

ENDr/B-»

416

TABLE I (cont.)

MANNHART

Reaction

Ti-48(n,p)

V-W(n.p)

V-* l (n ,a }

Te- iMn.p)

lype oT data

Experiment

Recommended

Calculated

Recommended

Exper iment

Calculated

Experiment

Experiment

Experiment

Recommended

Calculated

« >(mb)

12.4 . 1.2

13.8 . 0 . 315.0 . 1.0(2o)13.4 . 1.113.6 . ?

14.20. 0.24

13.47^ 1.70

2 0 . 3 * 1 . 1

18.9 . 0.420.2 . 1.3(2o)22.0 . 0.919.4 . ?

19.43. 0.31

24.06. 2.7019.32

0.42 . 0.010.38 . 0.020.434± 0.0>6(2o)

0.4275.0.0078

O.4O93.O.O422

0.93 . 0.100.713^ 0.059

0.7178.0.0570

(4.30 i O.2O)xlO~2

87 . 384.6 . 2.090.0 . 5.1(2o )92.5 . 5.087.6 . 4.489 . 285. 1 . •>

87.29. 1.13

88.24^ 3.07

ReferenceReact ion

Ni-58(n,p)AbsoluteAbsoluteln-115(n,n ' )

]n -US(n ,n " )

Ni-58(n,p)AbsoluteAbsoluteln -115(n ,n ' )In-115(n,n ' )

AbsoluteIn-115(n,n ' )

Absolute

ln -115(n ,n ' )Al-27(n,o)

In-115(n,n ' )

Nl-58(n,p)AbsoluteAbsoluteIn-115(n,n ' )Al-27(n,«)AbsoluteIn-115(n,n ' )

<mb)

105

-

199.4*

200

105

-

199.4

200

199.4

199.4*

1.006

199.4*

105

-

-

199.2

1.006

-

196.4

Year

1973

1975

1977

1977

1982

0(E) f rom

1973

1975

1977

1977

1982

o(E)f rom

o(E) f rom

1975

1977

1977

o(E) f rom

1977

1982

1977

1973

1975

1977

1978

1982

1982

198 3

a(E)from

Ref.

I'M[HI[13113)

[151

ENOf/8-V

1121

1131

[3]

[151

ENDr/B-U

[ H I

| 3 |

(13!

ENDT/8-V

[31

, 3 ,

[ ' . ,

1121

H31[17]

[°l[18|110]

ENOF/B-U

PART 2-4 417

Reaction

Mn-55(n,2n)

Ni -58(n,p)

Ni -60(n,p)

type of data

Experiment

Recommended

Experiment

Calculated

Recommended

Calculated

E xper intent

Calculated

Calculated

(mb)

1.18 * 0.08

1.450* 0.035

1.45 • 0.06

1.44 * 0.07

1.090* 0.068

l . l l . ?

1 .471* 0.025

1.414»_ 0.0(3

0.58 * 0.15

0.40B* 0.009

0.4079*_0.0092

0.4459.0.0558

105 * 5

116 + 3

118.8* 5.5(2o)

113.4* 4.8

118 * 4

95.0 » 4.5

121 * 2

117.2* ?

115.Bj. 7.3

(8 .94 . 0 . 2 8 ) x lO" '

( 8 . 9 6 5 * 0 . 2 9 7 ) x l O " '

( 7 . 6 0 0 * 0 . 8 2 8 ) x l 0 - '

(B.464*_0. 395 )x l0" '

2.39 * 0.13

3.442* 0.261

6.97 ^ 0.34

6.028

Reference

Reaction

Ni-5B(n,p)

Absolute

ln -115(n ,n ' )

A l -27 (n ,o )

ln -115 (n ,n ' )

i n - 1 1 5 ( n , n ' )

!n -115 (n ,n ' )

Ni-5B(n,p)

fe -54 (n ,p )

Absolute

Absolute

I n - 1 1 5 ( n , n ' )

Al-27(n,o )

J n - l l S l n . n ' )

Absolute

I n - 1 1 5 ( n , n ' )

N i -58 (n ,p )

Ni-58(n,p>

l n - 1 1 5 ( n , n ' )

""k(mb)

105

199.21.006196

196.4

199.4*118

87

-

-

199.4*1.006196

-

196.4

116

118

199.4*

Vear

197319751978198219821983

a(E)from

19761962

o(E)froa

19731975197719771982198219821983

o(E)fro.

1982

•(E)froio(E)from

1982

a ( E ) f r o a

1977

c(C) f rom

Ref .

112]

[ 1 -T J

[°l[9]

ENOF/B-V

(SI

ENDF/B-V

H I ]

1121

113|

[31

[6]

| 9 |

[181

1101

ENOF/B-V

.41

ENDF/B-V

|19,20|

[21]

ENDF/B-U

[31

ENOF/B-U

418

T.'BLEI (cont.)

MANNHART

Type o f d a t a Reference

React ion

Co-59(n,p) Experiment

Recommended

Calculated

1.96 r 0.10

1. 66 • 0.04

1.686* 0.037

ln-U5(n,n') 199.4

Ni-58(n,p) 118

1977

1982

[3]

HI

[22-241

Co-59(n ,a) Experiment

Recommended

Calculated

0.20 . 0.01

0.20 ± 0.01

O.ZIB*_ 0.014

0.222. 0.004

0.2221.0.0039

0.2162.0.0091

N l - 5 8 ( n , p ) 105 1973 |11)I n - 1 1 5 ( n , n ' ) 199.4* 1977 |31A l - 2 7 ( n , a ) 1.006 1982 |6)N i - 5 8 ( n , p ) 118 1962 [4|

o(E)from ENDF/B-V

Co-59(n,2n) Experiment 0.57 0.03

0.406. 0.010

0.4058.0.0101

0.4103.0.0430

ln-115(n,n') 199.4

Ni-58(n,p) 118

1976

1982 1*1

oCElfrom EN0F/6-U

Cu-63(n,Y) Experiment 10.95^10.39^

10.55.

9.649

0 .709 .0 . 6 7 1 .

0.510.30

0.32

0.0170.018

Au-197(n,T)I n -115 (n ,n ' )

AbsoluteN i -58(n ,p )

79.9195

116

19751982

(j(E)rrom

19811982

L2S)141

ENor/e-u

|26|

[41

Cu-6J(n,a) Experiment

Recommended

Calculated

0.6697+0.0130

0.7577.0.0)96

0.6761.0.0379

o (E)fron ENOF/6-U

o(E)fro« (27.28)

Cu-63(n,2n) Experiment

Recommended

Calculated

0.30 0.03

0.183. 0.007

0.1866.0.0071

0.1981.0.0033

In-115(n,n') 199.4

In-HSln.n1) 195

1976 [81

1982 [4|

[71

PART 2-4 419

T y p e o f d a t e

Zn-64(n,p) Experiment 39.4 i 1.0

46.4 i 2.J

41.8 • 1.7

36.2 i 1.5

41.3 . ?

Absolute[n-UXn.n1 )

Al-27(n,a)

In-I15(n,n' )

in-UXn.n1 )

-199.4*

1 .006

196

200

1975

1976

1982

1982

1982

112)

[81

I'l191

[isl

Recommended

Calculated

40.47*_ 0.75

59.23* 2.91 171

Zr-90(n,2n) Experiment 0.267^ 0.015

0.221. 0.006

In-115(n,n' )

Ni-58(n,p)

199.4

lie

1977

1982

13]

Recommended 0.2211.0.0061

Calculated 0.2069*0.00420.2102*0.0041

a(E)froma(E)from [ 1 9 , 2 O |

Nb-93(n,n') Experiment 149 . 10

Calculated 163.6+ 29.1

In-115(n,n ' ) 1982

o(E>rro

129]

[SI

Mo-98(n,-,) Experiment 24.8 *. 1.2

23.2 • 1.4

26.3 . 1.3°

Au-I97(n,Y)

ln-115(n,n')

In-I15(n,n' )

79.9"

199.4*

199.4

1975

1976

1977

|2S|

130|

131

647 ^ 7D

757 » 53

712.2* 21.9

Ni-S8(n,p> 105

199.4*

19731976

oftlfrom

1111

[301

[51

ln-113(nfnI) Experiment I 78.0*^ 7.6

160 • 4

170 • 8

168 • 9

161.9. ?

In-115tn,n 'AbsoluteAl-27(n,n ) 1.006

196196.4

1977

1979

1982

1982

1983

131

1101

Recommended 162.7* 2.5

In-llS(n,T) Experiment 12 5.J* 4.3

139.2*^ 6.0

124. U 3.6

115.6. 5.0

123.2* ?

Absoluteln-115(n

Absolute

In-115(n

In-115(n

,n' )

,n' )

tn' )

-

199

-

196

196

.4*

.4

19711977

1979

1982

1985

|32|

131[31|

[91Hot

Calculated

1 2 6 . U 2 . 8

1 2 1 . 2

420

TABLE I (cont.)

MANNHART

Type of data Reference

React ion

In-115(n,n") Experiment

Recommended

Calculated

186 . 11

198 ^ 5

199.4^ 10.5*

195 ^ 5

201 . 8

196 . 8

196 » 4

18].9+21.6

Absolute

Ni-58(n,p)

Absolute

Absolute?

Absolute

Al-27(n,a )

Absolute

Absolute

1971

1973

1975

1976

1979

19B2

1982

1962

[32]

[11]

I'2J[81

(311

16)

[91

[181

Ta-!81(n,Y) Experiment 105. b +_ 6.1

119.9 • 6.5

89.25+ ?

Au-197(n

[n-115(n

In-115(n

Absolute

Au-197(n

ln-115(n

Absolute

In-115(n

In-115(n

i Y

>n

, n

t Y

, "

. n

,n

)1 )

M

)

• )

' )

• )

7 9 .

199

200

°ch=199

-

196

196

9

. 4 *

98.8b

. 4 *

.4

1975

1977

1982

1971

1975

1977

1979

1982

1983

[2S|

13|(.51

I32J(25]

13]

131]

| 9 |

1101

Au-197(n,-r) Experiment

Recommended

95.5 » 2.3

79.9 » 2.9

119.1 *_ 5.2

76.2 i 1.8

78 . 3

76.0 . ?

77.11. 1.19

76.32o(E)from ENDF/B-U

Au-197(n,2n} Experiment

Recommended

Calculated

4.93 i 0.14

5.80 ^ 0.29

5.50 • 0.14

5.27 i 0.23

5.55 . ?

5 . 5 J 1 . 0.099

5.646

AbsoluteIn-115(n,n')

AbsoluteAl-27(n,a)In-115(n n')

-

199.4-

1.006

196.4

1971

1976

1979

1982

1983

1321

(81

1311

i ( E ) r r o » ENDf/8-V

Th-232(n,f) Experiment

Calculated

89 i 989.4 . 2.7

In -115(n ,n ' ) 199.4 1976 [30]Absolute - 1983 (33|

o(E)from ENDF/B-U

Ih-232(n,Y) Experiment

Calculated

I h -232(n , T ) 1975 [25]

o(E)from ENDF/B-V

PART 2-4 421

Type of data Reference

React ion

Cxpenm

Reeommc

Calculo

ent

nded

ted

1266

1140

1215

1216

1210

1236

± "•111(20)

. 22

t "

• 14

Absolute

Absolute

Absolute

Absolute

1977

1977

1976

19B3

|34|

1131

[351

1361

o U K r o a EN0f/8-V

Np-2)7(n,r) Experiment 1260 . 60

1580 ^100

1570 ^120

1442 ^ 23

1180 .156(20 )

1566 ^ 27

Absolute

Ni -58(n ,p)

In -115 (n ,n '

Absolute

Absolute

U-23B(n,f)

105

199.4

1971

1975

1976

1977

1977

1983

[32|

[••I

[30|

[34]

[13|

|33|

Recommended

Calculated

1556 i 22

1)52 o (E)from ENDf/B-V

U-258(n,r) txpenment M 0 • 25

J08 . 1 7

547 • 6

264 . 27 (2o )

511 • 14

5 2 6 . 0 ^ 6 .5

Absolute

Ni -58(n ,p)

Absolute

Absolute

In -115 (n ,n '

U -2 )5 (n , f )

199.2

1216

1971

1975

1977

1977

1978

1985

[32)

[11]

|34 |

[171

[33|

Recommended

C a l c u l a t e d

5 2 3 . 4 . 5 .6

315 .6 o ( E ) f r o » ENDF/B-V

Pu-239(n,f) Experiment 1800 . 60

1790 i 41

1824 . 35

Absolute - 1971 [32]

Absolute - 1978 (35)

U-255(n, f ) 1216 1983 [33]

Reconraended

Calculated

1811 ^ 25

1792 a(E) f rom ENOF/B-V

Ranormalixad value.b Ooubl* ratio (t— t«xt).C Mo-98(n, TJ + MO 1OO(n, 2n).

422 MANNHART

2.1.3. Experiment by Green [25]

This experiment, involving the measurement of various non-threshold (n, y)reactions, is well documented and could be more justifiably listed in Sec. 2.2.The reason why this has not been done is a peculiarity of the experimental proce-dure. The 2S2Cf spectrum averaged cross-sections of 197Au(n, 7) and 232Th(n. 7)were determined relative to the thermal neutron cross-sections of both reactions.This procedure established correlations between thermal and 252Cf cross-sectionswhich are, however, beyond the scope of the present work and are thereforeomitted owing to basic problems with those data. The experimental method elimi-nated the calibration of the activity-measuring detector system. The fissionneutron flux density of 2S2Cf was based on a source-strength determination via amanganese bath and a distance measurement. Identical foils were irradiated inthe thermal standard neutron field at the United States National Bureau ofStandards (NBS). The thermal neutron flux density was determined by meansof boron films and gold foils. Three additional (n, 7) reactions were measuredby a 'double ratio' procedure. In this case, the 2S2Cf-to-thermal ratio of an unknownreaction was measured relative to the same ratio of 197Au(n, 7).

2.1.4. Experiments by Csikai et al. [30, 8, 3, 17]

The most extensive set of 252Cf data has been measured by a group fromKossuth University at Debrecen, Hungary. For each reaction that was measured,the decay parameters that were used (of the reaction products) were listed.However, further information on the experimental procedure and the necessarycorrections is sparse. Foils of 10 mm diameter were irradiated at a distance ofabout 2 cm from an extended 0.5 mg SR-Cf-1000 source. The neutron sourcestrength was based on a value quoted by the manufacturer. The neutron fluxdensity at the position of the sample was determined using In foils that werevaried at a distance of between 2 and 30 cm from the source, i.e. all measure-ments were relative to the n s In(n , n') cross-section, for which a renormalizedvalue of 199.4 mb was used. The source-sample arrangement was mounted ona thin wire fixed to the ceiling of a large room. The minimum distance fromthe walls was 3 m. In the case of the (n, 7) reactions, the samples were placedinside a cadmium box with a wall thickness of 1 mm. Most activities were mea-sured using a Ge(Li) detector system. The fission cross-sections were determinedat earlier stages of the experiment by solid state track detectors and later by afission chamber. Results were reported from time to time. The sequence startedwith the work of Buczko et al. [30] and ended with the work of Dezso andCsikai [17]. Partial results were either superseded or revised by data publishedlater. This has been allowed for in Table I. Identical results quoted more thanonce are listed under the date of the first publication.

PART 2-4 423

2.1.5. Experiment by Benabdallah et al. [9]

This experiment, performed at the Universite Mohamed V in Rabat, Morocco,is, in its experimental procedure, essentially identical with the experiments ofCsikai et al. (see Sec. 2.1.4). A 20 ng encapsulated 252Cf source was used in anopen-air arrangement 6 m above the ground. The outer dimensions of the cylin-drical source were: diameter 7.8 mm and height 10 mm. The irradiations werecarried out at a distance of (4.3 ± 0.15) mm from the cylinder axis. The free-field neutron flux density was monitored with the U5In(n, n') reaction as afunction of the source-sample distance. The neutron flux density at the targetposition was found to be identical with that of a point source with an effectivedistance of (5.2 ±0.12) mm.

The influence of a backscattered thermal neutron component was investi-gated using the U5In(n, y) reaction measured with and without cadmium shielding.No perturbation due to thermal neutrons was found. In the experiment thestatistical uncertainty dominated the uncertainty of the source strength (about1.5%) and that of the detector efficiency calibration (about 1.5%). Here, too,the neutron source strength was based on a manufacturer's declaration. Thedata must be regarded as measurements relative to n s In(n, n') with a cross-section value of 196 mb.

2.1.6. Experiments by Dezso and Csikai with improved experimentalconditions [15, 10]

A limited set of the earlier measurements was repeated under improvedconditions. The main improvement was the replacement of the indoor irradiationfacility by an outdoor arrangement. Using a 40 ng encapsulated 252Cf source(diameter 7.5 mm, length 14 mm), irradiations were performed in the open airwith the source 12 m above ground and 4 m above the roof of a building. Owingto the fact that an accurate neutron source strength determination was not available,measurements were made relative to the 115In(n, n') reaction. The sample materialwas wound tightly on the surface of the cylinder of the source. The reproducibi-lity of results obtained with this irradiation geometry was of the order of 2% [ 15 ].The geometry was further improved with the use of "compensated beam geometry":two sample foils on opposite sides of the cylindrical source that were irradiatedsimultaneously [10]. This improved the reproducibility from 2 to 1.4%. Furtherimprovements are planned in which samples sandwiched between In foils areirradiated (the data in Ref. [10] partially supersede results contained in Ref. [15]).At present, the estimates of neutron flux density perturbations are incomplete.Therefore, in Refs [15] and [10] only statistical uncertainties are quoted andcomplete uncertainty listing is lacking. In Table I the incomplete uncertaintyof the results is indicated by question-marks.

424 MANNHART

TABLE II. UNCERTAINTY DATA FROM EXPERIMENTS CARRIED OUTATPTB

Resetion

Al-27(n,

Ti-46(n,

Ti-47(n,

Ti-48(n,

Fe-54(n,

Fe-56(n,

Ni-58(n,

Zn-64(n,

In-113(n

In-115(n

In-115(n

In-I15(n

Au-197(n

Au-197(n

i )

3)

P)

P)

?)

3)

3)

3)

n')

y )

n' )

n 1 )

r )2n)

<0 >(mb)

1.006

1J.8

18.9

0.42

84.6

1.450

118.

39.4

160.

124.1

193.

195.

76.2

5.50

Kei.bta.uev•(%>

2.14

2.37

2.29

2.54

2.36

2.39

2.35

2.51

2.42

2.89

2.53

2.46

2.37

2.59

(

100

74

77

69

74

74

75

70

73

61

70

71

74

68

xlOO)

100

74

77

67

66

68

63

66

55

63

65

67

61

100

69

70

69

70

66

68

57

65

67

69

64

100

63

62

63

59

61

51

74

60

62

57

100

71

68

64

66

55

63

65

67

62

100

67

63

65

55

62

64

66

61

100

64

66

55

63

65

68

62

100

62

52

59

61

63

58

100

77

66

90

89

82

100

55

75

75

68

100

67 100

69 88 100

63 80 87 100

It should be noted that the data obtained with the improved irradiationfacility are more consistent with other experiments than the earlier data measuredwith the old facility. This is due to problems with backscattering in the earlierversions of the experiment, where discrepancies up to the order of 40% withother experiments were found.

2.2 Experiments with complete uncertainty information

With the exception of one case, none of the following experiments havedirectly quoted the uncertainty covariance matrix. However, the uncertaintyinformation was sufficiently detailed to allow a reconstruction of this matrix.Besides a short description of the experiment, the covariances are listed in thissection.

2.2.1. Experiments performed at the Physikalisch-Technische Bundesanstalt(PTB)[12,31]

Irradiations were carried out at an outdoor irradiation facility at a position12 m above ground. The sample material surrounded the cylindrical source ina 4 it geometry. The neutron source strength was determined using a water-bathmethod. Absorption and scattering were taken into account by calculating aneffective path length of neutrons through the sample material allowing for thegeometry. In Ref. [12], the metallic sample foils were chemically dissolved andtheir activity compared with radioactive standard solutions. In Ref. [31 ] the

PART 2-4 425

TABLE III. CORRELATION MATRIX FOR NBS FISSION CROSS-SECTIONMEASUREMENTS

Reaction (ratio)

U-235(n, f)

U-238(n, f)/U-235

Np-237(n,f)/U-235

Pu-239(n, f)/U-235

<a> (ratio)(mb)

1216

0.2681

1.123

1.502

Rel. std. dev.(%)

1.62

1.27

1.47

0.97

Correlation(x 100)

100

23 100

- 7 29

- 9 15

matrix

100

36 100

irradiated sample cylinder was cut into pieces and measured with a calibratedGe(Li) detector. Owing to the similarity of both experiments, a commoncovariance matrix has been derived (Table II). The uncertainty informationis quoted in the form of relative standard deviations (Iff level) and a correlationmatrix.

22.2. Fission cross-section measurements at the NBS [37, 38, 36, 33]

The experiment comprises the absolute measurement of the 235U(n, f) cross-section [37] and measurements of 237Np(n, f), 238U(n, f) and 239Pu(n, f) rela-tive to 235U(n, f) [38]. Irradiations were carried out at an indoor facility. Twodouble fission chambers were mounted in a light frame on opposite sides of acalifornium source in a compensated beam geometry. The free-field neutronflux density is based on a neutron source strength determination and a distancemeasurement. The 252Cf source was calibrated in a manganese bath against theRa-Be photoneutron standard source NBS-I. Scattering from support structuresand from wall returns was determined by experiments and calculations. The wall-return effects were diminished by placing a cadmium cylinder around the source-detector assembly. The fission-deposit masses were determined by a multiplicityof techniques, including interlaboratory comparisons with mass standards. Inthe case of the ratio measurements, the fission deposits were arranged in a back-to-back geometry inside the double fission chambers. Orientation effects werecompensated for by turning the fission chambers 180°. The various uncertaintycomponents of the experiment were carefully analysed by Wagschal et al. [39]and a covariance matrix has been derived.

The experimental results have recently been revised [36, 33]. Owing toimprovements in neutron source strength determination, fission-deposit massdetermination and in scattering corrections, all results have been modified.Following the principles given in Ref. [39], the covariance matrix of the revisedvalues has been recalculated (Table HI).

426 MANNHART

TABLE IV. CORRELATION MATRIX FOR THE FISSION CROSS-SECTIONMEASUREMENTS OF ADAMOV et al.

Reaction

U-235 (n, f)

Np-237(n, f)

U-238 (n, f)

Reaction ratios

Np-237/U-235

U-238/U-235

<CT>

(mb)

1266

1442

347

<CT> ratio

1.139

0.2741

Rel. std. dev.(%)

1.44

1.59

1.68

Rel. std. dev.

(%)

1.66

1.80

Correlation matrix(x 100)

100

40 100

34 31 100

Correlation matrix(x 100)

100

39 100

2.2.3. Measurements by Adamov et al. [34]

The fission cross-sections of 235U, 238U and 237Np were determined by thecoincidence technique. A thin Cf layer and a fission deposit of the material beinginvestigated were placed back-to-back inside a double-ionization chamber. Coinci-dences between the spontaneous fission fragments of 2S2Cf and the fragmentsfrom the 2S2Cf neutron-induced fission in the sample material were counted. Theresults obtained are between 5 and 9% higher than those from other experiments.This indicates the possibility of a hidden bias factor in the experiment (for adetailed discussion, see Ref. [40]). To eliminate this bias, the original results werereduced to ratios, the covariances of the original data and of the deduced ratiosbeing listed in Table IV.

2.2.4. Measurements by Spiegel et al. [13]

The irradiation facility was the same as in the NBS experiment described inSec. 2.2.2. Identical foil packets were irradiated in a compensated beam geometry.The packets were arranged around the source with a 60° angular separation, i.e.three identical pairs of packets were irradiated simultaneously. For this specialgeometry, the Cf source was rotated during irradiation to eliminate anisotropiesin the direction of emission. Additionally, perturbations of the free-field neutronflux density due to scattering processes were monitored by Ni detectors enclosedin the packets. The radioactivities induced were measured with sodium iodide andgermanium detectors. The (n, f) cross-sections were based on the detection ofthe radioactive decay of the fission product 140Ba. Uncertainties were quoted

PART 2-4 427

TABLE V. CORRELATION MATRIX FOR THE CROSS-SECTIONMEASUREMENTS OF SPIEGEL et al.

Reaction

Al-27(n,

Al-27(n,

Ti-46(n,

Ti-47(n,

Ti-48(n,

Fe-54(n,

Ni-58(n,

a)

a)

P)

P)

P)

P)

P)

<a>(mb)

1.060

1.060

15.0

20.2

0.434

90.0

118.8

Rel. std. dev.(%)

3.68

3.57

3.27

3.08

4.14

2.88

2.28

Correlation(x 100)

100

95

49

52

39

46

71

100

42

45

33

48

64

matrix

100

79

59

52

79

100

63

55

84

100

41 100

63 79 100

TABLE VI. (n, f) CROSS-SECTION MEASUREMENTS BY SPIEGEL et al.

Reaction

U-235 (n, f)

Np-237(n, f)

U-238 (n, f)

Reaction ratio

Np-237/U-235

U-238/U-235

<o>(mb)

1140

1180

284

<a> ratio

1.035

0.249 i

Rel. std. dev.(%)

4.82

5.73

4.78

Rel. std. dev.(%)

4.24

2.61

Correlation matrix(x 100)

100

69 100

85 70 100

Correlation matrix(x 100)

100

33 100

at the 2a level, though for the calculation of the covariances they have beenreduced to standard deviations (Table V).

In the case of the (n, f) data, a comparison with other experiments has ledto the conclusion that there was an undetected bias factor. As in the case ofthe data contained in Ref. [34], these data have also been reduced to ratios, asshown in Table VI.

428 MANNHART

TABLE VII. CROSS-SECTION MEASUREMENTS BY DAVIS AND KNOLL

Reaction <o> Rel. std. dev. Correlation matrix(mb) (%) (x 100)

U-235(n,f) 1215 1.79 100

Pu-239(n, f) 1790 2.26 59 100

2.2.5. Measurements by Davis and Knoll [35]

The cross-sections of 235U(n, f) and 239Pu(n, f) were determined in thisexperiment (see Table VII). Irradiations were carried out in a compensated beamgeometry, reducing the free-field neutron flux density to a source strength deter-mination and a distance measurement. The neutron source strength was calibratedwith a manganese bath relative to the secondary standard NBS-II (a Ra-Be photo-neutron source). The anisotropy of the 252Cf source was measured with a longcounter and corrected for. Fission events were recorded using solid state trackdetectors.

2.2.6. Measurements by Winkier et al. [26]

This precise experiment for the 63Cu(n, a) cross-section was performedat the NBS irradiation facility. The technique and the correction methods areidentical with the NBS experiments described earlier. After an inspection forimpurities with a Ge(Li) detector, the 60Co radioactivity was measured usingtwo different configurations of large sodium iodide detectors.

2.2. 7. Measurements by Kobayashi et al. [41, 6]

These results were first published in 1979. Various foil packets, at a distanceof 6 cm from a 0.5 mg encapsulated Cf source (5 mm in diameter, 17 mm in height),were irradiated. The neutron flux density was monitored with the 27Al(n, a) andl l sIn(n, n') reactions. Wall-return effects of the indoor irradiation facility weredetermined by neutron transport calculations. The experiment was later comple-tely reanalysed (see Ref. [6]) in order to derive the data and covariances shownin Table VIII.

2.2.8. Measurements by Mannhart [21, 4]

In contrast to earlier PTB measurements, the irradiation geometry wasmodified for this experiment. Disk-shaped samples (10 mm in diameter) of

PART 2-4 429

TABLE VIII. COVARIANCE DATA DERIVED FROM THE EXPERIMENTSOF KOBAYASHI et al.

Hq-2i

ai-27

Al-2

Al-Z7<n.p)/Al-27(n,

5-J2Cn,p)/Al-27(n,a

S-3:?n,p)/Al-27:n,a

V-51<n,p)/Al-27(n,s

Xi-&8(n,p>/Al-27{n,a)

Co-59{n,3 )/Al-27(n,at

Zf>-6a(n,p)/Al-27(n,o)

Jn-113(n,n')/AI-27(n,a

72.

70.

0.71

0.007166

118. i

0.2157

41.t5

ln-HS:n,n>)/Al-2 7(n.«: l'B.9

Au-197{n,2n)/Al-27Cn,«) 5.219

. . 23.7

a .6

5.53.7

5.0

8 . 1

4 .1

J . O

2.7

6 .1

3.6

5 . 5

4 .9

4 . 3

3.B

IOC-

2

2

-1

-

, - 1

2

- 3

-1

100

23 100

19 15 100

8 19 5

6 5 i 5

15 6 5

-4 - 3 -2

-4 -3 -3

16 30 11

18 5 5

28 8 6

10 8 44

0 0 0

13 11 56

32 11 10

100

ui 100

2 2 100

3 Z -5 100

2 -5 31 100

-1:o -10 -13e

-l

10 -25 -26

21 .9 -9

100

9 100

13 17 100

1« 6 6 103

-1 0 0 1C 100

IS 3 8 62 -15 100

20 21 28 15 -1 21 103

TABLE IX. COVARIANCE MATRIX DERIVED FROM MEASUREMENTSOBTAINED BY MANNHART

React ion r a t io C o r r e l a t i o n

(xlOO)

F-19(n,Mg-24(n

A l -27 (n

Mn-55(nCo-S9{n

Co-59(p

Co-59(n

Ni-5S(n

Cu-63(n

Cu-63(nCu-63(n

Zr-90(n

2 n ) / N i - 5 8 ( n ,, p ) / A l - 2 7 ( n ,

, p ) / I n - 1 1 5 ( n

,2n ) /N i -58 (n,p]/Ni-58(n,

, a ) / N i - S 8 ( n ,, 2 n ) / N i - 5 8 ( n

, 2 n ) / N i - 5 8 ( n

, T ) / I n - 1 1 5 ( n, a ) / N i - 5 8 ( n ,

, 2 n ) / I n - 1 1 5 (

, 2 n ) / N i - 5 8 ( n

P)

<•)

, n '

• P)p )

P)

.P>

• P), n ' :

p )

n.n 1

, P )

1.381E-41.998E*0

) 2.459E-2

3.458E-31 .424E-2

1 .877E-3

3 . 4 4 1 E - 3

7 . 5 7 2 E - 5

1 5 . 3 2 8 E - 2

5 . 6 8 6 E - 3

) 9 . J 9 0 E - 4

1 .873E-3

3 . 1 3

2 . 4 0

2 . 4 5

1.93

1.911.432.19

; . i 5

3.002.39

3.33

2.52

100

- 1

- 1 4

30

5

18

27

19

3

7

14

24

100

0

- 1

0

- 1

- 1

0

0

0

- 1

0

100

2

6

19

0

- 6

46

4

42

0

ioa

1 0

37

47

28

5

12

21

36

1 0 0

26

7

16

- 6

27

0

12

100

2 9

17

7

32

15

21

100

24

5

10

19

31

100

- 2

17

8

28

100

- 4

33

3

100

2 100

12 16 100

high-purity metallic foils were irradiated in a sandwich geometry, i.e. each samplewas placed between two neutron flux density monitor foils, with the sandwichpackets almost touching the surface of the cylindrical encapsulation of the source.27Al(n, a), s8Ni(n, p) and n s In(n , n') were used as the monitor reactions. Thesandwich technique allows an accurate determination of the neutron flux densityat the sample position and also reduces the influence of scattering effects whichdisturb the neutron spectrum. Most of the earlier results [ 19] are superseded bythe later data in Ref. [4]. The covariance matrix (Table IX) is given here for thefirst time.

430 MANNHART

TABLE X. COVARIANCE DATA BASED ON MEASUREMENTS BY LAMAZEet al.

Reaction(mb)

Rel. std. dev. Correlation matrix(x 100)

Fe-54(n, p)Ni-58(n, p)

In-115(n, n')

89

121

196

1.731.72

1.85

100

86

46

100

46 100

TABLE XI. LIST OF DATA NOT CONSIDERED IN THIS PART

Reaction

N-14(n, 2n)

F-19(n, p)

Si-28(n, p)

Ti-46(n, 2n)

V-51(n,7)

Mn-55(n,7)

Cu-63(n,7) + Cu-65(n, 2n)

Cu-65(n, 7)

Zn-68(n, 7)

As-75(n, 7)

Sr-84(n, 7)

Sr-86(n,7) + Sr-87(n, n')

Zr-90(n, p)

Mo-92(n, p)

Mo-92(n, a)

Nb-93(n,a)

Nb-93(n, 2n)

Ref.

[3]

[3]

[15]

[3]

[3]

[3][30]

[3]

19]

[30]

[15]

[30]/[9]

[3]

[3]

[3]

[15]

[3]

Reaction

Zr-94(n, 7)

Mo-95(n, p)

Zr-96(n, 7)

Mo-100(n, 7)

Cd-110(n, 7) + Cd-ll l(n,

ln-113(n,2n)

Cd-116(n,7)

Ba-134(n, 7) + Ba-135(n,

Ba-136(n,7) + Ba-137(n,

Ba-138(n, 7)

Hg-198(n, 7) + Hg-199(n,

Pb-204(n, n')

Pa-231(n, f)

U-233(n, f)

Pu-240(n, f)

Pu-241(n, f)

n')

n')

n)

V)

Ref.

[3]

[3]

[3]

[3]

[3O]/[9]

[3]

[30]

[30]/[9]

[30]

[30]/[9]

[30]

[30]

[3]

[33]

[33]

[33]

2.2.9. Measurements by Lamaze et al. [18]

This experiment continues earlier NBS experiments restricted to fissioncross-section alone. The compensated beam geometry was used in its originalversion [37]. Table X lists the covariances derived from a detailed uncertaintylisting.

PART 2-4 431

TABLE XII. NBS EVALUATION OF THE NEUTRONSPECTRUM OF 252Cf [42]

Xcf(E) = [0.6672 v/Eexp(-E/1.42)]/x (E) (E in MeV)

Energy interval(MeV)

0 - 0.25 0.763 + 1.20 E

0.25- 0.8 1.098 - 0.14 E

0.8 - 1.5 0.9668 + 0.024 E

i.5 - 6.0 1.0037-0.000 62 E

6.0 -20 exp[-0.03(E-6.0)]

2.3. Other data

The reactions shown in Table I were selected with regard to their importancein reactor dosimetry. For completeness the remaining reactions, for which 252Cfspectrum averaged data were measured, are listed in Table XI, together with theircorresponding references.

3. CALCULATION OF SPECTRUM AVERAGED CROSS-SECTIONS

For comparison, Table I also gives the results of calculated 252Cf spectrumaveraged neutron cross-sections. In the calculation, a normalized spectral distri-bution, x(E), based on an evaluation performed at the NBS [42], was used. Thisspectrum representation, shown in Table XII, consists of five segment-adjustedcorrection functions, M(E), applied to a Maxwellian with an average energy of2.13 MeV. The correction function above 6 MeV neutron energy has recentlybeen confirmed by an experiment [43]. Somewhat more questionable are thecorrection functions at lower energies [44], though their influence on the calcu-lated results remains small. By assuming a pure Maxwellian between 0 and 6 MeV,i.e. neglecting the correction functions shown for this energy range, the calculatedresults change by less than 0.1% for all of the threshold reactions. For non-thresholdreactions, the maximum deviation is 1.3% for 63Cu(n, 7). This indicates that thedata given in Table XII is sufficient for present purposes (see also Ref. [45]).

The energy-dependent cross-sections used in the calculation are based mainlyon Evaluated Neutron Data File/B-V (ENDF/B-V) data. The integration range isbetween 10~5 eV and 20 MeV, which are the lower and upper energy limits for

432 MANNHART

1.10%

1.10%

1.10%

0.50%

1.49%

1.49%

0.50%

-

1.49%

0.50%

TABLE XIII. PART OF THE RELATIVE UNCERTAINTY WHICH IS FULLYCORRELATED BETWEEN VARIOUS EXPERIMENTS

Reference [36] [18] [26] [13] [35]

[36]

[18]

[26]

[13]

[35] 0.50% 0.50% 0.50% 0.50%

ENDF/B-V. The integration was performed with the original point data, in accor-dance with the given interpolation rules, i.e. no pre-processed group cross-sectionswere used. In some cases, cross-section data sets or evaluations not contained inENDF/B-V were also used. For the 27Al(n, a), 47Ti(n, p), S8Ni(n, 2n) and 63Cu(n, a)reactions in particular, data sets given in Refs [14, 16, 19, 20, 27, 28] show betteragreement between experiment and calculation than the data taken from ENDF/B-V.

The uncertainty quotations given for many of the calculated results in Table Iare based on the uncertainties of the a(E) data, the uncertainty from the spectrumrepresentation being discounted. The uncertainties given were propagated fromthe energy-dependent cross-section covariance matrices to the integral valuecalculated.

4. EVALUATION OF A 'BEST' SET OF EXPERIMENTAL DATA

The data in Sec. 2.2 were used for the evaluation of a recommended set of2S2Cf spectrum averaged cross-sections. A generalized least squares technique wasapplied which took into account absolute cross-sections as well as ratios (for details,see Ref. [40]). The different steps in the evaluation up to now have been thefollowing:

Version No. 1 [40]: 17 neutron reactions based on 31 data points.Version No. 2 [4]: 23 neutron reactions based on 48 data points.Version No. 3 (present): 31 neutron reactions based on 63 data points.

Each later evaluation completely supersedes the earlier ones.In Sec. 2.2, only correlations between data belonging to the same experiment

are given. In a few cases correlations also exist between various experiments.These correlations are due to the neutron source strength determination relativeto the standard sources NBS-I or NBS-II and to scattering corrections commonto the various experiments performed at the NBS irradiation facility. The rela-

PART 2-4 433

TABLE XIV. RESULTS OF THE LEAST SQUARESEVALUATION

Reaction

F-19(n,2n)

Mg-24(n,p)

Al-27(n,p)

Al-27(n,o)

S-32(n,p)

Ti-46(n,p)

Ti-47(n,p)

Ti-48(n,p)

W-51(n,p)

Hn-55(n,2n)

Fe-54(n,p)

Fe-56(n,p)

Ni-58(n,p)

Ni-58(n,2n)

Co-59(n,p)

Co-59(n,a)

Co-59(n,2n)

Cu-63(n,Y)

Cu-63(n,o)

Cu-63(n,2n)

Zn-64(n,p)

Zr-90(n,2n )

In-113(n,n' )

In-115(n,Y)

In-115(n,n' )

Au-197(n,y)

Au-197(n,2n)

U-235(n,f)

Np-237(n,f)

U-238(n,f)

Pu-239(n,f)

<a>

(mb)

1.628E-2

2.005E+0

4.892E+0

1.021E+0

7.274E+1

1.420E+1

1.943E+1

4.275E-1

7.178E-1

4.079E-1

8.729E+1

1.471E+0

1.176E+2

8.965E-3

1.686E+0

2.221E-1

4.058E-1

1.055E+1

6.897E-1

1.866E-1

4.047E+1

2.211E-1

1.627E+2

1.261E+2

1.981E+2

7.711E+1

5.531E+0

1.210E+3

1.356E+3

3.234E+2

1.811E+3

Rel. std. dev.

(%)

3.33

2.39

2.16

1.42

3.50

1.68

1.58

1.81

7.95

2.26

1.29

1.73

1.25

3.32

2.21

1.78

2.49

3.08

1.88

3.82

1.85

2.78

1.52

2.19

1.31

1.54

1.79

1.19

1.65

1.72

1.37

tive uncertainties, which are common to more than one experiment, are listedin Table XIII.

It can be seen from this table that out of the total relative uncertainty of1.62% for experiments by Grundl et al. [36], about two-thirds, namely 1.10%,is common to the experiments of Lamaze et al. [18], Winkler et al. [26] and

TABLE XV. CORRELATION MATRIX OF THE EVALUATION

F-19(n,2n)

Hg-24(n,p)

Al-27(n,p)

Al-27(n,a)

5-32(n,p)

ti-46(n,p)

Ti-47(n,p)

H-48(n,p)

V-51(n,p)

Mn-55(n,2n)

re-54(n,p)

re-56(n,p)

Ni-58(n,p)

Ni-58(n,2n)

Co-59(n,p)

Co-59(n,a)

Co-59(n,2n)

Cu-£3(n,T)

Cu-63(n ,a )

Cu-63(n,2n)

Zn-64(n,p)

Zr-90(n,2n)

ln-lDin.n1 )

In-115(n,Y)

In-115(n,n' )

Au-197(n,Y)

Au-197(n,2n)

U-235(n,f)

Np-237(n,r)

U-238(n,f)

Pu-239(n,f )

100

15

8

26

11

23

25

21

4

43

31

21

36

28

23

36

39

17

24

24

19

35

23

16

26

23

20

13

9

8

11

100

27

54

23

33

35

30

6

23

39

35

43

15

23

28

20

18

25

14

32

19

37

25

40

35

31

17

12

10

14

100

44

21

33

36

33

11

25

40

34

44

13

27

39

22

49

29

43

33

19

45

31

54

44

39

19

14

12

16

IK

100

33

57

61

50

12

40

65

57

73

26

40

49

36

29

42

23

55

32

60

41

64

59

52

27

20

17

23

100

22

24

20

3

17

28

24

30

11

17

21

15

13

18

11

22

13

24

16

26

23

19

12

8

7

10

100

60

64

9

34

55

46

63

22

34

42

31

23

35

18

44

27

48

33

52

48

41

23

16

14

19

100

53

10

37

59

50

68

24

37

45

33

24

38

19

47

30

51

35

55

50

45

24

17

15

21

100

9

30

50

42

56

20

30

37

28

23

32

18

39

25

47

33

55

45

39

22

16

13

18

100

7

11

9

12

4

7

9

6

7

8

5

10

5

12

8

13

13

13

5

4

3

4

100

46

32

53

40

34

58

60

21

36

30

29

50

33

23

38

33

30

19

14

12

16

100

56

85

30

46

56

42

28

50

22

50

37

57

39

63

56

50

35

25

22

30

100

59

21

32

39

29

23

34

18

43

26

48

34

53

47

42

23

17

14

20

100

35

54

66

49

30

57

24

54

43

62

43

69

61

54

35

25

22

30

100

30

34

36

11

29

17

19

38

23

16

26

22

20

13

9

8

11

100

49

30

11

43

12

30

31

34

23

38

34

30

20

14

12

17

100

50

23

50

25

37

41

41

29

46

41

37

24

17

15

20

100

19

32

28

27

45

30

21

34

30

27

17

13

11

15

100

16

36

22

16

32

22

39

31

27

13

10

8

11

100

15

31

30

38

26

44

38

33

23

17

15

20

100

18

25

25

17

31

25

22

11

8

7

9

100

24

45

31

48

45

41

21

15

13

18

100

27

19

31

27

24

16

11

10

13

100

57

77

75

65

27

19

17

23

100

53

54

45

19

13

12

16

100

75

64

32

23

20

28

100

74

27

19

17

23

100

23

17

14

20

100

67 100

78 67 100

79 66 67 100

2W

PART 2-4 435

Spiegel et al. [13]. These intercorrelations were taken into account. The evalu-ation of the whole set of data in Sec. 2.2 showed some inconsistencies with regardto the above-mentioned intercorrelations, due mainly to the data sets of Adamovet al. [34] and Spiegel et al. [13]. This indicated that the removal of the suspectedbiases in both experiments, by reducing the data to ratios, was incomplete. Sincethe impression gained is that the uncertainties quoted are underestimated, theuncertainties of both experiments have been enlarged by a factor of 1.5. Thisprocedure has eliminated the inconsistencies to a large extent. The evaluationhas resulted in a x2 value of 39.2, with 32 degrees of freedom, and can beregarded as being sufficiently consistent. The result of the evaluation is givenin Tables XIV and XV. The results are also listed in Table I as recommendedvalues.

An inspection of Table XIV shows that out of a total of 31 reactions,18 have relative uncertainties less than 2% and 24 reactions have less than2.5%. Those reactions with uncertainties greater than 2.5% are in all casesresults based on a single experiment. This indicates that there is a need for moreexperiments to validate existing results and to improve the overall accuracy tothe data.

REFERENCES

[1] WAGSCHAL, J.J., MAERKER, R.E., BROADHEAD, B.L., in Reactor Dosimetry (Proc.4th ASTM-EURATOM Syrap. Gaithersburg, MD, 1982), Vol. 1, US Nuclear RegulatoryCommission, Washington, DC, Rep. NUREG/CP-0029 (1982) 79.

[2] MANNHART, W., Nucl. Sci. Eng. 77 (1981) 40.[3] DEZSO, Z., CSIKAI, J., in Neutron Physics (Proc. 4th All-Union Conf. Kiev, 1977),

Vol. 3, Atomizdat, Moscow (1977) 32.[4] MANNHART, W., in Nuclear Data for Science and Technology (Proc. Int. Conf. Antwerp,

1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 429.[S] STROHMAIER, B., TAGESEN, S., VONACH, H., Physics Data 13-2, Fachinformations-

zentrum, Karlsruhe (1980).[6] KOBAYASHI, K., KIMURA, I., MANNHART, W., J. Nucl. Sci. Technol. 19 (1982) 341.[7] TAGESEN, S., VONACH, H., STROHMAIER, B., Physics Data 13-1, Fachinformations-

zentrum, Karlsruhe (1979).[8] CSIKAI, J., DEZSO, Z., Ann. Nucl. Energy 3 (1976) 527.[9] BENABDALLAH, H., PAIC, G., CSIKAI, J., in Nuclear Data for Science and Technology

(Proc. Int. Conf. Antwerp, 1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 421.[10] DEZSO, Z., CSIKAI, J., Measurements of Cf-252 Spectrum Averaged Cross-Sections,

The Cf-252 Fission Neutron Spectrum (Proc. IAEA Consultants Meeting Smolenice,Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds), IAEA/InternationalNuclear Data Committee, Vienna, Rep. INDC(NDS)-146 (1983) 225.

[11] KIROUAC, G.J., EILAND, H.M., SLAVIK, C.J., in Irradiation Experimentation inFast Reactors (Proc. Int. Conf. Jackson Hole, Wyoming, 1973), Office of Scientific andTechnical Information, US Department of Energy, Oak Ridge, TN, Rep. CONF-730910(1973)412.

436 MANNHART

[12] ALBERTS, W.G., GUNTHER, E., MATZKE, M., RASSL, G., in Reactor Dosimetry (Proc.1st ASTM-EURATOM Symp. Petten, Netherlands, 1975), Part 1, Commission of theEuropean Communities, Brussels, Rep. EUR-5667 (1977) 131.

[13] SPIEGEL, V., EISENHAUER, CM., GRUNDL, J.A., MARTIN, G.C., in Reactor Dosimetry(Proc. 2nd ASTM-EURATOM Symp. Palo Alto, CA, 1977), Vol. 2, US Nuclear RegulatoryCommission, Washington, DC (1978) 959.

[14] TAGESEN, S., VONACH, H., Physics Data 13-3, Fachinformationszentrum, Karlsruhe(1981).

[15] DEZSO, Z., CSIKAI, J., in Nuclear Data for Science and Technology (Proc. Int. Conf.Antwerp, 1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 418.

[16] SMITH, D.L., MEADOWS, J.W., MANNHART, W., unpublished.[17] DEZSO, Z., CSIKAI, J., Average Cross-Sections for the 2S2Cf Neutron Spectrum, Nuclear

Data for Reactor Dosimetry (Proc. Advisory Group Meeting Vienna, 1978), IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDS)-103/M (1979) 176.

[18] LAMAZE, G.P., McGARRY, E.D., SCHIMA, F.J., in Nuclear Data for Science andTechnology (Proc. Int. Conf. Antwerp, 1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht(1983)425.

[19] WINKLER, G., PAVLIK, A., VONACH, H., PAULSEN, A., LISKIEN, H., in NuclearData for Science and Technology (Proc. Int. Conf. Antwerp, 1982) (BOCKHOFF, K.H.,Ed.), Reidel, Dordrecht (1983) 400.

[20] PAVLIK, A., WINKLER, G., Evaluation of the s8Ni(n, 2n)S7Ni Cross-Sections,IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(AUS)-9/L (1983).

[21] MANNHART, W., in Reactor Dosimetry (Proc. 4th ASTM-EURATOM Symp. Gaithersburg,MD, 1982), Vol. 2, US Nuclear Regulatory Commission, Washington, DC, Rep. NUREG/CP-0029( 1982) 637.

[22] SMITH, D.L., MEADOWS, J.W., Nucl. Sci. Eng. 60 (1976) 187.[23] SMITH, D.L., MEADOWS, J.W., Argonne National Lab., Argonne, IL, Rep. ANL/NDM-13

(1975).[24] VASILIU, G., MATEESCU, S., The analysis of the 59Co(n, p)S9Fe and S4Fe(n, a)slCr

Cross-Sections for their Use in Reactor Dosimetry, Nuclear Data for Reactor Dosimetry(Proc. Advisory Group Meeting Vienna, 1978), IAEA/International Nuclear DataCommittee, Vienna, Rep. INDC/(NDS)-103/M (1979) 26.

[25] GREEN, L, Nucl. Sci. Eng. 58 (1975) 361.[26] WINKLER, G., SPIEGEL, V., EISENHAUER, CM., SMITH, D.L., Nucl. Sci. Eng. 78

(1981)415.[27] WINKLER, G., SMITH, D.L., MEADOWS, J.W., Nucl. Sci. Eng. 76 (1980) 30.[28] WINKLER, G., private communication, 1982.[29] ALBERTS, W.G., HOLLNAGEL, R., KNAUF, K., MATZKE, M., PEfiARA, W., in

Reactor Dosimetry (Proc. 4th ASTM-EURATOM Symp. Gaithersburg, MD, 1982),Vol. 1, US Nuclear Regulatory Commission, Washington, DC, Rep. NUREG/CP-0029(1982)433.

[30] BUCZKO, M., in Californium-252 Utilization (Proc. Int. Symp. Paris, 1976) (BERGER, R.L.,CORMAN, W.L., Eds), Vol. 2, Office of Scientific and Technical Information, US Departmentof Energy, Oak Ridge, TN, Rep. CONF-760436 (1979) IV-19.

[31] MANNHART, W., ALBERTS, W.G., Nucl. Sci. Eng. 69 (1979) 333.[32] PAUW, H., ATEN, A.H.W., J. Nucl. Energy 25 (1971) 457.[33] GRUNDL, J.A., GILLIAM, D.M., Fission Cross-Section Measurements in Reactor Physics

and Dosimetry Benchmarks, the Cf-252 Fission Neutron Spectrum (Proc. IAEA ConsultantsMeeting Smolenice, Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds),IAEA/International Nuclear Data Committee, Vienna, Rep. INDC(NDS)-146 (1983) 241.

PART 2-4 437

[34] ADAMOV, V.M., et al., in Neutron Standards and Applications (Proc. Int. Symp.Gaithersburg, MD, 1977), US National Bureau of Standards Special Publication 493,US Government Printing Office, Washington, DC (1977) 313.

[35] DAVIS, M.C., KNOLL, G.F., Ann. Nucl. Energy 5 (1978) 583.[36] GRUNDL, J., GILLIAM, D., McGARRY, E.D., EISENHAUER, C, SORAN, P.,"Revised

Values for the 2s2Cf Fission Spectrum-Averaged Cross-Section for the 235U Fission", TheCf-252 Fission Neutron Spectrum (Proc. IAEA Consultants Meeting Smolenice,Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds), IAEA/InternationalNuclear Data Committee, Vienna, Rep. INDC(NDS)-146 (1983) 237.

[37] HEATON, H.T., II, GRUNDL, J.A., SPIEGEL, V., GILLIAM, D.M., EISENHAUER, C,in Nuclear Cross-Sections and Technology (Proc. Int. Conf. Washington, DC, 1975),US National Bureau of Standards Special Publication 425, US Government PrintingOffice, Washington, DC (1975) 266.

[38] GILLIAM, D.M., EISENHAUER, C, HEATON, H.T., II, GRUNDL, J.A., ibid, p.270.[39] WAGSCHAL, J.J., MAERKER, R.E., GILLIAM, D.M., in Reactor Dosimetry (Proc.

3rd ASTM-EURATOM Symp. Ispra, Italy, 1979) (ROTTGER, H., Ed.), Vol. 2,Commission of the European Communities, Brussels, Rep. EUR-6813 (1980) 683.

[40] MANNHART, W., PEREY, F.G., in Reactor Dosimetry (Proc. 3rd ASTM-EURATOMSymp. Ispra, Italy, 1979) (ROTTGER, H., Ed.), Vol. 2, Commission of the EuropeanCommunities, Brussels, Rep. EUR-6813 (1980) 1016.

[41 ] KOBAYASHI, K., KIMURA, I., in Reactor Dosimetry (Proc. 3rd ASTM-EURATOMSymp. Ispra, Italy, 1979) (ROTTGER, H., Ed.), Vol. 2, Commission of the EuropeanCommunities, Brussels, Rep. EUR-6813 (1980) 1004.

[42] HEATON, H.T., II, GILLIAM, D.M., SPIEGEL, V., EISENHAUER, C, GRUNDL, J.A.,in Fast Neutron Fission Cross-Sections of U-233, U-238, Pu-239 (Proc. NEANDC/NEACRPSpecialists' Meeting, Argonne, IL, 1976) (POENITZ, W.P., SMITH, A.B., Eds), ArgonneNational Labs., IL, Rep. ANL-76-90 (1976) 333.

[43] MARTEN, H., SEELIGER, D., STOBINSKI, B., in Nuclear Data for Science and Techno-logy (Proc. Int. Conf. Antwerp, 1982) (BOCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983)488.

[44] The Cf-252 Fission Neutron Spectrum, (Proc. IAEA Consultants Meeting, Smolenice,Czechoslovakia, 1983) (LEMMEL, H.D., CULLEN, D.E., Eds), IAEA/InternationalNuclear Data Committee, Vienna, Rep. INDC(NDC)-146 (1983) 23.

[45] MANNHART, W., Part 1-4, this Handbook.

Part 3

CHARGED PARTICLE ACTIVATION

3-1. CALCULATION OF EXCITATIONFUNCTIONS FOR CHARGED PARTICLEINDUCED REACTIONS

R. NOWOTNY, M. UHLInstitut fur Radiumforschung

und Kernphysik,Universitat Wien,Vienna, Austria

Abstract

CALCULATION OF EXCITATION FUNCTIONS FOR CHARGED PARTICLE INDUCEDREACTIONS.

Excitation function data are required for various purposes. A means for estimatingnuclear excitation functions if experimental data are missing is the calculation of cross-sectionswith one of the available computer codes. An introduction to the theory behind the reactionmechanism and the various nuclear parameters used is given to aid the potential user in theapplication of such codes. Various examples are given of excitation functions of reactionsused for the production of radioisotopes that are of mainly medical interest. The resultsindicate that calculated excitation functions, at least for proton induced reactions obtainedwith a standard set of input parameters, could be used as estimates with adequate accuracy.For projectiles other than protons, the results are less satisfactory.

1. INTRODUCTION

Cross-section data for charged particle induced nuclear reactions are requiredin a number of fields. While data on excitation functions are often needed forradioisotope production, they are also of interest, for example, in activationtechniques or in radiobiology. However, the situation with regard to chargedparticle cross-section data is less satisfactory when compared with neutroncross-section data. In the latter case, a large quantity of data has been collectedcovering, at a minimum, an energy range of up to several MeV for almost all stableisotopes. Many comprehensive compilations on neutron data exist and thesedata are also available from data files.

For charged particle induced reactions, data on a larger number of reactiontypes are of interest as the energy of the incident particle is usually higher thanin the applications considered in reactor physics. Also,charged particle inducedreactions have been of less importance in technological applications, with the resultthat the situation for charged particle reaction data is less advanced. Compilations ofintegral cross-section data have been published by the Karlsruhe Charged Particle

441

442 NOWOTNY and UHL

Group [ 1 ] and the National Nuclear Data Center at Brookhaven National Labora-tory (BNL) in Upton, New York [2].

Excitation functions which represent variations of cross-sections for parti-cular reactions with incident energy can be used in radioisotope production to

(1) Determine the particle energies required for a particular reaction type.(2) Calculate the radioisotope production yield which can be expected for a

particular reaction and a given target matrix.(3) Calculate the production yields for radionuclidic impurities, which help to

determine the need for isotope-enriched target materials.

For any radioisotope the optimum conditions for production will depend onmany factors. A large quantity of data, particularly at higher particle energies,would be required to determine production yields and contaminants of allcompeting reactions. Only if these data are available can an a priori assessmentbe made of the advantages and limitations of the various production methods.The situation is even more complex if indirect production regimes are assumedto take advantage of half-life discrimination of contaminants in the decay of theactivation products.

Quite often only radioisotope production yield data are available in theliterature. While such data are important for production purposes, a better under-standing of the relationship between the various factors contributing to productand contaminant yield is obtained from excitation function data. In particular,it is easier to assess the consequences of a variation in irradiation conditions,which for various reasons might be difficult to be made identical at differentcyclotrons. Indeed, excitation functions are just the beginning. Thereremain many more factors that are important in radioisotope production. Theseinclude suitably chosen 'targetry' (target composition and material, target cons-truction and transfer of dissipated heat) and radiochemical procedures (remotetarget handling, chemical processing, radiochemical and radiopharmaceuticalquality assurance).

In the event that excitation functions are required, but the experimentaldata are missing, two possible means are available to obtain estimates. Kelleret al. [3] have devised a semi-empirical method by which characteristic excitationfunction parameters (starting energy, maximum cross-section, the energy positionof the maximum cross-section, the cross-section of the tail and width at half-maximum cross-section) are derived from a standard set of data. Another meansis the application of one of the computer codes available for the calculation ofnuclear cross-sections. These codes were developed mainly to gain theoreticalunderstanding of nuclear reaction processes, but they have also been used forcross-section evaluations, primarily neutron induced reactions.

The accuracy with which excitation functions can be reproduced usingcomputer codes depends on several factors which will be discussed below. Themeasure for the accuracy of calculated excitation functions is the experimental

PART 3-1 443

data. According to Qaim [4], experimental cross-section errors range in generalfrom about 10 to 15%, increasing for low yield data to about 25%. Errors inparticle energy cannot often be found in the literature but, depending on particleand energy errors, could extend to about ± 2 MeV or more. This is of particularimportance when the initial rise of an excitation function from various sourcesis compared.

Certainly the discrepancies found in experimental data from various authorsfor the same reaction often exceed the quoted error figures, but this reflects thedifficulties encountered in the measurement of excitation functions. A globaltest for the quality of calculated cross-section data can be made by a calculationof radioisotope production yields and by a comparison with data from theliterature [3, 5].

In what follows, an introduction to theoretical principles will be given inorder to aid the potential user in the application of the codes and in the under-standing of their input parameters. Some examples of proton induced reactionswill be given and the usefulness of calculations for other projectiles will also bediscussed.

2. MODELS AND PARAMETERS

This section presents a short outline of the reaction models most importantfor the calculation of the cross-section for the production of radioisotopes(activation product cross-sections). All of the following considerations refer to incidentenergies between a few MeV and several tens of MeV. For most reactions employedin the production of radioisotopes, fission competition is not important. Therefore,the treatment of fission will not be described.

2.1. Reaction mechanisms and their importance for activation product cross-sections

In general, one can distinguish between two extreme reaction mechanisms:direct reactions (DIR) which involve only a few degrees of freedom of the manynucleon systems under consideration and compound nucleus reactions (CNR),which are characterized by the participation of many active degrees of freedom.Cross-sections for DIR are calculated by solving explicitly the scattering problemfor a (simplified) dynamic model. The theoretical treatment of CNR, on the otherhand, is based essentially on statistical assumptions. In addition to these twoextreme mechanisms, there are also pre-equilibrium reactions (PER) or precom-pound reactions which, in terms of complexity, are situated between DIR andCNR. For a given reaction all three mechanisms contribute to the extent possible,depending on the type of reaction (projectile and ejectile), the incident energyand the excitation energy of the residual nucleus.

444 NOWOTNY and UHL

At incident energies beyond a few MeV, the activation products result essen-tially from gamma ray de-excitation of a large number of highly excited states.The cross-sections for the formation of those levels by reactions with one orseveral emitted particles can often be calculated quite reliably by a combinationof models for PER and CNR.

Direct reactions occur mainly as binary processes. They preferentiallypopulate 'simple' low lying levels of the residual nucleus [6] (e.g. collective statesin the case of inelastic scattering and states of predominantly single particlecharacter in one nucleon transfer reaction, such as (d, p) or (p, d). In manyapplications the neglect of DIR is justified as the resulting errors are of the sameorder as the inherent uncertainties of the PER and CNR models. However,special care is required in cases of unusually large DIR contributions as, forexample, reactions on very light or on permanently deformed target nuclei andreactions induced by weakly bound projectiles, such as deuterons or 3He particles.

It is difficult to give a general assessment of the errors resulting from theneglect of DIR as the effect critically depends on the case under considerationand on the parameters used for PER. For a careful calculation of an unknowncross-section, it is important to investigate how well the employed models repro-duce reliable experimental data for neighbouring target nuclei.

In spite of these restrictions, the discussion in this paper concentrates onthe application of models for CNR and PER mechanisms as these lend themselveseasier to routine applications. The angular distribution of the reaction productsis irrelevant for activation product cross-sections and thus will not be discussed.

2.2. The compound nucleus evaporation model

This model is based on Bohr's concept of the compound nucleus [7] as anintermediary stage of a nuclear reaction. The compound nucleus (CN) is assumedto be in thermal equilibrium. Hence, apart from restrictions due to conservedobservables, its formation and decay are independent of each other. Further,the decay of the CN is governed only by phase space and barrier penetrabilities.The cross-section formulas resulting from this concept depend on the conservationlaws which are taken into account.

The initial and final states of a binary nuclear reaction A(a, b)B (i.e. thechannels) are characterized by indices a, 0,..., which specify the fragmentationof the many-nucleon system into light and heavy subsystems (a, A), (b, B),...and by the intrinsic states of the fragments. Their excitation energies, spins andparities for a given fragmentation y are denoted, respectively, by (e , E7), (i ly)and (ir II )• For reactions of interest in the present context, one assumes thatthe light fragments and the target are in their ground states: that is, Ea = 0 ande = 0, where a denotes the entrance channel and y an arbitrary exit channel.

Conservation of energy, angular momentum and parity require the followingrelations to hold for entrance channel a and exit channel /3:

PART 3-1 445

= n =

Here E, I and II denote the excitation energy, spin and parity of the CN, respec-tively, while Sa, So,... are the separation energies and ea, €„, ... and 2a , 2^, ...represent the kinetic energy and the orbital angular momentum of the relativemotion of the fragments, respectively.

The simplest expression for the cross-section

which, for a binary reaction, results from the CN concept, accounts only forenergy conservation (Eq. (la)) and was proposed by Weisskopf and Ewing [8]:

(2)

The first factor oa(ea) represents the cross-section for the formation of the CNvia the entrance channel and the second one represents the branching ratio forits decay into the channel with kinetic energy around e^. The density of excitedstates of the residual nucleus around the excitation energy

Sa ~ S/3 ~

is denoted by O)g(Eo). Under the assumption of time reversal invariance, thebranching ratio can be evaluated in terms of the cross-sections a (e ) for theformation of the CN in all open channels (the 'inverse cross-sections') [8]:

, Eg) g g g g )

E S

where k^ represents the wavenumber corresponding to the channel energy eo.The sum and integration in the denominator comprise all open channels. Theauxiliary quantities oAe^) and co (E_), which enter in Eqs (2) and (3), are

446 NOWOTNY and UHL

discussed further in Sec. 2.4. The resulting particle spectra have a shape characte-ristic of an 'evaporation spectrum' as a consequence of the assumption of the CNbeing in thermal equilibrium.

For the calculation of activation product cross-sections, one assumes thatbeyond the particle emission thresholds gamma decay is negligible compared withparticle emission. Therefore, the activation product cross-section c^cJ(ea) is givenby the sum of the populations of the states of the residual nucleus with excita-tion energies up to the minimum particle emission threshold Smin

c°min

(4)

as only those states will ultimately populate the ground state by gamma ray cascades.The population of states with Eo> Sm i n gives rise to multiple particle emission.

The Weisskopf-Ewing (WE) approach can easily be extended to reactions withmultiple particle emission by assuming that the particles are emitted sequentiallyand that each of the intermediary nuclei can be treated as a 'compound nucleus',the decay of which is governed by the branching ratio given in Eq. (3). Thus theactivation product cross-section for a ternary reaction A(a, bc)C is given by

f iyEj.eo) r ry(E2,ey)rt SCI (<~ \ n (£: \ I H P —-

S 0(5)

where E! and So refer to the first and E2 and S to the second CN. Smin andcjy(Ey) represent the minimum particle emission threshold and the state densityof the final reaction product, respectively. Obviously, Eq. (5) can be generalizedto the evaporation of an arbitrary number of particles.

The WE formalism offers a fast and simple method to estimate the contribu-tion of CNR to activation product cross-sections. Calculations based on it willbe referred to as 'WE calculations'.

A refined version of the CN evaporation model also considers the conserva-tion of angular momentum and parity. The results are generalizations of thewell-known Hauser-Feshbach formula [9]. The ansatz (2) for the cross-sectionis replaced by

r(E, I, U;e8,afe«. V U«' I n ) r ( E I II)

in

PART 3-1 447

where the sum is over all angular momenta and parities (I, II) of the CN. Thequantities oa(ea, la, Ua; III) and PQ(EQ, L, Ua) represent, respectively, thecross-sections for the formation of the CN in states of given quantum numbers(I, II) and the density of levels around Efi with quantum numbers (Ig, fig) of thefinal nucleus. While for a higher excitation energy the level density is obtainedfrom statistical considerations, the experimental information on the actual levelscheme is used near the ground state instead of a level density formula. Thegeneralization of Eq. (3) for the branching ratio reads

r(E, i, n ; Eg, i

r(E, i, n)g ,ng; I, II)

2 2 (2i7 + 1)(2I7 + 1 ) * / ^ dEyk2yoy(er ly, Uy, I,

(7)

In the 'channel spin coupling scheme', the quantities ay(ey, I , II ; I, FI) are relatedto the optical-model transmission coefficients Tg (e ) by

7

a(ey,ly,Uy;l,U)

I7+ i7 ' T + S 7

21+1 r-i r->

i_l 1

s 7 =| I 7 - i T l S 7=|I-s 7 l

(8)

The limits of the sums over the channel spin ?7 = L, + IL and over £ accountfor the angular momentum conservation (Eq. (lb)), while the Kronecker deltaguarantees parity conservation (Eq. (lc)). For the alternative j-coupling scheme,see, e.g., the review by Vogt [10]. In terms of a 7 ( e 7 l 7 l l 7 , III) andp(E7 , I7, II7),the corresponding quantities of the Weisskopf-Ewing approach are given by

in 7 8=0T 7

, i7,n7)i n7 7

448 NOWOTNY and UHL

From the general theory of CNR (see, e.g., Refs [11, 12]), it is known thatEq. (6) together with Eqs (7) and (8) hold only for non-elastic processes in thelimiting case of many open channels. In particular, they do not consider thewidth fluctuation correction and compound elastic enhancement. In connectionwith activation product cross-sections at energies beyond a few MeV, both effectsare of little importance.

The calculation of the cross-sections for the production of the residualnuclei requires a suitable generalization of Eq. (4) for binary reactions and Eq. (5)for processes with multiple particle emission. The theory can be improvedsubstantially by explicitly including gamma ray cascades. Photons are treatedin the same way as particles with transmission coefficients, depending on the type(El, Ml, E2, ...) of electromagnetic multipole radiation. Details regarding thecombination of gamma ray cascades and multiple particle emission can be found,e.g., in Ref. [13]. As a consequence of this model extension, the gamma raycompetition with particle decay (an effect which critically depends on the spinsof the levels involved [14, 15]) can be treated properly. Furthermore, theinclusion of gamma ray cascades is required for the calculation of the productionof isomeric levels.

Calculations based on the CN model with angular momentum and parityconservation will be referred to as the Hauser-Feshbach (HF) calculations.Owing to the various angular momentum sums, computer codes which performHF calculations require more time and storage than those designed forWE calculations. On the other hand, the competition between the variousdecay modes of the CN depends on the angular momentum. This effect, whichis especially pronounced near the maximum spin allowed for a given excitationenergy (the 'yrast spin'), cannot be reproduced by a WE calculation. The choicebetween the expensive HF approach and the fast, but less precise, WE approachdepends on the type of cross-section to be calculated and on the required accuracy.For isomeric state production cross-sections, a HF calculation is indispensable.

Some of the deficiencies of WE calculations can be removed by the "s-waveapproximation" proposed by Blann and Merkel [16]. It is assumed that the spindistribution of the residual nuclei is the same as that of the (first) CN: this wouldbe true if all particles were emitted in s states of relative motion. As a consequenceof this assumption, HF calculations may be replaced by WE calculations for eachvalue I of the spin of the CN. An upper limit for the gamma ray competition isobtained by assuming that for a given angular momentum I, all states withexcitation energy

decay by gamma ray cascades; here Smin is the minimum particle separationenergy and Em i n (I) denotes the yrast level, i.e. the minimum excitation energyrequired for angular momentum I.

PART 3-1 449

Isospin, besides angular momentum, also plays an important role in CNR.The main effect of isospin conservation is to enhance inelastic scattering ofprojectiles with a proton excess as, for example, protons or 3He particles.Approaches that included isospin in the consideration of isospin mixing wereproposed by several authors and were compared by Lane [17].

2.3. Models for pre-equilibrium emission

With increasing bombarding energy the properties of the emitted particlessignificantly deviate from the predictions of the CN evaporation model. Insteadof a pure evaporation spectrum and symmetry around 90°, one observes an excessof high energy particles which are emitted, preferentially, in a forward direction.These effects are interpreted as being due to emission before the compositesystem (which initially is formed in simple states and equilibrates through intra-nuclear transitions) has reached the thermal equilibrium characteristic for the CN.

By considering pre-equilibrium (PE) emission, the cross-section da^/deaconsists of two contributions:

representing the decay of the composite system before and after equilibration.The equilibrium contribution ^o^Jbeo can be calculated in the frame of the CNevaporation model described in Sec. 2.2. The factor qpre represents the fractionof the incident flux which survives PE emission. Many cross-section calculationsconsider PE emission only for the first emitted particles and treat multipleparticle emission as CN evaporation. According to Blann and Vonach, thisprocedure seems justified for incident energies up to about 50 MeV [18].

The enhanced high energy portion of the spectra of particles emitted in thePE stage is also of crucial importance for activation product cross-sections.Therefore, pre-equilibrium reactions have to be considered for incident energieslarger than about 8 MeV.

Although several fundamental theories of PER were proposed over the years(see Refs [19-21 ]), only the two most popular phenomenological PE models -the exciton and the hybrid models — which are especially convenient for routinecalculations, are discussed here. These models are conceptually different, thoughwhen suitably parametrized both successfully reproduce experimental data.

2.3.1. The exciton model

In this model, which was suggested by Griffin [22, 23], the states of thecomposite system are characterized only by the excitation energy and the number

450 NOWOTNY and UHL

of excited particles p and excited holes h. Particles and holes are defined withrespect to a closed shell reference state and are collectively called excitons. Theexciton number n is given by n = p + h. Starting from a simple particle-holeconfiguration, n0 = p0 + h0 , which depends on the projectile (see Sec. 2.4.3),the system equilibrates through a series of two-body interactions and emitsparticles from all intermediate stages. Two-body interactions may change theexciton number by amounts of An = 2, 0, —2, corresponding to the creation,scattering and annihilation of a particle-hole pair. The rates for these internaltransitions averaged over all states of an n = p + h exciton configuration aredenoted by A^n, E), A'0(n, E) and A\ (n, E).

The simplest expression which results from this concept for the PE contri-bution (9a^fle/9eg)(ea, e«) of the cross-section reads

n-n0(An=2)

where Ag(eg: n, E) represents, for states with n excitons, the average rate ofdecay into fragmentation j3 with channel energy es, and Ac (n, E) the total decayrate into the continuum, i.e. the sum of A»(e»; n, E) over all open channels. Thesum over the exciton number n extends up to the most probable value n atequilibrium which, in terms of the single particle state density g, is approximatelygiven by rf = •s/2gE. The quantity Dn(E) represents the fraction of the initialpopulation of the composite system which has survived emission in the previousconfigurations n0, n0 + 2,... , n —2. For n > n0, this 'depletion factor' is givenby

A > , E)

v = no(Ai> = 2) ' +

while, per definition, Dn (E) = 1. The factor qpre in Eq. (9) is given byqPre = D-+2(E). °

Equations (10) and (11) essentially rely on the assumption A^n, E) > Ax_(n, E),which holds for small exciton numbers n, as can be seen from phase space argu-ments; the main contributions to the PE spectrum stem from small values of n.In general the equilibration process is described by a version of the Pauli masterequation which can be represented as a system of first-order differential equationsin time [24] or as stochastic equations of a random walk problem [25, 26]. Themaster equation approach also allows a 'unified' treatment of PE emission andequilibrium decay [26]. Nevertheless, considering the phenomenological nature

PART 3-1 451

of the model itself, Eqs (10) and (11) represent reasonable approximations tothe solution of the master equations.

The cross-sections defined in Eqs (10) and (11) first require rates for internaltransitions. A widely used method to calculate these quantities relies on Fermi'sgolden rule:

A^ n (n ,E)=-^ |M| 2 w A n (n ,E) (12)

where |M|2 is the averaged squared matrix element of residual interactions (seeSec. 2.4.3) and ^ A n (n , E) is the number of accessible final states. As an exampleof the many evaluations of w^n(n, E), we quote the often-used results ofWilliams [27]

w+(n,E) = (l/2)g3E2/(n + 1)

with the correction factor (1/2) of Oblofcinsky et al. [28]. In a different approach,Gadioli et al. determined the dependence of A\n, E) on n and E on the basis ofthe nucleon-nucleon cross-section in nuclear matter and adjusted the absolutemagnitude by comparison with experimental data [29]. The results are independentof the mass number and are tabulated in Ref. [30].

Particle emission rates are in general obtained by applying the principle ofdetailed balance. For fragmentation |3, i.e. the emission of particle b with trb

protons and i>b neutrons, one obtains

Hgea Cj(p-p«, ha, Ea)

A<^: P h E ) - ( 2 i + l )R(p) j i gq(q) ^ J (13)

where Mb denotes the reduced mass and p» = ;rb + i>b is the number of nucleonsof the light fragment. The quantities oj(p, h, E) and oj(p-po,h, Eg) representstate densities with a specified number of particles and holes and refer to thecomposite system and the residual nucleus, respectively. The factor Rg(Pg)stands for the probability that po-emitted nucleons have the right combinationof protons and neutrons and thus account in an approximate way for proton-neutron distinguishability. Simple expressions for the quantity Rg(pg), whichdepends on the projectile, were derived by Cline [31 ] and Kalbach [32] and byBirratari et al. [33]. A more accurate treatment of neutron-proton distinguish-ability is offered by a two-component formulation of the exciton model asproposed, for example, by DobeS and BStak [34]. The emission rates, Eq. (13),when used in Eq. (10), satisfactorily reproduce the spectra of nucleons, butsignificantly underpredict the emission of composite particles. For the rates tobe used for alpha particles a review by Gadioli and Gadioli-Erba [35] is con-sulted instead of Eq. (13). An alternative method to deal with cluster emission

452 NOWOTNY and UHL

was developed by Kalbach [32]. In addition to a PE component based ondetailed balance (Eq. (13)), direct reaction contributions, which are calculatedin a very simple statistical way, are taken into account. Recently, Iwamoto andHarada [36] proposed a promising new approach to cluster emission in the frameof the exciton model.

The exciton model described so far does not consider angular momentumand parity. So, if its results are combined in Eq. (9) with those of an HF calculation,one often assumes that PE decay produces for the residual nucleus the same spinand parity distribution as the CN evaporation model. In order to improve thiscrude approximation some authors, such asPlyoko [37], Fu [38, 39] andGruppelaar [40], proposed exciton models which account for angular momentum.

The impact of this improvement is certainly greatest for the productioncross-section of isomers. For the total production cross-sections considered inSec. 4, the errors introduced by neglecting angular momentum and parity willnot in general exceed 30%.

2.3.2. The hybrid model

The hybrid model was proposed by Blann in 1971 [41-43]. It combinesaspects of the simple exciton model and the Harp-Miller-Beine (HME) model[44, 45], which performs a very detailed, and thus relatively complicated, treat-ment of the equilibration process. The resulting expressions are simple and werethe first to predict absolute cross-sections on an a priori basis [46].

The hybrid model is concerned only with the emission of nucleons. Thecross-section (9aQo/9eo) (eQ, e») for emitting a nucleon is given by

(14a)

n=n0

(An = 2)

fi, n) = Z,(e, + Sfi, P, h)

where Zo(eo + So, p, h) represents, for an n-exciton configuration of the compositesystem, the average number of nucleons of the type corresponding to /3 atexcitation energy E = e» + S» so that if such a nucleon is emitted into thecontinuum a channel energy of e» results. The quantities Xc(eg) and A+Ceo) are,respectively, the rates at which such a nucleon is emitted into the continuum orcauses an intranuclear transition, with the creation of an additional particle-holepair. Dn(E) denotes the 'depletion factor' defined in Eq. (11).

Blann et al. [47 ] and Blann and Vonach [18] showed that owing to the propertiesof the nucleon-nucleon cross-section, the quantity Z»(eo + So, p, h) can be

PART 3-1 453

calculated in terms of the particle-hole state densities co(p, h, E) and the singleparticle state density g(eo + So):

i ^ s,) (15)

where XJn) represents the number of particles of the type corresponding to 0.The quantity Xg(n) thus accounts for neutron-proton distinguishability. Theinitial values X^no) and Xy(n0) for protons and neutrons which depend on theprojectile (see Sec. 2.4.3) are increased by 0.5 following each intranucleartransition.

The continuum decay rate Xc(eo) is related to the inverse cross-sectionOa(ea) and the single particle state density g(eR + S«) by

P P P P

The intranuclear transition rates were at first calculated in terms of theaverage nucleon-nucleon cross-section in nuclear matter <a>:

where p is the nuclear density and Vn the velocity of the nucleon under con-sideration. In later developments [46], the rates were also related to the imaginarypart W of the optical potential by X'+(e) = 2W/fi. Because of their radial dependencep(r) and W(r) are averaged over the volume of the nucleus.

An extension of the hybrid model considers explicitly the effects of thenuclear surface region [48]. In this geometry dependent hybrid model, the densityp and the imaginary part W are not averaged over the entire nucleus but over theparticle trajectories in the entrance channel. The latter are defined by the impactparameter Rg = A(C + 1/2), where fl. is the reduced de Broglie wavelength and £the orbital angular momentum. The geometry dependent generalization ofEq. (14a) reads

3a* 2£<* + 1 ) V 6 a ) L£=0 n=n0

(An=2)

where Tg (ea) is the transmission coefficient. The averages of p and W for theindividual contributions Pafe, n, £), which are defined as in Eq. (14b), are

454 NOWOTNY and UHL

calculated in a local density approximation [46]. The two main effects of thesurface region are the reduction of the intranuclear transition rates X\.(eg) dueto the smaller density or the smaller imaginary part of the optical potential andthe limitation of the hole depth due to the reduced Fermi energy. Both effectslead to harder particle emission spectra and thus improve the reproduction ofnucleon induced inelastic scattering and charge exchange reactions.

As the nuclear mean free path is of the order of the nuclear radius, only thefirst collision can be regarded as being localized. Therefore, Eq. (16) is often usedonly for the initial configuration and the contributions to n > n0 are calculatedby means of the geometry independent Eq. (14a). Recently, simple expressionsfor a special type of multiple PE emission were proposed [18]. This effect isexpected to become important for incident energies beyond 50 MeV.

2.4. Auxiliary quantities and model parameters

The models described in the two previous sections require several auxiliaryquantities. These depend on parameters which for the time being have to bedetermined by comparison with appropriate experimental data.

2.4.1. Transmission coefficients

The transmission coefficients for particles are calculated in the frame of theoptical model. In the simplest case, the single channel optical model, they resultfrom solving the scattering problem for a particle in a local complex potentialU(r) = V(r) + i-W(r), which depends on the fragmentation. For a given channelenergy e and each pair of the quantum numbers (£:), where £ is the orbital andj the total angular momentum G = £ + i ), one has to solve the followingequation for the radial wave function Ug:(r):

d2 £(£ +

2 M V S r - V ^ ) + V(r) + iW(r)"e u*J(r) = 0 (17)

The transmission coefficient Tj-(e) is given in terms of the phase shift 5g:(e),by which the asymptotic form of the regular solution of Eq. (17) differs fromthe pure Coulomb scattering wave

Tgj(e) = 1 - |exp[2i68j(e)]|2

Though there currently exist microscopic theories which relate the opticalpotential to the fundamental nucleon-nucleon interaction (see reviews byMahaux [49] and Hodgson [50]), actual calculations of transmission coefficientsemploy phenomenological potentials of the following form:

PART 3-1 455

V ( r ) = - V c f ( r , R c , a c ) + Vso ~ f ( r , R s 0 , a s 0 ) (£ -i) + V C o u l o m b ( r )

W(r) = 4asWs ^ f ( r , Rs, a$) - Wyf(r, R^, av) (18)

f ( r ,R i , a i )={ l+exp[ ( r -R i ) / a i ]} - 1

The real part consists of a central potential of Woods-Saxon form with strengthVc and a spin orbit potential of Thomas form with strength Vs0, while theimaginary part contains a surface peaked and a volume component withrespective strengths of Ws and Wy. The Coulomb potential VC o u ] o m b (r) isassumed to result from a uniformly charged sphere.

The various parameters of a phenomenological potential, i.e. the strengthsVc, Vso , ..., Wv and the geometrical quantities Rc, ac,..., Rv, av, are found bycomparison with appropriate experimental data as cross-sections for elasticscattering and absorption and polarizations. This procedure is described, e.g.,by Hodgson [51 ].

The spin-orbit potential causes the transmission coefficients for particleswith intrinsic spin i to depend on £ and j . If they are used in connection withthe channel coupling scheme described in Sec. 2.2, one has to average T^ withrespect to j :

T = (2£ + 2i+ l)Tg>g + i + (2g + 2 i - l ) T u + i _ n + ... C2|fi-il

Particularly important for cross-section calculations are 'global opticalpotentials', which simultaneously reproduce the relevant data over a wide massand energy region. In general the strengths Vc, Ws and Wy of such potentialsdepend on the incident energy and the nuclear symmetry parameter (N—Z)/A.Information on commonly used global potentials for nucleons, alpha particles,tritons and 3He particles can be found in Ref. [51 ] and in a review article byPerey and Perey [52]. In addition, the global potentials for alpha particles aregiven by Huizenga and Igo [53] and by McFadden and Satchler [54], while forneutrons the potentials given by Rapaport et al. [55] are used.

In general, global optical potentials, when applied for a particular nucleus,will not give as accurate results as a 'local potential' with parameters obtainedfrom data measured for the nucleus of interest or at least for near neighbours.This is particularly true if the energy and/or mass region of the database, onwhich the global potential relies, is exceeded.

The transmission coefficients TXL(e) for photons of multipole type XLare related to the corresponding gamma ray strength function i*XL^e) ^

TX L(e)=27T.e2 L + 1fX L(e)

45 6 NOWOTNY and UHL

Two models for the strength functions are generally used. The Blatt-Weisskopfmodel [56] assumes the strength functions to be energy independent, while theBrink-Axel model [57] relates them to the gamma ray absorption cross-section.The relevant experimental data for the adjustment of the strength functionparameters are in general neutron resonance data and low energy neutroncapture data. For details, see a recent review by Gardner [58].

2.4.2. L evel densities

Most computer codes employ rather simple models which define the leveldensity in terms of a few parameters. The two most popular models are theGilbert-Cameron model [59] and the backshifted Fermi gas model [60]. Bothof them assume the level density to be parity independent: p(E, I, ri)= (l/2)p(E, I), and describe the dependence on the spin I in terms of an energydependent 'spin cut-off parameter' a = a(E):

(I + 1/2)2

p(E,l)=~(2\+\)exp{ — lpo(E) (19)

where po(E) is the total level density as a function of the excitation energy E.The state density o>(E) is related to the total level density by CJ(E) = y/2ira2 p0 (E).

The Gilbert-Cameron model distinguishes two energy regions. For E > Ex ,p0 (E) and a(E) are given by

JPo( '

= Cv 'a(E-P)A2 /3E > Ex (20a)

where a is the 'level density parameter' and P the (tabulated) pairing correction.The original paper [59] proposed that C = 0.0888, while more recent investigationsfavour C = 0.146 [61 ]. In the low energy region E < Ex, the total level densityand a2 are given by

Po(E)=-exp[(E-Eo

E < Ex (20b)o2(E) = o2r

where T is the (nuclear) temperature and Eo is an adjustable constant. Thea parameter of Eq. (20a) is found by reproducing the average resonance spacing,while the quantities Eo, T and Ex are determined by the requirement that po(E),

PART 3-1 457

defined in Eq. (20b), reproduces the cumulative number of low lying levels andsmoothly joins the corresponding expression in Eq. (20a) at E = Ex.

The backshifted Fermi gas model employs only one formula for allexcitation energies:

(21)

a2 (E) = dtAs/3, E ~ A = a t 2 - t

where A represents the 'backshift' and t the (thermodynamic) temperature. Forthe constant d in the definition of a, it is usually assumed that d = 0.0150, a valuewhich corresponds to the rigid body moment of inertia [60]. The parametersa and A are determined by the requirement that Eq. (21) reproduces thecumulative number of low excited levels, as well as the average resonance spacing.

Level density parameters over a wide mass region are tabulated inRefs [59] and [62, 63] for the Gilbert-Cameron model and in Refs [60] and[64] for the backshifted Fermi gas model. These sets can be supplemented orupdated if additional or more recent data on levels and resonances are available.For nuclei with no relevant data, one has to resort to systematics. This may leadto quite inaccurate results - in particular for nuclei far from the line of betastability.

Both phenomenological models consider only in a very rough way theeffects of shell structure and pairing on the energy dependence of the level density.These deficiencies may be overcome by 'microscopic' calculations which arebased on realistic single particle energies and on the BCS model (see Ref. [65]for a recent example). Unfortunately, these calculations are time consuming.In the past few years new, semi-empirical, level density formulas have beenproposed by Kataria et al. [66], Jensen and Sandberg [67] and by Ignatyuk et al.[68]. These formulas parametrize shell effects in terms of the empirical shellcorrection to the nuclear ground state mass. This type of parametrization issimple and seems to be very useful for practical applications as it provides abetter basis for extrapolations to higher excitation energies and to nuclei with noresonance data other than the two phenomenological models described earlier.A recent review by Ramamurthy et al. on these semi-empirical models can befound in Ref. [69].

2.4.3. Pre-equilibrium model parameters

The initial exciton number n0 = p0 + h0 determines the shape of the spectraof the particles emitted in the pre-equilibrium stage. Many investigations haveshown that for nucleon induced reactions n0 has the 'natural' value n0 = 3

458 NOWOTNY and UHL

(p0 = 2, h0 = 1). For the initial numbers X^P) and Xy(3), which are requiredfor the hybrid model (see Eq. (15)), Blann and Vonach propose, for protoninduced reactions,

3N + 2ZX * ( 3 ) = 1 ^ T 7 ~ : X,,(3) = 2-Xff(3) (22a)

and

3Z + 2NX ( 3 ) (22b)

for incident neutrons [18]. These expressions are based on the fact that the(free) n-p cross-section is about three times larger than the (free) n-n and p-pcross-section; the free nucleon-nucleon cross-sections are averaged with respectto the proton and neutron numbers Z and N of the target nucleus.

For composite projectiles the choice of (p0, h0) is less obvious and oftennot unique. We quote as typical examples some results. Exciton modelcalculations for incident alpha particles and 3He particles required (p0 = 5 ,h0 = 1) [32] and (p0 = 3, h0 = 1) [70], respectively. Successful applications ofthe hybrid model for alpha induced reactions were reported with n0 = 4 andXff(4) = Xj/4) = 2 [71-73]. For incident 3He particles, Chevarier et al. reportedhybrid model calculations with n0 = 4 and Xw(4) = Xv(4) = 2 or [Xn(4) - 2.5,Xj,(4) = 1.5] [74], whereas Misaelides and Miinzel used n0 = 5 and [Xff(5) = 2.5,Xj,(5) =1.5] [73]. Deuteron induced reactions were analysed by Jahn et al. inthe framework of the hybrid model with n0 = 3 or n0 = 2 [75].

In addition to the problem of the choice of the initial exciton number, theanalysis of composite, particle induced reactions by pre-equilibrium models iscomplicated by the presence of a breakup component in the particle emissionspectra which is not accounted for by these models. This holds, in particular,for weakly bound projectiles such as deuterons or 3He particles and higherincident energies.

For the particle-hole state densities, which are required for the exciton andthe hybrid model as well, the following most commonly used expression wasderived by Williams:

g [ g E - ( p 2 + h 2 + p - 3 h ) / 4 ] P + h - 1

CJ(P, h, E) =

under the assumption of an energy independent, single particle state density g[76].The quantity g may be related to the a parameter of the phenomenological leveldensity models of Sec. 2.4.2 by g = (6/7T2)a. Very often the value g = A/13,corresponding to a = A/8, is employed where A is the mass number.

PART 3-1 459

In later developments, Williams' formula was corrected for several effects:finite depth of the potential well, which restricts the excitation energy of theholes and pairing, shell effects and long range energy variations. For details seeKalbach's recent review, which also surveys the calculation of the quantitywAn(n,E)ofEq. (12) [77].

The particle-hole creation rates A'+(n, E) of the exciton model, which arebased on the 'golden rule', Eq. (12), require the average squared matrix element|M|2. By analysis of appropriate experimental data, Kalbach-Cline [78] foundfor the dependence of this quantity on mass number A and excitation energy Ethat

|M|2(E) = KA-3E-1 (23)

The numerical value of the constant K critically depends on the expression usedfor the particle emission rates. For g = A/13 and for the emission rates proposedby Kalbach in Ref. [32], K = 400 MeV3. In order to reproduce the morerealistic energy and exciton number dependence of the tabulated rates A'+(n, E),which were obtained by Gadioli et al. [30] on the basis of the nucleon-nucleoncross-section in nuclear matter, Kalbach proposed the following relations:

)A3e V 7 MeV

, for 2 MeV < e < 7 MeV

K' , for 7 MeV < e < 15 MeV

A3e

K' / ! 5 M e V y 2 , f o r l 5 M e V < e

A3e

where e = E/n and the constant K' assumes the value 135 MeV3 under theconditions specified for Eq. (23) [79].

The intranuclear transition rates X1+(e) for the hybrid model, which of course

are conceptually different from the exciton model rates A^.(n, E) are either basedon the expressions for the Pauli-corrected nucleon-nucleon cross-section, givenby Kikuchi and Kawai [80], or on the global optical potentials for nucleons byBecchetti and Greenlees [81 ]. In the latter case, the rates should not be used forenergies much greater than 55 MeV, corresponding to the upper energy limit of

460 NOWOTNY and UHL

the potentials. For the radial dependence of the nuclear density which is requiredfor the geometry dependent effects, and for further details, see the recent paperby Blann and Vonach [18].

3. COMPUTER CODES

Over the past few years many computer codes have been developed whichcalculate nuclear reaction cross-sections on the basis of a combination ofequilibrium and pre-equilibrium models. In this section, we briefly describe somerepresentative programs and discuss their applicability for the calculation ofactivation product cross-sections. A more detailed discussion of a larger numberof codes can be found in a recent review by Uhl [82].

Alice/Livermore 82 is the most recent version of the widely used Alicecodes developed by Blann and Bisplinghoff [83]. The program calculates, forarbitrary projectiles and emitted particles selected among neutrons, protons,alpha particles and deuterons (the actual choices are n; n and p; n, p and a;n, p, a and d), the activation product cross-sections for all nuclei of a rectanglein the (Z, N) plane which may be 11 mass units wide and 9 charge units deep.

A WE calculation is performed for the CN evaporation contribution. Thes-wave approximation may be used as an option; in that case the yrast level iscalculated by either assuming a rigid rotor or by means of the equilibriumdeformed, rotating liquid drop model of Cohen et al. [84]. Pre-equilibriumemission of nucleons is treated within the framework of either the hybrid orthe geometry dependent hybrid models. A simple formalism for multiplePE emission [18] is included. The most recent version of the code also allows,optionally, for isospin effects in precompound decay.

The Alice/Livermore 82 code is ideally suited for fast calculations ofactivation product cross-sections. Owing to many built-in data — as, for example,nuclear masses and parameters for global optical potentials — and, owing toconvenient default options, the input is short and easy to prepare. The choiceof the default parameters for PE decay is discussed by Blann and Vonach [18].The running time of the code is short, especially if the inverse cross-sectionsare calculated not by the optical model routines but by the sharp cut-offalgorithm [85], or are supplied as inputs. The only restrictions on the use ofAlice/Livermore 82 are: reactions with first chance emitted composite particles(since for those ejectiles no PE contribution is considered) and the limitationsinherent in the WE method of calculation (see Sec. 2.2).

In the following, we discuss the application of codes which allow for angularmomentum and parity conservation and include gamma ray cascades. ForHF calculations, the spectrum of excited states of all residual nuclei is dividedinto low lying known levels and a 'continuum' region described by a level densityformula. The gamma ray branching ratios for the transitions between these

PART 3-1 461

levels are required for the calculation of isomeric state populations. Thus, owingto the extensive information on the level schemes of many nuclei, HF codesdemand much more input data than WE codes. Since angular momentum dependentcalculations require much more time and storage, HF codes in general do notsimultaneously calculate activation product cross-sections for as many final nucleias, for example, does Alice/Livermore 82.

An extreme example of the restriction of the number of product nuclei isthe code known as Stapre which calculates, for up to six sequentially emittedparticles (selected among n, p, a and d) in addition to other quantities, theproduction cross-sections for all nuclei lying on one 'reaction path' [13]. Such apath is defined by a specific sequence of emitted particles, e.g. (apnn). Whilethis restriction is irrelevant for reactions such as (p, nn), problems arise if the finalnucleus of interest is populated by several paths as, for example, for the (p, np),(p, pn) and (p,d) reactions. In that case several different runs are required forthe final results. This disadvantage is at least partly overcome by the programGnash by Young and Arthur [86]. In this code the ejectiles may be chosenamong n, p, a, d, t and 3He. Activation product cross-sections for up to tendifferent final nuclei can be calculated and contributions of different paths areobtained in one run. Nevertheless, the maximum number of final nuclei is muchsmaller than for Alice/Livermore 82. The PE contribution in Stapre and Gnashis calculated within the framework of the exciton model. While Stapre employsfor alpha emission the model of preformed alpha particles by Milazzo-Colli andBraga-Marcazzan [87, 88] Gnash uses for pre-equilibrium emission of compositeparticles the simple statistical direct reaction contributions proposed byKalbach [32], in addition to the results based on detailed balance.

Finally, there is the program TNG1 by Fu which, in contrast to the twoaforementioned HF codes, performs an angular momentum dependent treatmentof the PE contribution in the framework of the exciton model [38, 39]. It isof special interest for isomeric state populations in cases of a dominant PEcontribution. TNG1 handles reactions with up to three emitted particles.

Among the codes mentioned in this section all but TNG1 account forfission. Thus they can also calculate activation product cross-sections in caseswhere fission competition is relevant.

4. APPLICATIONS

Thus far the codes Overlaid Alice [89] and, later, its version Alice/Livermore 82[83], as well as Stapre [13] have been used for the calculation of activation productcross-sections. For practical purposes the Alice codes are preferred as only fewinput data are required and the computer execution times are moderate incomparison with Stapre. Indeed, Stapre might yield the more accurate results,as is shown below.

462 NOWOTNY and UHL

In the following are given some results obtained with Alice to demonstratethe accuracy of calculated excitation functions. All calculations were done underthe same assumptions to maintain an a priori character, i.e. the input parameterswere not varied to obtain better agreement between experimental data andtheoretical results. In all cases an evaporation calculation with multiparticleemission according to the statistical model was chosen. The default optical modelsubroutine was used for the calculation of the inverse cross-sections. Forpre-compound emission of nucleons the geometry dependent hybrid model was chosen.

Reaction Q-valuesand binding energies were taken first from Ref. [90], butlater the Myers-Swiatecki mass formula [91 ] was used which is available as thedefault option in the code. In the most recent version an option exists to use asmuch experimental mass data as are available. In addition, the number of nucleiof each Z and the number of elements to be included in the calculation can bespecified. For each projectile energy the cross-sections for the evaporation cascadeleading from the composite nucleus to the final nuclei, as defined above, arecalculated.

4.1. Proton induced reactions

An important input parameter for pre-equilibrium decay which depends onthe projectile is the initial number of excitons (see Sec. 2.4.3). For protoninduced reactions the initial number of excited protons and neutrons was takenas 1.25 and 0.75, respectively. These initial exciton numbers are obtained fromexpressions (22a) and (22b) under the assumption that N = Z. Together withone hole, this gives a total of three excitons [92]. To demonstrate the simpleinputs required for Alice, a sample input for the 68Zn(p, xn) + 68Zn(p, pxn)reactions is listed below (without regard to the input format required by Alice):

- Projectile mass number (AP) = 1.- Target mass number (AT) = 68.- Projectile charge (ZP) = 1.- Target charge (ZT) = 30.- Number of product nuclei of each Z (NA) = 4 to include (p, 3n) reactions.- Number of Z of product nuclei (NZ) = 2 to include (p, pxn) reactions.- Mass option (MC) = 0 for the Myers-Swiatecki mass formula or (MC) = 10

to include experimental mass data, if available.- Number and types of particles to be emitted from each nuclide (M3) = 3

for p, n and alphas.- Pairing option for the mass formula (MP) = 3 for normal pairing shift.

For each projectile energy the following input has to be supplied:

- Projectile kinetic energy (EQ), in MeV.- Type of calculation (JCAL) = 1 for the Weisskopf-Ewing evaporation

calculation.

PART 3-1 463

- Initial exciton number (particles and holes) (TD) = 3.- Initial excited neutron number (EX1) = 0.75.- Initial excited proton number (EX2) = 1.25.- Pre-equilibrium model (TMX) = 1 for the geometry dependent hybrid model.- Intranuclear transition rates (AV) = 0 for optical model transition rates.

If E > 55 MeV, then (AV) = 1 for nucleon-nucleon mean free paths.

With this input configuration and a calculation of activation cross-sectionsfor 18 projectile energies from 6 to 36 MeV, the CPU time on a Control DataCorporation Cyber 170-720 is about 270 s. Two similar runs for 66Zn and 67Znas target nuclei are sufficient to yield the relevant figures for estimating theexcitation functions and production yields for natZn(p, xn)67Ga and itscontaminants. A reduction in CPU time is possible by computing the inversereaction cross-sections with a classical sharp cut-off model, though this optionwas not tested.

In the following, a few examples of excitation functions are given whichare of interest for the production of radio isotopes used in nuclear medicine.

4.1.1. 61Ga

In spite of the fact that 57Ga has been widely used in nuclear medicine,only a small quantity of experimental data on the excitation functions of protonson zinc targets is available. The principal radionuclidic impurity, due to its half-life of 9.5 h, is 66Ga. Figures 1-5 show the results of the calculations comparedwith data from the literature [93-95] for reactions with 66Zn, 67Zn and 68Zn astarget nuclei to be considered here. The most comprehensive data have beenpublished by Little and Lagunas-Solar [95]. In comparison with these data,calculated curves show a steeper rise and, in some cases, less agreement for thepre-equilibrium tail. Unfortunately, the energy errors are not given and it shouldbe remembered that the excitation function curves were obtained from compositeyield curves for a natZn target taking into account Q-values and general reactioncharacteristics [95] which might result in less reliable data for the tail. Agreementin maximum cross-section is better than 20%.

4.1.2. inKr

This radioisotope has been of interest as the precursor of 77Br, but the noblegas can be used directly, being a positron emitter in positron emission tomography.The essential contaminant for proton induced reactions with bromine is 76Kr.The calculated cross-sections for reactions with natural bromine are shown inFigs 6 and 7. Obviously the excitation functions from Lundqvist et al. [96] arenot in agreement with either other experimental or with calculated data. Forthe reaction product 77Kr, agreement is fairly good for data from DeJong et al. [97]

464 NOWOTNY and UHL

10 F

10' -

10' -

/ ' \

T11111t

1

111

. . . l . i . . . .

66 ZnCp. rO^Ga

\ ~ ~ ~ - - - -

• .

Ref. [94]Ref. [95]

1 . . . . 1 . . . .

10 20 30 40(MeV)

FIG. 1. Calculated and experimental excitation functions for66'Zn(p, n )66'Ga. Error barsindicate typical experimental errors, if quoted. For clarity, individual measured cross-sectionsare not shown. Cross-section data by Little and Lagunas-Solar [95] have been obtained by theauthors from composite yield curves for a natural zinc target.

10"

10'

10"

Zn(p. n)6 7Go

AliceRef. [95)

10 4020 30Ep (MeV)

FIG. 2. Calculated and experimental excitation functions for 67Zn (p, n)67Ga (for commentssee Fig. 1).

- 3

0

FIG. 3. Same as Fig. 1, but for elZn(p, 2n)66Ga.

20 30Ep (MeV)

PART 3-1 465

iff"

10'

10'

10"

68Zn(p.2n)ff7Ga

AliceRef. [931Ref. [95)

10 20 30 40E (MeV)

FIG. 4. Same as Fig. 1, but for 6SZn (p, 2n)61Ga.

10 20 30Ep (MeV)

FIG. 5. Same as Fig. 1, but for 6iZn(p, 3n)(AGa.

Iff*

10 -

10' -

io:

40

• 1

j

{//IIIj

" " Br (p. xn) 77Kr

Ref. [97]Ref. [96]Ref. [99]Ref. [98)Ref. (100)

30 40 70SO 60Ep (MeV)

FIG. 6. Calculated and experimental cross-sections for proton induced reactions with naturalbromine leading to 71Kr. The data from Dikiic et al. [100], for reactions with 19Br and SiBr,were combined to obtain the effective cross-section.

466 NOWOTNY and UHL

10'

10'

10.

"•"BrCp. xn) 7sKr

AliceRef. [96)Ref. [98]Ref. [97]Ref. [100]Ref. [99]

70'20 30

FIG. 7. Calculated and experimental excitation functions for n3tBr(p, xn)16Kr (see also Fig. 6).

40 SO 60Cp (MeV)

10'

10'

l27 \ (p. n)

AliceStapreRef. [103]

10 20 30E p (MeV)

FIG. 8. Experimental excitation function for 12'!I(p, nj 121Xe, together with cross-sectionscalculated by the Alice and Stapre codes [102].

and Nozaki et al. [98]; with respect to the data from Weinreich and Knieper onlythe shape is reproduced [99]. Data from DikSic et al. [100] are in less agreement.For the final nucleus 76Kr (which can be considered to be far away from thestability line) characteristics of the excitation function are similar, but dis-crepancies exist in the maximum cross-section up to a factor of 2.7.

4.1.3. niXe

This radioisotope exhibits some advantages when compared with 133Xe andis suitable for use in nuclear medicine, though it has not attracted widespread

PART 3-1 467

interest [101 ]. The results for the reaction 127I(p,n) 127Xe (Fig. 8) also includedata calculated using Stapre [102]. The Stapre data match the experimentalresults from Colle and Kishore [103] over the entire energy range. For theAlice curve only the initial rise until the maximum cross-section is in excellentagreement, but the tail of the excitation function is less satisfactorily reproduced.There exists no plausible reason for the excitation function rising again after theinitial peak, but to preserve the a priori character we have not varied the inputparameters.

10

IO1

10'

AliceRef. [104)Ref. (105)Ref. [106)Ref. [107 JRef. [96)

40 50 60 70Ep (MeV)

FIG. 9. Calculated and experimental excitation functions for niI(p, 5n) l23Xe.

10s

10"

10'

10'40

U7 I (p. 3n>

" " ! - - - _

AliceRef. [104]Ref. [105]Ref. (106)Ref. [107]Ref. [96]

SO 60Ep (MeV)

70

FIG. 10. Calculated and experimental excitation functions for the production of the contami-nant 125I via 121I(p, 3n) 125Xe -* 12SI, shown for the same energy window as in Fig. 9.

468 NOWOTNY and UHL

10'-

10 -

10' -

10'

• 1

""'THp.x^^Pb

Ref. [109]Ref. [110]

10 20 30 40 50

FIG. 11. Effective cross-sections for proton induced reactions with natural thallium producing203Pb.

10'

10*

10"

10'10

eTKp.xn> ^"Pb

AliceRef. [108)Ref. [109]Ref. [110]

30 40(MeV)

50

FIG. 12. Same as Fig. 11, but for production of 201Pb.

PART 3-1 469

10'

10'

10'

ltf 10

AliceRef. |109lRef. [110]

30 40Ep (MeVI

SO

FIG. 13. Same as Fig. 11, but for production of200Pb.

4.1.4. 123Xe

The introduction of 123I as a substitute for 131I has been of great importance.The quality of scintigraphic examinations has been improved, with concurrentreduction in patient dose. The production of 123Xe as the precursor of )23I is thebest method to obtain high radionuclidic purity. Any other direct production bybombardment of Te or Sb targets suffers from contamination by 124I, whichboth impairs scintigraphic properties and increases radiation dose. Unfortunately,the proton energies required for the 127I(p, 5n) 123Xe reaction are too high forapplication with compact cyclotrons. The only impurity produced is 12SI, butsetting an appropriate energy window for the (p, 5n) reaction and half-life dis-crimination of 12SXe both give relatively low 125I activities.

The calculated excitation functions are given in Figs 9 and 10. Taking intoaccount the discrepancies between the various experimental data [96, 104-107],the agreement is fair for both reactions.

4.1.5. 20lPb

2O1T1 is widely used for myocardial studies. It can be produced with a highdegree of purity via its precursor 20IPb by bombarding natural thallium targetswith protons. 203Pb is also produced in this way and has generated some medicalinterest (see, for example, citations in Ref. [110]). The calculated excitation

470 NOWOTNY and UHL

10'

10

FIG. 14. Comparison of calculated radioisotope production yields, Y.aic, with data from litera-ture, Y^ (see Ref. [5]). Dashed lines indicate a deviation by a factor of 2 from equality(1 curie = 3.70 X 1010 Bq).

functions for proton induced reactions leading to 200Pb, 201Pb and 203Pb areshown in Figs 11-13. Only the contribution due to 203Tl(p, n) 203Pb has notbeen included. Agreement between experimental [108-110] and calculated datais good. Again, the reproduction of the pre-equilibrium tail of the 20STl(p, 3n) 203Pbreaction is less satisfactory.

4.2. Yield calculations

To check the usefulness of the theoretical excitation functions for protoninduced reactions, yield figures were calculated according to the conditions citedin the literature and then compared with the respective yield data quoted therein.Yield figures in the literature comprise experimental yields and yields calculatedfrom yield functions or excitation functions. Figure 14 shows a comparisonbetween calculated yields and yields reported in the literature.

It was found that in general the literature yield data can be reproduced bycalculated yields to within a factor of 2. It must be remembered that all of theexperimental errors, which are often not quoted, are also included in thiscomparison. Further, there remain hidden many factors in the various methodsby which the yield figures are obtained. No definite trend in an over- or under-estimation of the data in the literature could be noted. The proton energy coversa range of up to 70 MeV and target nuclei with Z > 15 are included.

PART 3-1 471

10 20 30 40 SO BO 70 80 90

FIG. 15. Excitation functions for (d, xn) reactions with natural bromine from Qaim et al [111 ]and calculated using Alice ( j .

0 10 20 30 40 SO 60 70 80 90

FIG. 16. Same as Fig. 15, but for nitBr(d, pxn)17Br.reactions.

4.3. Reactions with particles other than protons

Several excitation functions for deuteron and 3He induced reactions havebeen calculated using Alice, with the same input considerations as mentionedabove except for the initial exciton configuration. The efforts to reproduceexcitation functions and particle spectra require exciton numbers which do notalways conform to the initial physical concept (see Sec. 2.4.3). For deuteronstotal exciton numbers of 2 (1 neutron, 1 proton, 0 holes) or 3 (2 neutrons,1 proton, 0 holes) have given the best results. In general, the discrepancies aregreater than for proton induced reactions. Two examples are given to demonstratethe usefulness of a priori calculations.

472 NOWOTNY and UHL

SO

FIG. 17. Excitation functions for 12'7fd, xnj reactions from Weinreich et al. [112]( ) andcalculated using Alice ( ).

60 70 eo goE d (MeV)

FIG. 18. Same as Fig. 17, but for I(d, pxn) reactions.

The production of 77Kr can also be accomplished by deuteron bombardmentof bromine targets. Experimental excitation functions from Qaim et al. [ I l l ]and the calculated total cross-sections obtained with an initial exciton numberof 2 are shown in Figs 15 and 16. While (d, xn) reactions are overestimated byAlice, the (d, pxn) cross-sections are too low.

The situation for the production of )23Xe via the 127I(d, 6n) reaction, togetherwith other companion reactions, is shown in Figs 17 and 18. It can also be seenthat the discrepancies with the experimental data from Weinreich et al. [112]are larger than those for proton induced reactions. Michel and Galas [113] havereported good agreement between calculated and experimental data for a numberof deuteron induced reactions with s9Co when using exciton numbers of 2 or 3.

PART 3-1 473

For other projectiles, e.g. 3He, the situation is even less satisfactory and theappropriate choice of initial exciton numbers for an a priori calculation is notobvious (see Sec. 2.4.3).

5. CONCLUSIONS

The applicability of the codes described is limited by several factors. Ingeneral one can assume that the parameter sets make feasible a calculation formasses A > 30, but results for lighter nuclei have also shown satisfactory agree-ment of cross-sections. Calculations based on the optical model and the compoundnucleus evaporation model for neutron induced reactions on biologically interestingelements with A > 12 (carbon, nitrogen and oxygen) have been performed forneutron energies from 20 to 50 MeV by Dimbylow [114]. Indeed, the fewexperimental data available have been used for a data fit so that the results werenot truly obtained for a priori conditions.

Further, reproduction of activation cross-sections will get worse for productnuclei far away from the stability line for beta decay. The particle energiesavailable in production facilities rarely exceed proton energies of perhaps 70 MeV,but compact cyclotrons frequently used for these purposes produce protons ofup to about 45 MeV. For this energy range the nuclear models used in thesecodes should be adequate.

The results of calculations for nucleon induced reactions generally showbetter agreement than for reactions involving 'complex' particles (deuterons,3He, alpha particles) in the entrance and/or exit channels. In particular, theemission of these particles during pre-equilibrium decay is not accounted forby the Alice code.

It must be stressed that it is difficult to give figures on the accuracy ofcalculated excitation functions. In particular, during the initial rise the cross-sections could differ by large factors and it is this section of the excitationfunction which is usually affected most by uncertainties in projectile energy.Using the Alice code for proton induced reactions, with input parameters asgiven in Sec. 4.1, it was shown that the yield figures obtained from calculatedcross-sections differ in general by less than a factor of 2 for all calculations beingmade under the same a priori conditions, without any adjustment of the inputparameters. This uncertainty comprises all experimental errors in the deter-mination of the yield. The comparison also indicates that there is no systematicover- or underestimation of production yield by calculated yields. If experimentaldata for a reaction under investigation are missing it would be useful to study somereactions on neighbouring target nuclei if possible. In this way it is possible to gainexperience of the predictive power in that mass region.

An individual selection of input parameters according to nuclear dataavailable for a specific mass region or by experience could perhaps give better

474 NOWOTNY and UHL

agreement. This is particularly true of the choice of exciton numbers forcomposite projectiles. For deuteron induced reactions the preferable configu-ration seems to be either two or three initial excitons (see also Refs [75. 113]).So far, the experience shows that agreement with experimental data is lesssatisfactory than for nucleon induced reactions. For 3He and alpha projectileswe still have to gain experience to assess the practicability of 'global' initialexciton numbers for a priori calculations.

Setting up the input parameters for the Alice code requires little time. Themost recent version, Alice/Livermore 82, has undergone some revisions. However,most of the results shown in this contribution have been obtained using its earlierversion, Overlaid Alice, so that new results could be somewhat different, thoughin all cases where calculations for a particular reaction were made with bothcodes, negligible differences in activation cross-sections were found. Nuclear datafiles, e.g. for inverse cross-sections, level density parameters and masses couldbe useful in saving computer time and helpful in improving the accuracy of theresults.

An assessment of the advantages and limitations of various productionmethods by means of a priori calculations seems feasible for proton inducedreactions. It is not suggested that one should rely only on calculated excitationfunctions, but in the planning of new production methods calculated activationcross-section data could be helpful.

REFERENCES

[ l] KELLER, K.A., LANGE, J., MUNZEL, H., PFENNING, G., Excitation Functions forCharged Particle Induced Nuclear Reactions (Landolt-Bornstein New Series Group I),Vol. 5b, Springer-Verlag, Berlin (West) (1973).

[2] The Bibliography of Integral Charged Particle Nuclear Data, 4th edn (BURROWS, T.W.,DEMPSEY, P., Eds), Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-50640 (1980).

[3] KELLER, K.A., LANGE, J., MUNZEL, H., Estimation of Unknown Excitation Functionsand Thick Target Yields for p, d, 3He and Alpha Reactions (Landolt-Bornstein New SeriesGroup I), Vol. 5c, Springer-Verlag, Berlin (West) (1973).

[4] QAIM, S.M., Radiochim. Acta 30 (1982) 147.[5] NOWOTNY, R., Int. J. Appl. Radiat. Isot. 32 (1981) 73.[6] AUSTERN, N., Direct Nuclear Reaction Theories, Wiley, New York (1970).[7] BOHR, N., Nature (London) 137 (1936) 344.[8] WEISSKOPF, V.F., EWING, D.H., Phys. Rev. 57 (1940) 472.[9] HAUSER, W., FESHBACH, H., Phys. Rev. 87 (1952) 366.

[10] VOGT, E., in Advances in Nuclear Physics I (BARANGER, M., VOGT, E., Eds), PlenumPress, New York (1968) 261.

[11] MOLDAUER, P.A., "Statistical theory of neutron nuclear reactions", Nuclear Theory forApplications (Proc. Winter Course Trieste, 1978), IAEA-SMR-43, IAEA, Vienna (1980) 165.

[12] MAHAUX, C, WEIDENMULLER, H.A., Annu. Rev. Nucl. Part. Sci. 29 (1979) 1.

PART 3-1 475

[13] STROHMAIER, B., UHL, M., "STAPRE - A statistical model code with consideration ofpre-equilibrium decay", Nuclear Theory for Applications (Proc. Winter Course Trieste,1978),IAEA-SMR-43, IAEA, Vienna (1980) 313.

[14] GROVER, J., Phys. Rev. 123 (1961) 267.[15] STENGL, G., UHL, M., VONACH, H., Nucl. Phys. A290 (1977) 109.[16] BLANN, M., MERKEL, G., Phys. Rev. 137B (1965) 367.[17] LANE, A.M., Phys. Rev. C 18(1978) 1525.[18] BLANN, M., VONACH, H., Phys. Rev. C 28 (1983) 1475.[19] AGASSI, D., WEIDENMULLER, H.A., MANTZOURANIS, G., Phys. Lett. 22 (1975) 145.[20] FESHBACH, H., KERMANN, A.K., KOONIN, S.E., Ann. Phys. (N.Y.) 125 (1980) 429.[21] TAMURA, T., UDAGAWA, T., LENSKE, H., Phys. Rev. C 26 (1982) 379.[22] GRIFFIN, J.J., Phys. Lett. 17 (1966) 478.[23] GRIFFIN, J.J., Phys. Lett. 24B (1967) 5.[24] CLINE, C, BLANN, M., Nucl. Phys. A172 (1971) 225.[25] UHL, M., "Computer calculations of neutron cross sections and gamma-cascades with the

statistical model with consideration of angular momentum and parity conservation",Nuclear Theory in Neutron Nuclear Data Evaluation (Proc. Consultants Meeting Trieste,1975), Vol. 2, IAEA-190, IAEA, Vienna (1976) 361.

[26] AKKERMANS, J.M., GRUPPELAAR, H., Z. Phys. A300 (1981) 345.[27] WILLIAMS, F.C., Jr., Phys. Lett. 31B (1970) 184.[28] OBLoflNSKY, P., RIBUNSKY, I., BE"TAK, E., Nucl. Phys. A226 (1974) 347.[29] GADIOLI, E., GADIOLI-ERBA, E., TAGLIAFERRI, G., Nucl. Phys. A217 (1973) 589.[30] GADIOLI, E., GADIOLI-ERBA, E., HOGAN, J.J., Phys. Rev. C 16 (1977) 1404.[31] CLINE, C.K., Nucl. Phys. A193 (1972) 417.[32] KALBACH, C, Z. Phys. A283 (1977) 401.[33] BIRRATARI, C, et al., Nucl. Phys. A201 (1973) 579.[34] DOBES, J., BETAK, E., in Neutron Induced Reactions (Proc. Europhysics Topical Conf.

Smolenice, 1982) (OBLOZINSKY, P., Ed.), Czechoslovak Academy of Sciences, Bratislava(1982).

[35] GADIOLI, E., GADIOLI-ERBA, E., "Recent results in the theoretical description ofpre-equilibrium processes", Nuclear Theory for Applications — 1980 (Proc. InterregionalAdvanced Training Course Trieste, 1980), Vol. 1, IAEA-SMR-68, IAEA, Vienna (1980) 3.

[36] IWAMOTO, A., HARADA, K., Phys. Rev. C 26 (1982) 1821.[37] PLYOKO, V.A., Sov. J. Nucl. Phys. 27 (1978) 623.[38] FU, C.Y., "Development and applications of multi-step Hauser-Feshbach/pre-equilibrium

model theory", Nuclear Theory for Applications - 1980 (Proc. Interregional AdvancedTraining Course Trieste, 1980), Vol. 1, IAEA-SMR-68, IAEA, Vienna (1980) 35.

[39] FU, C.Y., Oak Ridge National Lab., TN, Rep. ORNL/TM-7042 (1980).[40] GRUPPELAAR, H., in Basic and Applied Problems of Nuclear Level Densities (Proc.

IAEA Advisory Group Meeting Brookhaven, 1983) (BHAT, M.R., Ed.), BrookhavenNational Lab., Upton, NY, Rep. BNL-NCS-51694 (1983) 143.

[41] BLANN, M., Phys. Rev. Lett. 27 (1971) 337.[42] BLANN, M., Phys. Rev. Lett. 27 (1971) 700E.[43] BLANN, M., Phys. Rev. Lett. 27 (1971) 155OE.[44] HARP, G.D., MILLER, J.M., BEINE, B.J., Phys. Rev. 165 (1968) 1166.[45] HARP, G.D., MILLER, J.M., Phys. Rev. C 3 (1971) 1847.[46] BLANN, M., Nucl. Phys. A213 (1973) 570.[47] BLANN, M., MIGNEREY, A., SCOBEL, W., Nukleonika 21 (1976)335.[48] BLANN, M., Phys. Rev. Lett. 28 (1972) 757.

47 6 NOWOTNY and UHL

[49] MAHAUX, C, "Theoretical aspects of the optical model", Nuclear Theory for Applications(Proc. Winter Course Trieste, 1978), IAEA-SMR-43, IAEA, Vienna (1980) 97.

[50] HODGSON, P.E., in Nuclear Physics (Proc. 6th Symp. Oaxtepec, Mexico, 1983),CONF-830138(1983).

[51] HODGSON, P.E., Nuclear Reactions and Nuclear Structure, Clarendon Press, Oxford (1971).[52] PEREY, CM., PEREY, F.G., At. Nucl. Data Tables 17 (1976) 1.[53] HUIZENGA, J.R., IGO, G.J., Argonne National Lab., IL, Rep. ANL-6373 (1961).[54] McFADDEN, L., SATCHLER, G.R., Nucl. Phys. 84 (1966) 177.[55] RAPAPORT, J., KULKARNJ, V., FINLAY, R.W., Nucl. Phys. A330 (1979) 15.[56] BLATT, J.M., WEISSKOPF, V.F., Theoretical Nuclear Physics, Wiley, New York (1952).[57] AXEL, P., Phys. Rev. 126 (1962) 671.[58] GARDNER, D.G., in Fast Neutron Capture Cross Sections (Proc. NEANDC/NEACRP

Specialists Meeting Argonne, Illinois, 1982) (SMITH, A.B., POENITZ, W.P., Eds),Argonne National Lab., IL, Rep. ANL-83-4 (1982) 67.

[59] GILBERT, A., CAMERON, A.G.W., Can. J. Phys. 43 (1965) 1446.[60] VONACH, H., HILLE, M., Nucl. Phys. A217 (1969) 289.[61] REFFO, G., Comitato Nazionale per l'Energia Nucleare, Rome, Rep. CNEN-RT/FK78) 11

(1978).[62] ROSE, E.K., COOK, J.L., Australian Atomic Energy Commission Research Establishment,

Lucas Heights, Rep. AAEC/E419 (1977).[63] COOK, J.L., ROSE, E.K., in Nuclear Data for Science and Technology (Proc. Int. Conf.

Antwerp, 1982) (BoCKHOFF, K.H., Ed.), Reidel, Dordrecht (1983) 805.[64] DILG, W., SCHANTL, W.; VONACH, H., UHL, M., Nucl. Phys. A217 (1973) 269.[65] MAINO, G., MENAPACE, E., VENTURA, A., Nuovo Cimento S7A (1980) 427.[66] KATARIA, S.K., RAMAMURTHY, V.S., KAPOOR, S.S., Phys. Rev. C 18 (1978) 549.[67] JENSEN, A.S., SANDBERG, J., Phys. Scr. 17 (1978) 107.[68] IGNATYUK, A.V., ISTEKOV, K.K., SMIRENKIN, G.N., Sov. J. Nucl. Phys. 29 (1979)

450.[69] RAMAMURTHY, V.S., KATARIA, S.K., KAPOOR, S.S., in Basic and Applied Problems

of Nuclear Level Densities (Proc. IAEA Advisory Group Meeting Brookhaven, 1983)(BHAT, M.R., Ed.), Brookhaven National Lab., Upton, NY, Rep. BNL-NCS-51694(1983) 187.

[70] GRIMES, S.M., ANDERSON, J.D., McCLURE, J.W., POHL, B.A., WONG, C, Phys.Rev. C 5 (1972) 830.

[71] BLANN, M., MIGNEREY, A., Nucl. Phys. A186 (1972) 245.[72] CHEVARIER, A., CHEVARIER, N., DEMEYER, A., HOLLINGER, G., PERTOSA, B.,

TRAN, M.D., Phys. Rev. C 8 (1973) 2155.[73] MISAELIDES, P., MUNZEL, H., J. Inorg. Nucl. Chem. 42 (1979) 937.[74] CHEVARIER, A., et al., Nucl. Phys. A231 (1974) 64.[75] JAHN, P., PROBST, H.-J., DJALOEIS, A., DAVIDSON, W.F., MAYER-BORICKE, C,

Nucl. Phys. A209 (1973) 333.[76] WILLIAMS, F.C., Jr., Nucl. Phys. A166 (1971) 231.[77] KALBACH, C, in Basic and Applied Problems of Nuclear Level Densities (Proc. IAEA

Advisory Group Meeting Brookhaven, 1983) (BHAT, M.R., Ed.), Brookhaven NationalLab., Upton, NY, Rep. BNL-NCS-51694 (1983) 113.

[78] KALBACH-CLINE, D., Nucl. Phys. A210 (1973) 590.[79] KALBACH, C, Z. Phys. A287 (1978) 319.[80] KIKUCHI, K., KAWAI, M., Nuclear Matter and Nuclear Interactions, North-Holland,

Amsterdam (1968).[81] BECCHETTI, F.D., GREENLEES, G.W., Phys. Rev. 182 (1969) 1190.

PART 3-1 477

[82] UHL, M., "Recent advances in nuclear model code developments", Nuclear Theory forApplications - 1982 (Proc. Winter Course Trieste, 1982), IAEA-SMR-93, IAEA, Vienna(1982)5.

[83] BLANN, M., BISPUNGHOFF, J., Lawrence Livermore Lab., Livermore, CA, Rep.UCID-19614(1982).

[84] COHEN, S., PLASIL, F., SWIATECKI, W.J., Ann. Phys. (N.Y.) 82 (1974) 557.[85] BLANN, M., Phys. Rev. C 21 (1980) 1770.[86] YOUNG, P.G., ARTHUR, E.D., Los Alamos Scientific Lab., NM, Rep. LA-6947 (1977).[87] MILAZZO-COLLI, L., BRAGA-MARCAZZAN, G.M., Phys. Lett. B38 (1972) 155.[88] MILAZZO-COLLI, L., BRAGA-MARCAZZAN, G.M., Nucl. Phys. A210 (1973) 297.[89] BLANN, M., Chicago Operations Office, US Department of Energy, Chicago, IL,

Rep. COO-3494-29( 1976).[90] WAPSTRA, A.H., BOS, K., At. Data Nucl. Data Tables 19 3 (1977).[91] MYERS, W.D., SWIATECKI, W.J., Ark. Fys. 36 (1967) 343.[92] BLANN, M., DOERING, R.R., GALONSKY, A., PATTERSON, D.M., SERR, F.E.,

Nucl. Phys. A2S7 (1976) 15.[93] McGEE, T., RAO, C.L., SAHA, G.B., YAFFE, L., Nucl. Phys. A1S0 (1970) 11.[94] HILLE, M., HILLE, P., UHL, M., WEISZ, W., Nucl. Phys. A198 (1972) 625.[95] LITTLE, F.E., LAGUNAS-SOLAR, M., Int. J. Appl. Radiat. Isot. 34 (1983) 631.[96] LUNDQVIST, H., MALMBORG, P., LANGSTROM, B., CHIENGMAI, S.N., Int. J.

Appl. Radiat. Isot. 30 (1979) 39.[97] DeJONG, D., BRINKMAN, G.W., LINDNER, L., Int. J. Appl. Radiat. Isot. 30 (1979) 188.[98] NOZAKI, T., IWAMOTO, M., ITOH, Y., Int. J. Appl. Radiat. Isot. 30 (1979) 79.[99] WEINREICH, R., KNIEPER, J., Int. J. Appl. Radiat. Isot. 34 (1983) 1335.

[100] DIKSIC, M., GALINIER, J.-L., MARSHALL, H., YAFFE, L., Phys. Rev. C 19 (1979)1753.

[101] HOFFER, P.B., et al., J. Nucl. Med. 14 (1973) 172.[102] GRABMAYR, P., NOWOTNY, R.( Int. J. Appl. Radiat. Isot. 29 (1978) 261.[103] COLLE, R., KISHORE, R., Phys. Rev. C 9 (1974) 2166.[104] WILKINS, S.R., et al., Int. J. Appl. Radiat. Isot. 26 (1975) 279.[105] PAANS, A.M.J., VAALBURG, W., VAN HARK, G., WOLDRING, M.G., Int. J. Appl.

Radktvlsot. 27(1976)465.[106] DIKSIC, M., YAFFE, L.( J. Inorg. Nucl. Chem. 39 (1977) 1299.[107] SYME, D.B., et al., Int. J. Appl. Radiat. Isot. 29 (1978) 29.[108] LEBOWITZ, E., et al., J. Nucl. Med. 16 (1975) 151.[109] LAGUNAS-SOLAR, M.C., JUNGERMAN, J.A., PEEK, N.F., THEUS, R.M., Int. J.

Appl. Radiat. Isot. 29(1978) 159.[110] QAIM, S.M., WEINREICH, R., OLLIG, H., Int. J. Appl. Radiat. Isot. 30 (1979) 85.[ I l l ] QAIM, S.M., STOCKLIN, G., WEINREICH, R., Int. J. Appl. Radiat. Isot. 28 (1977) 947.[112] WEINREICH, R., SCHULT, O., STOCKLIN, G., Int. J. Appl. Radiat. Isot. 25 (1974) 535.[113] MICHEL, R., GALAS, M., Int. J. Appl. Radiat. Isot. 34 (1983) 1325.[114] DIMBYLOW, P.J., National Radiological Protection Board, Harwell, UK, Rep. NRPB-R78

(1978).

3-2. ACTIVATION CROSS-SECTIONSFOR ELEMENTS FROM LITHIUM TO SULPHUR

P. ALBERT, G. BLONDIAUX, J.L. DEBRUN,A. GIOVAGNOLI, M. VALLADONCentre d'etudes et de recherches par irradiations,Centre national de la recherche scientifique,Orleans, France

Abstract

ACTIVATION CROSS-SECTIONS FOR ELEMENTS FROM LITHIUM TO SULPHUR.The paper presents cross-sections for nuclear reactions yielding radioisotopes. Since the

presentation is restricted to light elements (up to sulphur included), cross-sections for reactionswith heavy ions are of interest and have been included.

1. INTRODUCTION

This chapter presents the cross-sections for those nuclear reactions thatyield radioisotopes. Since this compilation is restricted to light elements (up tosulphur included), the cross-sections for reactions with heavy ions are of interestand have been included. For various reasons, a number of reactions are missing.More data, on these and on the reactions presented, can be found in Refs [1,2].

LITHIUM

Protons

7Li(p,n)7Be

figure 1

Curves in Figure 1 (d)

6Li(1Van)150

6LiC1*N,pn>18F

7Li(14N,a2n)150

7Li<Vp2n)18F

479

00O

BERYLLIUM

Helium 3

9Be (3He,n)11C

Figure 2

Helium A

9Be(a,2n)11C

Figure 2

U N

9Be(1V«n)18F

Figure S

9 Be( 1 4 N, 1 3 N) 1 0 Be

Figure 6

16o

9 Be( 1 6 O,p) 2 AN a

Figure 3

9Be( 1 60,2n)Z 3Mg

Figure 3

18o

9Be(1 80,2a>1 90

Figure A

9Be(1 8O,p2n)2 4Na

Figure A

9Be(1 8O,pn)2 5Na

Figure A

1 9F

9Be<19F,2a)2°F

Figure 3

9Be(19F,pa)23Ne

Figure 3

9Be(19F,2n)26M

Figure 3

a

Hn

e.

BORON

Protons

1Vp,n>11CFigure 7

Deuterons

1W>1 1cFigure 7

11B(d,2n)11C

Figure 7

Helium 3

11B(3He,p2n)11C

Figure 8

10B(3He,Pn)11C

Figure 8

11B(3He,n)13N

Figure 8

Al l curvesFigure 9

1W5O>9Be

10B(HN;8F)6Li

1OB(1V1C)13C

10B(1V13N)11B

11B(UN,p)24Na

160

Al l curvesFigure 3

10B(16O,2a>18F

10B(16O,na)21Mj

1OBC16O,2p)24Na

18oAl l curves

Figure 4

11B(1iWV

1lB(18O,pa)2V

11B(18O,na)^Na

11B(180,a)25Na

11B(18O,np)27Mg

1 1B(1 80,3O)2 6Al

lOB(18O,2a)2OF

19F

Al l curvesFigure 10

1W8F)11B

1 0 B( 1 9 F, 1 8 O) 1 1 C

10BC19F,ap>24Na

CARBON

Protons

12C(p,pn)11C

Figure 11

Oeuterons

12CCd,n)13N

Figure 12

Helium 3

12C(3He,n>U0

Figure 13

12C(3He,a)11C

Figures 13and 14

12CC3HeV3N

Figure 15

Helium

12C(a,n)

Figure

4

1 5 o

I6.

12C(UN,a)22Na

Figure 17

12C(1y2p)24Na

Figure 17

Figures 5and 17

12C(1V13N)13C

Figure 18

16o

12C(1Vn)2?Si

Figure 3

12

12

18o

C(1Vp)29Al

Figure 19

C(1 80,pn)2 8Al

Figure 19

A l l curvesFigure 10

1 2C(1 9F,

12CC19F

13C(19F

2p)29Al

18F)13C

,2a)24Na

>

wm

s

PART 3-2 483

NITROGEN

Protons

H N ( P / a ) 1 1 C

Figure 20

1 4N(p,2a) 7Be

Figure 20

14N(p,n>140

Figure 21

Helium 3

1V3He,pn)150Figure 23

14NC3He,a)13N

Figure 23

Helium 4

1W)1?FFigure 22

OXYGEN

Protons

160<p,a>13N

Figure 24

Deuterons

160(d,n)17F -

Figure 25

1 6 ' 1 7 ' 1W> 1 8F

Figure 25

Tritons

160Ct,n)18F

Figure 26

Helium 3Al l curvesFigure 27

16OC3He,X)18F

160C3He,O)1S0

1 60(3He /2a)1 1C

160(3He,an)140

160(3He,pn)17F

Helium 4

160Ca,X>18F

Figure 28

1 4N

1 60(1 4N,2p)2 8Al

Figure 29

160C1V8F)12C

Figure 29

FLUORINE 004

Deuterons

1 9 F(d,dn) 1 8 F

Figure 25

Tr i tons

19F(t,d>2°F

Figure 30

1 9F( t / P ) 2 1F

Figure 30

Helium 3

19FC3He,«>18F

Figure 31

19F(3He,2p)20F

Figure 31

Helium 4

19F(o,n)22Na

Figure 31

U N

1 9F(1V5N)1 8F

Figure 32

19,.,14., , ,30nF( N,p2n) P

Figure 32

1 9F

19F C19F ;8F )20 f

Figure 33

NEON

>

Oeuterons

2V(d,a)18F

Figure 29

Helium 3

20Ne(3He/X>18F

Figure 29

SODIUM

Deuterons

2 3 Na(d,p) 2 4 Na

Figure 34

Tritons

23Na(t,p)25Na

Figure 30

Helium 3

23Na(3He,2p)24Na

Figure 35

2 3Na(1y1 3N)2 4Na

Figure 6

1 8oA l l curves

Figure 4

23Na<18O,3n)38K

2 3Na(1 8O,1 70)2V

2 3NaC 1 8O, 1 6O) 2 5t e

19F

2 3 Na( 1 9 F, 1 8 F) 2 4 Na

Figure 33 "0

70

MAGNESIUM

&

Protons

Mg(p ,xn ) 2 6 Al

Figure 36

Mg(p,axn> Na

Figure 36

Deuterons

26U . . x 27.,Mg(d,p) Mg

Figure 34

Tritons

26Mg(t,p)28Mg

Figure 37

Mg(t,axn)24Na

Figure 37

Mg(t,x)27Mg

Figure 38

26Mg(t,n)28Al

Figure 38

2Sg(t ,n) 2 6 mAl

Figure 38

Helium 3

26M9(3He,p)28Al

Figure 39

2<W3He,2p)27Mg

Figure 39

Mg(3He,X)24Na

Figure 39

Helium 4

26Mg(a,2p)28Mg

Figures 37and 40

24Mg<ivaPxn> Na

Figure 37

26Mg(a,p)29Al

Figure 40

U NCurves inFigure 6

2V1V13N>25Mg

2 5Mg(1 4N,1 3N)2%

2 6Mg(1V1 3N)2 7Mg

ALUMINIUM

Protons

Curves i nFigure 36

2 7 Al (p ,pn) 2 6 Al

Al(p,apn) Na

Tr i tons

2 7Al( t ,apn) 2 4Na

Figure 37

2 7 A l ( t , 2 p ) 2 %

Figure 37

2 7 Al ( t ,d ) 2 8 Al

Figure 42

2 7Al(t,p)2 9AL

Figure 42

Helium 3

Curves inFigure 43

27Al(3He,2a)22Na

27AU3He,a2p)24Na

27AU3He,3p)27Mg

27AU3He,2p)28Al

Helium 4

27Al(a,4p5n)22Na

Figure 41

27Al(a,X)24NaFigures 37

and 41

27Al(a,3p)28MgFigures 37

and M

27. , , ,30DAl<a,n) P

Figure 44

1 2 c

Curves inFigure 45

2 7AU1 2C,X)1 8F

2 7Al(1 2C,X)2 4Na

2 7 AU 1 2C / X) 3 2 P

2 7 Al( 1 2 C / X) 3 4 m Cl

U N

27AK1VX)18F

Figure 45

27Al(1Vx>2ANa

Figure 45

27AU1Vp2n)3S

Figure 32

1 60

Curves inFigure 45

27AU16O,X)24Na

2 7 A U 1 60 / X ) 1 8 F

K

7)

OOJ

488 ALBERT et al.

SILICON

Protons

30Si(p,3p)28Mg

Figure 48

SiCp,4pxn) Na

Figure 48

SiCp,X)26Al

Figure 36

Si(p,X) Na

Figure 36

Tritons

A l l curves inFigure 47

3 0SiCt,a>2 9Al

29 28.,S i ( t , a ) A l

28Si<t,n>3°P

Helium 3

28Si(3He,p)30P.

Figure 46

Helium 4

28Si(a,d)30P

Figure 46

PHOSPHORUS

Protons

3 1 . , ,30DP(p,pn) P

Figure 44

31O , . ,28UP(p,4p) Mg

Figure 48

31P(p,5p3n)24Na

Figure 48

Helium 4

31P(a,n)34raCl

Figure 49

U N

31p(1Vpn)43Sc

Figure 50

3 1 P ( 1 V P > 4 4 S C

Figure 50

PC N,p) Sc

Figure 50

31PC1VP)"SC

Figure 50

3 1PC 1V 1 3N) 3 2P

Figure 51

PART 3-2 489

SULPHUR

Protons

34,., ,34m,,

Figure 49

S<p,5pxn) Mg

Figure 48

24S(p,6pxn) Na

Figure 48

Oeuterons

3 2 SCd,a ) 3 0 P

Figure 46

3 2 SC 1 4 N,P> W T i

F igure 52

3 2 S ( 1 4 N , 2 p ) A 4 S c

Figures 50 and 52

3 2 S ( U N , 2 p ) 4 4 m S c

Figures 50 and 52

3 2 S ( 1 4 N , 2 P n ) 4 3 S c

Figures 50 and 52

32S<1V2a)38\

Figure 52

3 2 SC 1 V 3 N> 3 3 S

Figure 52

(b)

(a)600

500

f 400 -c

I 300

2 200

100 -

LiF target a, Pt backingLiF target b, Al backingThick LiF targets, Al backing,weighed for determination ofthe absolute cross-section (±5%

,1.8814 - assumed threshold

1.8 1.9 2.0 2.1 2.2 2.3 2.4

Laboratory proton energy (MeV)

2.5

10

- o C

• N

- X 0 (CuO target)

4 0 (SiO2 target)

I 10

0.1

>

w

I I I I

103

20

He energy (MeV)

30

(c )

0.0120

JHe energy (MeV)

(d )200

100

50

20

10

5

3 2

0.5

0.2

0.1

0.05

0.02

0.01

Threshold energies (or the reactions7Li('Vdn»18F ^i(1Vp2n, l8F 18p

, , !_

/ V - ^ 18F "from ^ S/ Alkhazov et al. S\-

/ °/ 15O

• -7 * 15O ofrom/ Alkhazov et al.

14N + 7Li

10 15 20 25 30 35 40 5 10 151 4 N lab. energy (MeV)

20 25 30 35 40

"V

FIG. I. Production of nBe by proton irradiation of (a) nLi [3] and (b, c) 3He irradiation of C, N, O, F, Mg, Al and Si [4], (d) Production of 1SO andisF by irradiation of 6Li and nLi with UN [5]. (References within figures can be found in the original source.)

492 ALBERT et al.

EM12C) (MeV)

30 35 45 50 55 60

0 4 8 12 16 20 24 28 32 36 40 44

E'ab (MeV)3He

E* (13C) (MeV)

20 22 24 26 28

E l a b (MeV)

32

FIG. 2. Production of 11C by irradiation of Be with *He and 3He (upper horizontal scalesrepresent the excitation energies of the compound nuclei) [6].

PART 3-2 493

Oo

20 25 30 15

15 25 30 15 20 25

Incident energy (MeV)

FIG. 3. Reactions of 160 on 9Be, 10B and 12C, and of l9F on Be [7].

30

100

10

- / ^

/

/ . / ^ ^

/ / 9Be+19F

1 1 1

20 p

2 3Ne

" 26AI

i

30

494 ALBERT et al.

100 -

22 24 26 28 20 25 30

Incident energy (MeV)

FIG. 4. Reactions of nO on 9Be, 10B, nB and 23Na [7].

PART 3-2 495

500 -

10 20 30 40 50I4N ENERGY [MeV]

60 70

FIG. 5. Production of 1SF by irradiation of Be with I4/V [8].

496 ALBERT et al.

0.01

16 18 20 22 24 26 28

Laboratory energy (MeV)

0.01

16 18 20 22 24 26 28

Laboratory energy (MeV)

FIG. 6. (MN, 13N) reactions on 9Be, nC, 160, 23Na, ™Mg, 2sMgand 26Mg [9].

PART 3-2 497

6 8 10 12 14 16 18 20 22 24 26 28EJf (MeV)

E*('2C) (MeV)25 30 35

10B(d.n)11C

6 8-lab

10 12 14 16

24

(MeVI

E* (13C) (MeV)28 30

FIG. 7. Reactions producing UC by irradiation of boron with protons and deuterons (upperhorizontal scale is the excitation energy of the compound nucleus) [6].

498 ALBERT et al.

10-

10

10

10B(3He,pn)11C

B+3He -

1lB(3He.n)

0 5 10 15 20 25 30 35

Beam energy (MeV)

FIG. 8. Activation of B by irradiation with 3He. (Curves from three different sources aregiven for 10B (3ffe, pn) nC. References for the curves are in Ref. [10]J

io26H

M 97£ 10 -

10,-29

l 0 B( 1 4 N. 1 5 O) 9 Be 1 0B( 1 4N. 1 8F) 6L

1 0 B( 1 4 N. 1 1 C) 1 3 C

1 OBI 1 4N 11 3NI 1 1B

10 12 14 16 18 20 22 24 26

Lab. energy (MeV)

FIG. 9. Reactions induced on 10B and nB by 147V [ 11 ].

PART 3-2 499

10.4

19FON10B

Present data

Data from Ref.7

10 12 14 16 18 20 22 24 26 28

Lab. energy (MeV)

10"

io1H

io°H

io-1H

10.3

19F ON CARBON

1 2 C( t 9 F , 1 8 F) 1 3 C

16 18 20 22 24 26 28 30

Lab. energy (MeV)

FIG. 10. Reaction of19Fon 10B, nC and 13C [12]. (Reference within the figure can befound in the original source.)

500 ALBERT et al.

100 -

10 20 30 40 50

Proton energy (MeV)

60 70

FIG. 11. The nC (p, pnj nC reaction [13].

225

200

175

150

3E 125D100

75

50

25

0

1

-

"" y

- JV---1

I 1 • i

1 2 C ( d . n ) 1 3 N

•A .j

1 1 1 1

1 >

-

/ -

-

-

-

-

1 1

1.0 1.5 2.0 2.5 3.0 3.5

Deuteron energy (MeV)

4.0

FIG. 12. ThenC Id, n) 13N reaction [ 14].

4.5 5.0

PART 3-2 501

20

15

10

o5 5

12C(3He.n)14O

•t I

•»l

THRESHOLDM

.'2

200

100

12C(3He.a)11C

3 4

Energy (MeV)

. . •

FIG. 13. Excitation functions for the 12C(3He,a)nC and nC(3He,n)l*0 reactions. The errorin the absolute cross-section is estimated to be ±15% [15].

502 ALBERT et al.

10 15 20 25Beam energy (MeV)

30 35

FIG. 14. Various curves for the 12C(3He, a) nC reaction [10].

5 10 15 20 25 30 35

Beam energy (MeV)

FIG. 15. Different experimental curves for the 12C(3He, d) 1ZN reaction [10].

PART 3-2 503

16 17 18

Excitation energy (MeV)

19 20 21 22 23 24

25

20

(a.n,,) THRESHOLD

12C(a.n)15O

11 12 13 14 15 16 17 18 19 20 21 22 23

FIG. 16. The excitation function of the total neutron cross-section for the 12C (a, n) 1SOreaction [16].

504 ALBERT et al.

10-24

io-25H

S i o 2 7 -6

10,-29

1 2C(1 4N.a)2 2Na

1 2C(1 4N.2P )2 4Na

1 2C(1 4N.2a)1 8F

0 5 10 15 20 25 30 35

Energy (MeV)

FIG. 1 7. Reaction of nC with 14/V ions [17].

10

10 -

i

10"' -

10

I I ' I I I

_/>2C|14N.13N) l3C

1 1 1 1 I I

1 J 1 1 I 1 1 1 1 1 1 1 \y

1 6 O | 1 4 N . 1 3 N ] ' 7 O /

1 6 O( 1 4 N. 1 5 N) 1 5 O^/

-16O(14N.15N)15O , ' ' /•

••

. . _ 1 6 O ( 1 4 N 1 3 N ) 1 7 O

/ Ref.191f

_ //

/

/ Present data"" C.B. Hose, E. Newman ""

, unpublished data ORNL,.2

26 30 34 38 14 18 22 26 30 34 38 42

Laboratory energy (MeV)

FIG. 18. Reaction of l*Nwith I2C and l6O. Details on the ORNL data can be found in

Ref. [S).

PART 3-2 505

100

0.01-

10 15 20 25 30Oxygen lab. energy (MeV)

35

FIG. 19. Production of 2*Al and 29Al by irradiation of 12C with 18O, and of1AC by 16O[18].

506 ALBERT etal.

( a )

2<>0

— 200Z

o

ino:o

8 0 -

4 0 -

l 4 N(p .d ) "C

. Present data- - Epherre and Seide

4 Laumeretal.o MacLeod and Reid. Blaser et al.

: fv t t: ti 11 t 11

a io 12 14 16 it>

PROTON ENERGY (MeV)

20

( b )60

5 0

4 0

O

O 30UJv>tomOcro_i 20

o

IO

I ' I ' I • I • I

'N(p,2ot) 7Be

• Present data

Epherre and Seide

a Laumer et al.

. 1 , 1 , I i I . I . I i I i I16 18 20 22 24PROTON ENERGY (MeV)

26

FIG. 20. Production of (a) nC and (b) 1Be by irradiation of l*N with protons [ 19].(References within figures can be found in original source.)

PART 3-2 507

100

50

i\ 10

E | ab (MeV)

"7i ' ' ' 20~14... ,17_N(ct,n) F

%J^,

300

1016O(d.n)17F

15

10 15 Ee x p(MeV) 20

G. 2i. Production ofllF by irradiation of 147V with *He, and of 16O with deuteronsf°HF = calculation from Hauser-Feshbach theory) [20].

10

S 5

H

14N(p.n)14O

I ' I I I I I I I

100

50

6 7 8 9 10 11 12 13 14 15Energy (MeV)

FIG. 22. The 14JV(p, n)l*O reaction. Curve A: Ref. [21]; curve B: Ref [22].

508 ALBERT et al.

10"

10'

o

10

10

14N(3He.pn)15O 15Q

1 4N(3He.a)1 3N

. I . . . .

5 10 15 20 25 30 35Beam energy (MeV)

FIG. 23. Production of 1$0 and 13N (curves 1 and 2) by irradiation of 14N with 3He [10].

100

.o

£ 50

oO

10 11 12 13 14 15(E p ) | a b (MeV)

FIG. 24. The^O (p, a) 137V reaction [23 ].

PART 3-2 509

(a )

100

8 10

10 20Ed (MeV)

• Experimental pointsA Corrected points

( b )

10 20Ed (MeV)

30

FIG. 25. Production of 1SF by irradiation of fa) oxygen and (b) fluorine with deuterons [24].

510 ALBERT et al.

400-

300-

200-

100-

16O(«.n)18F

E (MeV)

FIG. 26. Production of18Fby bombardment of oxygen with tritons [25].

PART 3-2 511

10-

10"

16O(3He.X)18F

1 6O(3He.a)1 5O

'6O(3He.pn)17F

l 6O(3He.an)1 4O

10 15 20 25Beam energy (MeV)

30 35

FIG. 27. Production of various radioisotopes by bombardment of oxygen with 3He [10].

512 ALBERT et al.

400

0 5 10 15 20 25 30 35 40

FIG. 28. Production ofl%Fby the 16O(3He, XJ1&Fand i6O(a, Xj^F reactions [26]

PART 3-2 513

(a )

300

0 5 10 15 20 25 30

Energy (MeV)

Energy (MeV) for d

5 10 15

(b )

0 10 20 30 40

Energy (MeV) for 3He

FIG. 29. (a) Production of 2*Al and I 8F by irradiation of l60 with 147V [11 ]; (bj productionof 18F by irradiation of Ne with 3He and deuterons [26].

100

50

n

Na(t.p) °Na

* •

I • •*1 • *

1

80 -

60 -

, 0

20

0

1 9F(t .p)2 1F

40

I

' 20

I

1 9F(t .d)2 0F

• • •1.5 2.0 2.5

t3.0 1.5

,i-

2.0 2.5

Triton energy (MeV)

3.0

FIG. 30. Reactions with F and Na induced by low energy tritons [27].

PART 3-2 515

1

7 /[19F(3He

i I

4V ;18f "

,a)18F j

O 10 20 30E3 (MeV)

500

400

_e 300b

200

100 -

19F(u,n)22Na

3 4 5 6 7 8 9 I 0

Ea (MeV)

FIG. 31. Reactions induced by lHe [28] and *He [29] on 19F.

516 ALBERT et al.

10.2.

10-2-

10.-3.

1 9 F( 1 4 N. 1 5 N) 1 8 F

( a )

10 12 14 16 18 20 22 24 26 28

1 4 N lab. energy (MeV)

50

3 0 P f r o m 1 4 N o n 1 9 F

1 4 N o n 2 7 A I

( b )

14 16 18 20 22 24 26 28

E|ab ( M e V >

FIG. 32. Reactions induced by 14/V on (a) 19F [30J and on (bj 19F and 2-7Al [31 ].

PART 3-2 517

101

5-

o23Na(19F.18F)24Na

Curves represent present data

26 28 30 32 34 36 38 40 4224SF lab. energy (MeV)

FIG. 33. (l9F, 1SF) reactions on 23Na and 19F [30].

3X10 3r

10 15 20 25

projected ~ Ethreshold <M e V '

30 35 40

FIG. 34. (d, p) reactions on 23Na (curves la-Id, different authors) and on 16Mg (curve 2) [2].

518 ALBERT et al.

10 15 20 25 30 35Beam energy (MeV)

FIG. 35. The "Na^He, 2pJwNa reaction (data from Ref. [32]; figure from Ref. [10]/

PART 3-2 519

0 10 20 30 40 50 60Proton energy (MeV)

0 10 20 30 40 50 60Proton energy (MeV)

FIG. 36. Production of the long lived radioisotopes (a) 26Al and (bj 22Na by proton irradiationof Mg, Aland Si [33].

520 ALBERT et al.

100

-o 10

0.1

: f

2%

Mg +t

A, . , / J>

jl

(a) :

Mg + a

Al + o/

10 20 30 40Energy (MeV)

10 20 30 40Energy (MeV)

FIG. 3 7. Production of (a) 28Mg and (b) 2ANa by irradiation of natural Mg and AI by tritonsor a-particles [34].

PART 3-2 521

80

S 40

" 2 4M9(t .n)2 6 mAI• •T* . *

(a )

3 E.

300

- 200

100

26Mg(t.n)28Al -y

A-

( b )

1 227,

3 E.

10

Mg+t- Mg - V

(c )

FIG. 38. Production of (a) 26mAl, (b) 2iAl and (cj 27Mg by irradiation ofMg with low energytritons [27].

522 ALBERT etal.

10-

10,2 .

10' -

10°

26Mg(3He.p)28AI28A|

' *[ /

26Mg(3H,

- 27Mg

.27i.2p) Mg

Mg+3He . 2 4 N a

10 15 20 25 30 35Beam energy (MeV)

FIG. 39. Production of2iAl, 27Mg and wNa by irradiation of Mg with %He [10].

I 10°:

10"

10,-2.

26Mg(a,p|29AI

Q-value (a,2p)

26Mg(a.2p)28Mg

0 20 40 60 80 100 120 140 160 180Incident a-particle energy (MeV)

FIG. 40. Reactions with 16Mg induced by high energy a-particles [35].

PART 3-2 523

1.0-

iS 0.1-

001-Q- value

"AI |a.3p)? 8Mg

20 40 60 80 100 120 UO 160

Incident a-particle energy (MeV)

n

oo

'Al la.ipSnTNo

viola-. "Al(a.'B.I»No

20 40 60 80 100 120 U0 160 180

Incident a-particle energy (MeV)

FIG. 41. Reactions with 21Al induced by high energy a-particles [35].

524 ALBERT et al.

100

80

1 60

40

20

27AI(t.d)28AI

Triton energy (MeV)

100

140

120

100

80

60

40

20

0

27AI(t.p)29AI

-i

--

*•1 p2 3

Triton energy (MeV)

FIG. 42. Activation of Al by low energy tritons [27].

10-

G 10'

10

He,2p) Al

27,Mg

2 7AL(3He /3p)2 7Mg

no

50

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Beam energy (MeV( Beam energy (MeV) Beam energy (MeV)

FIG. 43. A ctivation of Al with *He (and after various authors for Na and ™Na) [ 10],

526 ALBERT et al.

1 0 3

1 0 2

10 1

r

r /

27AI(o ,n)30P 1

\ ]

10 3020 30 20

Energy of the incident particles (MeV)

FIG. 44. Production of 30P through various nuclear reactions [36].

100

20 40 60 80 100 12012,C beam energy (MeV)

20 40 60 80 100 120 140 160

0 beam energy (MeV)

100 100 r

20 40 60 80 100 12012-

20 40 60 80 100 120 14014,,

C beam energy (MeV) N beam energy (MeV)

FIG. 45. Some activation products obtained by irradiation of 21Al with 12C, 147V and 16O [37].

PART 3-2 527

E 101

7 30 40

1 0 '

32S(d,a)30P

• . / • I

28Si(a.d)30P

1 1 1 1

10 20 10 20Incident particle energy (MeV)

30

FIG. 46. Formation of30P through different nuclear reactions [38].

528 ALBERT et al.

40

20

30Si(t.4He)29AI

2 3Triton energy (MeV)

60

f 40

20

0

29Si<,.W8A.

t

/

1

80

60

1o 40

20

28Si(t.n)30P

r

2 3

Triton energy (MeV)2 3

Triton energy (MeV)

FIG. 47. Activation of Si with low energy tritons [27].

0.1

8 0.01

0.001

c 31P(p,4p)28Mgt CI(p,6pxn)28Mgo S(p,5pxn)28Mg, K(p,8pxn)28Mg

50 100 150 200

Incident proton energy (MeV)

1.0

gS 0.1

0.01

o,. Ar(p,7pxn)28Mga Si(p,3p)28Mg

10

50 100 150Incident proton energy (MeV)

XIE

8

0.01

0 31P(p,5p3n)24Na. Si(p,4pxnl24Na* S(p,6pxn)24Na. CI(p,7pxn)24Nao K(p,9pxn)24Na• Ar(p,8pxn)24Na

100 150 200Incident proton energy (MeV)

7)

FIG. 48. Production of2iMgand MNa by irradiation of Si, Pand S (also Cl, K, Ar) with high energy protons [39].

530 ALBERT et al.

Excitation energy in Cl (MeV)

126 12.8 13.0 13.2 13.4 13.6 13.8 14.0

_

I

•sec

tio

nal

cro

sslo

t,

15

12

9

6

3

0

t t i

80 keV Ca3P2 target

-

-

' 6.360 < 0.010 A

( a )

AAJif

Ik/JY -

7J .

-6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8

Alpha energy (MeV)

Excitation energy in Cl (MeV)12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0

100 -

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0

Proton energy (MeV)

FIG. 49. Production of 34mCl by irradiation (a) of P by a-particles (reaction 31P(a, n)34mCl)and (b) of S by protons (reaction **S(p, n)MmCl)(inset: ground state threshold) [40].

PART 3-2 531

100-

50-

20-

ID-

S'

3 2-

o 1"

0.5-

0.2-

0.1-

0.05-

0.02-

0.01-

f 1 4 4«^-1 I I 14N +

32S

/ / /11

18 22 26 30 34 38 4214N E|ab (MeV)

FIG- 50. Some activation reactions induced by bombardment of 31Pand 32S with 14/V [41 ].

532 ALBERT et al.

0.02-

0.01

' 1 9 F ( 1 4 N . 1 5 N ) 1 8 F ^ 3 1P( 1V 1 3N) 3 2P

12 16 20 24 2818 22 26 30 34 38 421 4 N lab. energy (MeV)

FIG. 51. Activation of l9F(lsF) and 3lF(l3N, 32P) by irradiation with 147V [5].

PART 3-2 533

2214,

24 26 28

N lab. nitrogen energy (MeV)

( a )

30

5X10

10,-29

( b )

18 20 22 24 26 28 3014,N lab. energy (MeV)

FIG. 52. Some activation products obtained by irradiation of 32S with 14JV. (a) 32S + 14Af ->• 38£,"Sc, "Sc, "mSc and «5Ti; (b) 32S + ' V -* i3N [42].

534 ALBERT et al.

REFERENCES

[ 1] MUNZEL, H., et al., Karlsruhe Charged Particle Reaction Data Compilation, PhysicsData, No. 15, Fachinformationszentrum, Karlsruhe (1982).

[2] KELLER, K.A., LANGE, J-, MUNZEL, H., PFENNING, G., "Q-values and excitationfunctions of nuclear reactions", Excitation Functions for Charged Particle Induced NuclearReactions (Landolt-Bornstein New Series Group I), Vol. 5b, Springer-Verlag, Berlin (West)(1973).

[3] MACKLIN, R.L., GIBBONS, J.H., Phys. Rev. 109 (1958) 105.[4] MIKUMO, T., SEKI, R., TAGISHI, Y., FURUKAWA, M., YAMAGUCHI, H., Phys. Lett.

23(1966)586.[5] GAEDKE, R.M., TOTH, K.S., WILLIAMS, J.R., Phys. Rev. 140 (1965) B296.[6] ANDERS, B., HERGES, P., SCOBEL, W., Z. Phys. A 301 (1981)353.[7] FALK, W.R., HUBER, A., MATTER, U., BENJAMIN, R.W., MARMIER, P., Nucl. Phys.

A140 (1970) 548.[8] REYNOLDS, H.L., ZUCKER, A., Phys. Rev. 100(1955)226*[9] HALBERT, M.L., HANDLEY, T.H., PINAJIAN, J.J., WEBB, W.H., ZUCKER, A., Phys.

Rev. 106(1957)251.[10] LAMB, J.F., Lawrence Berkeley Lab., University of California, Berkeley, Rep.

UCRL-18981 (1969).[11] REYNOLDS, H.L., SCOTT, D.W., ZUCKER, A., Phys. Rev. 102(1956)237.[12] GAEDKE, R.M., TOTH, K.S., WILLIAMS, J.R., Phys. Rev. 167(1968)957.[13] CUMMING, J.B., Nucl. Phys. 49 (1963) 417.[14] JASZCZAK, R.J., MACKLIN, R.L., GIBBONS, J.H., Phys. Rev. 181 (1969) 1428.[15] CIRILOV, S.D., NEWTON, J.O., SCHAPIRA, J.P., Nucl. Phys. 77 (1966) 472.[16] BLACK, J.L., KUAN, H.M., GRUHLE, W., SUFFERT, M., LATSHAW, G.L., Nucl.

Phys. A11S (1968)683.[17] REYNOLDS, H.L., ZUCKER, A., Phys. Rev. 96 (1954) 1615.[18] EYAL, Y., DOSTROVSKY, I., Nucl. Phys. A179 (1972) 594.[19] JACOBS, W.W., BODANSKY, D., CHAMBERLIN, D., OBERG, D.L., Phys. Rev. C 9

(1974)2134.[20] GRUHLE, W., SCHMIDT, W., BURGMER, W., Nucl. Phys. A186 (1972) 257.[21] NOZAKI, T., IWAMOTO, M., Radiochim. Acta 29 (1981) 57.[22] KUAN, H.M., RISSER, J.R., Nucl. Phys. 51 (1964)518.[23] FURUKAWA, M., et al., J. Phys. Soc. Jpn. 15 (1960) 2167.[24] TRAN, M.D., CHENAUD, A., GIRON, H., TOUSSET, J., in Modern Trends in Activation

Analysis (Proc. Int. Conf. Gaithersburg, MD, 1969) (DeVOE, J.R., Ed.), Vol. 2, USNational Bureau of Standards Special Publication 312, US Government Printing Office,Washington, DC (1969) 811.

[25] REVEL, G-, DA CUNHA BELO, H., LINCK, I., KRANS, L., Rev. Phys. Appl. 12(1977)81.

[26] NOZAKI, T., IWAMOTO, M., IDO, T., Int. J. Appl. Radiat. Isot. 25 (1974) 393.[27] BORDERIE, B., BARRANDON, J.N., J. Radioanal. Chem. 55 (1980)329.[28] LEE, D.M., LAMB, J.F., MARKOWITZ, S.S., Anal. Chem. 43 (1971) 542.[29] NORMAN, E.B., CHUPP, T.E., LESKO, K.T., GRANT, P.J., WOODRUFF, G.L., Phys.

Rev. C 30 (1984) 1339.[30] GAEDKE, R.M., TOTH, K.S., WILLIAMS, J.R., Phys. Rev. C 4 (1971) 98.[31] NEWMAN, E., TOTH, K.S., Phys. Rev. 129 (1963) 802.[32] HAHN, R.L., RICCI, E., Nucl. Phys. A101 (1967) 353.

PART 3-2 535

[33] FURUK.AWA, M., SHIZURI, K., KOMURA, K., SAKAMOTO, K., TANAKA, S., Nucl.Phys. A174 (1971) 539.

[34] NOZAK.I, T., FURUKAWA, M., KUME, S., SEKI, R., Int. J. Appl. Radiat. Isot. 26(1975) 17.

[35] PROBST, H.J., QAIM, S.M., WEINREICH, R., Int. J. Appl. Radiat. Isot. 27 (1976) 431.[36] SAHAKUNDU, S.M., QAIM, S.M., STOCKLIN, G., Int. J. Appl. Radiat. Isot. 30 (1979) 3.[37] LADENBAUER-BELLIS, J.M., PREISS, J.L., ANDERSON, C.E., Phys. Rev. 125 (1962) 606.[38] QAIM, S.M., OLLIG, H., BLESSING, G., Int. J. Appl. Radiat. Isot. 33 (1982) 271.[39] LUNDQVIST, H., MALMBORG, P., Int. J. Appl. Radiat. Isot. 30 (1979) 33.[40] UMBARGER, C.J., KEMPER, K.W., NELSON, J.W., PLENDL. H.S., Phys. Rev. C 2

(1970) 1378.[41] WILLIAMS, J.R.,TOTH,K.S., Phys. Rev. 138(1965)382.[42] FISHER, D.E., ZUCKER, A., GROPP, A., Phys. Rev. 113 (1959) 542.

3-3. THICK TARGET YIELDSFOR THE PRODUCTION OF RADIOISOTOPES

P. ALBERT, G. BLONDIAUX, J.L. DEBRUN,A. GIOVAGNOLI, M. VALLADONCentre d'etudes et de recherches par irradiations,Centre national de la recherche scientifique,Orleans, France

Abstract

THICK TARGET YIELDS FOR THE PRODUCTION OF RADIOISOTOPES.The paper presents data on reactions with hydrogen (protons, deuterons and tritons) and

helium (helium 3 and 4). Only yield curves are considered, while individual yields at a givenenergy are excluded.

1. INTRODUCTION

The tables that are presented here are limited to reactions with hydrogen(protons = p, deuterons = d and tritons = t) and helium (helium 3 = 3He andhelium 4 = a). They are also not complete because only yield curves have beenconsidered, while individual yields at a given energy have been excluded (forfurther details, see Ref. [1 ]). Finally, where several publications were available,only one was retained in order to keep the length of this chapter at an acceptablelimit. As a result, some references have probably been missed.

The yields were collected from a number of different publications and arepresented in various units which should be clearly understandable. Sincecomplementary details of interest could not be included, owing to the lack ofspace, readers are referred to the original publications cited with each figure.

537

538 ALBERT et al.

LITHIUM

Protons

Figure 1

Li(p,n) Be

E th = 1.88

Deuterons

Figure 2

LiCd,xn)7Be

BERYLLIUM

Helium

Figure

9Be(3He,

Eth =

3

JL

n)

0

11C

Helium

Fig

9Be(a

E t h

u r e

,2n)

4

3.

11

= 18.8

C

80R0N

Protons

Figure 1

B(p,axn) Be

Figure 4

1 Wn) 1 1 CEth = 3 - ° 2

Deuterons

Figure 2

B(d,axn) Be

Figure 4

B(d,xn)11C

Tritons

Figure 5

10B(t / 2n)11C

Eth = 0

Helium 3

Figure 4

10B(3He,pn)11C

Eth=°

Figure 4

11B(3He,n)13N

Eth = 0

Helium 4

Figure 4

B(a,xn)13N

PART 3-3 539

CARBON

Figure 6 for a l l reactions

Protons

13C(p,n>13N

E t h = 3.23

12C(p,pn)11C

E t h = 202S

Deuterons

12C<d,n)13N

Eth = °-33

12C(d,dn)11C

E t h = 21.84

Helium 3

12ccW>11c

12C<3He,pn)13N

E th = 7 " 2 2

Helium 4

12C(a,an)11C

Eth = 2 4 - 9 6

NITROGEN

Protons

E th * 3 ' 1 2

1AN(p,pn)13N

E t h = 11.31

Deuterons

Figure 8

E th = 0

14N(d,dn)13N

E t h = 12.06

14N(d,an)11C

Et(, = 5.88

Helium 3

14NC3He,a>13N

E t h = °

14NC3He,apn)11C

E t h = 12.92

Helium 4

E t h = 13.57

1 4N(a,xn)1 8F

540 ALBERT et al.

OXYGEN16 18

figure 9 for all reactions except 0(t,n) F (Figure 10)

Protons

1W>1 8FEth = 2 - 5 9

160(p,a>13N

Eth = 5 " 5 4

Deuterons

160Cd,an)13N

Eth = 8 - 3 7

0(d,xn)18F

Tritons

Fiqure 10

1 60(t ,n)1 8F

Eth = °

Helium 3

1 60<3He,p)1 8F

E t h = 0

160(3He,2a)11C

Eth = 6"3

Helium 4

160(a,pn)18F

E,.. = 23.2

160(a,2n)18Ne*18F

Eth = 29.73

FLUORINE19 22

Fiqure 11 for a l l reactions except F(a,n) Na (Figure 12)

Protons

19F(P ,Pn)18F

Eth = 1 0 - 9 9

Deuterons

19FCd,dn)18F

E th = 11.54

Helium 3

1 9F(3H e /a)1 8F

Eth = °

Helium 4

19F(a,ccn)18F

Eth = 12.63

Figure 12

19F(a,n)22Na

Eth = 2 - 3 6

PART 3-3 541

NEON

Deuterons

Fiqure 13

20NeCd,a>18F

E t h = °

MAGNESIUM

Tritons

Fiqure 14

26Mg(t,p)28Mg

Eth = °

Fiqure 16

24Mg(t,axn) Na

Helium 4

Fiqure 14

26Mg<a,2p)28Mg

E th = 1 1 " 9 1

Fiqure 15

25Mg(a,p)28Al

E t h = 1 ' 4

Fiqure 15

26Hg(a,p)29Al

E th = 3 - M

Fiqure 16

Mg(<»,apxn)24Na

542 ALBERT et al.

ALUMINIUM

Tritons

Fiqure 15

27Al(t,2p)28Mg

Eth = 2

Fiqure 16

27Al(t,apn)24Na

E th = 12.9

Helium 4

Figure 18

27AUa,n)30P

E th = 3 - 0 5

Figure 17

27Al(a,3p)28Mg

E t h = 24.82

Figure 17

27AUa,4p5n) Na

E t h = 90.8

Figure 17

27AUo,4p3n)24Na

E t h = 68.6

Figure 17

27Al(a,7Be)24Na

E th = 2 5 - 4

SILICON

Tritons

Figure 14

Si(t,3He,pxn)28

Figure 16

S i ( t ,a He,xn^4|ga

Helium 3

Figure 18

28Si<3He,p>30P

Eth = 0

Helium 4

Figure 18

28Si(a,d)30P

E t h = 13.72

PART 3-3 543

PHOSPHORUS

Protons

Figure 19

31P<p,4p)28Mg

E th = 3 2 " 3

Helium 4

Figure 20

31P«,,n)34mCl

E th = 6 " 3 9

SULPHUR

Protons

Figure 20

3AS(P/n)3AraCl

E th = 6 ' 4 7

Figure 19

S(p,5pxn) Mg

Deuterons

Figure 20

SCd,xn)3AmCl

Figure 18

32S(d,a)30P

E t h = °

Tritons

Figure 21

32S(t,n)3Al"ci

Eth = °

Helium 3

Figure 20

S(3He,pxn)34mCl

Helium 4

Figure 20

S(a,pxn) Cl

CHLORINE

Protons

Figure 19

Cl(p,6pxn)28Mg

Figure 20

3SClCP,Pn>34roCl

E th = 13.01

Oeuterons

Figure 20

37cL(d,P)38a

Eth = °

Figure 20

3 5Cl(d,dn)3 A mU

E t h = 13.37

Helium 3

Figure 20

37CU3He,2p)38Cl

E th = 1 " 7 4

Figure 20

35Cl(3He,a)34n!Cl

E t h = °

Helium 4

Figure 20

35CUa,an>34inU

E th = 1 4 ' 1 0

Figure 22

35CUa,n)38K

Eth = 6 - 5 4

544 ALBERT et al.

ARGON

Protons

Figure 19

28Ar(p,7pxn) Mg

POTASSIUM

Protons

Figure 19

K(p,8pxn)28Mg

CALCIUM

Protons

Figure 23

48CaCp,n)48Sc

Eth = °-67

Helium 4

Figure 24

40Ca<a,p)43Sc

Eth = 3" 9

Figure 24

48Ca(a,n)51Ti

Eth = °"33

PART 3-3 545

TITANIUM

Protons

Fiqure 25

Ti(p,xn)48V

Helium 3

Fiqure 26

Ti(3He,xn)48Cr

Figure 26

M< He,xn) Cr

Fiqure 26

Ti <3He,apxn>A'*mSc

Fiqure 26

Ti(3He/apxn)46rl+9Sc

Fiqure 26

Ti( He,apxn)47Sc

Fiqure 26

Ti(3He,apxn)48Sc

Fiqure 26

Ti<3He,pxn)48V

Helium 4

Fiqure 27

46Ti(a,n>49Cr

E t h = A.76

Fiqure 27

48Ti(a,n)51Cr

Eth = 2 - 9 3

Fiqure 27

4 9Ti(a,P )5 2V

E th = 2 ' 1 8

Fiqure 27

5 0 Ti (a ,p) 5 3 V

E th = 3 - 8 3

Fiqure 28

TiCc^xn^Cr

Fiqure 28

Ti(a,xnr1Cr

546 ALBERT et al.

VANADIUM

Protons

Figure 25

5Wn>51Cr

Eth = 1 - 5 7

Deuterons

Figure 28

51V(d,2n)51Cr

E th = 3.91

Figure 28

51V(d,4n)49Cr

E th = 2 7

Figure 28

51V(d,5n)48Cr

Eth = 3 7 " 8

Helium 4

Figure 29

51V(a,n)54Mn

E th = 2 - 4 6

CHROMIUM

Protons

Figure 25

52Cr(p,n)52Mn

E th = 5 " 6

Fiqure 25

52, , ,52muCr(p,n) Mn

Eth = 5 - 6

HeLiurn A

Figure 30

5CJ , ,53,.Cr(a,n) Fe

E th = 5 " 6

Figure 30

53Cr(a,p)56Mn

E th = 3 - 5

PART 3-3 547

MANGANESE

Helium 3

Fiqure 32

55Mn<3He,3n)55Co

Eth = 1 3" 7

Figure 32

55Mn(3He,2n)56Co

E t h = 3

Figure 32

55MnC3He,n)57Co

Eth = °

Helium 4

Fiqure 31

55Mn(ct,n)58Co

Eth = 3" 7 6

Figure 31

55Mn(a,2n)57Co

E t h = 12.96

Fiqure 31

Mn(a,an) Mn

E t h = 10.96

IRON

Protons

Fiaures 25, 33 and 34

Fe(p,xn)55Co

Fiaures 25 and 34

56C , ,56.Fe(p,n) Co

Eth = 5.44

Deuterons

Fiqure 34

Fe(d,xn)55Co

Figure 34

Fe(d,xn)56Co

Figure 34

FeCd,xn)57Co

Figure 34

Fe(d,xn)58Co

Helium 4

Figure 35

S4Fe(a,p)57Co

Eth = 1-9

Figure 35

54Fe(a,n)57Ni

Eth = 6- 2

548 ALBERT et al.

COBALT

Protons

Figure 36

59Co(p,p2n)57Co

Figure 36

59CoCp,3n)57Ni

Eth = 2 3 ' 4

Helium 3

Figure 37

59Co(3He,n)61Cu

E t h = °

Figure 37

59Co(3He,a)58Co

Eth = °

Figure 37

59Co<3He,ctn)57Co

E th = 0

Figure 37

59Co(3He,a2n)56Co

E t h = 10.3

Helium 4

Figure 38

59Co(a,2n)61Cu

Eth = 1 4 - 9

Figure 38

59Co(a,an)58Co

E t h = 11.15

Figure 38

59CoCa,a2n)57Co

E th = 2 0 - 3

Figure 39

Co(a,n) Cu

E = 5.4th

PART 3-3 549

NICKEL

Protons

Fiqure 40

NiCp,pxn)57Ni

Figure AO

Ni(p,axn)55Co

Figure 25

58Ni(p,a)55Co

E th = 1 - 3 7

Figure AO

Ni(p,axn) Co

Figure AO

Ni(p,pxn)56Ni

Figure 40

Ni(p,axn) Co

Figure AONi(p,axn)b8Co

Figure 25

Ni(p,xn)60Cu

Fiqure 25

Ni(p,xn)61Cu

Helium A

Fiqure A1

Ni(a,pxn) Cu

Figure A2

58Ni(a,p)61Cu

E th = 3 - 3

Figure A2

6°NiCa,n)63Zn

E th = 8 ' 4

Figure A3

6 0Ni(a /2n)6 2Zn

E t h = 18.2

Fiqure A1

Ni(a,pxn) Cu

Figure A1

Ni(a,pxn) Cu

550 ALBERT et al.

COPPER

Protons

Figures 23 and 25

6 3 Cu(p ,n ) 6 3 Zn

E t h = 4 - 2

Fiqures 23 and 25

6 5 Cu(p ,n ) 6 5 Zn

E t h = 2 - 1 6

Helium 4

Fiqures 44 and 46

6 3Cu<a,n)6 6Ga

E t h = 8

Fiqure 44

6 5Cu(a,n) 6 8Ga

E t h = 6 " 2

Fiqure 46

65Cu<a,2n)67Ga

E t h = 1 S

PART 3-3 551

ZINC

Protons

Fiqures 23, 25 and 46

Zn(p,xn) Ga

Figures 23. 25 and 46

Zn(p,xn)67Ga

Figures 23 and 25

Zn(p,xn) Ga

Deuterons

Figure 46

Zn(d,xn)66Ga

Fiqure 46

Zn(d,xn)67Ga

Helium 4

Figure 45

Zn(a,p) Ga

E th = 4.26

Figure 45

64, , .67,.Zn(a,n) Ge

£th = 9 - 8

Figure 45

66Zn(a,n)69Ge

E t h = 8

Figure 46

Zn(a,pxn) Ga

Figure 46

Zn(a,pxn) Ga

Fiqure 46

Zn(a,pxn) Ga

FiQure 46

Zn(a,xn)666e

Fiqure 46

Zn(a,xn) Ge

Figure 46

ZnCa,xn) Ge

GALLIUM

Protons

Figure 47

69GaCP,n)69Ge

E th = 3.06

552 ALBERT et al.

GERMANIUM

Protons

Fiqure 48

Ge(p,pxn) Ge

Fiqure 48

Ge(p,pxn) Ge

Fiqure 48

Ge(p,xn) As

Fiqure 48

GeCp/xn) As

Figure 48

Ge<p,xn)73As

Fiqure 48

74Ge(p,xn) As

Fiqure 48

Ge(p,axn) Ga

Fiqure 48

GeCp,axn) Ga

Helium 3

Fiqure 49

72Ge(3He,2n)73Se

E t h = 6.08

Fiqure 49

Ge(3He,xn)73Se

Helium 4

Fiqure 49

Ge(a,xn)73Se

Fiqure 49

72GeCa,3n)73Se

E th = 2 7 - 6

Figure 50

70Ge(a,n)73mSe

E t h = 8.36

Figure 50

72Ge(a,n)75Se

E th = 6 " 7

Fiqure 50

74Ge(a,n)77mSe

E th = 4 - 7 5

Fiqure 50

76Ge(a/n)79raSe

E th = 3 ' 1 6

PART 3-3 553

SELENIUM

Protons/Fiqure 51

7 6 Se( P / n) 7 6 Br

E th = 5 - 5

7 7SeCp,n)7 76r

E th = 2 - 2

8 2Se(p,n) 8 2Br

Eth = ° - 9

7 7SeCP /2n)7 6Br

Eth = 1 3

78SeCp,2n)77Br

E th = 1 2 " 8

Helium 3/Fiqure 52

Se(3He,xn)76Kr

Se( He,xn) Kr

Se(3He,xn)79Kr

Se(3He,pxn)75Br

Se<3He,pxn>76Br

Se(3He,pxn)?7Br

554 ALBERT et al.

BROMINE

Protons

Fiqure 53

Br(p,xn)77Kr

Deuterons

Fiqure 54

BKd,xn)?5Kr

Helium 3/Fiqure 55

Br( He,xr\) Rb

3 79Br( He,pxn) Kr

81Br(3He,2n)82mR

Eth = 2 " 8

Helium 4/Fiqure 55

79Br(a,2n)81Rb

Eth = 1 5 - 1

Br(o,xn)82mRb

b 81Br<a,2n)83Rb

E th = 1 2 - 9

BrCa,n) Rb

E t h = 4

Br(a,a2n) Br

E th = 2 0

KRYPTON

Al l curves in Fiqure 56

Protons

Kr(p,xn)79Rb

Kr(p,xn)81mRb

Kr(p,xn)81Rb

Kr(p,xn) Rb

Kr(p,xn)83Rb

KrCp,xn)84mRb

Kr(p,xn)8ARb

Kr(p,xn)86Rb

PART 3-3 555

RUBIDIUM

Protons/Fiqure 57

85_. , X84m_,Rb(p,pn) Rb

E t h = 10.65

85Rb(p,pn)84RbE,. = 10.65

Rb(p,p2n) Rb

E t h = 19.1

85Rb(p,p3n)82mRb

Eth = 3 0" 3

85Rb(p,p4n)81mRb

Eth = 3 9

85Rb(p,p4n)81Rb

Eth = 3 9

85Rb<p,3n)83Sr

Eth =

2 9- 6

85Rb<p,4n)82Sr

Eth = 3 8" 9

85Rb(p,5n)81Sr

Eth =

Rb(p,o3n) Kr

Eth = 2 7' 4

Helium 3/Fiqure 58

Rb(3Herxn)86mY

87Rb(3He/2n)88Y

E f h = 1.56

Rb(iHe,xn)87mY

87Rb(3He,5n)85mV

Eth = 3 3' 4

87Rb(3He,5n)85Y

Eth = 3 3- 4

Helium 4/Fiqure 58

RbCa,xn)86mY

OpRbCa,xn) Y

Rb(a,xn)87mY

85Rb(a,4n)85mY

Eth = 3 5- 9

85Rb(a,4n)85Y

Eth = 3 5" 9

556 ALBERT et al.

YTTRIUMFigure 59

Protons

89Y<p,n>89Zr

Eth = 3" 6 6

ZIRCONIUM

Figure 59

Protons

Zr(p,xn)95Nb

NIOBIUM

Figure 59

Protons

93Nb<p,n)93raMo

Eth

MOLYBDENUM

Protons

Figures 59 and 60

Mo(p,xn)94Tc

Fiqures 59 and 60

Mo(p,xn)95Tc

Figures 59 and 60

Mo(p,xn)96Tc

Figures 59 and 60

Mo(p,xn)"mTc

F_2 ure 60

93Mo(p,xn) Tc

Figure 60

100Mo(p,pn)99Mo

E th = 8 " 4

Helium 3/Figure 61

3 94Mo( He,xnr Ru

Mo(3He,xn)95Ru

Mo(3He,xn)97Ru

Helium 4

Fiqure 61

94Mo(a,xn) Ru

Fiqure 61

95Mo(a,xn) Ru

Fiqure 61

97Mo(a,xn) Ru

Fiqure 61

98«o(a,P)101Tc

Eth = 5 - 4

PART 3-3

RHODIUM

557

Protons

Figure 63

103Rh<p,axn)97Ru

Figure 64

103RhCp,p2n)101mRh

Eth = 1 6 ' 9

Figure 64

103RhCp,p2n)1°1Rh

E th = 16.9

Figure 64

103Rh(P,P3n)100Rh

E th = 26.9

Figure 64

103Rh(p,3n)101Pd

E th = 1 9 - 5

Figure 64

103RhCp,4n)100Pd

Eth = 2 8 - 3

Helium4/Fiqure 62

103RhCa,n>106mAg

E th = 7-"

103Rh(a,2n)1053Ag

E th = 1 6 ' 2

PALLADIUM

Protons

Figure

Pd(p,xn>

Figure

Pd(p,xn)

59

1tKAg

65

105.Ag

558 ALBERT et al.

SILVER

Protons/Fiqure 65

107A9<p,n)107Cd

E th = 2 " 2 4

Helium 3/Fiqure 66

AgC He,xn) In

109A9C3He,2n)110In

Eth = 3 " 6 5

1 0 9A3 (3He,n) l 1 1 In

E t h = °

CADMIUM

Protons/Fiqure 65

CdCp,xn)11OmIn

CdCp,xn)111mln

CdCp,xn)113mIn

Helium 3/Fiqure 67

Cd(3He,xn)113Sn

Cd(3He,xn)117mSn

Helium 8

Fiqure 67

CdCa,xn)113Sn

Fiqure 67

CdCa,xn)117mSn

Fiqure 68

1 1Wn)1 1 9 mSnEth = 4 - 3

Fiqure 68

116CdCa,3n)117raSn

Eth = 2 0 - 8

PART 3-3 559

INDIUMAl l curves in Figure 69

Helium 3

In(3He,pxn)113Sn

115 In(3He,p)117mSn

Eth = °

Helium 4

. In(a,pxn)113Sn

115In(a,pn)117mSn

Eth = 1 2 - 4

TIN

Protons/Figure 65

Sn(p,xn)

Sn(p,xn)

Sn(p,xn)

Sn(p,xn)

116Sb

117Sb

1 1 8 m s b

1 2 O l "sb

TELLURIUM

Protons/Fiqure 72

1 2 3Te<p,n)1 2 3 I

E th = 2 - 1 5

12Se(p,2n)123IE t h = 1 1 - 6

Deuterons/Fiqure 71

122TeCd,n)123 I

Eth = °

1 2 2 Te(d , 2 n) 1 2 2 I

E th = 7 - 3

1 2 2Te(d,3n)1 2 1 I

E th = 1 5 " 7

Helium 3

Figure 73

Te(3He,xn)125Xe

Helium 4

Figure 73

Te(a,xn)125Xe

560 ALBERT et al.

IODINE

Protons/Figure 70

127ICp,5n)123Xe

E t h

PLATINUMAll curves in figure 59

194Pt(p,xn) Au

1 QA

Pt(p,xn) Au

198Pt(p,n)198Au

E t h

GOLD

Al l curves in Figure 74

Helium 4

197Au(a

Eth

197Au(a

Eth =

AuCa,

Eth

197Au(a

Eth

,200..,n) Tl

= 10

,2n)199Tl

16.8

3n)198mTl

= 26

,3n)1989Tl

= 26

PART 3-3 561

THALLIUM

Al l curves in Figure 75

Protons

TUp,xn)203Pb

Tl(p,xn)201Pb

nCp,xn>2°°Pb

199Tl(p,xn) Pb

LEAD

Protons/Figure 76

Pb<p,pxn>201Pb

Pb(p,pxn)200Pb

Deuterons/Figure 77

Pb(d /xn)2078i

Pb(d,xn)206Bi

Pb(d,xn) Bi

Helium 4/Figure 78

Pb(a,xn>206Po

562 ALBERT et al.

12-

10-

< 8

"o 6

4-

2-

10 15Energy (MeV)

Boron

Nitrogen

Lithium (VlO)

Beryllium

20

FIG. 1. Thick target yields for the production of nBe for proton reactions on Li, Be, B andN[2}. (1 dis/min = 6.00 X 10l Bq.j

PART 3-3 563

Lithium

Boron

Nitrogen (X10)

Beryllium (X10)

5 10 15

Energy (MeV)

FIG. 2. Thick target yields for the production of 7Be for deuteron reactions on Li, Be, B andN[2).

564 ALBERT et al.

1.75-

1.50-

10 20 30 40

Particle energy (MeV)

FIG. 3. Yield ofnC after irradiation of beryllium with 3He and *He ions [target: Be) [3 ].= 1.00X10°Bq.)

PART 3-3 565

0 5 10 15 20 25

Proton energy (MeV)5 10 15 20 25

Deuteron energy (MeV)

0.0

2.0-

1.5-

1.0-

0.5-

00

B r 3He ,

7/

""yf10 20 30 40 50

o-particle energy (MeV)

0.25

0.20

-0.15

-0.10

-0.05

<s/

sl

o>o

ield

(

>

CO

5 10 15 20 25 30

He ion energy (MeV)

FIG. 4. Yields of nC and 13N after irradiation of boron with protons, deuterons, 3He and *Heions (target: B) [3 ].

566 ALBERT et al.

13

FIG. 5. Production of nC by triton irradiation of a thick, pure boron target. The yield(511 keV annihilation peak) is obtained at the end of an irradiation of 1 h at 1 iiA, and isvariable with the annihilation conditions [4].

PART 3-3 567

<

ofo

1 yi

eld

(

u.o

0.7

0.6

0.5

0.4

0.3

0.2

0.1

on

C + p

1 3 N /

1

5 10 15 20 25Proton energy (MeV)

4.0

3.5

3.0 -

2.5 |

2.0 oTo

1.5 1

o1.0 z

0.5

0.0 0 5 10 15 20 25 303He ion energy (MeV)

5 10 15 20

Deuteron energy (MeV)

0.5

• 0.4

• 0.1

250.0

1.0

0.9

0.8 •

0.3

0.2

<

ield

>.o

% 0.6

s/s

S 0.5°O| 0 . 4«

0.3

0.2 •

0 . 1 •

0.020 25 30 35 40 45

o-particle energy (MeV)

F/G. 6. Yields of nCand 13N after irradiation of carbon with protons, deuterons, 3He and*He ions (target: graphite) [3].

568 ALBERT et al.

3.

oTo

Yie

ld (

0.8 -I

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

N + 3He /

/

11 /

1/V

5 10 15 20 25

Proton energy (MeV)

5 10 15 20 253He ion energy (MeV)

30

5 10 15 20 25

Deuteron energy (MeV)10 20 30 40 50

a-particle energy (MeV)

FIG- 7. Yields of nC, 13Nand lsF after irradiation of nitrogen with protons, deuterons, 3Heand *He ions (target: A1N) [3].

PART 3-3 569

tob

Yie

ld (

(dis

/mir

106'

5

2

5

2

104

5

2

1 0 3

14N(d,n)15O

-

i i i .10 15 20

(MeV)

F/G. 8. Thick target yield for the production of ls0 by deuteron irradiation of AW. Theyield is expressed here in disintegrations per minute at the end of irradiation for 1 min at1 \JA for a target containing 10'6g/g of the element in question [5].

570 ALBERT et al.

.a

2

(10

yie

ld

z

3

<_a

'•B

%

>.2

"

10

9

8

7

6

5

4

3

2

1

o(

5

4

3

2

1

0

0 + p

• V/

1 I• 18F / /

7 /

) 5 10 15 20

Proton energy (MeV)

O + d

J13 /

N /

/

/

18F / !F \ / /

20

18

16

14

12

10

8

6

4

2

025

! •

-

-

-

-

-

18

16

14

12

10

8

6

4

2

0

_a.-£?

dis/

(10

yie

ld

U-co

<a.

52

*%

>CO

a.

2O)

o

eld

(1

>•

_

<

is/s

T3

o

TJ

Yie

l

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0c

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0 +3He i

: /

/

JI

JrS I

18F / /

5 10 15 20 25 3

He ion energy (MeV)

0 + a /I

118F. /

jI

11

1JII

//

5 10 15 20 25

Deuteron energy (MeV)20 25 30 35 40 45 50

a-particle energy (MeV)

FIG. 9.and *He

Yields of 11C, l3N and 18F after irradiation of oxygen with protons, deuterons, 3Heions [target: AI2O3) [3].

PART 3-3 571

13

FIG. 10. Production ofnFby triton irradiation of a thick A^03 target. The yield (511 keVannihilation peak) is obtained at the end of irradiation for 1 hat 1 uA, and is variable withthe annihilation conditions [4].

572 ALBERT et al.

.a

• D

cno

3.5-

3.0-

2.5-

2.0

1.5-

1.0-

0.5-

0.0

F + p t

I18F /

IJJ

5 10 15 20 25

Proton energy (MeV)

Vh

)

2o

eld

(

>

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1 -

nn

F + d

1

1F ^ /

I1I

JJy5 10 15 20 25

Deuteron energy (MeV)

2cno

Yie

l

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1 •

0.0

F+a

. y

//

18F /

/

/

/

15 20 25 30 35 40 45

a -particle energy (MeV)

10 15 20 25 30He ion energy (MeV)

FIG. 11. Yield of nF after irradiation of fluorine with protons, deuterons, zHe and AHe ions(target: (CF2jn) [3].

PART 3-3 573

FIG. 12. Thick target yield curve for the l9F fa, n)22Na reaction. Target: PbF2 [6].

574 ALBERT et al.

50 100 150Range (mg/cm )

200

0 2 4 6 8 10 12

Energy (MeV)

14 16

FIG. 13. Thick target saturation activity for the reaction of deuterons on neon to give 18F.Target: pure neon in sealed cylinders at I atmosphere \1\(1 atm = 1.013 25 X 10s Pa).

10 20 30

Energy (MeV)

40 50

FIG. 14. Thick target yields of 28Mg for the reactions oftritons on Mg, Al and Si, and ofoc-particles on Mg and Al [8].

PART 3-3 575

10

10"

10,-7

10-8

10"10

I I I I I [ i

25Mg(<r,p)28AI

5 10E^ (MeV)

15

FIG. 15. Thick target yields for the (a, p) reactions on Mg isotopes. Yield: the ratio of thetotal number of reactions of a given type to the number of incident beam particles, assuming100% abundance for every isotope [9].

576 ALBERT et al.

< „

10'

10 t i t t i t i t I t

10 20 30 40

Energy (MeV)

50

FIG. 16. Thick target yields of 2*Na for the reactions of tritons on Mg, A! and Si, and ofa-particles on Mgand Al [8].

10

0 20 40 60 80 100 120 140 160 180

Incident a-particle energy (MeV)

FIG. 17. Yields of 2SMg, Na, 22Na and 7Be after irradiation of21Al with high-energya-particles [10]. (1 Ci = 3.70 X 1010 Bq.J

PART 3-3 577

10i .

<

O

27AI(a.n)30P

,d)30P

10"

. . . . f . . . . I . . . . I . . . .0 10 20 30 40

Incident particle energy (MeV)

FIG. 18. Theoretical thick target yields of carrier-free 30P for various nuclear processes asfunctions of incident projectile energy [11].

500 -

100 —

2 50 -

_ ' ' ' ' 1 ' ' ' ' 1 ' •28Mg production from thick targets of

P

— c

- / /

/ n

• f / / *

••.I.//./.,..

1 1 |

(Na4P2O7) -

(UiCI)

r (frozen)

(Na2SO4) -

( K 2 C O 3 )

• , 1

10 -

100 150 200Incident proton energy (MeV)

FIG. 19. Thick target yields for the production of 2SMg [12].

578 ALBERT et al.

5 10 15 20

Proton energy (MeV)5 10 15 20

Deuteron energy (MeV)

5 10 15 20 25 30

•'He ion energy (MeV)

10 20 30 40

a-particle energy (MeV)

FIG. 20. (a) Yields for radioisotopes vs proton energy. Curve 1: Cl+p- *Cl; curve 2:

S + p • nCl. (bj Yields for radioisotopes vs deuteron energy. Curve 1:curve 2: S + d-* 34mCl. (cj Yields for radioisotopes vs 3He ion energy. Curve 1: S + 3He~>- 34mC7;curve 2: Cl + 3He ->3iCl; curve 3: Cl + 3He ->• 34mC/. (dj Yields for radioisotopes vs a-particleenergy. Curve 1: « + « - • 34mCl; curve 2: Cl + a-+ 34mCl; curve 3: P + a-*• 34mC/. (Sourcefor all figures: Ref. [13].;

PART 3-3 579

10

- io

i i i i i I r

10,8 . 1 . 1 I I I I I I I4 S 6 7 8 9

E. (MeV!10 11 12 13

FIG. 21. Production of 34mC/ by triton irradiation of a pure S target. The yield (146 ke V) isobtained at the end of irradiation for 1 hat 1 pA [4].

IO-1

u

T 10"J

IO-4

io-s

10 15 20 25 30o-particla energy (M*V)

FIG. 22. Yields of 3iK, 34mO, 72Na and ™Na as functions of the energy at the end of a 15 minperiod of irradiation of NaCl powder [14].

580 ALBERT et al.

10"'

10'

10"

r10

48Ca(p.n)48Sc

63,ulp.nl^Zn

10 15 20

E|ab (MeV)

25

FIG. 23. Thick target yields from the (p, n) reaction measured by the radioactive decay ofthe final nuclide. Targets: Ca, Cu and Zn. The yield is defined here as the number ofradioactive products formed per incident proton upon a thick target composed solely of thetarget isotope [15].

PART 3-3 581

10',-4

10'

10"'

10"

,-5

10-8

10,-9

10-10

»40Ca(«.p)43Sc

10 20 30

FIG. 24. Thick target yields for the (at, n) and (a, p) reactions on Ca isotopes. The yield isdefined as the ratio of the total number of reactions of a given type to the number of incidentbeam particles, assuming 100% abundance for every isotope [9].

582 ALBERT et al.

1010

10

10

10

10

52m,

10

Ep (MeV)

Cr(p,xn)

(1332.5 keV)Ni(p,xn)

Cu(p,n)

(669.6 keV)

Zn(p,xn)

(1039.35 keV)

4 8 w (983.5 keV)Ti(p.xn)

Mn^-Cr(p.xn) (1434.3 keV)5 5Co 58Ni(p.al (931.1 keV)

56CO Fe(p.xn) (846.75 keV)6 1Cu Nt(p.xn) (282.9 keV)51Cr V + p (320.1 keV)

67Ga Zn(p,xn) (93.3 keV)

6 5 Zn 65Cu(p.n| (1115.5keV)

15

FIG. 25. Specific activity, expressed in gamma rays per second, for the thick target yields ofnatural metals (Ti, V, Cr, Fe, Ni, Cu,Zn) at the end of proton irradiation for I h at 1 fiA [16].

PART 3-3 583

10

10" J

.? 10"3J

,0"4J

44m-

51Cr

0 20 40 60 80 100 120 140

Incident ^He particle energy (MeV)

FIG. 26. Thick target yields of*BCr, slCr and major impurities as functions of incident 3Heparticle energy on titanium [17].

584 ALBERT et al.

FIG. 2 7. Thick target yields for the (a, nj and fa, p) reactions on Ti isotopes. The yield isdefined as the ratio of the total number of reactions of a given type to the number of incidentbeam particles, assuming 100% abundance for every isotope [9].

PART 3-3 585

10 1

101 .

b

10', -2 .

10,-3

( a b )

51Cr

O 20 40 60 80 100Incident deuteron energy (MeV)

0 40 80 120 160 200Incident a-particle energy (MeV)

FIG. 28. Thick target yields of chromium isotopes formed by interaction of (a) deuterons withvanadium and (b) a-particles with titanium [17].

586 ALBERT et al.

FIG. 29. Thick target yield for the 51 V(a, n) Mn reaction. The yield is defined as the ratioof the total number of reactions to the number of incident beam particles, assuming 100%abundance for S1V[9].

PART 3-3 587

10.4

,-510

10

10,-7

10,-8

10-9

10',-10 . ,

I I • • I

5CWn)53Fe

10 20

^ (MeV)

30

FIG. 30. Thick target yields for the (a, n) and (ct, pi reactions on Cr isotopes. The yield isdefined as the ratio of the total number of reactions of a given type to the number of incidentbeam particles, assuming that the isotopic abundance is 100% for every isotope [9].

588 ALBERT et al.

10 1

10,-10

FIG. 31. Thick target yields for reactions of a-particles on Mn. The yield is defined as theratio of the total number of reactions of a given type to the number of incident beamparticles [9].

PART 3-3 589

40

FIG. 32. Thick target yield curves for the production of cobalt isotopes by (3He + ssMn)reactions [IS].

590 ALBERT et al.

10

-o

0.1

0.01

100

- 95 mO

4.0 -

1.0

"gDC

20 25 30 35Incident proton energy (MeV)

0.1

FIG. 33. Thick target yield for ssCo given as a function of incident proton energy. Also shownis the per cent total radioactivity of S5Co, S6Co and s2Mn (principal contaminants) vs protonenergy (right-hand ordinatej (EOB: end of bombardment). A natural iron target is used [19].

PART 3-3 591

( a ) io4

5 10 15

Ed (MeV)

10 20 30

Ep (MeV)

10'10 20 30

Ed (MeV)10 20 30 40 50 60

Ep (MeV)

FIG. 34. (a) Thick target yields for enriched targets of ^Fe (98.19%) and s6Fe (99.93%)(evaluated from cross-section data reported in the literature) irradiated with deuterons ^Fand protons s6Fe. (b) Thick target yields for a natural Fe target irradiated with deuteronsand with protons (evaluation) [18].

592 ALBERT et al.

10-4

10

10

-5

10,-7

10

10 '

,-8

10-10

54Fe(a,p)57Co

10 20E„ (MeV)

30

FIG. 35. Thick target yields for the (a., nj and (a, pj reactions on ^Fe. The yield is definedas the ratio of the total number of reactions of a given type to the number of incident beamparticles, assuming that the isotopic abundance is 100% [9].

PART 3-3 593

IO* -

<a.

o

•S 10

" .o°U jJ!

/j- 1

1

/

iI

5 7Nicumulativeyield • '

5 7Ni yield

57Co yield

Cumulative Co yield m

from Ni " S ^ •"*

i i

:o from 5 7Ni

1 1 120 24 28 32 36

Proton energy (MeV)

FIG. 36. Thick target and cumulative yields for the slNi parent (at EOB) and the slCodaughter radionuclides (at tmax= 271.5 h post-bombardment) as functions of proton energy.Cumulative yields were calculated by summing the individual thick target yields, as given inthis figure [20].

594 ALBERT et al.

( a )

_ 5

E

0 10

59Co(3He.n)61Cu

100

50

20 30Incident beam energy (MeV)

40

( b ) -:- 10

oa.2 5

(A):

(B):

(C):

59Co(3He.a>58Co

59Co(3He,nn)57Co

59Co(3He,a2n)56Co

10 20 30Incident beam energy (MeV)

40

FIG. 37. (a) Excitation curve and thick target yield curve for the 3He reaction on cobaltproducing 61Cu. (bj Thick target yield curves for 3He reactions on cobalt producing s6Co,S7Coand s*Co [21].

PART 3-3 595

( a ) - i s

<3 10

S 5

(A): 59Co(a,an)58Co

(B): 59Co(o,a2n)57Co

10 20 30Incident beam energy (MeV)

(A)

40

( b ) 400

300

5 200

o6 100

10 20 30 40

Incident beam energy (MeV)

4 Q

3 2

FIG. 38. (a) Thick target yield curves for a-reactions on cobalt producing 57Co and $sCo.(b) Excitation curve and thick target yield curve for an a-reaction on cobalt producing61Cu [21].

596 ALBERT et al.

10"

10,-5

10,-6

10

10

.7

10,-9

10 10

10 20

. . . . I . . . . I . . . . I . . . . I . . . . I

, (MeV)

30

FIG. 39. Thick target yield for the S9Co (a, n)61Cu reaction. The yield is defined as the ratio ofthe total number of reactions to the number of incident beam particles [9].

PART 3-3 597

10

( a ) ( b )

FIG. 40. (a) Thick target yields for a 99.95% SSM enriched target (evaluation from cross-section data reported in the literature) irradiated with protons, (b) Thick target yields for anatural Ni target (evaluation) irradiated with protons [18].

-100

-50

a.o

£„(MeV)

FIG. 41. Thick target yield curves for 60Cu, 6lCu and "Cu. Target: natural nickel irradiatedwith 4He [22].

598 ALBERT et al.

10"

10,-5

10-6

10-7

10',-8

10,.9

10,-10

l 5 £ W.p) 6 1 Cu

10 20 30

FIG. 42. Thick target yields for (a, nj and (a, p) on Ni isotopes. The yield is defined as theratio of the total number of reactions of a given type to the number of incident beam particles,assuming that the abundance is 100% for every isotope [9].

50,

_ 40

^ 30gu? 20o° 10

10 15 20 25

a energy (MeV)30 35

FIG. 43. Excitation function ( j and the thick target yield ( ) for 62Zn by alphabombardment of natural nickel [23].

PART 3-3 599

10'

10.5

10,-6

10'.7

10-8

10,-9

10,-1010 20 30

FIG. 44. Thick target yields for (a, nj reactions on Cu isotopes. The yield is defined as theratio of the total number of reactions of a given type to the number of incident beam particles,assuming that the abundance is 100% for every isotope [9].

600 ALBERT et al.

10

10-

10

-4

10,.7

10-8

10,-9

10,-10

.6 42n(a,p)6 7Ga

10 20

n(MeV)

30

FIG. 45. Thick target yields for the (a, nj and (a, pj reactions on Zn isotopes. The yield isdefined as the ratio of the total number of reactions of a given type to the number of incidentbeam particles, assuming that the abundance is 100% for every isotope [9].

PART 3-3 601

1000 -

.- 100

10 -

" Zn 4- a

-

/

• \ / ' /

:' V >

6

//

/

/

6 6 G a :

6 6 G e !

r Ga"

f /? ]/r/

'/ / > •

41

- 1

1

-

-

1

20

- 10

30(MeV)

- 1

- 0.1

40

b)10° -

.-• 10 h

10' -

10v

(1)

• /I1

/

/

66Ga

1Zn

f

67Ga

+ di

10 15Ed (MeV)

20

1 0 3

102

101

(2) S

I

,

Zn +i i

i

P

10 20 30

Ep (MeV)

1 0 3

1 0 2

10°

(3)

" /

7 // 6 7 Ga

ICu + a

10 20 30

En (MeV)

FIG. 46. (a) Thick target yield curves for the a bombardment of natural zinc. The ordinatescales for 6iGe and 6SZn (dashed lines) are given on the right, (b) Thick target yield curves forproduction of &1Ga and i6Ga by irradiation of natural Zn with (1) deuterons and (2) protons,and of natural Cu with (3) *He (evaluation from published cross-sections) [24].

602 ALBERT et al.

10'

~ io6

10"

10

(1106.5 keV)

I I I I

10

Ep (MeV)

69Ga(p.n)69Ge

15

FIG. 47. Specific activity for the thick target yield of 69Ge obtained at the end of protonirradiation of GaAs for 1 hat 1 nA [25].

PART 3-3 603

10"

~ 10°

10

100.5 1 2 3Target thickness (g/cm2)

0 10 20 30 40 50 60 64Energy degradation in target (MeV)

FIG. 48. Thick target yields of nuclides produced by the Ge (p, xnyp) reactions. The incidentproton energy is 64 Me V. The abscissas are energy degradations in the Ge target or in the targetthickness (g/cm2) [26].

Range (Mg/cmz) in GeOj3He (upper) 75 100 150 2254He (lower) 601 I 100 120i 150 | 190

20 35 4025 30

E (MeV)

FIG. 49. Thick target yields of 13Se produced by selected nuclear reactions on Ge isotopes [27].

604 ALBERT et al.

10

10"

-3

10,-5

10-6

10.7

10', •8

10-9

i i i I I i r

72Ge(a,n)75Se

7 10 20 30 40

FIG. 50. Thick target yields for fa., n) reactions on Ge isotopes. The yield is defined as theratio of the total number of reactions of a given type to the number of incident beam particles,assuming that the abundance is 100% for every isotope [9].

PART 3-3 605

10'

? 10o

,-3

8 2Se(p.n l 8 2Br\ I

'78S«(p.2n.77

Br

Target: 92.4% 77Se

10

10"

.-3

10 15 20Proton energy (MeV)

25

10'

10"

10-3

o

I 10"

10

( b )

Target: 97.9% 78Se

1 0 ' _

,,-2 U

O

.-3 C

10"

10 15 20Proton energy (MeV)

25

FIG. 51. (a) Yield curves for lbBr and 17Br and i2Br obtained from (p, n) and (p, 2nj reactionson an enriched inSe target, (bj Yield curves for 16Br, 71Br and S2Br obtained from (p, n) and(p, 2n) reactions on an enriched 785e target [28].

606 ALBERT et al.

= 10"* r

40

Incident °He particle energy (MeV)

10 20 30 40

Incident ^He panicle energy (MeV)

a.6

ivity

yie

ldA

ct

1 0 1

10°

1 0 1

10-2

io-3

i n 4

r ( c )

r

• /

- VI

"K,

/

10 20 30 40

Incident He particle energy (MeV)

FIG- 52. (a) Thick target yields for nnKr and other major competing products as functions ofincident 3He particle energy on niSe (enrichment: 96.9%). (bj Thick target yields for nlKr andother major competing products as functions of incident 3He particle energy on 71Se(enrichment 94.4%). (c) Thick target yields for 16Kr, nlKr and ^Kr as functions of incident3He particle energy on natural selenium [29].

PART 3-3 607

•oE

arge

mCO

jra

l10

5

1

0.5

- 0.1

NaBr(p,xn) 77Kr

Kr Br

20 40 60Proton energy (MeV)

80

FIG. 53. Activity yields from a thick natural NaBr target [30].

£

<

o

Z o.i

0.01

68 MeV

90

Outgoing energy (MeV)

80 70 60 50 -

100

10

Y.(O

0.5 1.0 1.5 2.0 2.5 3.0Target thickness (g/cm^)

3.5 4.0

FIG- 54. Determination of the optimum energy region for the production of 15Kr. fa) Thick targetyield of lsKr, (bj contamination of lsKr by 16Kr, and (c) by nnKr vs a natural bromine target thicknessat a constant incident deuteron energy of 90 Me ^[31] .

608 ALBERT et al.

f

<3

-a

et y

iela

rgi

i1-

1 0 3

1 0 2

10

(a)A

/Jt~ /rfi E/-/ i• iI '

10

10"

10 20 30 40

Incident beam energy (MeV)

A = 7 9Br(a,2n)8 1Rb

B = 7 9 B r ( a . n ) 8 2 r r W 8 1 R b ( Q . 3 n ) 8 2 m R b

C =8 1Br(a,2n)8 3Rb

8 1Br(a.n)8 4Rb

E = 79Br(cr,cr2n)77Br

10 '

<

•s i o

(b)

10 20 30

Incident beam energy (MeV)

4 0

A = 8 1 Br(3He,3n)81 Rb+79Br(3He,n)81 Rb

B= 8 1 Br ( 3 He,2n ) 8 2 m Rb

C = 79Br(3He,p2n)79Kr+81Br(3He,p4n)79Kr

FIG. 55. (a) Thick target yield curves for an a bombardment of a potassium bromide targetproducing uRb, i2mRb, S3Rb, mRb and nlBr. (b) Thick target yield curves for a 3Hebombardment of a potassium bromide target producing slRb, B2mRb and ^Kr [32].

PART 3-3 609

100 100

81 n

-

nRb fa

r

! t

100

- 1 _•

-0.1 E

J0.01

81 Rb

0 4 8 12 16 20 24 28Ep (MeV)

0 4 80.01

12 16 20

p(MeV)24 28

5 1 0

ocr

CQ

O2 1

82mRb

-

" /

•Jj V'f/, -,!

- 1

1000 1000

0 4 8 12 16 20 24 28Ep (MeV)

Jo.i

FIG. 56. Yield curves for the production of Rb radioisotopes by proton bombardment ofnatural krypton gas [33]. The dotted line gives the results obtained with the cross-sectioncurves of Lamb [34], while the dashed line gives the results of Acerbi [35]. The vertical dashedline indicates the Q values involved.

610 ALBERT et al.

20 30 40 50 60 70

Incident proton energy (MeV)

80

FIG. 5 7. Thick target yields for an enriched S5RbCl target (99. 78% enriched ssRb) for the(p, pxn) - (p, axn) and (p, xnj reactions. The slRb yield includes contributions of the decaysof 8iSr and slmRb during irradiation; yields of i3Rb and **Rb include contributions from i3Srand **mRb, respectively [36].

PART 3-3 611

^r 100

a.c3a.

>| 50

OIEf -

( a )

//.//

InI /Iill

,A

Ac// E

/ / _ /

/ / 71

r

y B %MV-.2n.8QY

OIcT3 85M,<3 | .e.nl°

7-Y

0 10 20 30 40

Incident beam energy (MeV)

a

o

01> -

targ

eic

k '

si1-

15

10

5

0

A

U

c

D

K

U5Rb(u

87Rb (n

Rb.,,.

( a 7Rb,a.

0 5 « . ( . . .

8 5 Kb(«,

3n)86mY

06m5n) V

..)'mY

3n,°8y

2,,,S7™Y

4n,85Y /

( b )

//

/ // /1 /

/ // A

A

/

A-—.

^ •

30

20 %

oa.

10 ~

10 20 30 40 50

Incident beam energy (MeV)

60

FIG. 58. (a) Thick target yield curves for the 2He reaction on rubidium chloride producingssYy ssmjr Mmr> 87my and 88y ^ Thick target yieid curves for the *He reaction on rubidium

chloride producing SSY, ssmY, """Y, 87mYand SSY [37],

612 ALBERT et al.

104A (555.8 keV)

Zr

Ge (1106.5 keV)

'Tc (765.8 keV)

9 3 m M o (1477.2 keV)9 9 m T c (140.5 keV)

96Tc (778.3 keV)

(328.3 keV]

(909.1 keV)

I96Au (355.7 keV)

(411.8keV)

(765.8 keV)

FIG. 59. Specific activities for the thick target yields of natural metals (Y, Zr, Nb, Mo andPd) after irradiation with protons for 1 h at 1 \iA ((p, xn) reactions) [25].

PART 3-3 613

0 10 20Proton energy (MeV)

0 10 20Proton energy (MeV)

(c )

§ 3

•7" 2

Oa.o 1

10 20Proton energy (MeV)

10 20Proton energy (MeV)

500

030

1000

750

500 ~

250

30

FIG. 60. (a) Excitation function and the related thick target yield of"mTc. The data refer to97.42% enriched 100Afo targets, (b) Excitation functions and corresponding thick target yieldsof**Tc and 9sTc in a molybdenum target enriched to 97.42% 100Mo. (cj Excitationfunction and thick target yield of"Mo for a target of 97.42% isotopically enriched 100Mo.(d) Excitation functions and deduced thick target yields of 93Tc and 96Tc. The data refer to97.427c enriched Motargets. (All of the curves in this figure were plotted using the averageenergy for the excitation function and the incident energy for the thick target yield.) [38].

614 ALBERT et al.

10

10

•T io3

< 10 -

10

. . . . . . . . . J . . . .

9 4Ru

a-reaction /

1/1/if

I \I \

I '/

/ He-reaction

95Ru S

1

J-—cr-reaction

•I• I— He-reaction

ll

97 Ru

He-reaction

10 20 30 40 10 20 30 40 10 20 30 40Incident particle energy (MeV)

FIG. 61. (a) Thick target yields for (a., nj or (a, p) reactions on Mo isotopes. The yield is theratio of the total number of reactions of a given type to the number of incident beam particles,assuming 100% abundance for every isotope [9]. (bj Theoretical cumulative thick target yieldsof^Ru, 95Ru and 91Ru from the irradiation of natural molybdenum with 2He particles (solidlines) and a-particles (dashed lines) [39].

PART 3-3 615

10 :- ( a )

I O - 1 -

ooooooooooo

103Rh(Q.2n)1059Ag

20 40 60

10

10-

b)j o o o o o o o o o

1 0 3 Rh(a,n)

r' L20 40 60

FIG. 62. (a) Thick target yield for the production ofl0S%Ag. (b) Thick target yield for theproduction of 106mAg by irradiation of 103Rh with a-particles [40].

616 ALBERT et al.

10"

10

10"

,.2

I I I I

35 40 45 50 55 60 65

Proton energy (MeVI

10'

10

70

FIG. 63. Thick target and cumulative 91Ru yields as functions of proton energy(target: 103Rh) [41].

10

1 0 '

o

10

10"'

•2

100o

20 30 40 50 60

Proion energy (MeV)

70

FIG. 64. Cumulative yields as functions of proton energy for 101mRh, 101Rh, 100Rh, 10lPd and100Pd. Summation of yields was done from the high to the low end of the proton energy rangecovered in this work, thus resembling the direction of the proton beam through the Rh target [42].

PART 3-3 617

10'

10"

10(MeV)

,116Sb

113m In

'Ag

Cd

110m

(933 keV)

(391.7 keV)

(158.5 keV)(344.2 keV)

(1077.4 keV)

(93.1 keV)Tc (870.9 keV)

] ] ? m Sb (1229.5 keV)1 1 1 m l n (245.3 keV)

n (657.7 keV)

120m,Sb (1023 keV)

15

FIG. 65. Specific activities for the thick target yields of natural metals (Mo, Pd, Ag, Cd, Sn)after irradiation with protons for 1 hat 1 /JL4 (fp, xnj reactions) [25].

618 ALBERT et al.

20 30 40 503He energy (MeV)

FIG. 66. Thick target yields of wIn, noIn and mIn for the Ag + *He reactions [43 ].

2

He porticles on Cd

I 1 1 1 1 1 1

1 1 1 1 1 r 1 l < I

" JSn

7Sn

0 panicles on Cd

1 1 1 _l 1 1 1 1 1

0 2O 40 60 80 100 120 0 20 40 60 8O 100 120 140

Incident particle energy (MeV)

FIG. 67. Thick target yields of il3Sn and lllmSn as functions of incident particle energy inthe interactions of3He and a-particles with natural cadmium [44].

PART 3-3 619

2 io- L

FIG. 68. Thick target yield curves calculated from the excitation functions for a-particlebombardment of enriched cadmium (98.07% n6Cd) [45].

< 10c

i 10

I I I I I 1O 20 40 SO 80 1OO 120 O 2O "O 6O SO 1OO 1Z0 HO

Incident particle energy (McV)

FIG. 69. Thick target yields of n3Sn and nlmSn as functions of incident particle energy inthe interactions of3He and a-particles with natural indium [44].

620 ALBERT et al.

300

200

100

n

(a)^- 70 MeV

^^7 65 MeV

/ / fiO MPV

-

2 3Thickness Ig/cm'l

300

< 200

o

100

Ep = 60 MeV

LiI,CH2 l2— Nal- K l

Thickness (g/cm^)

FIG. 70. (a) li3Xe yield vs I2 target thickness for various incident proton energies. The123/yield (6. 7 h after irradiation) may be obtained by multiplying the 123Xe yield by 0.110.(b) li3Xe yield vs target thickness for various compounds at 60 MeV incident proton energy.The 123Iyield (6. 7 h after irradiation) may be obtained by multiplying the 123Xe yield by0.110 [46].

PART 3-3 621

1010 20 30Incident deuteron energy (MeV)

FIG. 71. Thick target yields of 123/, l22I and I211 as functions of incident deuteron energy on96.45% enriched n2Te [47].

622 ALBERT et al.

10

10'

<

>

-123 :

Jl—a 1-124

• • _ * . 1-130

Te-122:123:124:125:126:128:130:

%2.3

67.311.73.95.75.04.1

1 1 1 1 1 ( 1 1

10 15 20

Proton energy (MeV)

10

10'

! ( b )

>

<

1 0 %

10 15 20

Proton energy (MeV)

FIG. 72. (a) Yield curves for the production of iodine isotopes obtained by proton bombard-ment of tellurium enriched in l23Te. (b) Yield curves for the production of iodine isotopesobtained by proton bombardment of tellurium enriched in 12ATe. The isotopic compositionfor the present work is also shown (details of the experiments cited in the figure can be foundin Ref. [48]/

PART 3-3 623

200

- 100

Te(3He.xn)'25Xe

Te(a.xn)'2SXe

10 20 30Incident beam energy <MeV(

40

FIG. 73. Thick target yield curves for 3He and a-reactions on natural tellurium producing125Xe [49].

20 30£„ (MeVI

FIG. 74. Thick target yield curves as calculated from the excitation functions for a bombard-ment of gold [SO].

624 ALBERT et al.

I 10°

I 10"

10"-2 . ,

201 Pb

203,

10 20 30 40Incident proton energy (MeV)

(a )

50

0.0120 30 40

Incident proton energy (MeV)

FIG. 75. (a) Cumulative yields of™3Pb, 20iPb, 200Pb and 199Pb in the irradiation of naturalthallium with protons, (b) Yields of201Tl (grown-in during a 32 h decay of the separated leadactivities) vs the energies of the incident protons (curve 1). 200Tl impurity as a percentage of20177 activity at varying incident proton energies (curve 2) [51 ].

PART 3-3 625

2 102

104S 50 55

Proton energy (MeV)60 65

FIG. 76. Thick target yields of'201Pb and 200Pb as functions of proton energy (target: naturallead; Pb(p, pxn) reactions) [52].

x 300

( b )

10 20Energy (M«V)

500

loom

X

JZ

a.6

V

Yie

l

500

400

300

200

100

. /

I

: //• /

/

10 20

Energy (MeV)

FIG. 77. (a) Thick target yields for20SBi production (++++). This work: o. (b) Thick targetyields for 201Bi production (++++). This work: o. (c) Thick target yields for 2<>6Bi production(++-I-I-). This work: o [53].

626 ALBERT et al.

T3

FIG. 78. Thick target yields for the production of ™6Po [53 ].

REFERENCES

[1] MUNZEL, H., et al., Karlsruhe Charged Particle Reaction Data Compilation, Physics Data,No. 15, Fachinformationszentrum, Karlsruhe (1982).

[2] SASTRI, C.S., CALETKA, R., KRIVAN, V., Anal. Chem. 53(1981)765.[3] KRASNOV, N.N., DMITRIYEV, P.P., DMITRIYEVA, S.P., K0NSTANTIN0V, I.O.,

MOLIN, G.A., Uses of Cyclotrons in Chemistry, Metallurgy and Biology, Butterworths,London (1970) 341.

[4] BLONDIAUX, G., VALLADON, M., MAGGIORE, C.J., DEBRUN, J.L., unpublished data.[5] ENGELMANN, C, J. Radioanal. Chem. 7 (1971) 89.[6] VALLADON, M., GI0VAGN0LI, A., BLONDIAUX, G., DEBRUN, J.L., unpublished data.[7] NOZAKI, T., IWAMOTO, M., IDO, T., Int. J. Appl. Radiat. Isot. 25 (1974) 393.[8] NOZAKI, T., KURUKAWA, M., KUME, S., SEKI, R., Int. J. Appl. Radiat. Isot. 26

(1975) 17.[9] ROUGHTON, N.A., INTRAT0R, T.P., PETERSON, R.J., ZAIDINS, C.S., At. Data Nucl.

Data Tables 28(1983)341.[10] PROBST, H.J., QAIM, S.M., WEINREICH, R., Int. J. Appl. Radiat. Isot. 27 (1976) 431.[11] QAIM, S.M., OLLIG, H., BLESSING, G., Int. J. Appl. Radiat. Isot. 33 (1982) 271.[12] LUNDQVIST, H., MALMBORG,P., Int. J. Appl. Radiat. Isot. 30 (1979) 33.[13] ZATOLOKIN, B.V., KONSTANTINOV, J.O., KRASNOV, N.N., Int. J. Appl. Radiat. Isot.

27(1976) 159.[14] VANDECASTEELE, C, VANDEWALLE, T., SLEGERS, G-, Radiochim. Acta 29 (1981) 71.

PART 3-3 627

[15] 1NTRATOR, T.P., PETERSON, R.J., ZAIDINS, C.S., Nucl. Instrum. Methods 188(1981)347.

[16] BARRANDON, J.N., DEBRUN, J.L., KOHN, A., SPEAR, R.H., Nucl. Instrum. Methods127(1975)269.

[17] WEINREICH, R., PROBST, H.J., QAIM, S.M., Int. J. Appl. Radiat. Isot. 31 (1980) 223.[18] WATANABE, M., NAKAHARA, H., MURAKAMI, Y., Int. J. Appl. Radiat. Isot. 30

(1979)625.[19] LAGUNAS-SOLAR, M.C., JUNGERMAN, J.A., Int. J. Appl. Radiat. Isot. 30 (1979) 25.[20] JOHNSON, P.C., LAGUNAS-SOLAR, M.C., AVILA, M.J., Int. J. Appl. Radiat. Isot.

35 (1984)371.[21] HOMMA. Y., MURAKAMI, Y., Bull. Chem. Soc. Jpn. 50(1977) 1251.[22] MURAMATSU, H., SHIRAI, E., NAKAHARA, H., MURAKAMI, Y., Int. J. Appl. Radiat.

Isot. 29(1978)611.[23] NEIRINCKX, R.D., Int. J. Appl. Radiat. Isot. 28 (1977) 808.[24] NAGAMA, Y., UNNO, M., NAKAHARA, H., MARAKAMI, Y., Int. J. Appl. Radiat. Isot.

29(1978)615.[25] KOHN, A., Thesis, University of Orsay, 1976.[26] HORIGUCHI, T., KUMAHORA, H., INOUE, H., YOSHIZAWA, Y., Int. J. Appl. Radiat.

Isot. 34(1983) 1531.[27] GUILLAUME, M., LAMBRECHT, R.M., WOLF, A.P., Int. J. Appl. Radiat. Isot. 29

(1978)411.[28] JANSSEN, A.G.M., VAN den BOSCH, R.L.P., de GOEU, J.J.M., THEELEN, H.M.J.,

Int. J. Appl. Radiat. Isot. 31 (1980) 405.[29] YOUFENG, H., QAIM, S.M., STOCKLIN, G., Int. J. Appl. Radiat. Isot. 33 (1982) 13.[30] LUNDQVIST, H., MALMBORG, P., LANGSTROM, B., CHIENGMAI, S.N., Int. J. Appl.

Radiat. Isot. 30(1979)39.[31] QAIM, S.M., WEINREICH, R., Int. J. Appl. Radiat. Isot. 32 (1981) 823.[32] HOMMA, Y., KURATA, K., Int. J. Appl. Radiat. Isot. 30 (1979) 345.[33] MULDERS, J.J.L. Int. J. Appl. Radiat. Isot. 35 (1984) 475.[34] LAMB, J.F., BAKER, G.A., GORIS, M.L., KHENTIGAN, A., MOORE, H.A., Inst. Radiol.

Spec. Rep. Ser. 15 (1977) 22.[35] ACERBI, E., BIRATTARI, C, BONARDI, M., de MARTINIS, C, SALOMONE, A., Int.

J. Appl. Radiat. Isot. 32(1981)465.[36] HORIGUCHI, T., et al., Int. J. Appl. Radiat. Isot. 31 (1980) 141.[37] HOMMA, Y-, ISHII, M., MURASE, Y., Int. J. Appl. Radiat. Isot. 31 (1980) 399.[38] ALMEIDA, G.L., HELUS, F., Radiochem. Radioanal. Lett. 28 (1977) 205.[39] COMPARETTO, G., QAIM, S.M., Radiochim. Acta 27 (1980) 177.[40] OZAFRAN, M.J., VASQUEZ, M.E., de la VEGA VEDOYA, M., NASSIFF, S.J., Radiochem.

Radioanal. Lett. 43 (1980) 265.[41] LAGUNAS-SOLAR, M.C., AVILA, M.J., NAVARRO, N.J., JOHNSON, P.C., Int. J. Appl.

Radiat. Isot. 34(1983)915.[42] LAGUNAS-SOLAR, M.C., AVILA, M.J., JOHNSON, P.C., Int. J. Appl. Radiat. Isot. 35

(1984)743.[43] OMORI, T., YAGI, M., YAMAZAKI, H., SHIOKAWA, T., Radiochem. Radioanal. Lett.

44(1980)307.[44] QAIM, S.M., DOHLER, H., Int. J. Appl. Radiat. Isot. 35 (1984) 645.[45] MURAMATSU, H., NAKAHARA, H., J. Inorg. Nucl. Chem. 43 (1981) 1727.[46] WILKINS, S.R., et al., Int. J. Appl. Radiat. Isot. 26 (1975) 297.[47] ZAIDI, J.H., QAIM, S.M., STOCKLIN, G., Int. J. Appl. Radiat. Isot. 34 (1983) 1425.[48] VAN den BOSCH, R.L.P., et al., Int. J. Appl. Radiat. Isot. 28 (1977) 255.

628 ALBERT et al.

[49] HOMMA, Y., MURAKAMI, Y-, Int. J. Appl. Radiat. Isot. 28 (1977) 740.[50] NAGAMA, Y., NAKAHARA, H., MURAKAMI, Y., Int. J. Appl. Radiat. Isot. 30 (1979) 669.[51] QAIM, S.M., WEINREICH, R., OLLIG, H-, Int. J. Appl. Radiat. Isot. 30 (1979) 85.[52] LAGUNAS-SOLAR, M.C., LITTLE, F.E., JUNGERMANN, J.A., Int. J. Appl. Radiat.

Isot. 32(1981)817.[53] WASILEVSKY, C, de la VEGA VEDOYA, M., NASSIFF, S.J., Radiochim. Acta 27

(1980) 125.

Part 4

PHOTONUCLEAR ACTIVATION

4-1. PHOTONUCLEAR CROSS-SECTIONS

B. FORKMAN, R. PETERSSONDepartment of Physics,University of Lund,Lund, Sweden

Abstract

PHOTONUCLEAR CROSS-SECTIONS.A compilation is given of photonuclear cross-sections in the giant resonance region.

Special reference is made to applications in activation analysis.

1. INTRODUCTION

In the giant resonance region (10-25 MeV), the most probable result ofphotonuclear absorption is the emission of a single neutron, but other processesmust also be considered, such as the emission of gamma rays, the emission ofmore than one neutron and, particularly for light nuclei, the emission of chargedparticles. Medium and high energy photon spallation yields are systematicallytreated in Ref. [1].

2. BREMSSTRAHLUNG REACTION YIELD

Since there exist no intense monochromatic photon sources, the brems-strahlung beam, obtained when energetic electrons from electron accelerators hita target, is used as the photon source in almost all photoactivation studies. Theenergy spectrum of the photons in a bremsstrahlung beam from a thin target iswell known [2].

The bremsstrahlung beam has a continuous photon energy spectrum. Letn(E, Eo) dE be the number of photons with energies between E and E + dE perunit radiation thickness per second in a bremsstrahlung beam, where Eo is themaximum photon energy. The energy content of the beam in the sample is then

U(E0)= / En(E,E0)f(E)dE (1)

where f (E) is a correction factor which accounts for the distortion of the brems-strahlung spectrum by the effect of photon absorption in the machine target, inthe walls of the accelerator chamber and in the sample.

631

632 FORKMAN and PETERSSON

TABLE I. ENERGY CONTENT OF ANUNDISTORTED BREMSSTRAHLUNG BEAM [3]

Eo

(MeV)

En(E,E0)dE

(MeV)

10

13

16

19

22

27

32

36

44

52

03.554 88

04.786 41

06.046 65

07.327 88

08.625 22

10.814 70

13.029 99

14.814 54

18.416 18

22.047 27

TABLE II. ENERGY SPECTRUM OF UNDISTORTEDBREMSSTRAHLUNG BEAM $ = En(E, Eo)(the table values are 10s times too high [3])

E ® E © E ® E « E «

(MeV)(iOMeV) (MeV)(13MeV) (MeV) (16MeV) (MeV)(19MeV) (MeV) (22 MeV)

1 0

0 9

o a0 7

0 6

0 5

0 k

0 3

0 2

0 1

0 0

>2 9 3 3

6 k 2 6

2 6 6 0

7 0 6 3

0 92 6

k 8 2 1

9 0 8 5

3 9 5 9

9 6 2 9

S( 2 5 2

k 0 1 0

1 3

I 2

1 1

1 0

0 9

0 8

0 7

0 6

0 5

0 k

0 3

0 2

0 1

0 0

0 2 8 1 k

16 2 3 9

2 2 2 7 1

2 6 2 2 2

2 9 3 2 1

3 2 0 9 3

3 k 8 2 9

3 7 7 2 0

k 0 9 0 0

k k k 6 9

k 8 5 0 k

5 3 0 6 8

5 8 2 1 5

6k 0 1 0

1 6

1 5

1 k

1 3

1 2

1 1

1 0

0 9

0 8

0 7

0 6

0 S

0 k

0 3

0 2

0 1

0 0

0 2 7

1 6 1 >

22 1

2 58

2 8 6

9

0

5

3

6

3 0 9 8 5

3 3 0

3 S 1

3 7 2 <

3 9 5

k 2 0

k k 8

k 7 9

5 1 k

5 52

5 9 k

6 k 0

1

6

9

J

5

5

k

7

6

0

c

9

a7

6

S

k

3

2

1

0

9

8

7

6

5

k

3

2

1

0 0

0 2 ( 8 7

1 6 0 8 0

2 2 0 2 k

2 5 7 3 1

2 8 3 8 6

3 0 k 7 6

3 2 2 ( 2

3 3 9 0 7

3 5 5 1 9

3 7 1 7 6

3 8 9 3 5

k 0 8 3 8

k 2 9 1 8

k 5 1 9 8

k 7 7 0 0

5 0 k 3 8

5 3 k 2 6

5 ( ( 76

6 0 2 0 0

6 k 0 1 0

2 2 0 2 6 k 9

2

2

1

1

1

1

1

1

11

1

1

1 6 O k 0

0 2 1 9 8 1

9 2 5 ( 6 1

) 2 8 2 5 0

7 3 0 2 2 9

i 3 1 8 5 2

5 3 3 2 7 5

3 k 6 0 1

! 3 5 9 0 5

! 3 7 2 3 9

3 8 ( fc 3

1 k 0 1 k 6

0 9 k 1 7 7 2

0 8 k 3 5 3 9

0 1 k 5 k 6 1

0 6 k 7 5k 8

O S k 9 a 1 2

0

0

• 5 2 2 5 8

S k 8 9 5

0 2 5 7 7 2 8

0 6 0 7 6 k

0 0 6 k 0 1 0

PART 4-1 633

TABLE II (cont.)

(MeV)(27MeV) (MeV) (32 MeV) (MeV)(36MeV) (MeV) (44 MeV)E ©

(MeV)(52 MeV)

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

0

7 0 2 6 0 to

6 1

5 2

to ;

5 '

15

3 2 o

2 3 01

0

9

87

6

5

to3

2

1 h

0 I

9

0 8 >

0 7 I

0 6

0 S

0 to

0 2

0

0

1

0

1

2

3

to

9 7

to 9

2 0

7 0

6 85 6 3

0 5

! 9 1! 9 \

5 8 5 5

6 8 2 0

7

8

9 1 3

1 5 5

9 9 6 t o

1

2

3

5 1

• 2 8

) 0 3

S 2 8 3

6 8 7 3

8

> 0

2

to

8

1

to

S7 7

• 0 1

to 7

1 8

> to 8

1 1

) 1 0

3 2

3

3

I0

2 9

2

2

07

2 6

2

2

2

5

to

3

2 2

2 1

2 0

1

1

1

1

1

1

1

1

1

1

0

0

0

9

8

7

65to1

210

9

7

6

0 5

0

0

0

0

0

to3

210

0

1

2

2

2

33

3

3

J

3

3

3

3

3

3

3

tototototototo

2 5

5 9

1 9

5 6

B 10 0

1 to

2 6

3 6

to to

5 2

7

7

3

1

6

38

to

2

8

7

6 0 2

6 7

7 5

8 2

3

3

3

) 3

6

to 2

21

2 2 8

0

2 6

2

2

5 2

1

> 1

J 1

S 9 1

0 1

8 3

9 0 9 6

9 9 5 8

0 8

1 8

2 9

7

S

0

to 0 2

S 2

6 to

7 8

5 0 8

5 2 to

5

5

> 1

1

S

[

5

9 0

to

1

2

2

5 9 1

5 7 7

5 9 7

i

6

1 8

5

S

9 9

7

to

to 0 1

»

)

to2

0

8

6

to *

2

0

8

6

to20

1

56

7

8

0

1

3

S 5 to

9 3 5

1 7 8

to 7 9

0 5 7

3 1 5

5 6 8

8 6 9

3 0 8

9 3 1

7 7 1

5 8to 9

8

0

3

6

0

to

1 8 2

7 1 2

6 5 7

8 1 (

2 6 5

0 1 0

toto

to

3

3

3

3

to

2

0

8

to

2

0

2 8

2 6

2 to

2 2

2

1

1

1

1

1

0

8

6

to20

8

6

to

2

0

0 2 5 2 7

2 1 9 3 8

2 8 2 2 to V

3 1 5 3 to

S to 9 3 1 *

3 5 9 9 0

3 6 9 0 9

3 7 7 9 7

3 8 7 2 0

3 9 7 2 5

to 0 8 to 1

to 2 0 9 0

to 3 to 8 9

to 5 0 to 6

to 6 7 7 J

to 8 6 7 to

5 0 7 5 7

5 ) 0 2 5

5 5 to 8 2

5 8 1 2 9

6 0 9 7 1

6 to 0 1 0

2

0

8

6

2

0

8

6

to

2

0

! 8

6

! to

2

0

8

6

to

2

0

8

6

2

0

0

2

2

2

1

8

3 1

3

3

3

3

3

3

3

to

to

tototototo

to

to

5

6

7

8

8

9

0

1

2

3

to

5 09 k

2 7

6 1

9 6

9 3

7 I

k 0

0 7

7 6

5 0

3 2

2 2

2 3

3 5

5 8

5 9 3

7 k 1

9 0 1

5 0

5

5

2

to

5 6

83

3

3

7

6

J

2

0

1

to

2

9

6

2

3

6

2

7

7 5 3

6 2

6 2

7 6

1

3

2

6 1 to 5 k

6 to0 1 0

We define the number of equivalent quanta Q by

Q = — U(E0)b0

(2)

i.e. Q is the number of quanta with energy Eo which have the same energy contentas the bremsstrahlung beam and we define the cross-section per equivalent quantum,oq , by

c0

/a(E)n(E,Eo)f(E)dE

<7q(E0)=- (3)

634 FORKMAN and PETERSSON

- n l E . E 0 >

UJ

cr, I E )

o-,(E0) _

IE)

1.0

UJ

0.5 -

E, EM Eo E2

Photon energy E . brems. max energy Eo

FIG. 1. Energy variation of cross-sections for a typical photonuclear reaction and bremsstrahlunggamma source intensity.

The bremsstrahlung reaction yield measured in monitor response units can bewritten as

y(E0) =

a(E)n(E, E0)f(E)dE

U(E0)R(E0) E0R(E0)(4)

The monitor measures only some part of the energy content of the beam and thusR (Eo) gives the sensitivity of the monitor for an Eo bremsstrahlung beam.

While f(E) and R(E0) are quantities specific for a particular laboratory,n(E, Eo) has been tabulated for bremsstrahlung spectra.

In Tables I and II, the energy content and the energy spectrum of anundistorted bremsstrahlung beam for different end-point energies in the giantresonance region are given. It is easy to obtain the photon spectrum from Table IIby dividing the energy spectrum value with the photon energy E.

It is possible to calculate approximately the induced activities of photonuclearreactions, replacing the energy integral in Eq. (4) with a simple summation:

y(E0) =U

(5)

where the laboratory factors f(E) and R(E0) have been neglected (see also Fig. 1).

PART 4-1 635

3. COMMENTS

In the graphs that follow, (7, n) cross-section curves are given which aresometimes complemented with cross-sections for other types of reactions.Preference has been given to monochromatic photon data (marked 'Mono')when available. As a complement, and as a comparison, continuous photon data(marked 'Brems') are also given. For many nuclei equivalent data exist fromseveral laboratories. These are given without preference for comparison. Theseparation energies of particles or groups of particles have been taken fromRef. [4] and are given in MeV. Decay data are taken from Ref. [5]. For furthercross-section data and more detailed information it is possible to refer to thePhotonuclear Data Abstract Sheets, now published in separate volumes by thePhotonuclear Data Center of the United States National Bureau of Standards,Washington, D.C. [6]. We also refer to the photonuclear cross-section atlas formonoenergetic photons compiled by Berman [7]. The survey of literaturepertaining to this compilation was concluded in January 1984.

ACKNOWLEDGEMENTS

Financial support from the National Institute of Radiation Protection,Sweden, is gratefully acknowledged. The authors also wish to thank Boel Forkmanfor her careful preparation of the graphs.

REFERENCES TO SECTIONS 1 THROUGH 3

[1] JONSSON, G.G., LINDGREN, K., Phys. Scr. 7 (1973) 49.[2] SCHIFF, L.I., Phys. Rev. 83 (1951) 252.[3] PENFOLD, A.S., LEISS, J.E., Analysis of Photo-Cross Sections, Physical Research

Laboratory, University of Illinois (1958).[4] WAPSTRA, A.H., BOS, K., At. Data Nucl. Data Tables 19 (1977) 177.[5] Table of Isotopes (LEDERER, CM., SHIRLEY, V.S., Eds), 7th edn, Wiley-Interscience,

New York (1978).[6] FULLER, E.G., GERSTENBERG, H., US National Bureau of Standards, Washington, DC,

Rep. NBSIR-83-2742 (1983).[7 ] BERMAN, B. L., At. Data Nucl. Data Tables 15(1975)319.

636 FORKMAN and PETERSSON

4. CONTENTS LIST OF GRAPHS

Element Page Element Page

123456789

1011121314151617181920212223242526272829303233343738

HHeLiBeBCN0FNeNaMgAlSiPSClArKCaScTiVCrMnFeCoNiCuZnGeAsSeRbSr

Hydrogen 637 39 YHelium 638 40 ZrLithium 642 41 NbBeryllium 649 42 MoBoron 650 45 RhCarbon 652 46 PdNitrogen 654 47 AgOxygen 656 48 CdFluorine 659 49 InNeon 660 50 SnSodium 661 51 SbMagnesium 662 52 TeAluminium 666 53 ISilicon 668 55 CsPhosphorus 671 56 BaSulphur 672 57 LaChlorine 673 58 CeArgon 674 59 PrPotassium 675 60 NdCalcium 676 62 SmScandium 678 63 EuTitanium 680 64 GdVanadium 682 65 TbChromium 684 67 HoManganese 686 68 ErIron 687 71 LuCobalt 688 73 TaNickel 690 74 WCopper 692 76 OsZinc 696 79 AuGermanium 698 82 PbArsenic 702 83 BiSelenium 703 90 ThRubidium 705 92 UStrontium 706 93 Np

Yttrium 708Zirconium 712Niobium 719Molybdenum 720Rhodium 726Palladium 727Silver 728Cadmium 730Indium 732Tin 734Antimony 743Tellurium 744Iodine 746Caesium 748Barium 750Lanthanum 753Cerium 754Praseodymium 756Neodymium 760Samarium 766Europium 772Gadolinium 774Terbium 776Holmium 778Erbium 780Lutetium 783Tantalum 784Tungsten 786Osmium 788Gold 792Lead 794Bismuth 798Thorium 800Uranium 802Neptunium 806

Hydrogen

1000

500

ZOO-

100

50

21

3 S

1 Mono

\

10 20

EY

80Ar46

\ '$ZSO 100

(MeV)

o(r,pl with different theoretical estimates

H

CN

GPG2N •

GNP •

G2P *GA «

» - 1 ( 9 9 . 9 9 ) A

1 2 .I p

p

II

=

2

2

2

2 (O.

S

10.61

015)

mln, 3

A =

6.3

' 8.5

8.5

8.5

M

3 (»)

s10.61

s10.61

min, 3

min, 3"

0

(mb)

3.2

2.1.

1.6

0.8

— " I • • • • - •

a)-

0

(mbl

1.6

12

08

0.4

0

I ' i

-

if

P

bl "

"1 . 1 .

0

(mbl

1.6

1.2

0.8

O.i.

, 1 1 , - — • . • | -

-

-

l7.nl,' ',<7.2nl . i

1 1 •

Cl

-

i »

0 6 12 16

Ey (MeV)SH Mono 81Fa1

21.

a) o(Y,ntlb) o(Y,nlc) o(Y,2n)

with differenttheoreticalestimates

>

5

ON

J

00

Helium0

(mbl

a

(mbl

a

(mbl

3.2

2.4

1.6

0.8

1.6

1.2

0.8

0A

1.6

1.2

0.8

0.4

0

I I

-

/'£•—-

(T.dlC '<-r.nl i

-

-

V

h.d i ' (T.nl ,

-

w•(

1 ' 1 •

al "

i '

bl .

-

-

i . i .

cl 1

-I . I .

• O(Y ,n) compared w i th

O 74Be1 (Ntonol, —63Go13, 6SFe5 (Brcmsl61Ge1 (nremsl

0 6 12 18 21.

EY (Me\O

'lie Mono 81Fa1

ai o(Y,nt

b) o(Y.d)

cl o(Y,n)

with different

theoretical

estimates

O?8

>

3O.• omH

enO

5 10 15

EY (Me\O

'He 79Sk101

(inbi

32 31.

"He Mono 71Be1

o o(r,d) inverse reaction

-n-6SFeS, • 71Wo8, X 7)Ku5,

• 73TH3, T 74Ma5, ---70Ba1

O(Y ,p) inverse reaction 70MeS

O(Y ,n)

(1 )"0.5

0

1.5

(mb) «

0.5

0

1.5 ro

(mb) <••

05

020

/

/

t

I1

- ii.-i N

. 1

M. ^

. (

' t (•

il ''I i- *

" I ' , 1

IT P") h.2M

**«

• • [ • • I

a) .

b) •

•J r"

cl

30 40

o

(mbl

1.6

1.2

o.e

0.4

a) ft

/I/7

I J/ \

hby

\pI

20 24 28

EY (MeV)

32

"He Mono 80Be1

"He 80Bel6

O(Y ,n) theoret ical cross-sect ion:

a) based on the CCRM-I spectrum

b) based on the CCBM- 11 spectrum

• data from 74Ch5 (Mono)

• data from 72Do8 (Mono)

o

2

Sa•nmin5800(/>O

ASIFel, ~ 66Fe7, * 71Be1

and V 63Zu1 (inverse reaction)

b) X °(Y»no) compared with

fc72BeS, O 75Ir16, a 73Ma13

c) X O(Y >'H) compared with

• 68Go13, A 78Ar17,

• 77Ba7, • 72Do8

"He 81Ci45

Best estimates of the total cross-section data of

a) O(Y ,p)

b) o(Y.n)

from 80Be1 (Mono!

and 81Wai (inverse reaction)

7U 28 32

Ey (MeV)

"He 80Be16

O(Y,p) theoretical cross-section:

a) based on the CCRM-I spectrum

W based on the CCRM-II spectrum

• data from 70Me5(inverse reaction)

JO

He

GHCPG2NCNPG2PGA

A =

7.75.5»7.77.7»

3

H

s

s10

(0.

.61

00011)

mln, 0"

A =

20.619.828.326.128.3«

4

S12*S10

(100)

.3H6y, B"

.61 mln, 6"

Lithium

a

(mbi

1.6

1.2

0.8

0.4

00 M

0

(mb)

1.6

1.2

08

F

a)

b")

8 12 16 20 24 28 32

120

dodtt 80

(ub/sr)40

0

0.60.4

*° 0.2dn 0

(gb/sr) o.z0

-0.2

. , 1 1 , M b) •

c). . ' i p 1 i i , i .

12 16 20

EY (MeVl

6 l.i Brems 79Ju4

a) Ao °(Y,p)b) a , o(Y,p)

MeV

TlO

2

so

o

'Li Mono 75Be6 , 65Be8

dodn

(nb/srl

e

6

4

2

Q

albic)

Li

°(Y,n

o(y,n

o(y.2n

\

5

Brems

l

+o(y,pn)

l+o(Y.p2n)

LVX10 15

Ey (MeV)

79Ju4

20 25

Ey (MeV)

6Li Brems 79Ju4

>7)

8=90 MeV o(Y,a) 6=90" MeV

ast

do «o

dft 100

(ub/srl 60

6 0

40

20

18

I,K

22

\

bl

\ .

TOs,

(pb/sr)

22 26 30 3* 18 22 26 30 3t

EY (MeV)

6 Li Brems 79Ju4

al 8=90°o(Y,tl nm r L X = 3 5 M

bl AO o ( Y , t l

c) A1 o ( Y , t l

dl A2 oCy. t l

- ^ (»,£)- £ /(,(£) (cos 0)

-.<0<£)[l+j>,(EI/;(coS(x]. ' | , i Mono 75Be6

blcl

1.5

1.0

0.5

1.5

(mbl1.0

0.5

1.5

0.5

- * . • • * — - • • ' — i — * • — - 1 —

al

• I - - I " . .

bl

'.1 •

c l

22 26 30

z3a.

M

enVIOZ

(MeV)

do

dn

100

(pb/srl 50

An

dn

(pb/srl

do

dn(pb/srl

0.6

0.40.2

0.2

-0.2

\

1

» '

a)-

\ •

,illhlU 1

cl •

111

' L i

a l

blc l

15

EY

Brems

Ao

a i

a 2

o ( Y ,

O ( Y ,

O ( Y ,

20

• (MeVI

79Ju4

pi 0

Pi

Pi

25

do

dn(pb/sr)

do

dn

(pb/srl

do

dn

{pb/srl

to

20

ft

1.0

0.5

00

-0.5

-1.0

'••I

ii

-

11 i

1

' . "

' , 11

t- al

+ ++ '"""l" „, + '

bl .

M i l l l H I 1 ' 1 •

• I l j | l | | l l | | h .

12 H 16 18 20 22

EY frfeVl

' l . i Brems 79Ju4

al Ao o(Y,dl E =28MeVmax

- | - Results from 75De14

bl ai o(Y,dl

cl a2 o(Y,d)

99

646 FORKMAN and PETERSSON

' i

• * 9

D D O D

< <

'n 2

Ov. ° «* -*

7Li Brems 79Sk1

o triton data 9=90°X alpha data

— cluster theory T30C 3 capture data from 61Gr16

4 6 6 10 12 14 16

Ey (Me\T)

79Sk1

Even Legendre coefficients from leastsquares fitting of the data to

Dashed Line indicates the E2 strength

in the a-Jll cluster model of 79Sk1.

L i

GNGPG2NCMPC2PGA

A = 6 (7.5)

5.7 »1.6 •

27.2 "3.7 S

26.1 •1.5 S

A

710121133

2

S

.3

.0

.9

.8

.5

.5

7

S0»»it

12

(92.5)

.8081s, B"

.316y, 8"

79Sk1

Odd I.egendre coefficients.Known negative parity statesin 7Li are indicated.

"8

w

Beryllium

Be

CNGPC2NGNPC2PGA

A =

1.716.920.618.929.32.5

9

6053S»«

(100)

•7E-173,.8M0s,.29d, EC

2a8"2a

a

(rabl

(mbl

'Be

a)

blc)

Mono

o(Y,nl

o(Y,nl

O(Y ,nl

7SKnS

• o(Y(pn) + 2o(Y,2n)

+ o(Y,pnl+2o(Y,2nl

+ o(Y,pnH2o(Y2n)

0

(mb)

751 Iu5

72Th5

7

6

5

4

3

2

1

026 28 30

EY (MeVI

32 34 36 38

650 FORKMAN and PETERSSON

I

oa:

12 I t 16 18 20 22 24 26

EY (MeVl

l l B Brems 73I Iu5

o(Y,n)+o(Y,pnH2o(Y,2n')

B A = 10 (20) A = 11 (80)

8.H 8.5E-19s, p2a 11.5 SCNCP 6 . 6 SG2N 27.0 0.772s, 8*2aCNP 8.3 6.7E-17s, 2aC2P 23.5 0.811s, B"2aGA 4 . 5 S

11.2 1.6E+6y, 8"19.9 8.5E-19s, p2a)8.0 S30.9 0.1783s, 8 " , 8"n

8.7 S

1.0

d_? 0.5

Cub/sr)

10 15 20 25E Y (Me\O

10B Brems 78Ta41

a)

do3n io

( ub / s r l 5

010 15 20 25

EY (MeVl

1 1 B Brems 78Ta41

(Y.do)

Carbon

22 24EY (Me\T)

l 2 C Mono 75Be6 , 66Lo1

o(Y,nJ

26

6

0

Cmb)1-

2

0

1

/|1I1

/

1 ft

h

ri'4'i'i "Aijiii

Hi

•1 1 II 1 1 1 1 1

A 1 1 ill/H i . " I1!

«(W) 22 26 30

Ey (MeVl

a °

(mbi 4

2

0

8

6o

Cmb) 4

2

0

0.8

0.60

(m!>) «•*

0.2

0.0

T f\ :

• • /

"i—I—1—I—1—I—1 X 1—I—I—I—1—I—1—I—r-

blX

i-y

c)

IT. PA) T T IT. 1"!

4 8 12 16 20 24 28 32 36

EY (Me\0

ON

to

11O

WHtn

IZ

13C Mono 79Ju1

2C Mono 75Be6 , 66Ri1

a) oC

bl of

c l o CY , 2nl+o (Y ,p2nl

(mb)

26V. 26

EY (HeVO

*C Brems 76Ca1

• o(Y,pl assuming ground statetransitions only.

Theory:

71Bi13

72Ms8

72Bi5

73Ms5

73Be142

73Ms4

13C

IIIf

Brems

o(Y

O( Y

O(Y

.Pi

.Pi,Pl

83Zu1

64De18

57CO1

o 6(mbl ,

u2

020 22 24 26

EY (MeV)

A = 12 (98.89) A = 13 ( 1 . 1 D

GN 1 8 . 7 2 0 . 3 8 m l n , B \ EC M.9 SGP 16.0 S 17.5 2 .03E-23, 0 " , B"aG2N 31.8 19.151s, B* 23.7 20.38 rain, B \ ECGNP 27.1 S 20.9 SG2P 27.2 1.6E+6y, B" 31.6 13.813, B", 6"oGA 1A 6.7E-173, 2o 10.6 S

"0

en

3 -

Nitrogen

(nfci

10 12 H 16 18 20 22 24 26 28 30

(mb)

Cmb)

(mb)

"N Mono 75Iic6 , 70Bo1

12 16 20 1U 28

EY (Me\O

^N Brems 83Ot47

c l l " N ( Y , P 7 S S M e V ) l I C

l

o2za

w8

(mbl

16

8

0

- a l •

li 1

Mi ^i.

(mbl

16

8

- J\Fl£n)

1

T(T. 2n|

bl -

1 ll'll'l

(mb)

u

2

0

-

-

T IT.")I

/W'lf(7.2nl

1 1

cl

-

I" ' ' I I ,• I ' l ' l . l

1 1

10 15 20 25 30 35

EY ( M C V )

Mono 82Ju1

10 15 20 25

EY (Me\D

' "N Brems 78Ta41

A = (99.63) A = 15 (0.37)

CN 10.6 9.963 min, B*CP 7.6 S

10.8 S10.2 5.73OE+3y, 0 '

1 6 *7 S 5 . 7 3 3 y ,

C2N 30.6 1.O95E-2S, B*. S*a 21.1 9.963 mln,8CNP 12.5 S

G2P 25.1 2.03E-23, B", B"aGA 11.6 S

18.1 S31.0 1.733E-2s, B", B"n11.0 S

al c(Y,nl+ o(Y,pnl + o(

bl oCY.nltoCY.pnl + oC

cl o(Y,2nl+o(Y,p2nl

,2nl

Oxygen

(mb)

15

" 0

a)

Mono

20

EY

83Be1

4 o(y.1n)

25(MeV)

30

— o(Y,1nl combined resul t from

64Br1 and 80Ju1

o(Y,1nl 75Kn9

10 • o(Y,1n)

O o(Y ,1n) 82Ca5

— o(Y,1n1 74Ve5

o

(rab)

6o

(mb) 4

o

(mb)

1 80 Mono 79Wo1

a) O(Y ,p)

c) o(Y,2n)+o(Y.p2n)

\—i—I «—1—I

a)

'VI |

Tll.nl Tlr.3"l T|,.p) TlT.3"1 '

I I I I I I I I I I I I I I I I I

Tl7.nl T(T.*>> Tlr.pl T <7.J"I

-+-t-t-HH-i I i I i I i I i I i

TlT.2"! Tlr.Pl T It.I

10 K 18 22 26

EY (Me\0

30 31 38

•nOjo

O

PIwjoCO

O

160

do 12°

dn

(ub/sr)80

• ' V I )ij I l I12 16 20 2t 28 32

Ey (Me\O

" 0 Brems 79Jo1

E . 9x

for (Y,n

1 ( 0 Brems 82Ba5

lilt O(Y,P)

O(Y ,p) 79Wo1

5

- J

O NLAOO

(mbf0.6

01.

0.2

ft

—T—

•1-

-

1

I

1 ' 1 ' '

-

1 .

' • • • • . .

1 . 1 '. • . . .

23 25 27Ey (Me\T>

" 0 Brems 82Ba5

O(Y ,d

mb)'0.3

0.2

0.1

Q

- ^

-

21

" 0

i i 1 1

^* ' •l l i ' i' - >

22 23 24 25EY (Me\O

Brems 82Ba5

connects data points O(Y , t )

from 24 MeV measurement.

o(Y,t) from 32MeV

measurement.

20 22 24 26

E Y (MeVI

l e O Breras 82Ba5

El

E2

0

CMCPC2NCNPC2PCA

A =

15.712.128.923.022.3

7.2

16

1S

70S5S

(99. 76)

.221E*2s, 8 \

.59s,

.73OE

8'

+3y, B"

A =

EC IJ.113.819.816.325.3

6.M

17

S7.1.s2.S

(0 .

13s,221E

15s,

04)

B", B"a+2s, 8*.

8"

A =

8.015.9

EC 12.221.829.1

6.2

18 ( 0 .

S4.17s,S7.13s,0.75s,5.73OE

20)

B",

B",B"n

•3y,

B"n

8" a

B

3ns>zai)mHm

cnOZ

Fluorine

EY (MeV)

F Mono 74Ve5

• O(Y ,nt)

* o(Y,2n)+o(Y,p2n)

(rabl

l ' F Brems 83Ke36

"H. <<Y,pol

II o(Y,pi)

F

GNGPG2NGNPG2PGA

A =

10.18.0

19.616.023.9

4.0

19

1.S

61.S4.S

(100)

O97E+2 rain, B\

50s, B*

174a, B", B'n

EC

>

ON

Neon

(mbl

(mb)o

,'v20 24

Ey (MeV)

20Ne Brems 81A15

28

Mono 74VeS

al Ne natural

• o(Y,n)+o(Y,pnl

A o(Y,2nl+o(Y,p2n)

bl " N e

A oCY,2n)+o(Y,p2n)

•nO

Zvaa.

m

C/l

OZ

20 22

EY (MeVl20Ne (e.e'pl 620n1

(Y,p) 6=76°

Ne A = 20 (90.51) A = 21 (0.27) A = 22 (9.22)

GN 16.9 17.22s, B*, EC 6.8 S 10.1 SGP 12.8 S 13.0 11.00s, B~ 15.3 4.35s, $"G2N 28.5 1.67s, 0* 23.6 17.223, B \ EC 17.1 S-CNP 23 .3 1.908E+2 n i n , B*, EC 19.6 S 2 3 . 1 1 1 . 0 0 s , B"G2P 20.8 S 23.6 26.76s, B" 26.1 13.5s, B"GA 1 .7 S 7 . 3 S 9 . 7 S

Sodium

(mb)

29

a l Na Mono 74Ve5

A o(Yf2n1*o(Y,p2n)

Na

GNGPG2NGNPG2PGA

A =

12.18.823.519.221.110.5

23

2S22S1S

(100

.602y

.17s,

.35s,

.0)

, B*, EC

8*

B~

o

(mb)

0

Onb)

a

fmb)

16

12

4

0

16

12

A

1,

Q

2

1

HI*

j,'!

i

[Jn)

n |, 1l| 1. l l l l l l> 1',>,,"/'

1

uu'i i|,u'n<iV' ' V '

,1

a)

«l

'l'1 '

b)

•i'V

l.'l"1

2 16 20

EY (Me\O

2>Na Mono 71A11

a) o(Y,n t l

bi o(Y,n)+o(Y,pn1

c) o(Y,2nl«)(Y,p2n) O

Magnesium

(mb)

20 22 24 26

Ey (Me\O

21lMg Mono 75De6 , 71Fu1

o(Y,nl+o(Y,pn1

(mb)

20

10

a)

t t k ,

20

10

bl

- jM -• • i 1 i . . . L . . . .

20 25 20 25

0.6

0.5

0A

0.3

0.2

0.1

n

|—1—i—r

-

\v

—>—i—i—i—i—i—>-

s: ^---

28 30

13 15 17 19 21 23 25 27

"Mg Brems 83RyS

-(Y.po+Pil 8=90"di)

—(Y.Pol 6=90° 68DC105dfl

(mb)

ON

O

>2

mm

CO

O

( M O V )

Mg isotopes Brems 74VaS

al2*Mg o(y,xpl 64Is13

bl26Mg o(Y,xpl

do35

(pb/srl

300

200

100

ny

eoo

600

400

200

ft I

-

I

1 4

1 1 1 f L.

••

1' 1'IVH '••I V L*\ /

T . I , i*—r

' ^

• • . • • • •

T- , 1 i

al '

-

1

j j i -•

bl

-

1 * 1

Brems 83Ry5

16 20 24

EY (MeVl

b l • — ( Y , O Odn

Cmb")

17

24

16

V

0

IB

11 in "i in"1 in1'11'1''| j I j l " Ji * j f j i» '

( r ! - l 1 ' . . . . . '(r:'p) .

• bl/ l l l l -

1 .

1;

(mbl

14 18 22

EY (MeV)

a) ^ r , odn

=90dn

6=90

6=90 75KuI

25Mg Mono 75Be6 , 71A11

bl o(Y,nl + o(Y,pnl

cl o(Y,2nl+o(Y,p2nl

3

OSON

664 FORKMAN and PETERSSON

£ 5

"-£•*•

Mono 75Be6 , 71FU1

bl oCY.ni+oCY.pni

cl o(Y,2nHo(Y,p2nl10

Mg

GNGPG2NGNPG2PGA

U

A =

16.511.729.721.120.59.3

24

11S•\

2Ss

IB

EY

22

(MeV)

(78.99)

.33s,

.8573,

.6O2y,

8*

B*6*. EC

A =

7.312.123.919.022.6

9.9

26

25

S15.11.S

37.S

(10.

030h33s,

6s,

00)

, B"

B"

A =

11.111.118.423.224.810.6

26

S60sS

15.3.S

(11.01)

i 8

030h, 8"38 mln, 8

so

as

Aluminium

17 I9>20 23

(MeV)

2 7 M Mono 74VeS

o(Y,2n)+a(Y,p2n)

29

7A1 Mono 75Be6 , 66Fu1 2

a) o(Y,n t)

bl o C . .p

c) o(Y,2n)to(Y,p2n) v i • i • -i . H . i

12 „•., 16 20 24 L, 26 32 36

O

G0sCL

tn73<siVI

O

EY (MeVI

2TA1 Brems 81Is14

0.3

0.2

0.1

0

0.60.1

0.2

0

0.15

0.10

(mb/srl 0.05

0

0.2

0.1

do

(Y,pdn

Transitions to different levels in 26Mg

al 0 MeV bl 1.8 MeV cl 3.0 MeV

d) 4.4 MeV e) 6.6 MeV f) 8.5 MeV

gl 11.0 MeV M 13.0 HeV

00.08

0.04

010

cl

e)

20 25

(MeV)

Al A = 27 (100)

GN 13.1 7.l6E+5y, 8 \ EC6 . 3 6 s , B*

GP 8 . 3 SG2M 2H.M 7 . 1 7 1 s , B*CNP 1 9 . 1 SG2P 2 2 . 1 6 0 s , B"GA 1 0 . 1 S

27Al Brems SIRyS

al -°(Y,p..ldn

b) ^ ( Y , P , 1

dn

cl MT.PI Idf)

dl ^ ( Y . P i ldn

el ^-a(Y,poldn

e=90

8=90°

6=90°

e=90°

e=90°

5

OS1

668 FORKMAN and PETERSSON

o

ICO

ou

S ss

-i

15 20 ?5

EY (MeV)30

c) s oSi Mono 83Py1

82Od5

?0 23 26

EY (Me\O

29

•c

I

2 " S i Mono 74VeS

O(Y >n1 + o(Y ,pn) energy resolution

E=18O keV.

o(y ,nl + o(Y ,pnl energy resolution

E=350 keV.

0

(mb>

(mb)

abs x-170

20 2

EY (Me\O

2"Si tagged photons 83Gu1; 75AhS

O(Y ,tot)

30Si Brems 82Od5

o(y ,xn) no correction has been made

for double counting from the

o(Y,2nl reaction

Cmbl

--4

o

21 23(Me\O

2"Si annihilation Y 83Be47

O(Y,PO)

•nO73

2

Z

Sa•omm

VI

O

10 11 12 13 H 15 16

E Y (MeV)

'"Si Brems 82Od5

O(Y ,nl

SI A * 28 (92.23) A = 29 ("4.67) A = 30 (3.10)

GN 17.2 1.11s, B*CP 11.6 SG2N 30.5 2.21s, B*GNP 21.6 7.16E+5Y, B \ EC* 20.1 SG2P 19.9 S 21.9 9-16 min, 8~GA 10.0 S 11.1 S

8.5 S12.3 2.2t nin. 0"25.7 t.113, B*

10.6 S13.5 6.56 mln, B"19.1 S22.9 2.21 nin, B"21.0 20.93h, B"10.6 S

Phosphorus

15

0

(mb)10

5

0

J /.. J* /20

Ey (MeVl26

" P Mono 74Ve5

• o(Y,nl+o(Y,pn)O o(Y,pn1A o(Y,2n)+o(Y,p2nl

A= 31 (100.0)

CN 12.3 2 . 5 0 m i n , B*, ECCP 7 . 3 SG2N 23.6 1.15s, 8*CNP 17.9 SG2P 20.8 6.56 m l n , 8"CA 9.7 S

12 11, 16 18 20 22

E Y (MeVO

" P 74De4

a) o(Y,xnl Brems 69Is22

b) 0(Y,xn) Mono 73Be42c) O(Y ,xnl Brems

"0

5

Sulphur

(mb)

121 -IY.nl

"*S Brems

o(Y,nl + o(1

16

84As5

r,2nl+

EY

O(Y

20

(MeV)

,pnl

28

" S Mono 74Ve5

oCY,nl+o(Y,pn)

O o(Y,pnl

• o(Y,2nl+o(Y,p2n1

J"S Brems 84As5

16 20~IY-2nl 24

EY (HeV)

28

itO

Sa

3rojoC/JCO

O

A = 32 (95.02) A = 33 (0.75) A - 31 (M.21) A = 36 (0.02)

GNGPG2NGNPG2PGA

15.08.9

28.121.216.26.9

2S12SS

.61s

.22s

.197

, 0*

, 8 'mln, 8*,

8.69.6

23.7EC 17.5

18.27.1

S112S2S

.282d,

.61s,

.62h,

8"8'

8"

11.110.920.121.020.17.9

S25S

116S

• 30d,

.282d

.50£*

8"

, 6"2y, 8"

9.913.016.921.525.09.0

87.Id,17.5s,S

12.1s,2.8s,6.5OE+

B"8"

B"8"2y, 8"

Chlorine 20 •

10 •

Mono 74VeS

a) Cl naturalb) " C l

' "lY.-^aiY.l'M; ( m b )

' o(Y,2nl+o(Y,p2nl ' 0

10 - 99

Cl A = 35 (75.77) A = 37 (21.23)

GN

GPG2NGNPC2PGA

12.6

6.121.217.817.37.0

1.53s,32.0 mlnS2.51s,S

25.3Od,S

0*- e\8*

6"

10.3IT

8.118.918.321.17.8

3.OOE

SS

87 . Id ,17.1s,25.30d

+5y, B

0"B"

EC, 8*

ON

Argon

(mb) 20

20o

(mb, ^

012

" 8

(mblt

o

(mbl

J

; vdl

30

(mbl20

ONo

"°Ar Mono 74Ve5

Ar

GNGPG2NGNPG2PGA

A =

15.38.5

28.021.211.96.6

A

36

1.S0.1.SS

> o(Y,2nl+o(Y,p2nl

(0.

77s,

8>(s,53s,

3«>

B*

B*B*

A =

11.810.220.620.618.67.2

38

35SS3SS

(0.

,02d

.OOE

06)

, EC

+5y, B", EC, B*

>

a

v>{SI

O2

""Ar Brems 83Su5

al (Y,n)b) (Y,2n)O (Y,P!d) (Y.dJ+CY.nple) (Y.T)

Ar A = 1(0 (99.60)

GN 9 . 9 2 .69E+2y , B"GP 12 .5 5 6 . 2 mln, 8"G2N 16 .5 SGNP 20 .6 37.29 mln, B"G2P 22 .8 1.696E+2 mln, B"GA 6 .8 S

EY (MeVl

Potassium

"K Mono 74Vc5

• o(Y,2nl+o(Y,p2n)

O o(Y,pn)

(mb)

17 K. 2 0 2 3 «» 26 29

JO

A = 39 (93.26) A = 1)0 (0.01) A = f i (6.73)

GN 13.1 7.61 min. B* 7.8 S

GPC2NGNPC2P

6.1)25.218.216.6

0S1

35S

.93s,

.233,

.02d,

B

B*EC

GA 7.2 S

7.6 2.69E+2y, 8'20.9 7.61 min, B*1H.2 S18.3 37.29 n i n , B"6.1 3.00E*5y, B", EC, B 6.2 S

10.1 1.28E*9y, 0", EC, 8*

7.8 S17.9 S17.7 2.69E*2y, 8"20.3 56.2 min, 8"

Calcium

(mb)

:sH,

Mono 74Ve5

o(Y,n)+o(Y,pn)

110

90

70

50

30

10

0

(mb) 2 0

10

0

10

W t»o-i—5"10

50

20

10

0

i i i i

" /

15

r^o.U

i i i i i i |

a) --

f"\ ::/ \f \\_.

20 M 25-

, • • » * • ' •

/ \

c)

jf'iit f )

ON—JOS

15 20 25

Ey (MeV)

"Ca Drems 74Br1

a)-—o(Y,n t)+o(Y,p ) 68Be205

IIH64Ba5

O

>2:3a.i>PIHTOininO

(mb/srl

"2Ca Brems 81As5

al

bl (Y ,p l 75'J-hi 1

60

o "

(mb) 20

012 14 16 18 20 22 21! 26

EY ( M C \ 0

""Ca Brems 77OiS

a) o(Y,n)

Ca A = HO (96.91) A = H2 (0.65) A = M3 (O.1H) A =

b)

cl

d)

e)

fl

(90°)

do

a

0.8

0.6

0.4(mb/srl

0.2

0

al

20

69Wu13

2622 24

H Y (MeV)eCa Brems 78Th41

al (Y,pl (90 1 E >28 MeV

bl (Y,PO) (90°)

t

(2.09) Ca A = 16 (0.001) A = 18 (0.19)

CNGPG2NGNP

G2PGA

15.68.3

29.021.1

11.77.0

O.863,S0.139s,

8*

8*7.61 mln. 8*0.93a,SS

B*

11.510.319.820.1

18.16.2

1SS1

S

s

.03E

.28E

•5y, EC

+9y, 8", EC, 8*

7.910.719.118.2

19.97.6

S12.36h,1.03E+S

1.83h,2.69E+

B"5y, EC

B"2y, B"

11.112.219.121.8

21.68.8

S22S12

32S

.2h,

.36h,

• 9y,

8"

8"

8"

CNGPC2NGNPG2PGA

10.113.817.822.7•11.1

120S221132

.651E*2d, 8mln, 8

.2 mln, 8"

.87 mln, B"•9y, 8"

9-915.817.221.229.111.1

1.51d17.5s,S1.15EN

11.87

, B8"

+23, B~

mln, 8"

Scandium

(mb)

11 K 17 20 23 26

Ey (MeV)

(Mb)

O

>2

a•vmmonenO

"'Sc Mono 74Ve5 " S c Brems 82Ry1

O

A

o(Y,nt)

do

dn

(mb/sr)

Sc

CN

GPC2NGNPC2PGA

A =

11.3

6.921.018.019.)7.9

U5 (100)

3.93h, B*.2.lid, IT,S3.88H, 8\S22.2h, B"S

ECEC

EC

"5Sc Brems 77Oi5

a) (Y,P) C90")

W ( Y , P 0 H 9 0 ° " I do

dn(ub/si)

1.5

1.0

0.5

a • ••0- • — ! - - • .

b e-so*

k12 14 16 IB 20 22 24 26

EY (MeV)

t

J

Titanium

•"Ti Brcms 79Py5

a) (y,n)

b) (r .p) 8=90° E >2.7 MoV

O (Y,PO+PX) 8=90°

d) (Y.OO) 6=90°

o

(mb)

dodfl

dodn

dodn

(pb/srl

30

20

3.0

2.0

(mb/sr) t.O

OA

(mb/sr) o.2

80

°2

ON00O

'•'mi

bl

• • - • • +

cl

37i71

3ammc/i[/iO

iji rh rfi r-r-r-r-i20 22 2418 20

EY (MeV)26

C..0 -

18.0 -

(nb) »••

16.0 •

0.0

2.8

do 2 '

* 1.5

0.5

0.0

I 11

A$

/

KiV

a)

% '

Ibl

1 , *

11 V. 17 20 23 26 29E Y ( M C V )

"'Ti Brems 80SuS

a) (Y,n)

10 12 16 18 20 22 24 26EY (MeV)

5 0 Ti Brems 79!>y5

a) o(Y,n)+o(Y,2n)

b) O(Y,P)

f

b) 6=90°

T i A = 16 ( 8 . 1 ) A = 17 ( 7 . 1 ) A = W ( 7 3 . 8 ) A = H9 (5.M)

CN 13.2 3 .08h , B \ ECCP 10.3 S

C2N 22.7 18 .2y , ECCNP 21.7 3 -93h , B*. EC

2. l ) l )d, I T , ECC2P 17.2 SCA 8.0 S

8.9 S10.5 83.8Od, 6"

18.7s, IT22.1 3.08h, B*19.2 S

EC

18.79.0

1.651E+2d, B"S

11.6 SU.I 3.4?d, 6"

20.5 S22.1 83.80d, B'

18.73, IT19.9 S9.1 S

8.1 S11.ll 43.67/1,

19.819.6

S3.12d,

20.8 1.51d, 0"10.2 1.651E+2d, B"

Ti

GNCPG2NGNPG2PGA

A =

10.912.219.122.321.810.7

50

S57.

S13.

SS

(5.3)

0 mln, B~

67h, B"

Vanadium

00

to

80

0 60(mh)

M>

20

0

80

(mb) ,- ,i

a)

,2N)

b)

'l1

" ' I I I"'III

-

--

' H l i i l l l i

(mb)

51 V Mono 74VeS

Ey (MeV)

26

O

Zws

tnJOenCO

OZ

A o(Y,2n)+o(Y,p2n)^ o(Y,2n)+o(Y,pn)

10 12 V. 16 18 20 22 2<, 26

Ey (MeV)

" V Mono 75Be6 , 62Fu1

a) a ( Y , n t )

b) o(Y,n)+o(Y,pn)

c) a(Y,2nUo(Y,p2n)

V

GNGPG2NGNPG2PGA

A =

9.37.9

20.916.119.39.9

50 (0.25)

3.27E+2d,S15.98d, ECSM3.67H, B"83.8Od, B"18.7s, IT

EC

, B*

A =

11.18.120.M19.020.210.3

51

H

s3S573

(99.75)

.27E+2d, EC

.0 mln, 0"

.M2d, 8"

"0pa

00

684 FORKMAN and PETERSSON

"6o

•i

dfl

(mb/srl

0.3

0.2

o.t

0.013 17 21 25

EY (MeVl

HCr Brems 79Ts5

I — (Y.p.+pil (90°)

— - o(Y>nl 77Sht2

o(Y,p1 75TO35

Cr

GNGPG2HGNPC2PGA

A =

13.09.6

23.621.116.38.6

50 (D.35)

1)1.9 n l n , B*, EC3.27E+2d, EC

21.56h, EC15.976d, EC, 6'SS

A =

12.010.521.121.618.69.1

52

27.SS»Ss

(83.

701d

79)

, EC

A =

7.911.120.018.120.1

9.1

53

S3.

27.S5.S

(9.50)

716 n l n , B"701d, EC

80 min, B~

A =

9.712.117.720.922.0

7.9

51 (2.36)

S1..60 mln, B*S

3.1.S

.716 mln, 8"7 rain, 8" 5

00

Manganese

0

(mb)

0

(mb)

80

60

40

20

60

60

40

20

0

/A,,J ^

Xf\ . (».»•)' '(Mil) _

V :......

II

"V1 I1 (r,3

1 ' 1 • 1 • 1 •

a)

-

-

i1 ii U | i l -

. ' ' ' • ' • I . . .

b)

"! .110 14 16 22 26 30 34

Ey (MeVl

OS00O\

(mbl

(MeVl

Mn A = 55 (100)"Mn Mono 79A11

al

b)c)

el)

O(Y

O(Y

O(Y

O(Y

n 1

>n)+o(Y,pn),2n)+o(Y,p2n)

,3n)

GNGPG2NGNPC2PGA

10.28.1

19.217.820.1

7.9

3S3S1S

. l21E+2d

.7l4E*6y,

.60 mln,

, EC

EC

8"

O73

S

a•V

mm9VI

O

Iron

50

o

Cmb)30

13 15 17 19 21 ?3

5"Fe Brems 78No12

60 -

(mb)

(,0 -

20 -

-

i

_i

/AAi

\

\

\

\

17 19 21

Ey (MeV)

23

'T-e Brems 78No12

| °(Y,p) experimentO(Y,P1 calculated with isospin effectsO(Y,P^ calculated without isospin effects

Hf

Fe

GN

GPC2NGNP

G2PCA

A -

13.1

8.924.120.9

15.148.4

5M (5 .8 )

8.51 mln, B \ EC2.53 rain, IT3.7ME*6y, EC8.275h, B*. EC5.591d, EC. B*

21.1 mln, B , EC, ITSS

A =

11.2

10.220.520.1

18.37.6

56

2.

SS3.

SS

(91

68y,

122E

.8)

EC

+2d, EC

A =

7.6

10.618.817.8

19.67.3

57 (2 .

S

2,2.S

3.s

.58h,•68y,

1)

8"EC

.52 mln, B"

A =

10.0

11.917.720.6

21.57.6

58 (O.3)

S

1S2,

5,S

.51 mln, 6'

,58h, 8"

.91 mln, B"

688 FORKMAN and PETERSSON

4reo

O D O D

(II*)'

35

30

25

,20 h

15

10

5

0

Co

GN

GPG2NCNPG2PGA

A =

10.5

7.119.017.U19.37.0

59 (100)

7O.78d, EC,9.2h, ITS2.717E*2d,S1.51 mln,S

EC

B"

8

60

(mb)*

0

c)

: / ' % , ' ' , illl' " ' " ' " • ' " ' ^ T < " 1 1 ' ' "

d)

ib linn i1i i i i i i i i i i i i i

-

- >90

10 12 I t 16 1B 20 22 24 26 28 30 32 34 36

690 FORKMAN and PETERSSON

•i

-a;u

m CMm e * . —

•i

•Hi * « , 7SB* , 74R.1 " H i Mono 75W . 74B.1

a) o(Y,n )

c) o(Y,2n)+o(Nl

GNGPG2NGNPG2PGA

A =

12.28.222.519.611.26.D

58

362678SS

(68.

.Oh,

. lOd,

.76d,

27)

EC,

ECEC,

B*EC

B*

Nl

GNGP

G2NGNP

G2PGA

A =

11.49.5

20.1)20.0

16.96.3

60

7S

S709SS

(26

.5E*

.78d

.2h,

.10)

iy, EC, B

, EC, B*IT

A =

* 7.89.9

19.2MA

18.16.5

61

S5107S

44S

(1.13)

•27y, B".5 nln, IT,-5E+I4y, EC,

.56d, B"

B'B*

A =

10.611.1

18.1)20.5

19.97.0

62 (3.59)

S1.65h, B~

S5.27y, B"10.5 min, IT, B3E+5y, B"S

A =

9.712.5

16.520.9

122.78.1

61) (0.9D

1.001E+2y, B~27.5s, B

S1.50 min, B13.9 mln, B'68s, 0"3E*5y, B

70

Copper

a

(mbl

a

(mbl

a

(mbl

60

60

40

20

80

60

40

20

252015

105

- yV.«J

1

a)

' " • ' "

bl

/ \ . | . "

'"iMiiiii,!';

c)-

1 Illllll ll

. l '1 '1 1 ll,lrV.»)

1 . . .

10 12 11 16 18 20 22 24 26

Er CMeVO

80

60o

(mbl w

20

0

25 -

20 "0 15

(mbl ,0

5

I I T

'IMI

-

t • i •

a)

bl

OS

o

10 12 14 16 18 20 22 24

EY (Me\0

" C u Mono 7SBe6 , 68Su1

al oCy.ni

W o(Y,2n)+c(Y,p2n)

tlono 79nz14

o(Y,nl 68Su1

oCy.nl 64Fu1

lO

ns

3a"ammfoeninO

12 16 20 24

EY (Me\0

Cu Mono 75Be6 , 64Fu1

al o(Y,n tl

b) oCY.nl + oCY.pnl

c) 0(Y,2n)+<J(Y,p2n)

(mb)

(mbl

80

60

40

20

80

60

40

20

"v.«i

I'1!1' '^ < a . T —

al

r ^ %

A " :/ \

12 16 20

EY (MeVI

(mbl

40

30

20

10

0

-

IJ,) 12 16 20

EY (MeVI

cl

id i •T' l i . i r

6 ! t u Mono 7SBe6 , 64Ri1

a) o(Y,n t l

bl o(

c l o

(mb)

(mb)

(mb)

U I.,...,

• / \

I1

il'lii,11'

'""X,,

'"mill.

Hl'l11!!!!

al

bl

lull• i i 1

cl

' ' i l l -

8 12 16 20 2t 28

Ey (Me\T)

Cu natural Mono 75Be6 , 64Pu1

Cu A = 63 (69 .17 )

65Cu Brcms 81Sh45

a) OCY ,n)

b) o(Y,p)cl O(Y ,a)

Solid line: calculated

cross-section assuming

isospin splitting (T<(T )

given by Falliero's

formula 71Pa8.

A = 65 (30.83)

CNGPG2NGNPC2PGA

10.96.1

19.716.717.25.8

9S3S1S

.73 min,

• th , B\

.65h, 8"

8 ,

EC

EC 9.97.1

17.817.120.0

6.8

12SS1

.70h,

• 001E-I27.5s, I

1.65h,

EC,

• 2 y ,

3"8"

B ,

8"

B

lOJO

s•zto3a."V

m

enO

a) o(Y,ntl

b) o(

c) o(Y,2n)+o(Y,p2n)

PART 4-1 695

See overleaffor the graphs of zinc

Zinc

6*Zn Brems 70Co8

200 —

160

(Y,n)

(Y,n) + (Y

(Y.pn)

- - (Y,2n)

,pn) + (Y, 2n)

a(mb)

120

80

40

20

T I I I I I I I I I I I I I I I I I

0 I i i i I / I i i i i i i i i i i i i i

8 10 12 V, 16 18 20 22 24 26

E Y (MeVO

60

30

20 25

Ey (MeV)

30 35

12 V, 16 18 20 22 24

HY (MeV)

as

o

S

z3a."ommtoenc/)OZ

•*Zn Brems 73C15Breras 68OwS

(V.P)- - - 6Jai(Y,n)"Qi

6"Zn(Y,n)6SZnZn

CNGPG2NGNPG2PGA

A :

11.97.7

21.018.613.81.0

61

38.S9.9.SS

(18.6)

0 min,

13h, EC73 mln,

8\

. BB*

EC

, EC

Zn A = 66 (27.9) A = 67 (1.1) A = 68 (18.8) A = 70 (0.6)

CM 11.1 2.l|M0Et2d, EC, B* 7.1 S 10.2 S 9.2 55.6 min, 8 ' >11.Oh, IT, §" 2

CP 8.9 S 8.9 5.10 min, 0" 10.0 62.01h, B" 10.9 3.0 rain, 8' H

G2N 19.0 S 18.1 2.11tOE+2d, EC, B* 17.3 S 15.7 S TGHP 18.8 12.7Oh, EC, B \ B" 16.0 S 19.1 5.10 min, B' 19.5 30s, B' **

3.8 rain, IT, B"G2P 16.1 S 17.3 2.5h, B" 18.5 51.8h, B" « «GA I).6 S 1.8 1.001E+2y, B" 5.3 S 6.0 51.8h, 8"

Germanium

40

70Ce Brems 75Mc1

a) O(Y,I»)

b) o(Y,2n)+o(Y,p2n)

c) o(Y,n)+o(Y,2n)+o(Y,pn)+o(Y,p)

(mb)

150

100

50

0

30

20

W

0

150

100

50

0

1 I I

" a)

. • ^ ? _ _

~ b)

-

— • -

-

_ c)

j

i'V.fi,

1 1 1 1 1 1 1 1 1 1 1 1 1 -

-

I \ >j*H{ -

20 30

By (MeV)

1,0

72Ge Brems 75Mc1

a) o(Y,n)

c) a(Y,n)+o(Y,2n)+o(Y,pn)*o(Y,p)

o7)7*.

v3D.•0mHw73in(AOZ

o

150

100

SO

0

40

20

0

150

100

50

0

—i r~

- a)

-J

• b)

- c)

- /

~'\f- f ,

A

i . i . c i

Af \r r

JuxL-'r:"..1"5

1 1 i i

I ! i i

jy I T

• 1 1 1

1 1 • •

-

, i-

:

-

-

\ ^ -

(mb)

150

100

50

0

20

0

150

100

50

0

_ | I

a)-

- /

yi.

-

- /

1 1

/ •f

r.»p>

/

i i

r

1 1 1 1

V... 1 1 <

X*— ' L A

< 1 • <

.!'•"'. 'V

-

• —

1 1 1 1 1 I 1 1

I 1 1 . . 1 • 1

1 ' 1 1

20 30

EY (MeV)

10 20 30 40EY (MeV)

"8

5

7*Ge Brems 75Mcl 76Ce Brems 7SMc1

a) a(Y,n)b) o(Y(2n)+o(Y,p2n1

c) o(Y,n)+o(Y,2n)+o(Y,pn)+o(Y,p)

a) o(Y,n)b) o(Y,2n)+o(Y,p2n)

c) o(Y,n)+o(Y,2n)+o(Y,pn)+o(Y,p)

oo

9 11 19 24 29 34 39

EY (MeV)

6

4

2

0

o 6

Orb) 4

a)

- c)

O50

>

Sa

37)caenO

12 17 22 27 32 37 42

EY (MeV)

'"Ge Brems 73Mc5 Ge isotopes Brems 73Mc5

a) 70Ge(Y,pn)"Ga

b) "Ge(Y,pn)7'Gac) 76Ce(Y,pn)7*Ga

Ge A = 70 (20.5) A = 72 (27.1) A = 73 (7 .8) A = 71 (36.5)

GNGPG2NGNPG2P

GA

11.8.

19.18.15.

1.

55781

1

39.S2.

68.S

S

05h, EC

88Et2d,33 rain,

. B'

ECB\ EC

109

181917

5

.7

.7

.2

.0

.6

.0

11.SS

2 1 .S

S

15d, EC

10 mln, B~, EC

6.810.017.516.518.5

5.3

S11.12h, B"11.15d, ECS2.15'mln, B'3.9h, B~

55.6 mln, B"11h, IT, B"

10.211.017.020.219.9

6.3

Si .s

11.46.

S

86h,

12h,

B"

B"8"

Ge

GN

GPG2HGNPG2PGA

A =

9.1

12.015.920.622.1

7.5

76 (7

82.7818s,2.10S8.25

95s,16.5h

.8)

mln,6"min,

mln,B', B"

B"

B"

B"

3

Arsenic

5As Mono 75Be6 ,69Be101

a) o(Y,nt)

b) o(Y,n)+

c) o(

100

75

(ral)l50 -

125

100

75

° 50

0 * 1 25

0

A3

CNCPG2NCNPC2PGA

A =

10.26.9

18.217.117.95.3

75

17S

80S1|S

(100)

.79d,

• 3Od,

.86h,

EC, B*. B"

EC

B"

o(mb)

40

30

20

10

0

-

-

fr,n>•

-

-

- i.*

'(r.»)

-

-

1,,,

1

/

1

I

i

1

\

'(y,2ii)

• • • ,

ii

iin<

1 '

1

I

i

i j l

L

" .

I

,

' i l l

1

1

\

1

i

'I

—,—ral

ll,l'

''ll11

-

-

-

-

-

11

1 1

o

11O

"am

OZ

19 12 H 16 18 20 22 24 26 28EY OtoV)

Selenium

Se

GN

CPC2NCNPG2PGA

A =

12.)

8.520.719.311.21.1

71 (0.

7.i8h11 mln8O.3Od8.10d

26.Oh,SS

9)

, 8*, IT, EC, EC

e\

, EC, B \ EC

EC

A =

11.2

9.519.219.816.15.1

76

1.

S

s17.SS

(9 .0 )

185E+2d,

79d, EC,

EC

B\ B"

12 14 16 18

Ey (MeV)

20 22

Se Brems 67Co7

o(Y,Tn)

•V

I

Se A = 77 (7 .6) A = 78 (23.5) A = 80 (19.6) A = 82 (9 .1 )

GN 7.1 S 10.5 S; 17.1s, IT

GP 9.6 26.32h, B" 10.1 38.83h, B"G2N 18.6 1.i85E+2d, EC 17.9 SCNP 16.9 S 20.1 26.32h, B"C2P 17.3 82.78 nln, B" 18.1 S

18s, IT, B"GA 5.7 S 6.0 S

9.9 46.5E*1y, 8"3.90 mln, IT

11.3 9.01 mln, 8"16.9 S20.1 90.7 min, B"20.6 1.17h, B"

7.0 S

9.3 18.2 n ln , B"57.3 nln, IT, 8"

12.2 33s, B"16.0 S20.2 15.2s, B"22.7 29.5s, B"

8.2 1.17h, B"

O

Rubidium

Rb natural Mono 75Be6

a) o(y,n t)

b) o(Y,n)to(Y,pn)

c) o(y,2n)+o(Y,p2n)

(nJO

Rb

GN

CPG2NCNP

G2PGA

A =

10.5

7.019. H17.5

17.76.6

85 (72.17)

32.77d, EC, 8*,20.5 min, ITS

86.2d, ECS; 1.83h, IT

2.39h, B"S

B"

A =

9.9

8.618.618.5

20.58.0

87 (27.

18.82(1,

.83)

, B"1.02 min,SS

10.7y, B"

2.87 mln,2.39h, B'

, ECIT

, ITB"

50

200

150

0 100(nib)

30 -

71Le5 ( n l b ) 20

10

0

• 1 • I •••• 1 -

-

1 1 1

\ I

[ 1

1

IM.1

b)

i i i i i

to 12 14 16 18 20 22 2*.

Ey (MeV)

73

Strontium o

200

150

(mb)100 -

50

0

200

150a

(mb) 100

50

0

40

30a

(mb) 20

10

0

1 • 1

1 1

1 1

1

Mr..)

-

-

-

i i

" I ' I

/

/

/

i i

\

MT,2

y

>.

•(r.2

JI i

V

•)

1 1

a)

b)

c)

12 K 16 18 20 22 2« 26

HY CMOV)

8 9Sr Brems 79Sh10

o O(Y,P) from (e.e 'p) data

X o(r,p) 76Br1

• o(Y>n) 71LeS , 74Be5

. O(Y,PO) 74ShS

•••• Lorentz l ine

Im

c/iO

10 12 H 16 18 20 22 21. 26

F.Y (MuV)

Sr natural Mono 75Be6 , 71Le5

a) o(Y,nt)

b) o(Y,n)+a(y,pn)

c) o(Y,2nUo(Y,p2n)

Sr A = 84 (0.5) A = 86 (9.9) A = 87 (7.0) A = 88 (82.6)

GN 12.0 32.th, EC, B* 11.5 6U.85d, EC 8.1 S 11.1 S; 2.80h, IT, EC5.0s, IT 68 mtn, IT, EC

GP 9.0 86.2d, EC 9.6 S g.t 18.82d, B", EC 10.6 l).72E+1Oy, 0"1.02 min, IT

C2N 21.2 25.Od, EC 20.0 S 19.9 6"J.85d, EC 19.5 S68.0 min, IT, EC

GNP 19.8 1.25 min, $*, EC 20.1 32.77d, EC, 8*, B" 18.1 S 20.5 18.82d, B~, EC6.2h, EC, B* 20.5 min, IT 1.02 min, IT

G2P 11.6 S 16.7 S 18.0 10.70y, B" 19.2 S1.48h, B", IT

GA 5.2 S 6.3 S 7.3 S 7.9 S

Yttrium250

2000

150(mb)

100

50

0

250

200

(Ib)15°100

50

0

40

30o

(mb) 20

10

A- / ',-_-

a)

b)

-

c)

-Jo00

O

2

2

mm90enVIO2

10 12 14 16 18 20 22 24 26 28

EY (MeV)

10 12 11 16 18 20 22 24 26

Ey (MeVI

89Y Mono 75Be6 , 71Le5

a) o(Y,nt)b) o(Y,nl+o(Y,pn)

c) o(Y,2n)+o(Y,p2n)

'Y Mono 75Be6 , 67Be1

a) °(Y,n t)b) o(Y,n)+o(y,pn)c) o(Y,2n)+o(Y.p2n)

V

GNCPG2N

GNPG2PGA

A =89 (100)

11.57.1

20.8

18.217.78.0

1.066iE+2dS

80.3h, EC,13h, IT, B*S; 2.80h,1.72E+10y,S

• EC, 8'

B*, ECIT, ECB~

(nib)

10 11 12 13 K 15 16 17 18 19

Ry (MeV)

" Y Mono 75Be6 , 72Yo7)

(ub)

12 H 16 18 20 22 24

Ey (MeV)

Brems 80Va1

a) • " Y o(Y,Po)

" S r o ( p , ' ) 73Pa42

b) O(Y,P ) from o(e,e 'p) data 74Sh5o

40

30

o

(lib) 20

1.0

0.5

00.50.5

0

0.5

1.0

1.5

"1• I I I

11.c)

1

ll

' i l l 1 l» i ' l l|

1,"

1

1 ( l,i«r •

• i i

Vii

-

S.,|'

II11!1 •

_ j-

l i l l l :1

V. 16 18 70 22 2<i

EY (HeV)

8SY Brems 80Va1

a) O C Y . P ^

W a '

c) a 2

o7)

3Q."0

m7)VICO

O

PART 4-1 711

See overleaffor the graphs of zirconium

Zirconium

3

a

(mb)

o

(mb)

160

120

80

40

0

160

120

80

M

0

— i - I - • • i —

1I

1

-

*

.*

\ \V

\\\,""/m

•HI

a)

-

JusHi^hiii

b)

-

-

l''ll illiiiM

a

(mb)

o

(mb)

200

150

100

50

0

200

150

100

50

0

Mr..)

-' V ' i

*

- M\

a)

''"v.

b)

-

!2

2

Itn7>VIV)O

a

(mb)

40

30

20

10

0

-

-

-

10 12 14 16 18

EY

•i

20

(MeV)

0

-

22 24 26

0

(inb)

40

30

20

10

0

'"Zr Mono 7SBe6 , 67Be1

a) o(Y,nt)b) o(Y,n)+o(Y,pn)c) o(

10 12 14 16 18 20 22 24 26

EY (MeV)

90Zr Mono 75Be6 , 71LeS

a) o(Y,nt)

b) o(Y,n)to(Y,pn)c) o(Y,2n)+o(

5

10 12 14 16 18 20 22 21.

KY (MeV)

90Zr Brems 79Sh1O

o O(Y,P) from (e .e 'p) data

X O(Y,P) 76Br1

• ofy.n) 71Le5 , 74Be5

• O ( Y , P ) 74ShS0

•••• Lorentz l ine

200

150

a

(nib) 100

50

0

' ' ' ll ' ' '

1,\

- / \J '-I . I . I

1

-

-

0 10 20 30T;Y (MeV)

Zr natural Mono 82Ve4

3n

a.•vWHm»

o

Livermore 67Be1

6 8 10 12 U 16 18 20 22 24 26 28 30

HY ( M O V )

" Z r Mono 75Be6 , 67Be1

a) o(Yint)b) o(Y,n)+o(Y,pn)c) o(Y,2nl+o(Y,p2n1

175

150125

0 100

(mbi 75

50

25

0

175

150

125

o 100

(mb) 75

5025

0

80

60

0

(mb)

20

-

--

-

-

-

fa")

-

--

-

J V

,—i . i—.—i—, i—,—i . i—. i—.—i—.—• i • , —

J \•hi iHi|||i|,|l i|||l||

V.2D) ll'i " ' I 1 " "

c)

/ V1 Illllll

H

t

8 10 12 V. 16 18 20 22 24 26 28 30

EY (MeV)

" Z r Mono 75Be6 , 67Be1

a) o(Y,n t)

b) o(Y,n)+o(Y,pn)

c) a(Y,2n)*a(r,p2n)

716 FORKMAN and PETERSSON

Ti i )

O O ui

i i i I \

a L—

1 I I ! 1 1 1 * ' .

Fi-

„ £

_=- s i

%© «*• COS S o

Zr

GN

GPG2NGNPG2PGA

Zr

GNGP

G2N

GNP

G2PCA

A =

12.0

8.421.319.815.46.7

A =

7.28.7

19.2

15.6

16.35.5

90 (51.5)

78.4h, EC,4.18 min,S; 16.13,83.4d, EC1.066E+2d,SS

91 (11.2)

S64.1h, B"3.19h, IT,78.4h, EC,4.18 min,S; 16.1a,

50.55d, B"S; 2.80h,

B*IT, EC, B*IT

EC, B*

B"B'IT, EC, B*IT

IT, EC

A

89

15

17

173

=

.6

.4

.8

.3

.1

.0

92

S5849S

6'l328S

(17.1)

•5d, B".7 mtn, IT

. 1h, B"

. 19h, IT, B"

.82y, B"

A

810

14

17

183

=

.2

.3

.9

.8

.9

.8

a)

b)c)

d)

94

IT Mono

olY,

0(Y,

°(Y,o(Y,

(17.

1.53E*10

S

.25h,

3.54h,

2,28,

• 71h,• 82y,

n 1

Vn) +

75Be6 ,

o(Y,pn)

67Be1

,2n)+o(Y,p2n1

3n)

4)

6y,B"

B"

B"B'

A

0* 711

14

18

214

=

.8

.5

.3

.5

.3

.9

96

63.10.

S

18.

74.2.

(2.8)

98d, B"3 min, 0"

7 min, B"

13, B"71h, B"

70

Niobium

Nb A = 93 (tOO)

CM 8.8 3.2E+7y, EC1O.15d, EC, B*

GP 6.0 SC2M 16.7 \ EC

62d, IT, ECGNP 1M.7 SC2P 15.1 58.5d, B'

19.7 min, ITCA 1.9 S; 16.1s, IT

"Nb Mono 75Be6 , 71LeS

a) o(Y,nt)bl o(Y,nHo(Y,pn)c) o(Y,2n)+o(Y,p2nl

0

(mbl

0

(mbl

a

250

200

150

10050

0

250

200

150

100

50

0

75

50(mbl

25 "

0 - i

• 1 • 1

MM)

-

-

'(Ml

l i

1 •

J1

. /

HI.II)

•\V

/

•ll.lil

1 1 -

paH

10 12 V, 16 18 20 22 24

EY (MeVl

Molybdenum

150 "

a 100

(mblSO

0

150

o 100

(mb)50

o

(mb)

C D (»,Ji)

' I . L—. I I , I

" \

-i——i 1

cl

12 14 16 18 20 22 24 26 28

Hy (MeV)

(mbl

(mbl

100 -

I50

0

150

100

SO

0

60 -

a 1,0

(mbl20

• . ._ , r-

1"

, i

—. !

1

J1 .

"T—*~

t

/

i

J

/

1

1

'A

i

~—T"

— T -

illll

\

\

W.2.)

I 1

1

1

fr,»)

I . .

"—i—•—i—

"|lII1

1

1

•Hi'

, ,

1 '

' . 'l 1 •1 ' I."' , '

. 1 1

-—i—•—r-

ll.1 l|| |Vll| ,

al

-

• i

bl

•••*• ii HI ,

1

" " • " ' i r •

cl

I'NIII ll

10 12 14 16 18 20 22 24 26 28

E Y (MeV)

O

a

mtn90v>VIO

"Mo Mono 75Be6 , 74Be5

a)b)c)

9"Mo Mono 75Be6 , 74BeS

al o(Y,ntlb) o(Y,n)+o(Y,pn)

c) o(Y>2nl+o(Y,p2n')

14 16 18 ?0 2 2 " 24

E> ( M e V l

92Mo Mono 74BeS

71Sh11

5

722 FORKMAN and PETERSSON

- J -

- ,_ -€j s-

s

1J1

• . . . . % \

[ ' ' ' ' '

__-

S - r L i |

L ?[i -~-_

I 1 1 1 1 " ^

s

-

u —=T~,

_

s -

-

s

_

s -

I § § s s

J

:</

I t [ \

S

-

-

_ =

L ^

-

-

s -

-

, , , , r 1o o

15

10

5

i i

-

-

-

'ir.«l

1

I

• i • I •

i i

I

! 1

d)

1'"" fill

I'll1 1

rj 1 .II

i|

i

8 10 12 U 16 18 20 22 21 26 28

EY (MeV)"Mo Mono 75Be6 , 74Be5

a) o(Y,n t)b) o(Y,n)+o(Y,pn)c) o(Y,2n)+o(Y,p2n)

d) o(Y,3n)

(nib)

15

10o

(mb) 5

150

100

SO

n

*•

' • &

«..

r ,*

• * *

/

i

J . ,1 i • i

Tit;

'A

k\ IV*

1 1 1

1 1 • 1 •

-

-

1 . 1 " ' , .

1 1 1 .

10 12 K 16 18 20 22 24 26

li (MeV)

. ,—.—(—.-•1—.—r-— ! — ^ - . ,

-

l».«l V.MI

1 1 I 1 1 1

• 1 • 1 • 1

d)

ini,».w|l | | l1 1 1

III"

i

8 10 12 K 16 16 20 22 24 26 28

Hy (MeV)

"Mo Mono 75Be6 , 74Be5

a) o(Y,n t)b) o(Y,n)+a(Y,pn)c) o(Y,2n)+o(Y,p2n)d) o(Y,3n)

Mono

o

A

V

74BeS

9 2Mo

"•Mo

" M 3

O(Y.

o(Y,_cv

o(Y»1 0 °Mo O ( Y

nt)n 1VV

724 FORKMAN and PETERSSON

I

Ho

GN

CP

C2N

GNP

G2PGA

Mo

CNGP

G2NCNP

G2PGA

A =

12.7

7.5

22.8

19.5

12.65.6

A =

6.89.2

16.016.1

16.52.8

92 (11.81)

15.19 min, B*65s, B\ EC,\ EC

62d, IT, EC5.67h, EC, B

11.6h, B\ EC18.8s, ITS83.Id, EC

97 (9.55)

S23.35h, B"

S31.97d, B"87h, IT, 8'63.98d, B"1.53E+6y, B"

, ECIT

A

8.9.

15.17.

17.3.

68

59

33

A = 91

9.7 3.6.

8.5 S;

17.7 S

17.3 3.10.

11.5 S2.1 S

98 (21.

S72 min,

(9.25)

5E+3y,9h, IT,13.6y,

2E*7y,15d, EC

13)

B"1.0 min, B"S23.35h,

SS

B"

ECECIT

EC, I

A

8,10,

11.18,

19.3.

B*

.3

.6

,2.0

.5,2

A =

7.1

8.6

17.0

15.9

15.12.2

95 (15.92)

S

2.03E+1y,636S

1S

100 (9.63)

66152S2

5130S

.02h, I

.03, B

.6 min,

• 9s, Bmin, I• 7s, B

3"

3"

.26 min,•5E+3y,.9h, IT,; 13.6y,

• 53E*6y.,

B"

B"IT, B*

ECECIT

B"

A =

9.2

9.3

16.5

17.8

16.12.8

96 (16.68)

S

31.97d, B"87h, IT, B"S

2.03E+1y, B"

SS

"0

t o

Rhodium

200

0 150

(mb) 100

50

0

200

150

Onb l 1 0 0

50

Rh

GN

GPG2N

GNPG2PGA

A =

8.1

5.318.6

12.713.72.2

103 (100)

2.9y, EC2.06E+2d,S3.3y, ECH.31d, ECS

11.3 mln,2.1l4E+5y,6 . 0 2 , IT,

EC, B \

, IT

B"6"B"

8", IT1 0 3Rh Mono 75Be6 , 74Le5

a) o(Y,nt)b) o(Y,n)+o(Y,pn)

c) o(Y,2n)+o(Y,p2n')

80

600

( ki ^Imo)

20

0

-^—,—,—, ,—.—J—.—t

I1 (l

I1 1

\t,*\ b.ai

t

a)

i

b)

• c%

-

1 1 1 1 1

1 1 1 ,1

3

zo.mm73v>O2

10 12 14 16 18 20 22 24

Ey (Me\O

Palladium

Pd A = 102 ( 1 . 0 )(mbl

A = 10M (11.0)

GN 10.6 8.17h, EC, B* 10.0 I6.96d, ECCP 7.8 3.3y, EC 8.7 S; 56.1 min, IT

1 . 3 1 d , EC, ITG2N 18.9 3.63d, EC 17.6 SCNP 17.7 20.8h, EC, 6* 18.0 2.9y, EC

2.0bE+2d, EC, 0% 0", ITG2P 13.3 S 111.9 SGA 2.1 S 2.6 S

o

(mbl

Pd A = 105 ( 2 2 . 2 ) A = 106 ( 2 7 . 3 )

CN 7 .1 SGP 8 . 8 4 2 . 3 3 , 0", EC

1.31 mln , I T , 0"G2N 17.1 I 6 . 9 6 d , ECGNP 15.8 S; 56.1 rain, IT

C2P 15.7 39.35d, B"CA 2 . 9 S

9 . 6 S9 . 3 3 5 . t h , B"

15s, IT16.6 S18.3 12.3s, 8", EC

1.31 mln, IT , 0"16.1 S3.2 S

(nibl

Pd A • 108 (26.7) A * 110 ( 1 1 . 8 )

CN 9.2 6.5E*6y, B"2 1 . 3 s , IT

GP 10.0 21.7 mln, B"G2H 15.8 SGNP 18.5 29.8s, 8~

1.30E+2 rain, B"G2P 17.8 3.665E+2d, B"GA 3.9 S

8.8 13.13h, B~U.69 mln, IT

10.5 80s, B"15.0 S18.7 16.8s, 8"

6.0 mln, B"19.2 1.5 mln, 0"1.1 3.665E+2d, 0"

200

150

100

50

0

200

150

100

50

(J

60

60

to

20

U

1 r—

a)

I

1 i i

. b)

IT,II

1 I—'—• 1 ' 1—

- c )

-

' |T1'

1 1

1

I

I

f

—i r~

i. H

i i

1

•l

1

'i

" ,

<

"* 1 *~

11 ' . '

1

1

i

-

-

-

1

I ' • —

1"Illl-

1

16 18 20

Pd natural Mono 75Be6 , 74Le5

al o(Y,ntl

bl a(Y,n)+o(Y,pn)

cl a(Y,2nl+<i(Y,P2n1

5

728 FORKMAN and PETERSSON

• / — -

J D

l l 1 t I

< 1 1

u ~ -

1 1 t

»-"

1

O O O o O Oin ^ ui ^ LPCM CM *~ 2

- i 1 1 r

o>>

—r

1 I I

(mbl

7Ag Mono 75Be6 , 69Be10l

a) o(Y,n t)

b) o(Y,n)+o(y,pn)

200

100

ft

ai• - • • .

• .

10 12 U 16 18 20 22

EY (MeV)

1C7Ag Mono 74LeS

a) o(Y,nl+o(Y,pn)

b) o(Y,2n1+o(

Ag natural Mono 75Be6 , 74Le5

al a(y,ntl

b) o(Y,n)+o(Y,pnl

c) o(Y,2n1*a(

flg A = 107 (51.83) A = 109 (48.17)

9.6 21.0 mln, EC, 8*, (8~) 9.2 2.1 mln, EC,CN 9 ,8.5d, EC

CP 5.8 SG2H 17.5 f1.3d, EC, B*

7.2 min, IT, ECGNP 15.M S

G2P 15.1 35.Mh, B"15s, IT

GA 2.8 S; 56.1 min, IT

, , B1.27E+2y, EC, B*, IT

6.5 S16.5 S; 11.33, IT

15.7 6.5E*6y, B"21.3s, IT

16.1 21.7 min, B"

3.3 35.In, $'153, IT

70

O

Cadmium

Cd natural Mono 75Be6 , 74Le5

a) o(Y,nt)

b) o(Y,n)+o(Y,pn)c) o(Y,2n>*°(

200

150a

(mbl 100

50

0

200

150a

(mbl 100

50

0

80

a 6»

(mb) t 0

20

0

I I I "

-

' I T . . .

-

-

V..,1 1 1

.—1—•—I—•—1—•-

-

1 1 1

' I

'ir.jn

—i—•—i—-

, . , .

-i—•—i—*-

i

I . I .

i •

. . .

~ 1 . ,

al

b)

i . 1 ,

c)

.

wo

s>

zuao.mH

enO2

6 8 10 12 I t 16 18 20 22

RY (MeVl

Cd

CNGP

G2NGNP

G2P

GA

Cd

GN

GP

G2NGNP

G2P

GA

A =

10.97.3

19.317.2

12.3

1.6

A *

9.1

9.6

16.118.5

16.8

3.5

106 (1.3)

56.0 mln,11.3, EC,7.2 min,

57.7 min,69 min, 8'33 mln, 8'S

S

112 (21.1)

EC,B*IT,EC,

B*

ECB*

, EC, EC, IT

Sj 18.6 mln,

7.15d, B"65s, IT, BS21.1s, B",2.52E+2d,S

S

ECB",

IT

IT

A

10.8.

18.17.

13.

2.

A =

6.5

9.8

15.916.2

17.6

3.9

= 108 (0

3 6.5Oh1 S; 11

3 S

.9)

, EC, B*.3s, IT

7 21.0 mln, EC, 0*8.5d,

9 S

3 S

113 (12.

S

3.11h,

S; 18.67.15d,

65s, IT,22 mln,

EC

2)

B"

i min, IT

B'B"B'

5.5h, IT, B"13.<)3h, B"1.69 min, IT

A

9.8.

17.18.

15.

2.

A =

9.0

10.3

15.618.8

18.3

1.1

= 110 (12.5)

9 19 S

2 S1 21

1 S

9 S

111

9.11y5.1.S3.

21.

S

.53E+2d, EC; 39.8s, IT

.1 mln, B",

.27E+2y, EC

(28.7)

3E+15y, B", B". IT37h, B"15 min, B"

11h, 0"

12h, B"

EC,

A

8

11

1119

a

1

L B

Vt

--

.7

.1

.8

.1

.9

*IT

11

531120

A

7,9.

16.15.

16.

3.

6 (7

.In,

.8d,min

18s, BS1

2

21

.52s

=

.0

.1

99

2

3

111

s21.2.1.S;

13.1.6.21.

.5)

BS

.1 mln

. 12ht

-

B"

B"

, B'

8"

(12.8)

Is, 8\52E*2d,53E+2d,39.8s,

13h, B"69 mln,5E.6y,3s, IT

ECB", ITECIT

B"B'

9

Indium

220

180

a

(mbl.

100

60

/

1

1f

!

\

a) "

mnilll

lll

1

. . 1

o

(mb)

20

12 15 18 21 12 15 18 21

EY (MeVI '

a

(nib)

111In Hrems 83Go7

a) (Y,n)ll2Inm

bl (Y,nl112lng

cl (Y,nlll2ln

0

(mbl

12 15 18 21

Ey (MeVI

250

200

150

100

50

240

180

120

60

0

120

90

60

30

0

/ \

A,'i

1

i

'vliv.i. 1 !>.?•>1 I I I I1 i 1

1 1 1 1 1 1

-

-

ll'll"II

1I

I)

! i* i . i' ,'.i . i_

i

1

"•'ii.

a)

1

b)

Unlil'VUn,!' ¥•>, '1 1 1

C)

''"''ili'n |l 1

-

----

-

-

-

-

nlI,11

-

-

-

i

z

IIB

m73Ui

O

no

180a

, , , 120(mbl

60

0

240

160

(mbl m

60

0

60

600

(mbl w

20

0

-

- yf

-

-

—•—p—•—i—•—r

-

I...,

••"y a)

ir.nl

b)

'•.

i i I I . I

1—•—i r—— i——

c)

10 12 14 16 16 20 22 2*.

E Y (MeVl

1 1 5 I n Mono 7S15c6 , 74LeS

nl o(y,n )

b) oCy.ni+oCY^nl

cl o(Y,2nl+o(Y,p2n)

a

(mbl

In

32

24

16

a

0

-

i i i i1 i

• i • i • i

.11, ";3> ' i '

d

jl11

-

r/i

6 10 12 14 16 18 20 22 24 26 26 30Ey (MeVl

llsIn Mono 75Be6 , 69Fu1

al o(Y,ntl

bl o(Y,nl+o(Y,pnl

cl o(Y,2n)+o(Y,p2nl

dl o(Y,3nl

A = 113 (U.3) A = 115 (95.7)

9.1 11.1 min, EC, 8\ B" 9.0 71.93, B", EC,CN 9 , ,20.9 min, IT

GP 6.1 SC2N 17.1 2.83d, EC

7.6 min, ITCNP 15.5 S; 1)8.6 min, IT

G2P 15.7 7.H5d, B"65s, IT, B"

CA 3.0 S; 39.83, IT

, , ,M9.51d, IT, EC

6.8 S16.3 S; 99.5 min, IT

15.9 9.3E+15y, B"11y, B", IT

17.1 5.37h, B"1.15 min, B"

3.7 7.45d, B'65s, IT, B"

-0

7

Tin

200

100

0 o(nib)

0

al ,..'"' r•' -''\

;

; A..* \

• '' ' T~i 1 ' — I — —

'•

1 . ' • ' i t , _

oh-

0

012 16 20

RY (MeV)

2A

Sn isotopes Mono 74CaS

a) 12"Sn o(Y,ntlbl 120Sn o(Y,ntlcl l " S n o(Y,nt1dl ll'Sn o(Y>nt)el ll'Sn o(Y,ntl

(mbl

"I Ti—'—r—•—r

12 16 20 2". 28V.y (MeV)

Sn i s o t o p e s Mono 75Be15

a)b)

c)

il)

e)

f)

12 "Sn120Sn

"°Sn

""Sn11 'Snl l 6 Sn

O(Y

O(Y

O(Y

O(Y

O(Y

O(Y

,n t),n t)

.n t l

•V,n t l

. n J

O

sa.•0ro

tn

s2

240

180a

(mbl i2o

60

0

120

90a

(mb) 60

30

0

AI——r—-—r~—i—•—i—•—i

al

b)

• ' " ' l l ' l

HIU l i

240

1800

[mb)«0

60

0

120

90

0

Onb)60

30

0

. . . . , !

-

-

1

I1 1

-

-

ir.o)i

I

i

I

I '

i

i1'

I

• I •

I

'i

'ii

ti

1 •

r

i

i • • i • i •

al

\

iir in iH,,

i i , ' •

1 ' 1 • 1 '

bl

-

.1

10 12 U 16 18 20 22 24 26 28 30

1W (MeV)

8 10 12 U 16 18 20 22

Ey

lltSn Mono 75Be6 , 69Fu1

a) o(r,n)+o(Y,pn)b) oCT^ni+o

6Sn Mono 75Be6 , 74Le5

al

bl

(mb)

';" , , . .I'M" . l''MlllltTM*Ti

(mb) W -

6 a 10 12 14 16 18 20 22 24 26 28 30

Ey (MeV)

117Sn Mono 75Be6 , 69Pul

a) o(Y,n)+a(Y,pn)b) o(Y,2n)+o(Y,p2n)

c) o(Y,3n)

(nib)

(nib)

240

180

120 "

60

0

120

90

60 -

30

0

• 1 •

-

-

I 1

1

. 1 .

• — 1 — —

-

-

tir.n)

. i .

1

„•'

I

~ l —

I

' I

„.'"'i

~ — I —

1 1

ii

ii

. , .

• — I — '

I

Hi

i

ti

— I — •

1

I1

i

I

' i

? i |

i

—T"

11

i

1

a)

II. • 1.'l 1 '

- — 1 — • -

b)

|H | |lUl

i

-

-

-

i

— 1 — • —

-

-

i

OS

6 8 10 12 14 16 18 20 22

EY (MeV)

" 7 S n Mono 75Be6 , 74LeS

a) o(Y,n)to(Y,pn)bi o(Y(2n1+o(Y,p2n'l

75

2v3D.

pnHm7i

Oz

0

(lib)

0

nb)

240

180

120

60

0

t?0

90

60

30

- — i — i ——r

-

: /

, i i

—'—i—•—p—'—i—

i i i

' ' \

i

1 '

11

\

\

i

' •

jllilil1!l/ '

i—'""I1 • -

ai

-

i jijiu

I I .

1 • i •

bl

-

!i ,111 'i

" n i . i

"8

"Sn Mono 7SBe6 , 74Le5

a) o(Y,n)+o(Y,pn1

10 12 H 16 18 20 2?

1:Y CMCV)

21.0

180

(mb) ™

60

0

120

90

(mb)60

30

0

32

o »

(mb) 16

8 -

s\

J \

MHZi • i • i • - r " i - \ - r~" T

b)

c)

T . .... . j \10 12 K 16 18 20 22 21. 26 28 30

EY (MeV)

"Sn Mono 75Be6 , 69Fu1

a) o(Y,n)+o(Y,pn)b) a(ytZn)*o(

c) o(Y,3n)

(ml))

a

(mb)

(mb)

6 8 10 12 H 16 18 20 22 ?<• 26 28 30

9Sn Mono 7SBo6 , 69PU1

a) o(Y,n)+o(Y,pn)b) o(Y,2n)*o(

c) o(Y,3n)

0 0

O

&

mtnJOVICO

Oz

Sn

CN

GP

G2N

CNP

G2P

GA

Sn

CNGP

G2NGNP

G2P

GA

Sn

GN

GP

G2NGNP

G2PGA

A =

10.8

7.5

19.0

17.6

12.9

1.8

A =

6.99.4

16.516.2

16.9

3.8

A =

8.8

11.4

15.019.8

11

5.7

112 (1.0)

35.0 mln, EC, B*

2.83d, EC7.6 mln, IT4.15h, EC

4.9h, EC69 mln, B\ ECS

S

117 (7.7)

S14.10s, 8"54.1 min, B"; 2.S5.1E+14y, B"1.i9h, IT, B"

53.38h, B"44.8d, B"9.3E+15y, B"14y, IT

122 (4.6)

27.06h, B"55y, B"30.0s, B"3.8 mln, 8", ITS44.4s, B"3.0s, B"50.80s, B"50.3 mln, B"

A

10

8

18

17

14

2

16s,

A

8.

12.

14.20.

20.6.

=

.3

.5

.1

.9

.6

.6

114 (0.7)

1.151E*2d, EC21 min, IT, ECS; 99.5 mln, IT

S

14.4 mln, EC, 0*, B"20.9 mln, ITS

S

A = 118 (21.3)

9.3 S; 14.Od, IT10.0 M2.3 min, B"

IT 1.93h, B", IT16.3 S18.8 14.10s, B"

54.1 min, B"; 217.5 S

4.1 S

124 (5.6)

5

1

40

57

1.290Et2d, B"40.1 mln, B"5.98s, B"

48s, 6'S1.5s, B"9.2s, B"

5.78s, B"50.80s, B"

A

7

8

17

16

15

3

=

.5

.7

.9

.0

.6

.2

.16s,

115

S

71,49.1.

21s;

9.14ys;

IT

(0.

9s,51d,

.4)

B~, EC, B*IT, EC

151E+2d,mln,99.

3E+1

48.

A

69

1516

18

4

IT,5 min

I5y, B. IT6 min

= 119

.5 S

.9 4.8.

.8 S;

.5 42.1.

.2 2.3.

.4 53.44.

ECEC, IT

1"

, IT

(8.6)

35 mln,5s, IT,14.Od,

3 min,93h, B"42h, B"4h, B"38h, B"8d, B"

A

9

9

17,

18.

16.

3.

BB

=

.6

.3

.1

.3

.1

4

*

ITB"t IT

116 (11.7)

S

5.1E*4.49hS

71.9s,49.51dS

S

A =

9.110.7

15.619.0

19.0

1.8

I4y,, IT

B~,, IT

120

s;2.118.0s

, B"

EC, B*, EC

(32.4)

2.50E*2d, ITmin, 6"mln, B", IT

4.35 rain, B"8.5s, IT, B"; 50s, B'

50.3

S

mln, B"

>

-i1

0

(mbl

(mb)

a

(mbl

2«,0

180

120

60

120

90

60

30

32

24

16

8

0

• I -

-

/

. /

) ' V " . .

— ' — 1 — 1 — —

-

_

-

-

' 1 1

1 • 1 • 1 • I • I . • I

/ \ al

, 1 ' , " " . , . < " , " l ' . '

-i——i • i — i — • i —i—•—r

b)

1 Yl' \

;. %i

c)

i *\ ' t i i i " r

i '

-

-

urn— i —

-

-

i •

f71 J h

jJli

10 12 H 16 18 20 22 U 26 28

EY (MeVl

20Sn Mono 75Bc6 , 69Fu1

a

(mbl

0

(mbl

2;o

180

120

60

0

120

90

60

30

0

v

-

-

-

„'''"'"''"\yn)

1

-

_

-

-

i

. i,i

i

,'

/

/

1 1

1 1

'tiu J

1* B<I1,

1•l

\

1

II"I

i

ii1'i\

j • i

a)

" ' " " 'II '

' """" l i .

1 1

bl

•ili- l

i

' , '

-

-

-

H

i

-

-

>l.M

i

10 12 14 16 18 20 22

EY (MeV)

0Sn Mono 75Be6 , 74Le5

a)bl

to

g.tn

m70ViVI

O

ai o(bl o(cl o(Y,3nl

210

o 180

(mb)i20

60

0

120

90a

30

-

-

-

-

( M i

. . .

• .

i i

, • ' ' ' • • , ,

1 1 . 1 • ! —

. "I

H,

ft,!a)l . i I I

al

-

-

- , — . — , — . —

b)

\ ;

' i8 10 12 U 16

Ey (MeVI

l2"Sn Mono 75Be6 , 74LeS

a) o(Y,n)+o(Y,pnlbi o(Y,2nVo(

20 72

(mbi

21.0

180

120 -

60

0

120

a 90

Onbi

(mbl

32

n16 -

-

-

-

-

-

' I , . . ,

-

Sin

A*

MI

i

«

ii

in

/in

*v

in

»i . ,

IT.I»

il^S1 '1!1

uJ

''4,111

a)

-

"llll1 || !||

b)

-

jjiiUltVWM

c

\ 18 10 12 u 16 18 20 22 2*. 26 28 30

Ey (Me\D

12l)Sn Mono 75Be6 , 69Fu1

a) o(Y,nl+o(Y,pn)

bl o(Y,2nl+o(Y,p2nl

c) o(y,3n)

5

Antimony

Sb natural Mono 7SBc6 , 74Le5

a) o(y,n )

b) o(Y,nl+o(Y,pnlc) o(Y,2nl+o(Y,p2n)

Sb A = 121 (57.3) A = 123 (12.7)

9.2 15.89 rain, EC, B* 9.0 2.681d, B~, EC,5.76d, EC

CP 5.8 SC2N 16.3 38.Oh, ECCNP 11.9 S; 2.50E*2d, IT

C2P 16.5 2.1 mln, B"18.0 min, B", IT

GA 3.1 12.3 rain, 6"1.93h, B", IT

M.2 mln, IT6.6 S

15.8 S15.1 27.06h, B"

55y, B"18.0 30.0s, B"

3.8 mln, B", IT3.9 2.1 mln. B"

18.0 min, B", IT

(mb)

a

(mbl

(mbl

320

180

120

60

U

320

180

120

60

0

80

60

40

20

0

• • • • •

/

'ir.-l

-

-

-

_

1 '

-

-

-

i i

I ' T • • T1 • 1 - 1 — 1 •

\

I I I 1 1 , 1

_.••".. bl

;

1 1 1 1 1 1

cl

i . i . i . i . i . i .

10 12 H 16 18 20 22 24

EY (MeVl

t

Tellurium

(rabl

(mbl

21.0

180

120

60

0

240

180

120

60

0

1—•—i—"—i—•—i

6 8 10 12 U 16 18 20 22 ?4

Ey (NteVl

0

(mb)

120

90

60

30

0

• t • i • i • i • i •

t

\y.t) lr,wt i i i i .

i • i • i • i •

c l

' ' l ' 1 1

I I i i

6 8 10 12 tt 16 18 20 22 24

Ey (MeV)

Te natural Ntono 75Be6 , 74l.e5

b) o(Y,nl+o(Y,pnlc) o(Y,2n1+o(Y,p2

O

2

t3a.

VIO

Te A = 120 (0.1) A = 122 (2.5) A = 123 (0.9) A = 121

CH 10.3 i6.O5h, EC, B* 9.8 16.8d, EC4.68d, EC 1.54E+2d, IT, EC, 6*

GP 7.2 38.Oh, EC 8.0 S

G2N 17.9 6.00d, EC 17.0 S

GNP 16.8 3.5 rain, EC, B* 17.3 15.89 min, EC, B*5.00h, EC, B* 5.76d, EC

C2P 12.3 S 13.8 S

GA 0.3 S 1.1 S

6.9 S

8.1 2.68id, B', EC, 8*4.2 mln, IT

16.7 I6.78d, EC1.54E+2d, IT, EC, B*

14.9 S

14.5 27.06h, 8"55y, B"

1.5 S; 2.50E+2d, IT

9.4 >5E*13y, EC1.197E*2d, IT

8.6 S

16.4 S

17.5 2.681d, 8", EC, B*4.2 mln, IT

15.2 S

1.8 S

Te A = 125 (7.0) A = 126 (18.7) A = 128 (31.7) A = 130 (34.5)

CN 6 . 6 S

CP 8.7 60.20d, B"93s, IT, B"20.2 mln, IT

C2N 16.0 >5E+13y, ECCNP 15.2 S

C2P 15.8 1.290E+2d, B"40.1 mln, B

GA 2.2 27.06h, B"55y, B'

9.1 S; 58d, IT

9.1 2.71y, B"

15.7 S17.8 60.2Od, 8"

93s, IT, 0"20.2 min, IT

16.4 S

2.6 S

8.8 9.35h, B"1.09£+2d, IT, B"

9.6 3.91d, B"

15.1 S18.0 12.lid, B"

19.0 min, B", IT

17.6 1E+5y, B"

3.2 S

8.4 69.5 mln, B"33.5d, B', IT

10.0 4.41h, B"

14.5 1.54E+24y, B" B"18.0 9.10h, B"

10.0 mln, B", IT

18.5 59.3 min, B"

3.8 1E+5y, B"

H

t

746 FORKMAN and PETERSSON

'm

I I 1

I I I "

>•*

O O O O O

S !£ 2

-i D E

0

(mb)

80

40

20

0

-

-

-

'(Ml

A1,,,,, /

c l

ll'lll 1 1 1

' i l l

--

H

0

Cmbl

no

60

1,0

20

0

8 10 12 U 16 18 20 22 2t 26 28

E Y (MeVl

1 2 7 1 Mono 75Bc6 , 66Br1

a) o(YiiO

b) o(y,n)+o(y,pn')

c) o(Y,2n)+oC

I A = 127 ( 1 0 0 )

CN 9 . 1 1 3 . 0 2 d , EC, B*, B"GP 6 . 2 SG2N 16.2 6O.25d, ECCNP 15.3 S; 58d, ITG2P 15.3 2.71y, B"GA 2 . 2 S

20 -o

drib)

8 10 12 H 16 18 20 22 2<. 26 28 30

E Y ( M e V l

127I Mono 7SBe6 , 69BeS

a) o(Y,nt)

bl o(Y,n1to(Y,pn)

c) o(Y,2n)+o(Y(p2n)d) O(Y,3II)

5

748 FORKMAN and PETERSSON

\

; . /

i i i i \

1 1 1 1

- s |

.1 *". \*

: " \

I I I !

S> S orri rsi *—

a>

O, r

0

(mb)

0

(mb)

80

60

40

20

0

25

20

15

10

5

0

I

I 1 ' 1 ' 1 1 1 , ,

e l

d)

6 10 12 11 16 18 20 22 21 26 28

(Me\D

60 -o

(nib) 1.0

20

0

-

_

-

-

1 ' 1 ' 1

(

ni

' /

'lr.2il

V1

c)

l ( i -

1

i

8 10 12 14 16 18 20 22

F:Y (MeV)

l 33Cs Mono 75Be6 , 74Le5

a) o(Y,nt)

b) o(Y,n)+o(Y,pn)

c) o(Y,2n)+o(Y,p2n)

5

13)Cs Memo 75Bc6 , 69Be101 , 74Le5

a) o(Y,n t )

b) o(Y,n)*o(Y,pn)

d) o(Y,3n)

Ca A = 133 ( 1 0 0 )

CNGP

9.0 6.l)7d, EC,6.1 S

G2M 16.2 9.688d, ECGNP 15.0 S; 11.77d, ITG2P 15.2 S.OHOd, 0"CA 2.0 1.57E+7y, B"

I/I

o

Barium

(mb)

(mbl

300

200

100

o

300

200

100

0

1 I

-

-

-

-

lr.«)

1 I I 1 1 I I '

A ai .

.•y •

O

2

g.

PI

JO

O

(lib)

80

60

40

20

0

16

12

U

4

-

-

tail

-

-

T • -r • i • I •

I1'"''!1 ' fini

i

T ' 1 ' 1 •—1 *~

'. ' ' ' i . 1 .

i • ' • - • '

cl

''""•"A1, -i .. , ''M'l .

T—' 1 ' | —1

d)

1 ,

-

-

(».31,fll||J|

8 10 12 H 16 16 20 22 24 26 28

Ey (MeVl

"'Ba Mono 75Be6 , 70Be1

al o(Y,nt)b) a(Y,n)+o(y,pn)cl o(Y,2n)+o(Y,p2nldl o(y,3nl

6 8 10 12 1*. 16 16 20 22 2 k

EY (MeVl

Ba natural Mono 75Be6 , 71Be5

al o(Y,ntlb) o(Y,nl+o(Y»pnlcl o(Y,2nl+o(Y,p2n')

o

Ba

GN

CPG2NGNPC2PGA

Ba

CNGP

G2M

GNP

C2P

GA

A =

10.2

7.018.216.712.00.6

A =

7.08.3

16.4

15.1

14.8

1.9

130 (0.

22

3223SS

.20h,

. 1h,

.th.

.43d,

1)

EC,EC,EC,EC

.62 min,

135 (6.

S221038S

52S

,O62y.90h,.66y,.9h,

.245d

. 19d,

6)

. B"ITECIT,

. B"IT

; 11.77d,

A

8* 9B*B* 7

17B \ EC 17

131

A =

9.1, EC 8.5

16.1EC

17.4

15.4

IT 2.1

132 (0.

.8

.7

.3

.0

.1

.0

12.Od14.6

1)

I, ECmin,

9.688d,S

29.9SS

136 (7.

S2

53S

22S

S

; 28..95E+min,

.062y

.90h,

min,

9)

7h,6y,IT

, B"IT

; 0.29s,

ITEC

EC,

ITB"

, EC

IT

a*, B"

A =

6.98.7

16.0

15.4

15.8

2.5

A = 134 (2.

9.5 1O.66y,38.9h,

8.2 S16.7 S17.1 6.474d14.3 S1.5 S

137 (11.2)

S; 0.31s, IT13.00d, B"19a, ITS; 28.7h, IT

2.95E+6y, B"53 min, IT9.1O4h, B"15.6 min, IT,5.245d, B"2.19d, IT

4)

ECIT,

, EC

B"

EC

, B",

A =

8.69.0

15.5

17.3

16.4

2.6

B*

138 (71.7)

S; 2.551 min, IT3O.17y, B"

S; 0.31s, IT

13.00d, B"19s, ITS

S; 0.29s, IT

6»aQ.

mHm70vOz

Lanthanum

'La Mono 75Be6 , 68BeS , 71Be5

a) aly.n^

b) o(Y,nl+o(Y,pnl

cl o(Y,2nl+o(Y,p2nl

300

a 200

(mb)100

0

300 "

o 200

(nib)100

/ \

" • " '" • 2"

Af i

X •

" • " ' I U i |

-

-

S 10 12 14 16 IB 20 22 24 26 2B 30

La A = 138 (0.09) A = 139 (99.91)

(mbl

3

1 10 12 14 16 18 20 22 24 26 28 30

Ey (Me\O

GN 7 . 3 6E+My, EC 8 . 8 1.12E+11y, EC, B"CP 6 . 0 S; 2 .551 min, IT 6 .2 SC2N 16.6 9 .87 min, EC, B* 16.1 6E*4y, ECGNP 12.9 S; 0 . 3 1 s , IT 11.8 S; 2 .551 min , ITG2P 1M.7 13-OOd, B' 15.2 3 O . 1 7 t y , B"

19s, ITGA 2.0 2.062y, B", EC

2.90h, IT2.0 3.0E+6y, B"

53 min, IT

Cerium

a

(mb)

o

(mb)

(mb)

300

200

100

300

200

100

80

60

1.0

20

't'.'l 'IMl)

a)

i .3")

: AW' M '('.»)

-

-

r |

I rft

b)

-

I i il

c)

""lllllll "'('.31)

(mb)

400

300

200

100

0

A ^..jfrt.^-^

12 16 20

EY (MeV)

"*0Cc Brems 79Sh1O

o(Y,n) 68Be5 , 76Le5 ,66Br1 , 71CaS

o(-r,Po+p,) 71Sh1 , Sa3O

O73

S>

6>aa.mtn

enO

0(rob)

10 14 18 22 26

E Y (MeVO

30

Ce natural Mono 75Be6 , 69Be5 , 71Be5

a) o(Y,ntl

bl o(Y-n)+a(Y,pn)

c) o(Y,2nl+o(Y,p2n")

dl o(Y,3nl

Ce A = 136 (0.2) A = 138 (0.3) A = 110 (88.4)

GN 10.0 I7.76h, EC, 0*20s, IT

CP 6.9 19.Mh, EC, B*G2N 17.9 75.9h, ECCNP 16.6 6.67 mln, B*. ECG2P 12.1 SGA O.I) S

9.6 9.Oh, EC, 8'3!).l)h, IT, EC

7.6 6E+l)y, EC17.2 S16.9 9.87 min, EC, B*13.2 S; 0.31s, IT1.0 S

9.2 1.372E+2d, EC56s, IT

8.1 S16.7 S16.9 1.12E+11y, EC,11.3 S1.6 S; 0.31s, IT

A = 142 (11.1)

7.2 32.55d, 6"

8.8 3.9Oh, B"12.6 S15.6 1)0.27h, 8'15.8 12.789d fl"-1.1 S

--J

Praseodymium

350

250

(nib) 150 -

300

200a

(mb)100 -

-

J

-

• ,

. . • • • '

A

• i ,• {

ii

Si,

. ~V>.!

M l '

a)

,

bl

II

(mbi

350

250

150

50

0

^ /

/

i i

i i i i • -

10 12 14 16 18 20 22

Ey (HeVI

l l l l P r Mono 7SBe6 , 70Su1

o(Y,n ) ; (Y.pnl no t inc luded

50

OZ

0

(mb)

a

(mb)

80

60

10

20

0

20

15

10

5

u

-

MM)

-

-

-

~Mr..)

8 12

—i—'—i——r—'—r——I-"*1 r

'ill,'l ' ll'l

111 PI,!,I 1 I I I111.1 !| IIi ipn) (>.»)

' |».M) C."

1 • 1 . |

16 20 21

EY (MeV)

c)

-

Lii-iH

-

1 "

d)

1• H

-

i -

-

-

1I . i

350

250

0

(nib) 150

50

0

28 32

300

l"'Pr Mono 75Be6 , 66Br1

a) o(Y,n 1

b) o(Y,nl+o(Y,pn)

el o(Y,2ri')+o(Y,p2n')

d) o(Y,3nl

(mb)

lPr Mono 75Be6 , 71BeS

111 lPr Ntono 75Be6 , 72Yo

o(Y,n)+o(Y,pn)+2o(Y,2n)

"O

Lorentz parameters for the Pr data from 83Bo5

Melbourne11

LLL1

Saclay3

General Atomic11

Il l inois5

Heidelberg6

(McVl

15.15+0.1

15.16+0.08

15.1 +0.1

15.23

15.36

1S.4 +0.1

r(.MeVl

3.58+0.15

4.49±0.05

4.26±0.05

4.00

4.07

3.9 +0.2

(mbl

4OO±23

320+29

350+15

341

332

396+24

(MeV/b)

2.26+0.18

2.27+0.14

2.35+0.13

2.14

2.12

2.43+0.27

Fitting interval: 12-19 MeV except for Heidelberg (Unknown)1 83Bo5 Brems

quasi-monoonergetic photons

tagged photons

72Dr5 Brems

O

wJOv>C/l

O

Pr

CNGPG2NGNP

C2PGft

A =

9.15.2

17.311.1

13.11.2

111 (100)

3.39 min,S1.11h, EC,1.372E+2d,

56s, ITS6E+1y, EC

EC, B*

8*EC

PART 4-1 759

See overleaffor the graphs of neodymium

-oo

(mb)

IMeodymium

Nd i s o t o p e s Mono 74CaS

al 150Nd a(Y,n)+a(

bl l l i eNd

c) " " N d

dl l l l 5Nd

el 1'"1Nd

f) " 3 N d

g) " ' N d

o

(nib)

200

100

0

0

0

0

0

0

n

- a")

~ b l

—-•

- £ -I"

- n—

• • , - , . . ' •> • , ,

- - ' • ' *'•

Jy, i , , i

-

-

• ' • —

'i,

'••i.. —

' . _

'i •

• • . - . . —

. i . i .

12 16 20

EY (MeV)

300

o 2 0 0

(nibi 100

1 1

-

1 " T

^ - (

1

•-..

... ..,.. .

•i•<

s

a)

-

ti

ojo

3

am

C/5

O

a

[mb)

a

(mb)

225

ISO

75

120

80

(0

Q

'(»..) '!>.»! L.3.1'

v',»vr ** Hi

*

• i i i t i i .

i. 6 8 10 12 H. 16 18

Ey (MeV)

Nd natural ftono 75Be6 , 71Be5

a)b)c)

0

(mb)

10

30

20

10

0

_

-

ini

8 10

i

12i

V.

BY

I

16(MeV)

b)

,|

l l 'II

18

-

Il lI I

i

20

2Nd Mono 75Be6 , 71Ca5

a) o(Y,n)+o(Y,pn)b) o(Y,2nl+o(

(mb)

300

200

100

012 16 20

EY (MeV)

1112Nd Brems 79Sh1O

O O(Y,P)

• o(Y,n) 68Be5 , 76Le566Br1 , 71Ca5

•••• o(Y,Po+P, 1 71Sh1 , Sa30

1

a

(mb)

a

(nib)

300

200

100

80

60

10

20

0

-

-

-

-

-

-

(T.I)

'"I'I

li '

Ill'H11

II

al

bl

l l ' l ' l ,!, -1 | "

-

»)6 0 10 12 H 16 18 20

EY ( M C V )

lll3Nd Mono 75Be6 , 71CaS

a) o(Y,n)+o(Y,pn1bl oiY.^ni+oC^.pZnl

0

(nib)

0

(mbl

225

150

150

100

50

0

n

J*u

/

-

-

-

\

HI1|

' l

II '

/ '''"I1 _1

6 8 to 12 K 16 18 20Ey (MeVl

l""Nd Mono 75Be6 , 71Ca5

a) o(Y,n)+o(Y,pnl

bl o(Y,2n)to(

\O

>

M3

mw

CO

O

225

«0

150

100 -

50

0

ai

"I I

•y

bl

"I,

' » » • » • )

I, 8 12 16 20

Uy (MoV)

" sNd Mono 75Be6 , 71CaS

b) o(Y,2n)+o(Y,p2n)

Cinb)

""Nd ^ n o 75Be6 , 71Ca5

b) o(y,2nl*o(Y,p2nl

JO

a

(mb)

0

(mb)

225

150

75

200

150

100

50

0

-

-

II1"

-

-

-

' lr . i l

i i

1 '

Ai1" \

1

i1

i

,1

l l

i i

a)

-

I 'I '-I-

'i b )UN,

' l p

-

8 10 12 14

Uy (MeV)

Mono 75Be6 , 71Ca5

0

(mb)

0

mb)

225

150

75

0

200

150

100

50

0

r • i • i

-

Hi1

ii

(r,i)

-

-

-

'(r,o)

1 I . I

I ' 1

11

i i n .„ • " ' ",'

i'

I I

i • i •

a)

-

"'l l ' l1 "

(r,3»)

bl

-

1

' • ' H i , -

'('.)•)i i

g 10 12 14 16 18 20

Ey (MeV)

"Nd Mono 75De6 , 71CaS

o7>

S>

a.

mHin

O

a) o(Y,n)+o(Y,pn)bl o(v,2n)+o(Y,p2n)

a) o(Y,iO+a(Y,pn)b) o(Y,2n)+o(Y,p2n)

Nd

GN

CP

G2N

CNP

G2PGA

Nd

GNCP

G2NCNP

G2PGA

A =

9.8

7.2

17.9

16.6

12.50.8

A =

5.88.0

13.613.7

11.1-1.6

112 (27.16)

2.50h, EC, B*61s, IT, EC, 0*S

3

3

SS

11!

2.17.7.S13.

33.

.37d, EC

.39 rain, EC,

i (8.29)

1E*15y, a30 min, B*2 min, IT, B

59d, 8"

Oh, B"32.55d, B"

B*

A

78

1315

15-1

A

6

7

15

13

13-0

=

.6

.6

.3

.5

.1

.2

=

. 1

.5

.9

.1

. 1

.5

iie

S5.

2.17.7.2.S

113 (12.18)

S

19.2h, B", EC11.6 min, IT2.50h, EC, 8'

61s, IT, EC, BS

32.55d, B"1.372E+2d, EC

56s, IT

> (17.19)

98h, 6"

1E»15y, a30 min, B2 min, IT, 0"815E+2d, B"

A

79

1215

16-0

A

7

8

13

15

13-1

=

.3

.2

.6

.9

.2

.6

=

.8

.0

.9

.3

.8

.9

111 (23.80)

S

13.59d, B"

S

19.2h, fl", EC11.6 min, ITSS

118 (5.75)

1013

S21

132

•98d, B".6 min, 8

.0 min, 8

.9 min, B"

.815E+2d, B"

A

79

1216

170

=

.1

.6

.1

.5

.6

.1

150

1.2.

S2.

18s13.

(5.63)

73h, 8"3 min, 8"

30 min, B"

. 89 min, 8"

"8s

O

Samarium

o

(mb)

300

200

100

0

300

o 200

( m b ) ioo

0

-T 1 • r—' 1—-• r

a)

.1 \

y """"Mlil'(Ml

bl

200

100

0

(mb)

' 1

a)..-'

d)

el .

• i •

r1' .

. ' • • /

r

rt's'"''-'K' • • • _

"A

I.

— i — • — i — • —

-

t

*1

I

10 12 14 16 18 20 22

EY (Me\O

Sm isotopes Mono 74Ca5

a) 15"Sm o(Y,nHo(Y,pn)+o(Y,2n)bl 152Sm — ii —cl l50Sm —II —dl 14eSm —« —e) 1-"Sm — • —

T1

o

so.>«m

m

O

0

Gnb)

150

100

SO

0

20

fab)

X( r , l . ) f u l i )

dl

I 8 12 16 20 2<>

E Y CMeV)

Sm natural Mono 75Be6 , 69BeS

al o(Y,nt)bl o(Y,n)+o(Y,i»n)

cl o(d) o(Y,3nl

0

(mb)

a

(rob)

350

250

150

50

40

30

20

10

1

1

11

1

1 11 1

1 I 1

-

lr.il

1 1

'• a)

' iir

(iI'M

i. .i . ' /

— i • 1 • 1 • —

bl

1 -

„ n'ly'i'i ;tr.iil

i

10 12 K 16 18 20

E Y (MeV)

""*Sm Mono 75Bo6 , 74Ca105

a) o(Y,n)+o(Y,pn)bl oCY^nl+oC

ON

00

0

(mb)

a

(mb)

350

250

150

50

200

150

100

50

0

-

-

-

1lr.li

1

-

-

-

-

I I I I I

al

* 1

1 (

i * " " , ' ' ".i 1 • • i — i 1 —

bl

'"' -

1 , 1 '. 1 . 1 t

10 12 14 16 18 20

(MeV)

(nib)

(mb)

350

250

150

50

200

150

100

50

-

-

\ r ,»

i ' i

-

-

-

Vr,i) p

al

, Aiii' \ .

i

• i * i I . I

i • i • i • i • i

bl

; \ -

i

10 12 K 16 18 20

By (MeV)

szsa

jo

V>OZ

eSm Mono 75Be6 , 74Ca105 15°Sm Mono 7SBe6 ,74Ca105

a) o(Y,n)to(Ypn)

b) o(Y,Znl+o(Y,p2n)a) o(Y,n)+o(Y,pn)

bl o(Y,2n)ta(Y,p2n)

0

(nib)

a

(nib)

350

250

150

50

0

225

175

125

75

25

1 1 " |

1

It '

1

1 . 1. ( , (

hr,n. . i . i

• 1 "

'lT, Mi

1 -

1

Ii

i

yi 1

•I,

/

i

• i — i — •

a)

-

-

SiI'^II11, f ||l

— , , . , .

b)

"V,\

'll

-

. i . i .

10 12 V, 16 18 20

Hy (MeV)

Sm Mono 75Be6 , 74Ca105

a

(u\b)

a

(mb)

350

250

150

50

225

175

125

75

25

0

-

( in

u , l )1 I . I

-

-

-

. " ' " i •

a) "

1

b)

• '•

' ' i

_•

6 8 10 12 V, 16 18 20

Ey (MeV)

'"SmMono 75Be6 ,74CalO5

a) o(Y,n)+o(Y,pn)b) o(Y,2n)*o(Y,p2n)

a) o(Y,n)+o(Y,pn)b) o(Y,2n)+o(Y,p2n)

as

770 FORKMAN and PETERSSON

a caa o

_ ^ 'ca -t_T

— -co m

o ^ o m *~

in

a

i+roO

3 1

o

ro

in

u

OJ•f

o

-

3

EC

,

>.

t-^ tO

m oj

CO

OJ

• C& •• - • OC "O C * til

vO * ^ O OJ *»O ^~

z a. a.a. ry z ry <rcj u w o o

£ - 6co fo

o o co in

o

CO OJ

ro c-CO CO

CO

CO OJ

O-vO

CO t o

P- OJ

in d

in o -£ •— p— •a— + ro ro

to m co in —in a-o f t CT* in

CO CO ro in

H 0

0 CQ - >tCQ.

- -CQ ^ -

in o - uj oo+ ro ro o vo

2 CU2 a. oj z

CO

o to

CO —

PART 4-1 771

See overleaffor the graphs of europium

Europium

Cmb)

12 16 20

Ey (MeVl

1 5 ' B u Brems 83Bo5

X o(Y,1nH2o(Y(2n1HIM o(Y,1nHo(Y,2n1—• one-Lorentzian f i t to the

o(Y,1nHo(Y,2n1 data

0

(mbl

0

(rabl

a

(inbl

240

160

120

60

0

2tO

180

120

60

i a

108

72

36

1

-

-

-

-

-

t ' | ' i i | ' I

/ \

/ V

. ,i"-2." , , . '"••,''

• ,i i

i i

:

_

'"Wi/

11

ojo??2

z3

a.mm

O

12 16 ?0

Ey (MeVl153Eu Brems 83Bo5

X o(Y,1nH2o(Y,2n)Ml" o(Y,1nHo(Y,2n1— two-Lorentzian f i t to the

a(y,1n)+o(y,2n) data

24

16o

Cmb) 12

6

0

-

-

-

-

' •M l <(T.2I|

d)

ill,|l I'"

„ ll11 '-III 1<r.sa)i I 'm I (

i i i ' 1" .1 I i

8 12 16 20 24

Ey (Me\O

153Eu Mono 75Be6 , 69Be1

a) o(y,nt)

bl o(Y,nl+o(Ypn)

c) o(Y.2nl+o(Y,p2nl

d) o(Y,3nl

13

5

Eu A = 151 (t7.9) A = 153 (52.1)

GN 8.0 36y, EC 8.6 13.2y, EC, 3", B*12.6h, B\ EC, B* 9.3h, B", EC, B*

96 min, ITCP 1.9 S 5.9 SG2N 11.1 93-Id, EC 11.9 SCNP 12.9 S 11.2 87y, B"

13.2 53.1h, B" 11.6 28.1Oh, B"G2P ,CA -2.0 2.623y, B" -O.3 53.1h, B"

Gadolinium

12 16 20

Ey (Me\D •

15'Gd Brems 83Bo5

X o(Y,1nH2o(Y,2n)

i"» o(Y,1nl+o(Y,2n'l

— one-Lorentzian f i t to the

o(Y,1nl+o(Y,2n) data

0

Onbl

0

(mb)

0

(rab)

320

240

160

80

0

320

240

160

80

0

192

144

96

48

0

. . .

/

• • • , - ,

,1I1

I

_ i

V.)

• • • • • '

-

-

' ( " , • • ' . .

1

\

'

"ll

v

——r

t>

* •

i

\

~*—i—•—i—'

All1 ||i,i

i t .

. , . , .

ni '

i • i - i • i i

al

-

-

IVHUU^UI I ||

— i — • i • i • -i—i—-—

bl

-

-

-

'II'I ' ' ,Hl|l|ll|n '",«•»'!' . ."mi

. • • • , - . .

c) .

-

l'l

"V ' I i i i l rilli'lU'i, 1

ti9a"DmHmJOenVIO

l*»Gd

a)bl

c)di

O(Y

O(Y

O(Y

O(Y

Mono 75Be6 , 69Be1

.nHoCY.pn),2n1+o(Y,p2n)

,3nl

a

(mb)

32

24

16

8

0

14 18 22

Ey (MeVl

26

Gd A = 152 (0.2) A = 151 ( 2 . 1 )

GN 8 . 6 1.2E+2d, EC, aGP 7 . 1 S

C2N 15.1 1.78E*6y, aCNP 15 .3 36y, EC

1 2 . 6 , B", EC, B*

G2P 12.2 SGA -2 .2 8E*15y, a

8.7 2.1i6E+2d, EC7.6 S

15.1 1.08E+11y, a

A = 155 (11.8)

16.2 13.2y, EC, B', B* 11.1 S

13.5 S-0.9 S

9.3h, 8~, EC, B*96 mln, IT

6.1 S7.6 8.5y, B~, EC

16 min, IT15.1 2.H6E+2d, EC

11.1 16.8h, 8"-0 .1 87y, B'

t

Gd A = 156 (20.6) A = 157 (15.7) 158 (21.8) A = 160 (21.8)

GNGPG2NGNP

G2PGA

8.58.0

15.016.2

11.70.2

S1S8

16SS

• 96y>

• 5 y ,min,

B"

S", ECIT

6.18.0

11.911.1

15.20.7

S15S

1.

2216

. 11d

96y,

, B"

B"

.1 min, B"

.8h, B"

7.98.5

11.316.0

15.90.7

S15.S

15.

9.S

15h, B"

11d, B"

In , B"

7.59.3

13.116.0

it

1.0

I8.56h, 618.07 mln, 6"S

15.9 mln, 8*

•9.In, B"

- J

Terbium

a

(nib)

0

(mb)

250

200

150

100

50

0

250

200

150

100

SO

0

0

(mb)

0

(rab)

0

(mb)

250

200

150

100

50

250

200

150

100

50

0

150

100

50

0

'toil

i

ii

ii

it

i

-

h

T*)

V j / A a) "

^444tlJl%tl1UiL_

' " • " ' V ' J 1 )

b ) "

i

'i

1

"""llHUlllHH'll,,,

cl

A

(1.2.) (r,ja)

3n

I•VHm

enOZ

150

100

0(mb) 50

t

-

-

V..I

M'1T>

ai o(i

b) oOd oO

12

Mono

A

16

EY

75Bc6 ,

j(Y,pn)

•o(Y.p2n

|

' '"I'llll

20

(MeV)

64Br1

)

c)

"'iiil'lll'1!!! "

24 2B

(nibl 10 -

30

l59Tb Mono 75Be6 , 68Bc5

a) o(Y,n )

b) o(Y,nl+o(Y,pn)

c) o(y,2n1*o(y,p2n)

d) o(Y,3n)

Tb A = 159 (100)

CN 8.1 1.5E*2y, EC, 0"10.5s, IT

GP 6.1 SC2S 14.9 l.5E*2y, ECCMP 1<4.0 SG2P 1M.6 15.15h, B"CA 0.1 1.96y, B"

Holmium

0 0

0

(mb)

0

(mb)

0

(mb)

320

2(0

160

80

320

2!>0

160

60

180

K0

100

60

20

0

-

J'(Ml

_

I'"' .

a) _A ^H

Jem

b)

i

. . I 'M" . l.""1'. . . .'1-i——i • i • i • i——i—i—'—i—•—i——

c)

-

' '

..• ' ' y|l|

0

(mb)

a

(mb)

a

(nib)

320

2(0

160

60

300

200

100

0

WO

100

50

0

1 I i i i i '

- J1(7,11 tif.21

. i

1 1 '

Mr.i) I I H W H ' (» .M)

1 • '

vV\

\

"l

"'"I

— , - • • • - I • ' •

a)

-

-

tir.u.

b)

-

' I l lIll'l" 1 " l|| ||

c)

'" „.'•'I'll

' " ' 1'(r.») ' ' •

3

>Z

a.

fnm7)v>

o

a

(mb)

35

25

15

5

-

-

-

-

1n.ii

d)

.1 "-

, , H l ' -Illl'll'

6 10 11 18 22 26

EY

(mb)

20 -

10 -

Iliulll IpV, 18 22 26

E Y (MeVl

" s H o Mono 75Be6 , 69Be1 1 6 5 l lo Mono 75Be6 , 68Be5

al o(Y,nt)

b) oCY.nltoCYipni

c) o(Y,2n)4O(Y,p2nl

d) o(Y,3nl

a1 O(Y>IO

b) o(Y,nlto(Y,pn)

c) o(Y,2nl+o(Y,p2n')

di o(Y,3n1 5

(mb)

300 •

200 •

100

/

/ l

h

\\ :1

\ •

10 12 K 16 18 20

EY (MeV)

sHo (polarized); Annihi lat ion Y 69Ke1

Targe t II Beam

Targe t 1 Beam

Ho A = 165 (100)

GN 8.0 29.0 mln, EC, 8 '37 mln, IT

GP 6.2 SG2N 11.7 33y, EC

1.093, ITGNP 13.9 SG2P 11.8 19.5 min, B"CA -0 .1 6.9Od, B'

780 FORKMAN and PETERSSON

=£ -I

.aUJ

i i i i j i i

•i •a

Er A = 162 (0.1) A = 164 (1.6)

ON 9.2 3.2th, EC, B' 8.9 75.1 min, EC, B*GP 6.1 2.t8h, EC 6.9 33y, EC

6.7s, IT 1.09s, ITG2N 16.5 28.58h, EC 15.8 SGNP 1M.9 25.6 min, EC, B* 15.3 15 mln, EC, B*

5.02h, IT, B* 68 mln, IT, EC, B*G2P 11.2 S 12.3 SCA -1.7 S -1.3 S

Er A s 166 (33.1)

CN 8.5 10.3th, ECGP 7.3 S

A = 167 (22.9) A = 168 (27.1) A = 170 (It.9)

6.1) S7.5 26.83h, B"

1.2E+3y, B"G2N 15.1 S 1t.9 10.3th, ECGNP 15.3 29.0 mln, EC, B" 13.8 S

37 rain, ITG2P 13.5 S 1t.3 2.33h, B~

1.26 mln, IT, B"GA -0.8 S -0.7 S

7.8 S; 2.28s, IT 7.3 9.tOd, B"8.0 3.1h, B" 8.6 t.8 mln, B"

It.2 S15.3 26.83h, B"

i.2E+3y, B"15.0 81.5h, B"

-0.5 S

13.3 S15.3 2.98 mln, 6"

0.0 81.5h, B"

Lutetium

320

210a

(mb) tt0

80

0

300

200

100

0

a

(mb)

"•I • 1

'ml

t„

1'

J

'!».»•) '|7,MJ

III!I1'l1

\"'IIHllllllllllll!!

'(T.I.) '('.»)

a)

b)

i 10 K 18 22 26

EY (MeV)

(nib)

0

(nib)

150

100

50

0

40

30

20

10

-

_

-

-

-

|l'I

I'•(T.li)

•(r.2.)

\ ,

cl

''"llHlllll.

' ' • ' i l ln%»)

d)

j -

• I1' "tiMf I

7i

U 18 22 26

Ey (MeVO

Lu A = 175 ( 9 7 . 3 9 ) A = 176 ( 2 . 6 1 )

GN 7 . 7 3 . 3 1 y , EC, B*1.1(2E+2d, I T , EC

GP 5 .5 SG2N 11.H l | .99E+2d, EC

GNP 13.0 SG2P 13.5 8.2Mh, B"CA - 1 . 6 1 . 9 2 y , B"

6 . 3 S

6 . 0 t . 1 9 d , B"11.0 3 . 3 1 y , EC, B*

1. l )2E+2d, I T , EC11.8 S

11.1 5 . 1 n i n , B"-1.6 63.6h, B"

" 5 I J U Mono 75Be6 , 69Be5

a) o(Y,nt1

b) o(Y,n)+o(-r,pn)

c) o(Y,2n)+o(y,p2n)

d) o(y,3n)

00

Tantalum o58

300

250

200

0 150

(mbl 100

50

300

250

200

150

100

50

0

o

(mb)

-

-

-

-

/

1

• I ' l l l l

I

I1

• \

Til

\I'.")

\

\

\

lt_

ai

rr-LJ ij -l | i(Ttip-

bi

--

-

I'.")

a

(nibi

a

(inb)

400

300

200

100

0

too

300

200

100

M.

I \

/ V

'J ^^%, . ) '('.»l '|r,3.)

-

A *

- .' \" / '»/ """"". yMM) t ( M 1 | .(,,3.,

a)

_

-

b)

-

w3O.•0mm(AC/loz

(I*)

l e l Ta Mono 75Be6 , 63Br1

al o(Y,n t)

bl o(Y,nl+o(Y,pnl

cl o(Y,2nl+o(Y,p2n}

150

o 100

(lit))50

0

(mb)

A,c l

-w-Wss r4«k

10 14 18 22 26 30 34

Ey (MeV)

Ta A = 180 (0.012) A = 181 (99.988)

CN 6.6 6.65E*2d, EC 7.6

GP 5.7 S; 18.7s, IT; 25 . Id , IT 5.9C2N l i t .5 9.25 min, EC, B* 14.2CNP 11.8 S; 1.0s, IT ; 3 'y , IT 13.3C2P 13.3 28. t min, B" 13.9

23 min, B"GA -2.1 3.79E+1Oy, B" -1 .5

3.68h, B"

>E+I3y, B", EC8.1h, EC, B"S6.65Et2d, ECS; 18.7s, IT; 25.1d, ITt.59h, B"

6.71d, B"1.6O5E*2d, B", IT

l e l T a Mono 75Be6 , 68BeS

a) o(Y,nt1b) o(Y,n)to(Y,prV)

c) o(Y,2n1+o(Y,p2n')

d) o(Y,3n)

Tungsten

400

0 300

200

100

Q

400

o 300

(mb)200

100

0

240

180

(M» 12°60

0

1 '

-

-

-

J' lT. l l

-

1

— — l — • — i — -

• i i i • i i • t i i •

/ \

'ir.ju

.•"•,> i

Ai \

/ Mi

f

, ^'•? t l . .

a)

-

-

, ' IH .MI

b)

c)

Si. -i .• } I i . i

(mb)

15 20Ey (HOV)

W Brems 73So14

a) 182W o ( Y ) n U

b) ""W o(Y.n) +

3

amm7)

O

6W Mono 7SHe6 , 69Bc1

w

GN

GPG2NGNP

G2PCA

A =

8.5

6.615.111.5

11.8-2.5

180 (0.1)

37.5 min,6.1 rain,6.65E+2d

21.5d, EC9.25 min2.1h, ECS; 1.0s,S

ECIT,, EC

, EC,

IT;

EC

B*3iy, IT

A = 182 (26.3)

GN 8.1 1.210E+2d, EC

GP 7.1 S

C2N 11.7 SGNP 11.7 >E+13y, B", EC

8.1h, EC, B"

G2P 13.0 S; 5.5h, IT

A = 183 (11.3)

6.2 S

7.2 1.15OE+2d, 0"0.28s, IT15.8 min, IT

11.2 1.210Et2d, EC13.3 S

A = 181 (30.7)

7.1 S; 5.3s, IT

7.7 5.0d, B*

13.6 S11.6 1.150E*2d, B"

0.28s, IT15.8 min,

13.5 12.i5d, B" 11.3 9E+6y, B"62 min, B", IT

CA -1.8 S; 1.0s, IT; 31y, IT -1.7 S; 18.7s, IT; 25.1d, IT -1.7 S

186 (28.6)

7.2 75.Id, B"1.66 rain, IT

8.1 50 min, B"

13.0 S15.2 8.7h, B"

15.6 1.12h, B"

-1.0 9E*6y, B"62 min, 6", IT

7)

-J0000

Osmium

le£Os Mono 79Iie1

al o(Y,n 1bl o(Y,nl+o(Y,pnl

cl o(Y>2nl+o(Y>p2n)

0

(mbi

0

Cmbl

0

Cmbl

460

360

240

120

0

480

360

240

120

240

160

120

60

• A " :L / V_,..• V. "

b l

; \

Th.nl Ti ?nll^ 1 ' j .3nl

c l

,'lj.nl , *<j.2n| i l h . W i

o

2>Z

m

enOZ

12 16 20 24 26

EY (MeV)

460

0 3 6 0

(mb) » •120

0

480

0 360

(mb) 240

120

0

240

a 180

(mb) '20

60

0

48

a 36

(lit) 2412

0

-

" j

---

llt.nl

'll.nl

: \

!(>I»I

',

',

1

V

.' \

il, mi

'l).;m

al

-

' • - Vil..:.!-' ll.Jnl

b)

-

-

Ay..:,,"

c)-

-

'•"''i''

d)

-

'''''Ill•|!''

0

(nib)

0

(mb)

a

(mb)

a

(nib)

480

360

240

120

0

480

360

240

120

0

240

180

120

60

0

48

36

24

12

0

: A •':- J VM'. -

•ll.nl i|,.Jnl MiJ»l ••

bl

% c)1 \

_ 'lfl 1

W.I Ml, 1.'ll.nl "(».3n) •(».» " ' :| -| 1

d)

I i'li "

p\ 'I'll "J

• 8

9HI

4 e 12 16 20 24 2a

Ry (MeV)

4 8 12 16 20 24 28

Ey (Me\H

'Os Mono 79Bel 19'Os Mono 79Be1

a) o(Y,n(.')

b) o(Y,n)+o(Y,pnlc) o(Y#2n1+o(Y,p2n)

d) o(Y,3n)

a) o(Y,nt)

b) o(Y,n)+o(Y,pn1

el o(Y,2n)+o(Y,p2n1

d) o(Y,3n)

0 0

0

(mbl

0

(mbl

a

(mbl

0

(mbl

480

360

240

120

0

420

360

240

120

0

240

160

120

60

48

36

24

12

0

i 1 1 1-1" 'I""" '

\\

bl -

c l .

d) •

A"/ I"4 8 12 16 20 24 28

EY (Me\O

1 9 0 Os Mono 79Be1

o

(mbl

o

(mbl

o

(mbl

a

(mb)

480

360

240

120

0

460

360

240

120

0

240

180

120

60

0

48

36

24

1?

0

-

; / V,M i n i " h ?••< ' l l 1

: .

; •

' ,

Uirt "h.Jni " " + i-,

\

' \• \

—TfTj—nrjsi n~5

-

-

\ l>.nl f ' l>.3pl , T <>

al "

:lti-.,;.

b l •-

-

c) -

-

-

f l l l l ' 1

mil iirr*

d l •

illlilli 'ff\\ .

o

Tlojo;»;

szusa

t/iCOOZ

4 8 12 16 20 24 28

E Y (MeVl

1 9 20s tono 79Be1

t

bl o(Y,nl+o(y,pnlcl o(Y,2nl+a(Y,p2nl<1) o(Y,3nl

al o(Y,n tl

b) o(Y,nl+o(Y,pnlc) o(Y,2nl+o(

dl o(Y,3n)

Os A = 181 (O.O2) A = 186 (1.58) A = 187 (1.6)

GN 8.9 13.Oh, EC, B* 8.3 93.6d, EC9.9h, EC, IT

CP 5.7 71d, EC 6.5 S

C2N 16.1 22.1h, EC 11.9 SCNP 11).2 12.7h, EC, B* 14.3 38.Od, EC

61h, EC 1.69E*2d, IT, ECC2P 10.5 S 11.9 S

GA -3.1 S -2.8 S

6.3 2E+15y, a

6.6 90.6th, 8~, EC2E+5y, IT

11.6 93.6d, EC12.8 S

12.1 75.Id, B"1.66 rnin, IT

-2.7 S; 5.3s, IT

Os A = 188 (13.3) A = 189 (16.1) A = 190 (26.1) A = 192 (11.0)

GN 8.0 S

CP 7.2 1.3E+10y, 8

5.9 S

7.3 I6.98h, B"18.7 min, IT

G2H 11.3 2E+15y, a 13.9 SCNP 11.6 9O.61h, B\ EC 13.1 1.3E+10y, B"

2E+5y, ITC2P 13.2 S 13.7 23.85h, fGA -2.1 S -2.0 75. Id, B"

1.66 min, IT

7.8 S; 5.7h, IT 7.6 15.Id, B"13.1h, IT

8.0 21.3h, B" 8.8 9.8 min, B"

13.7 S 13.3 S; 9.9 min, IT15.1 I6.98h, B" 15.7 3.1 min, B"

18.7 min, IT 3.2h, 0\ IT11.6 69.Id, B" 16.2 30 nin, B"-1.1 S -0.1 69.Id, B"

50

792 FORKMAN and PETERSSON

z- '

U —

—zz

1 •

-5"

oa

O LA O

Au Mono 75Be6 , 62Fu101

t

bl o(Y,nl+a(Y,pn)

c) o(Y,2nl+o(y,p2n)

100

a ,0

(mb)

e

,Ti.20 fcO

. . • —i 1—

60 80 100 120 HO

EY (MeV)

(mb)

l " A u 79Pr5

12 16 20 21.

EY (MeV)

1 9 7Au Mono 75Iie6 , 7OVeS

a) o(Y>n.)

c) o(Y,2n)+o(Y,p2n)d) o(Y,3n)

Eo. (all reaction channels)

Zo(Y.n.) flu A = 197 (100)

CM 8.1 6.18d, EC, 6*, 6"8.2s, IT; 9.7h, IT

CP 5.8 SC2N m.B !.829E*2d, EC

30.6s, ITGNP 13.7 S; U.O2d, ITG2P 13.9 2.3h, B~

3.8h, 8"GA -0.9 S; 10.6d, IT

Lead

(mbl

(mb)

SOO

(.00

300

200

100

SOO

COO

300

200

100

0

-

-

-

('.•I

-

-

-

A al

/ V!NT~*f(T,2l) 'lT,3l)l 1

A " :/ \

U i j .

1V"1 hi ni'^l 1 1 1. '"•2" . .' I l l

(mbl

O7)T,2>•

zD.

tnH

1

(mb)

10 12 K 16 18 20 22 21 26

Ey (AleV)

J 0 6 Pb Mono 75Be6 , 641 la 1

alb)

120

0

Gnb)90

60

30

0

c)

'(».•) "%«i (w?

6 8 10 12 V. 16 18 20 22 V. 26

EY

207Pb Mono 75Be6 , 64Ha1

a l o(Y,n 1

b) o(Y,n)+o(Y,pn)c) o(Y,2nl+o(7,p2n1

TO

cl o(Y>2nl+o(Y,p2n1

796 FORKMAN and PETERSSON

© <=> © § 1 - © © © ©LH © LT1

i

o ^o u-i

2 " P b Mono 75Be6 , 64lla1

al o(Y,n t l

b) o(Y,n)+o(Y,pn)

c)

10 12 14

1-Y (MeV)

(mb)

208Pb Mono 75Be6 , 70Ve5

al o(Y,n t)

bi o(Y,n)+o(Y,pn)

cl o(Y,2n)+o(Y,p2n')

dl o(Y,3n)&H

2OBl'b Mono 75Be6 , 72Yo

Pb A : 201 (1.4)

CN 8.H 52.O2h, EC6.1a, IT0.48s, IT

CP 6 . 6 S

A = 206 ( 2 4 . 1 ) A = 207 (22.1) A = 208 (52.4)

8.1 1.4E+7y, EC

7.3 S

6.7 S

G2N 15.2 3E+5y, EC3.62h, IT, EC

GNP 14.4 12.23d, EC 11.83-77y, 8", EC

7.5 4.18 min, B"3.6 min, IT

14.8 S; 66 .9 min, IT 14.8 1.'IE+7y, EC

G2P 12.3 SGA -2.0 S

13.7 S-1 .1 S

14.0 S

14.7 5 .2 min, 8"-0 .4 46.76d, B"

7.4 S; 0.81s, IT

8.0 4.79 min, 8"1.3s, IT

14. 1 S

14.9 4.18 min, B~3.6 min, IT

15.4 8.2 min, 8"-0.5 S

Bismuth o73

soo400

o 300

(mb) 200

100

SOO

400

0 300

0 * 1 200

WO

0

-

-

-

-

1MI

A a1 •

»(r,ji| V.14

A " :/ \

2 1 " B i Mono 75Be6 , 72Yo

9

a."0mHm

O2

(mbi

200

1S0

100

SO

0

-

-

V..)i - *

10

HIw

H

EY

c)

j , J 1

1 1|l|l || -• . . . .18 22 26

(Me\O

'B i Mono 75Bc6 , 64Ha1

a) a(y,n t)bl o(Y,n)+oc) o(y,2nl

Bl

GNGPC2NCNPG2P

GA

A =

7.53.8

1f.411.20.8

-3.1

209 ( 100)

3.68E*5yS

38y,S; 01.791.3sS

EC,.81smln

i IT

• EC

6*. IT> 0 "

-e

99

- j

Thorium 00oo

0

(mbl

500

400

300

200

100

0

400

300

200

100

0

300 "

o 200

(mbl100

0

(mbl

1

-

*lr. .1 1 (r.jn,

i

al

-

' (Ml

l" "* (r,2a)

bl

-

-

-

i1

i

, '" * • * * * if j r 2 , |

c l

1.11

' l

-

0

(mbl

0

(mbl

o

(mbl

480

360

240

120

480

360

240

120

0

320

240

160

80

lal

-

(l.'IJ 'li.nl

-

-

-

(l.li; 'll.nl

-

-

tT.Oj'lj.n)

/ \ -

/ \ •/ v^ll.'nl'. 'Ij.nll

- \

\

' 1' 1 1 . 1 1 •

(l.2")T , M7.f»*l

—i j r 1 1

cl

1' ' I -

11

o

zIo."B

mm73c/>O

(mb)

-

-

' ir.ni

. 1 ' "

1

H|. , | l

' ir.za)

1 i

d i

" H i l l ~

I

6 8 10 12 KEy (MeV)

2 S 2Th Mono 75Be6 , 73VeS

0

(inbl

160

120

80

to0

-

-

-

-

y

i i • i i •

d)

-

-

(, 6 8 10 12 M, 16 18

EY (MeV)

2 3 2Th Mono 80Ca1

alb)cldl

y,nJ a) a(Y,nt)

b) o(Y,n)+a(Y,pnl

c) O(Y ,2n)+o(Y ,p2nl

d) o(Y,n7)

(mb)

15

10

5

0

T r^

if.-JS \

¥i

-

/

v \

i

7

(MeVI

811.045

a(Y,f) Annihilation Y 80Ca1

a(Y,f) Compton Y 7210)5

o(Y,f) Compton Y 73Ye5

o(Y,f) Tagged Y 75Ax8

o(Y,f) Brans 78Zu1<1

Th

CNGPG2NGNPC2PGA

A =

6.17.8

11.613.713.7-1 .1

232 (100)

25.52h, B"7.5 min, B"8.0E+l)y, a1.22Et2s, B'

93 mln, g"5.77y, S" 00

o

Uranium

480

360

120

0

320

o 240

(mb) 160

80

a

(mb)

160

120

-

-

l7."l'

_

7.nl'

-

-

7."l'

'17.11

'17.11

'(7.11

rJ

l7.nl»T

• 1

MT,2n»

S.,Th.M

V' 1 ' 1 'Tl7.?n»

\

K

" i

IH

a) -

V:

Hi',

c )

1 . ' . ' :

480

o 360(mb) » , .

240

120

0

320

o 240

(mb) 160

80

0

160

120

(mb)

(mb)

80 •

40

0

320

240

160

80

0

17.11

17.11

17.11

17.11

f, rI>.ol

"' *~

'. 'l7.nl

i

*

/

(7,2n|T

• I 1 ' .

(7,?nlT,

- T r

I7.2«l'*|

— i r

/ • • • • "

|7.J"l'l

' [y nl)

' Ci. "II

"I—

11 1

;l7.nll

\—

rl7."i;

a)

b)

1 t '

c)

1

II

' l l '

1

—1 1 1d)

1 1

ooo

4 6 8 10 12 14 16 18

EY (Me\0

2 J 6 U Mono 80Ca1

Ojo

z

enVIOZ

0

( 1 * 1

320

240

160

80

0

- S _-

1

' • -

T.njF r , t r0 i ll.nll* ,Tl7.Jn| , ,

4 6 8 10 12 14

BY (MeVI

I ) 5 U Mono 80Ca1

(mbl

(mbl

480

360

240

120

480

360

240

120

0

-

-

>.U T ll7.

-

-

-

>-

K^nl%1^ al ~

y"I l).3n|1 l|,.nll

M _

'i! • • " ' , . ' i .

r», ( l .Jn) ' , ' I 7 . " ' | I i

4 6 8 10 12 14 16 18

Ey (MeVI

2 3 8 U Mono 80Ca1

4 6 8 10 12 14 16 18

EY (MeVI

7*H

ooo

00o4

(mbl

500

400

300

200

100

0

400

o 300

(mbl 200

100

0

250

2000 150

(mbl ,00

50

0

r

-

-

-

-

i

/

I

1I

I*

i

1

V

' ir.JH

1

1

1

1(

' (r.Jii

1 \

\

" ' i

Hi

'l

i

a)

bl

i;l l!

"in ;i

(mbl

28

24

20

16

12

8

4

0

1 '

-

-

-

-

-

1 '

, \

i i

i

z~

i

i

i

/

i

i

!

i >

i

i i

/ \

,. i

\

i

\

\

\ \/ — ^ . '

i i

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8Ey (MeV)

U isotopes Conipton y 73An5

2 3 e U o ( Y , f l

" 6 U o ( Y , f l 73Ye5

O

amm73v>v>OZ

2 3 5 U 0(Y,f)

u

(mbl

200

150

100

50

_

_

i I

dl

i' ''1

" " ' " , 1 -

i I I i6 8 10 12 K 16 18

Ey (MO\0

2 " U Mono 75Be6 , 7WeS

ai o(v,ntlb) o(Y,n)+o(Y,pn1c) o(Y,2nl+o(Y,p2nld) o(Y,n

0

(mbl

20

15

10

5

ft

-

-

f\

mp

i • •

»

A1 . .

r

/ ^ -

/ /

'/

. . i

• • • • ! • •

< ^

/ " •

^ -

/ \

i

. . . . . . 1 . .

236U 81Le43

o(Y,fl Annihilation Y 80Ca1

o(Y,f) Compton Y 72Kh5

o(Y,f) Compton Y 73An5

-—— o(Y,f) Tagged Y 7SAX8

o(Y,f) Breras 78Zu14

o(Y,f) Brems 78A15

>

U A = 231 (O.O05) A = 235 (0.720) A = 238 (99.275)

5.3 2.116E+5y, a 6.1 6.75d, B"6.7 6.75h, B" 7.6 8.7 min, B"

1.175 min, IT12.1 1.59E+5y, a 11.3 2.3iEt7y, a

1.16E-7S, sfCNP 13.1 1.3d, B" 11.9 26.95d, B" 13.6 9.1 min, 8"G2P 11.9 LIIE-flOy, a 12.1 22.3 min, B" * 38 min, B"

CN 6.8 1.59E+5y, aCP 6.6 26.95d, B"

C2H 12.6 71.7y, o

GA -i).9 8.0E+Hy, a -t.7 25.52h, B" -1.3 2i.10d, B"ooO

00o

Neptunium

"7Np Mono 75Be6 , 73Ve5

a) °(Y,n tl

b) oCY.nHoCY.pnlcl °(Y,2n)«j(Y,p2nld) o(Y , f )

(mb)

o

(mbi

500

too

300

200

100

225

150

75

-

I

-

'(r,«) 'tt.JM

I

Jill'1

•(Ml

ill ill " "

l|lf| 111.1

l'(T.I.I |

1

1

s>za

mjoVIUiO

Hp

GNCP

G2NCNP

G2PGA

A =

6.61.9

12.311.1

12.0-5.0

237 (—)

22.5h, EC,2.311E+7y1.16E-73,3.96£+2d,7.0UE+8y,

26 mln, IT21.2 mln,26.95d, 6"

a"• asfEC, aa

0'

a

Onbl

a

125

100

75

50

25

0

300

200

100

cl--

I

-

-

-

-

l l ' l l l

_I1

d)

'I -II

1 I I 1 1

"0

•pa

12 1<.

Ey (MeV)

00O

J

808 FORKMAN and PETERSSON

REFERENCES TO SECTION 4

54Fel57Col

610rl662Dal62Ful62Ful0163Br 163So1363Zul64Ba564Brl64Del864Ful64Hal64Isl3

65Ha566Br 166Ke766Ful66Lol67Bel67Co768B&568BelO56BBe205

6BOw568Sul69Bel69Be569BelOl69Ful69Is2269Kel69WU1370Bal70Bel70Co870Me570Sul70Ve571A1171Bel

TtBi13

71Fa871Ful71Ku571Le5VIStil71Shl 1

71Wo872Be5

PHYS.PHYS.PHYS.CAN.PHYS.PHYS.PHY'S.PHYS.PHYS.PHYS.NUCL.PHYS.SOV.PHYS.PHYS.PHYS.PHYS.NUCL.NUCL.PHYS.

REV. 95(1954)776REV. 106(1957)300REV. 144(1961)834J. PHYS. 39(1961)1397REV.REV.REV.REV.LETTREV.PHYSREV.

PHYS.REV.REV.LETT,REV.PHYS,PHYS.REV.

127(1962)1746128(1962)2345127(1962)1273129(1963)27235(1963)149 A132(1963)751

G.A. Ferguson et alB.C. CookH.M. Serstenberg et al

G.M. Griffiths et alDodge et alFultz et alFultz et alBramblett et al

1al

w.s.s.R.N. Gorbunov et iR.W. Zurmuhle et

. R.

.C.

. C.

.L.

54(1964)549 J.E.E. Baglin et al133(1964)B869 R.L. Bramblett et alJETP 19(1964)1007 V.P. Denisov etal133(1964)61149 S.C. Fultz et al136(1964)B126 R.R. Harvey et al9(1964)162 B.S. Ishkhanov et al

LETT. 15(1965)727 B.L. Herman et al71(1965)305 V.N. Fetisov et al69(1965)241 E. Hayward et al148(1966)1198 R.L. Bramblett et al

IL NUOVQ CIMENTO 456(1966)273 F. Ferrero et alPHYS. REV. 143(1966)790 S.C. Fult^ et alPHYS. REV. 141(1966)1002 W.A.PHYS. REV. 162(1967)1098 B.L.IL NUOVU CIMENTO 51B(1967)199NUCL. PHYS. A121(1968)463 R.

PHYS. Al16(1968)632PHYS. Al17(1968)124LETT. 27B(1968)436PHYS. A122(1968)177REV. 176(1968)1366REV. 185(1969)1576PHYS. Al33(1969)417REV. 1/7(1969)1745REV. 1B6(1969)1255ACAD. SCI. USSR 33(1969)1594REV. 179(1969)1194 M.A. KellyLETT. 296(1969)359 C.P. Wu etREV. Cl(1970)165 l.M. BarbourREV. C2(1970)2318 B.L. BermanREV. LETT. 25:10(1970)685 B.C.PHYS. A148(1970)211 MeyerhofREV.

NUCL.NUCL.PHYS.NUCL.PHYS.PHYS.NUCL.PHYS.PHYS.BULL.PHYS.PHYS.PHYS.FHYS.PHYS.NUCL.PHYS.NUCL.PHYS.PHYS.NUCL.PHYS.NUCL.PHYS.PHYS.NUCL.NUCL.PHYS.

Lochstet et alBerman et alS. Costa et alBergere et al

R.C. Bearse et alN. Bezic et al

A.N. GorbunovD.B. Owen et al

R.E. Sund et alBerman et al

Bergere et alBerman et alFultj et al

B.L.R.B.L.S.C.

B.S.etaletet

. Ishkal

alal

. Cook etet al

hanov

al

et al

C2(1970)1129 R.E. Sund et alPHYS. A159(1970)561 A. Veyssiere et alREV. C4(1971)1673 R.A. Alvarez et al

C4(1971)723 B.L. Berman et alA172(1971)426 H. Bei1 et al348(1971)1 J. BirkholzA172(1971)437 P. Carlos et al

LETT. 27(1971)1016 S. Fallieros et alC4(1971)149 S.C. Fuitz et alA171(1971)384 S.K. Kunda et alA175(1971)609 A. Lepretre et al

4C( 1971) 1842 K. Shocia et alLABORATORY of NUCL. SCIENCE TOHOKU(•;. Shod a et al

REV.PHYSLETTPHYSREV.REV.PHYSPHYSREV.

RESEARCH REPORT ofUNIV. 4-1(1971)30PHYS. REV. LETT. 26(1971)907 A. van der Woude et alNUCL. PHYS. A179( 1972) 791 B.L. Berman et. al

PART 4-1 809

72Bi572Do872D> 572Kh572Ms872Th572Yo73.4142

73Au573Be42

NUL:L .PHYS.NUCL.NUCL.PHV'S.NUCL.

APPLICATIONS.73Bel42 PROC. of the INT. CONF

73Br44APPLICATIONS.

73C1573Hu573Mal373f1c373Ms473Ms573Pd42

73Sol473Til373Ve573Ye574Anl74Bel74Be574Brl74C«574CalO574Ch5

74De474Ful74L&574Ma574Sli574Va574Ve575Ah575A;<875bt!Q

75B&1575Del475Hu575Irl675K.u573Kn975K.U175Mcl75 I hi 1

75To33

PHYS. A189<1972>385 J. Birkhols*EV. LETT. 28(1972)839 W.R. Dodge et alPHVS. A181(1972)477 F. Dreyer et. alPHYS. A179(1972)333 A.M. Khan et alREV. LETT. 28(1972)847 E.D. Mshelia et alPHYS. A19fc(1972>89 B.W. Thomas et al

Unpublished UNIV. of ILLINOIS (1972) L.M. Young et alPROC. of the INT. CONF. on PHOTONUCLEAR REACTIONS andAPPLICATIONS. ASILOMAR (1973) 547 R.A. Alvarez et alNUCL. PHYS. A212(1973)221 R.A. finder1 et alPROC. of the INT. CONF. on PHOTONUCLEAR REACTIONS and

ASILOMAR (1^73) vol 1:525 R. Bergere et alon PHOTONUCLEAR REACTIONS and

ASILOMAR (1973) Vol 1:159 F. Beck et alPROC. of the INT. CONF. on PHOTONUCLEAR REACTIONS andAPPLICATIONS. ASILOMAR (1973) Vol 1:175R.L. Bramblett et alNUCL. PHYS. A213(1973)35B G.E. Clark et al

A215(1973)147 R.J. Hughes et al476(1973)433 C.K. Malcolm et alA213U973) J.J. McCarthy et alf. PHYSIK 261(1973)313 E.D. Mshelia et alA2O5(1973)581 E.D. Mshelia et al

PRCC. of Una INT. CONF. on PHOTONUCLEAR REACTIONS andAPPLICATIONS. ASILOMAR (1973) Veil 1:407 P. PaulSUV. J. NUCL. PHYS. 17(1973)1 YU.I. Sorokin et al

LET1. 466(1973)369 G. Ticcioni et alA1V9(1973)45 A. Veyssiere et alA206(1973)593 M.V. Yester et al

09(1974)1919 D.W. Anderson et alC10(1974)2221 B.L. Berman et alA227(1974)427 H. Bei 1 et al

REV. C9(1974)1901 D. Brajnik et alPHYS. A219(1974)61 P. Carlos et al

A225(1974)171 P. Carlos et alA235(1974)1

A.h. Chung et al (Data - J.U. Irish)ZEITSCHR1FT f. PHYSIK 271(1974)391 J. Devos et alPHYS. REV. C10(1974)608 S.C. Fultz et al

A219(1974)39 A. Lepretre et alJ.L. Matthews et alK. Shoda et alV.V. Varlamov et alA. Veyssiere et alJ. fthrens et al

NUCL. PHVS.PHYS. LETT.NUCL. PHYS.ZE1TSCHRIFTNUCL. PHYS.

PHYS.NUCL.NUCL.PHYS.PHYS.NUCL.PHYS.NUCL.NUCL.NUCL.

PHYS.PHYS.REV.REV.PHYS.

PHYS.PHYS.

A223(1974)221A221(1974)125A222(1974)548A227(1974)513A251(1975)479

NUCL. PHVS.NUCL. PHYS.NUCL. PHYS.NUCL. PHYS.NUCL. PHYS.NUCL. PHYS.PHVS. REV. LETT. 35(1975)501 P. A>;el e t a lATOMIC DA IA AND NUCLEAR DATA TABLES 15(1975)319B.L. BeriiianREV. of MODERN PHYS. 47(1975)713 B.L. Berman et alSUV. J. NUCL. PHYS. 22(1975)466 V.P. Denisov et alNUCL. PHVS. A238(1975)189 R.J. Hughes et alCAM. J. PHYS. 53(1975)802 J.D. Irish et alNUCL. PHYS. A247(1975)91 U. Kneissl et alNUCL. INSTR. and METHODS 127(1975)1 U. Kneissl et alPHVS. REV. 011(1975)1525 E. Kuhlmann et alPHVS. REV. 11(1975)772 J.J. McCarthy et alRESEARCH REPORT of LABORATORY of NUCL. SCIENCE TOHOKUUNIV. 8(1973)266 M.N. Thompson et alRESEARCH PEPURI of LABORATORY of NUCL. SCIENCE. TOHOKUUNIV. 8:2(1975)269 M.N. Thompson et al

810 FORKMAN and PETERSSON

76Br 176Cal76Le577Ba7770i577Shl278A1578Arl778Nol278Ta41

7BTh41

7BZul479 A11

79Bel79Dzl479Jol79Jul79Ju479Pr579Py579ShlO79Skl79Skl0179Ts579Wol8OAr46

80Bel6SOCal800 ul80Su5BOVal81A1581As581Ci45

81FdlB1IS1481Le43

81Pu581Ky581Sti45

81Wal826a582Ca582JulB20d582Ryl82Ve483Bel83Bt-47

83Bo5

PHVS. REV. 13C<1976)18521 D. Brajnik et alPHYS. REV. C14(1976)456 R. Carchon et alNUCL. PHYS. A258(1976)350 A. Lepretre et alIL NUOVO CIMENTO 38A(1977)145 F. Balestra et alNUCL. PHYS. A277(1977)301 S. Oikawa et alAUSTRALIAN J. PHYS. 30(1977)401 K. Shoda et alNUCL. PHYS. A298<1978)43 A. Aim et alUKR. F1Z. ZH. 23(1978)1818 Yu.M. Arkatov et alAUSTRALIAN J. PHYS. 31:6(1978)471 J.W. NorburyNUCL. INTERACTIONS CONF. CANBERRA (1978) 456H. Taneichi et alNUCL. INTERACTIONS CONF. CANBERRA (1978) 2O8M.N. ThompsonSOV. J. NUCL. PHYS. 28(1976)602 V.E.PHYS. REV. C20<1979)128 R.A. AlvarezREV. RIJUMAINE de PHYSIQUE 24(1979)539PHYS. REV. C19(1979) 1205 B.L. Bei-manSOV. J. NUCL. PHYS. 30(1979)151 L.Z.PHYS. REV. C20(1979)27 R.(j. Johnson et alPHYS. REV. C19(1979)1684 J.W. Jury et alZEirSCHRIFT -f. PHVSIK A291<1979)353 GNUCL. PHYS. A325(1979>63 J.S. PringleNUCL. PHYS. A318<1979)461 R.E. PywellPHYSICS REP0R1S 53(1979)341 K. ShodaPHYS. REV. C20< 1979) 2025 D.M. Skopik et alPHYS. REV. Civ(1979)601 D.M. Skopik et alNUCL. PHYS. A321(1979)157 H.PHYS. REV. C19U979) 1667 J.G.PROC. of the WORKSHOP an NUCL.PHOTONS - BOLOGNA (1980) 136PHYS. REV. C22(1980)2273 B.L.

J. PHYS. 58(1980)1555 J.REV. C21(1980)1215 J.T.

et al

Z tic h k oet alG. Baciu

et alDzhi1avyan

et al

et al

Junghauset alet al

et al

CAN.PHYS.PHYS.NUCL.PHYS.NUCL.NUCL.PROC.PHYS.PHVS.SOV.

Tsubota et alWoodworth et alPHYS. with REALH. ArenhovelBerman et al

J. BevelacquaCaldwell et al

and VIRTUAL

REV. C21(1980)503 J.W. Jury et alPHYS. A339(1980)125 R. Sutton et alREV. C22(1980)2396 E. Van Camp et alFHYS. A357(1981)171 P.D. Allen et alPHYS. A357(1981>429 Y.I. Assa-f i r i et alo-f the INT. SCHOOL o-f INTERMEDIATE ENERGY- VERONA (1981> 65 C. Ciofi degli AttiREV. C24(1981)849 D.D. Faul et alJ. NUCL. PHYS. 33(1981)453 B.S. Ishkhanov

NUCL.

et alPROC. o-f the FOURTH INT. SYMPOSIUM on NEUTRON CAPTUREGAMMA-RAY SPECTROSCOPY and RELATED TOPICS - GRENOBLE(1981) 613 E.W. LeesNUCL. PHYS. A369(1981)141 R.E. Pywell et alNUCL. PHYS. A371(1981)318 P.J.P. Ryan et alPROC. o-f the INT. SCHOOL o-f INTERMEDIATE ENERGY NUCL.PHVS. - VERONA (1981) 3O7 K. ShodaPHYS. REV. C24(1981)317 L. Ward et alNUCL. PHYS. A376(1982)15 K. Bangert et alNUCL. PHYS. A37B(1982)317 P. Carlos et alPHYS. REV. C26(1982)777 J.W. Jury et alNUCL. PHYS. A388(1982)445 G. Odyers et alPHYS. REV. C26 (1982) 448 I). Ryckbosch et alZEIISCHRIFT f. PHYSIK A306(1982)139 A. Veyssiere et alPHVS. REV. C27(1983)1 B.L. Berman et alPROC. of the INI. CONF. on NUCL. PHYS. FLORENCE (1983)vol 1:350 P. Berkvens et alNUCL. PHYS. A406(1983)257 T.J. Boal et al

PART 4-1 811

83Go7 IL NUOVO CIliENTQ 74AU983>17 I.D. Goldman et al83GLI1 PHYS. REV. C27 (1983) 470 R.L. Bulbranson et al83Ke36 NUCL. F:'HVS. LABORATORY. GHENT STATE UNIV. ANNUAL REPORT

(1983) 50 E. Kerkhove et al830t47 PROC. of the INT. CONF. on NUCL. PHYS. FLORENCE <1983)

VUL 1:347 P. Van Otten et al83Pyl PHYS. REV. C27(1983)960 R.E. Pawell et al83Ry5 NUCL. PHYS. A411<1983)105 P.J. Ryan et al83Su5 NUCL. F:HYS. A398 (1983) 415 R.A. Sutton et al83Zul PHYS. REV. C27(19B3)1957 D. Zubanov et al84As5 NUCL. F:'HYS. A413 (1984) 416 Y.I. Assa-firi et alSa3u Privatu Cuniinurii cation T. Saito et al

HOW TO ORDER IAEA PUBLICATIONS

An exclusive sales agent for IAEA publications, to whom all ordersand inquiries should be addressed, has been appointedin the following country:

UNITED STATES OF AMERICA BER NAN - UN I PUB, 4611-F Assembly' Drive, Lanham, MD 20706-4391

In the following countries IAEA publications may be purchased from thesales agents or booksellers listed or throughmajor local booksellers. Payment can be made in localcurrency or with UNESCO coupons.

ARGENTINA

AUSTRALIABELGIUM

CHILE

CHINA

CZECHOSLOVAKIA

FRANCE

HUNGARY

INDIA

ISRAEL

ITALY

JAPANPAKISTAN

POLAND

ROMANIASOUTH AFRICA

SPAIN

SWEDEN

UNITED KINGDOM

USSRYUGOSLAVIA

Comision Nacional de Energfa Atomica, Avenida del Libertador 8250,RA-1429 Buenos AiresHunter Publications, 58 A Gipps Street, Coltingwood, Victoria 3066Service Courrier UNESCO, 202, Avenue du Roi, B-1060 BrusselsComisi6n Chilena de Energi'a Nuclear, Venta de Publicaciones,Amunategui 95, Casilla 188-D, SantiagoIAEA Publications in Chinese:China Nuclear Energy Industry Corporation,Translation Section,P.O. Box 2103, BeijingIAEA Publications other than in Chinese:China National Publications Import & Export Corporation,Deutsche Abteilung, P.O. Box 88, BeijingS.N.T.L., Mikulandska 4, CS-11686 Prague 1Alfa, Publishers, Hurbanovo namestie 3.CS-815 89 BratislavaOffice International de Documentation et Librairie,48, rue Gay-Lussac,F-75240 Paris Cedex 05Kultura, Hungarian Foreign Trading Company,P.O. Box 149, H-1389 Budapest 62Oxford Book and Stationery Co., 17, Park Street, Calcutta-700 016Oxford Book and Stationery CcScindia House, New Delhi-110001Heiliger and Co., Ltd, Scientific and Medical Books,3, Nathan Strauss Street, Jerusalem 94227Libreria Scientifica, Dott. Lucio de Biasio "aeiou",Via Meravigli 16, 1-20123 MilanMaruzen Company, Ltd, P.O. Box 5050,100-31 Tokyo International

Mirza Book Agency, 65, Shahrah Quaid-e-Azam,P.O. Box 729, Lahore 3Ars Polona-Ruch, Centrala Handlu Zagranicznego,Krakowskie Przedmiescie 7, PL-00-068 WarsawMexim, PO. Box 136-137, BucharestVan Schaik Bookstore (Pty) Ltd, P.O. Box 724, Pretoria 0001Diaz de Santos, Lagasca 95, E-28006 MadridDiaz de Santos, Balmes417, E-08022 BarcelonaAB Fritzes Kungl. Hovbokhandel, Fredsgatan 2, P.O. Box 16356,S-103 27 StockholmHer Majesty's Stationery Office, Publications Centre, Agency Section,51 Nine Elms Lane, London SW8 5DRMezhdunarodnaya Kniga.Smolenskaya-Sennaya 32-34, Moscow G-200Jugoslovenska Knjiga, Terazije 27, P.O. Box 36, YU-11001 Belgrade

Orders from countries where sales agents have not yet been appointed andrequests for information should be addressed directly to:

Division of PublicationsInternational Atomic Energy AgencyWagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria

INTERNATIONALATOMIC ENERGY AGENCYVIENNA, 1987