26
4/2/14 1 Impacts of Climate Change, Human Land Use, and Mercury Contamina;on on Southern Appalachian Plethodon;d Salamanders M. Kevin Hamed Ph.D. Disserta;on Defense Amphibian Declines 33% of Amphibians and 47% of salamanders are threatened globally IUCN 2008 6 th Mass Extinction Wake & Vredenburg 2008 Habitat Loss Diseases & Pathogens Climate Change Chemical Contamination Over-exploitation Synergistic Interactions Center for Diversity (Young et al. 2004)

HamedDefenseWeb - University of Tennessee

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HamedDefenseWeb - University of Tennessee

4/2/14  

1  

Impacts  of  Climate  Change,  Human  Land  Use,  and  Mercury  Contamina;on  on  Southern  Appalachian  Plethodon;d  Salamanders  

M.  Kevin  Hamed  

Ph.D.  Disserta;on  Defense  

Amphibian Declines

33% of Amphibians and 47% of salamanders are threatened globally

IUCN 2008

6th Mass Extinction Wake & Vredenburg 2008

•  Habitat Loss •  Diseases & Pathogens

•  Climate Change

•  Chemical Contamination •  Over-exploitation

•  Synergistic Interactions

Center for Diversity

(Young et al. 2004)

Page 2: HamedDefenseWeb - University of Tennessee

4/2/14  

2  

Temporal & Spatial Changes of Mercury Contamination of Black-bellied

Salamanders (Desmognathus quadramaculatus)

Mercury

•  Reduce reproductive success •  Impair neurological function •  Alter hormone production Driscoll et al. 2007

6600 metric tons 66% Anthropogenic Sources

~50% Power Plants

US emissions peaked 1970s

Effects to Humans & Wildlife:

 LC50  =103  µg/L

Ambystoma opacum

Amphibian Declines & Mercury

Eurycea bislineata

•  Decreased responsiveness & capture speed

Burke et al. 2010

Sparling et al. 2000

> Bank et al. 2005

Southern Appalachian Void

Page 3: HamedDefenseWeb - University of Tennessee

4/2/14  

3  

Temporal Changes Museum Specimens

Berg et al. 1966

100 years

Hill et al. 2010 40 years

Other Fish Studies: Costa et al. 2006; Kamimura 1975; Kelly et al. 1975; Gibbs et al. 1974; Barber & Cross 1972

Fredrick et al. 2004

1910 - 1980

Amphibians ?

Objectives

I.  Non-lethal Sampling

II.  Spatial Comparison

III.  Efficiency of Museum Specimens IV. Temporal Comparisons

Study Area

Whitetop Mt. (Grayson, Smyth, Washington Co. VA)

Big Branch •  North Slope (945 – 1280 m)

Whitetop Creek •  South Slope (1158 – 1554 m)

Page 4: HamedDefenseWeb - University of Tennessee

4/2/14  

4  

Whitetop Mountain

150 cm of wet precipitation

50 cm cloud water deposition

33%

Mean pH of cloud water 3.49 (minimum 2.59) •  Fossil Fuels Major Contributor (Vong et al. 1991)

Black-bellied Salamander Desmognathus quadramaculatus  

Photo by Steve Tilley USGS 2010

•  Largest Desmognathine salamander •  Long-lived 13+ years •  3.5 year aquatic larval period (Organ 1960)

(Bruce 1988)

= Petranka et al. 1998

Apex Predator

Larvae: 82% Aquatic Inverts

Adults: 36 % Aquatic Inverts

(Davic 1991)

22% >1 meter from stream (Peterman et al. 2008)

Page 5: HamedDefenseWeb - University of Tennessee

4/2/14  

5  

Tissue Collection & Preparation

Big Branch – September 2011 Whitetop Creek – June/July 2012

Tail & Liver Samples

Freeze Dried – 48 hours

Sawyer Environmental Chemistry Laboratory

Effects of Preservation

Tissue Collected at Day: 40 80 120 160

UM Preservation Protocol: •  7 Days 10% Buffered Formalin •  2 Days of Water Rinse •  65% Ethanol

30 salamanders – Big Branch

Museum Specimens Dr. James Organ (1957-59)

Elevational Transects

Each specimen identified

•  March 2010 & June 2012 •  Tail samples collected & processed

Page 6: HamedDefenseWeb - University of Tennessee

4/2/14  

6  

Hill et al. 2010; Rimmer et al. 2010; Blackwell and Drenner 2009; Bergeron et al. 2007; Haynes et al. 2006; Pennuto et al. 2005; Sarica et al. 2004; Boylan et al. 1996

Mercury Analysis EPA Method 7473 DMA-80 (Milestone Inc.)

Thermal decomposition Amalgamation Atomic Absorption

(Bergeron et al. 2010) •  Water •  Soil •  Invertebrates •  Fish

Mercury Analysis Detection Limits: 1.00 – 100.29 ng

Replicate Sample Analyses: 3.87 ± 0.34 % (n=42)

Standard Reference Material Dogfish Muscle – National Research Council of Canada

Cell 1: 98.44 ± 0.44 % (n=42) Cell 2: 97.39 ± 0.67 % (n=17)

Results: Non-lethal Collection

(rs = 0.834, P < 0.01)

Ratio of Liver:Muscle Tissue (3.51 – 16.93) > 1

(Sorensen 1991)

Page 7: HamedDefenseWeb - University of Tennessee

4/2/14  

7  

Results: Aspect Comparison 95% CI

N

S

P < 0.001

Atmospheric Deposition

EPA Station 1994-9

50.9 % 6.8 %

26.4 % 15.9 %

500-3,400 MW (EPA 2011)

26

12 10

11

Results: Elevation Comparison

95% CI

P < 0.03

Page 8: HamedDefenseWeb - University of Tennessee

4/2/14  

8  

Comparison to Other Sites Tail Samples:

~200 ng/g (Bergeron et al. 2010)

110 ng/g (Rimmer et al. 2010)

Contaminated Site - VA

Vermont – Elevated Deposition

Mean: 134 ng/g (north slope only 188 ng/g)

Liver Samples:

269 – 544 ng/g ww Everglades (Ugarte et al. 2005)

1,228 ng/g Caddo Lake TX (Chumchal et al. 2011)

68 – 4,136 ng/g; Mean: 2,784 ng/g (17 – 1,034 ng/g ww)

Results: Preservation Effects

8 - 12%

P = 0.837

Temporal Comparison

(Bhavsar et al. 2010)

Page 9: HamedDefenseWeb - University of Tennessee

4/2/14  

9  

Summary •  Tail tissue provides a valid non-lethal sampling

method

•  Mercury uptake in black-bellied salamanders is ongoing

•  Mercury concentrations are greater on the northern slope and at higher elevations

• Museum specimens may provide an accurate measurement of historical mercury contamination

• Mercury concentrations in black-bellied salamanders have decreased since the 1950s on Whitetop Mt.

Changes in Salamanders Distributions Along an Elevational Gradient In the Mt.

Rogers National Recreation Area

Climate Change NOAA 2012 •  2003 – 2012 warmest on record

1.06 °C since 1880 •  Past 50-years > of past 1300 IPCC 2007 Shifting Range Limits:

•  Plants •  Invertebrates •  Fish •  Amphibians •  Reptiles •  Birds •  Mammals

Comte and Grenouillet 2013 ; Kopp and Cleland 2013; Tingley and Beissinger 2013; Chen et al. 2011; Sinervo et al. 2010; Rovito et al. 2009; Moritz et al. 2008

•  41% have shifted •  6.1 km per decade

Parmesan 2006

~ 50%

Tingley et al. 2012

Page 10: HamedDefenseWeb - University of Tennessee

4/2/14  

10  

Atelopus sp.

Amphibian & Climate Change

Costa Rica

Pounds et al. 2004

Bufo periglenes

•  64% Breeding earlier (up to 59 days)

Yiming et al. 2013

Indirect Effects:

•  Increased competition

Yellowstone NP

Patala et al. 2009

Lithobates luteiventris

Bolitoglossa rostrata

(Rovito et al. 2008)

Salamanders & Climate Change

What about Southern Appalachia?

Historic Salamander Dataset Dr. James & Della Organ

Organ 1960, 1990, 1991

•  Elevational Transects (914 – 1707 m)

•  1957-59 & 1990-91 •  Sampling intervals 30.5 m (100’)

•  Mt. Rogers National Recreation Area

Page 11: HamedDefenseWeb - University of Tennessee

4/2/14  

11  

Objectives I.  Document salamander distribution

changes since the 1950s & 1990s

II.  Examine regional weather patterns to determine potential impact

Study Area Beech Mt.

945 – 1494 m

(Grayson, Smyth, Washington Co. VA)

Bluff Mt. 1097 – 1490 m

Whitetop Mt. 1158 – 1676 m

15 Plethodontid salamander

species

Sampling

Whitetop Ck & Dells Br. 2009 - 2011

(2008 – 2011) 10 transects

5m  →  ←  5m  

Page 12: HamedDefenseWeb - University of Tennessee

4/2/14  

12  

Detection

!⌧ ?

Detection/Occupancy Modeling

1  hour   1  hour  

Imperfect detection leads to false range changes

Moritz et al. 2008; Tingley and Beissinger 2009

Overestimate extinctions by 56% Kery 2006

Necessary for historical comparisons

•  Modeled current detection and applied to historical data Tingley and Beissinger 2009

•  Modeled occupancy corrected for imperfect detection

Regional Climate •  Absence of Whitetop historic climate data

•  NOAA since 1948

73 km SW

Page 13: HamedDefenseWeb - University of Tennessee

4/2/14  

13  

Results: Distribution Changes Mean Midpoint Changes:

1950s = 7.6 m (1.5 m / decade) 1990s = 9.6 m (4.9 m / decade)

11.9 m Chen et al. 2011 Meta-analysis Moths (Boreno) 15.9 m Chen et al. 2009

Fish (France) 13.9 m Comte and Grenouillet 2013

Herpetofauna (Madagascar) 15 – 51 m Raxworthy et al. 2008

Median: = 15.2 m (3.0 m) = 0 m

Southern Appalachians Plants 24 m Lenori et al. 2008

Stoneflies 29 m Sheldon 2012

Results: Distribution Changes Lower Range Limits

1950s: 16.7%

25.0%

Upper Range Limits

1950s: 8.3%

41.7%

1990s: 16.7% 8.3%

1990s: 0.0% 41.7%

50% Birds Tingley et al. 2012

13.3% Small Mammals 26.7 %

Rowe et al. 2010

25% Small Mammals 25 %

Rowe et al. 2010

Weller’s salamander

1300

1400

1500

1600

1950s Recent 1990s Recent

Elev

atio

n (m

)

Sampling Years

30 m

61 m

Median Range Limit Changes

Page 14: HamedDefenseWeb - University of Tennessee

4/2/14  

14  

0

0.2

0.4

0.6

0.8

1

914 1036

1158 1280

1402 1524

1646

Spec

ies

Occ

upan

cy (ψ

)

Elevation (meters)

Occupancy Recent

Occupancy Historical

Weller’s salamander

1300

1350

1400

1450

1500

1550

1990s Recent

Elev

atio

n (m

)

Survey Years

24.5 m

Range Midpoints

Yonahlossee salamander

1050

1150

1250

1350

1450

1950s Recent 1990s Recent

Elev

atio

n (m

)

Sampling Year

Median Range Limit Changes

122 m

15 m

41 m

61 m

Pope 1950

Yonahlossee salamander

0

0.2

0.4

0.6

0.8

1

914  

1036  

1158  

1280  

1402  

1524  

1646  

Spec

ies

Occ

upan

cy (ψ

)

Elevation (meters)

Occupancy Recent

Occupancy Historical

1000

1100

1200

1300

1400

1950s 1990s Recent

Elev

atio

n (m

)

Survey Years

68.6m 32 m

Range Midpoints

Page 15: HamedDefenseWeb - University of Tennessee

4/2/14  

15  

900

1000

1100

1200

1300

1950s Recent 1990s Recent

Elev

atio

n (m

)

Sampling Year

Slimy salamander Median Range Limit Changes

91.5 m

61 m

41 m

61 m

Slimy salamander

0

0.2

0.4

0.6

0.8

1

914 1036

1158 1280

1402 1524

1646

Spec

ies

Occ

upan

cy (ψ

)

Elevation (meters)

Occupancy Recent Occupancy Historical

800 850 900 950

1000 1050 1100 1150 1200 1250 1300

1950s 1990s 2000s

Elev

atio

n (m

)

Survey  Years  

61 m 41 m

Range Midpoints Caruso & Lips 2013

-­‐10  

-­‐5  

0  

5  

10  

15  

20  

25  

30  

1940   1950   1960   1970   1980   1990   2000   2010   2020  

Mean  Tempe

rature  (ºC)  

Year  

Jan  Mean   July  Mean   Annual  Mean  

Regional Climate

r2  =  0.007;  P  =  0.461  

r2  =  0.014;  P  =  0.741  

r2  =  0.016;  P  =  0.983  

Page 16: HamedDefenseWeb - University of Tennessee

4/2/14  

16  

Summary • Lack of consistent elevation midpoint, upper

limits, and lower limit changes

•  Plethodon welleri shifted downslope

•  Plethodon yonahlossee expanded upslope

•  Plethodon cylindraceus constricted its range limits

•  Regional climate did not indicate changes

Impact of Powerline Right-of-Way Mowing on Four-toed Salamander

(Hemidactylium scutatum) Nesting and Larval Survival

Amphibian Declines & Habitat Loss

Davidson et al. 2002

Lithobates draytonii

14 million

Petranka et al. 1993

90% of IUCN listed Amphibians

Effects of canopy loss: •  Barriers for juvenile dispersal •  Desiccation and mortality •  Reduced abundances

Semlitsch et al. 2009

Page 17: HamedDefenseWeb - University of Tennessee

4/2/14  

17  

Habitat Loss & Right-of-Ways 2.8 million hectares of ROWs

Mechanical mowing

Negative impacts to other species of herpetofauna

~11,000 miles2

> 2,500

Gopherus polyplemus

Wetland Mitigation Sites

Salamanders?

New Regulations August 2003

Federal Energy Regulatory Commission (FERC) •  Utility will face significant fines •  Recommend clearing beyond minimum

September 2013

Objectives I. Impact on Nesting

II. Female Site Fidelity III. Impact on Larval Development IV. Time Needed for Recovery

Page 18: HamedDefenseWeb - University of Tennessee

4/2/14  

18  

Study Area TVA

South Holston River Weir Dam (Sullivan Co., TN)

•  Floodplain Forest •  3 Utility Transmission Line •  ROWs mechanical mowed

every 5 years

August 2007 & 2012

Four-toed Salamander Hemidactylium scutatum

•  “In Need of Management” •  Species of Greatest Conservation Need – Tier 1

Pool Breeding Plethodontid

Shallow moss lined temporary pools

Larvae fall into pools after hatching

Females guard eggs

(Bruce 1988)

Page 19: HamedDefenseWeb - University of Tennessee

4/2/14  

19  

•  Number of eggs •  Female SVL & TL •  Noted female absence

Nesting Parameters & Site Fidelity Located nests March/April 2007 - 2012

Photographed female ventral surface

Harris & Ludwig 2004

Nesting Success 1-L buckets below nests caught hatchlings

Larval Success •  Larval period •  Survival rates •  Size at metamorphosis

15 x 15 m

Current 5-year mowing cycle

Annual mowing cycle

Forest

Forest

15 x 15 m

Page 20: HamedDefenseWeb - University of Tennessee

4/2/14  

20  

ROW Mowing

August 2008 1 summer of growth

August 2009 2 summers of growth

August 2011 4 summers of growth

August 2010 3 summers of growth

Mesocosm Pools FOREST EDGE ROW

Annual Mow

5-yr Mow

3m  

3m  

Mesocosm Pools

Page 21: HamedDefenseWeb - University of Tennessee

4/2/14  

21  

Added •  10 larvae •  100 g leaf litter •  2 g rabbit chow •  1 l zooplankton

Pools searched weekly

Weight, SVL, & TL

Water temperatures

Mesocosm Pools

NPP = measured DO Earl & Semlitsch 2012

Results – Nesting Success

0  

10  

20  

30  

40  

50  

60  

70  

80  

Forest   ROW  

Mean  Pe

rcen

t  Survival  

Treatment  

Present  Absent  

95% CI

P < 0.001

Harris et al. 1995

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

Prior   Mowing     1  Year  Post  2  Years  Post    3  Years  Post  4  Years  Post  

Percen

t  Aba

ndon

ded  Nests  

Time  Since  Mowing  

Forest  

ROW  

P < 0.01

P < 0.01

Results – Nesting Success

P < 0.001 3 of 5 years = sink

Page 22: HamedDefenseWeb - University of Tennessee

4/2/14  

22  

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

Prior   Mowing     1  Year  Post   2  Years  Post     3  Years  Post   4  Years  Post  

Mean  Pe

rcen

t  Survival  

Time  Since  Mowing  

Forest   ROW  P < 0.03

Results – Nesting Success

3 of 5 years = sink SEM

3 April 2010 TL = 49.4 32 eggs  

2 April 2011 TL = 81.8 38 eggs

1 April 2012 TL = 88.6 Laying eggs

Results – Nesting Site Fidelity

Yurewicz and Wilbur 2004

Tail loss impacts ova production ?

Forest 12.0 – 17.1%

ROW 0%

Female Sink?

Results – Larvae Reduced survival 9 m into ROW for 1 & 2 years

2/5 years sink

0  10  20  30  40  50  60  70  80  90  

1  Year     2  Years     3  Years     4  Years    Mean  Pe

rcen

t  Survival  

Time  Since  Mowing  

5-­‐year  

Annual  

9 m into ROW

6 m for 1 year PM

Page 23: HamedDefenseWeb - University of Tennessee

4/2/14  

23  

Results – Temperatures

Vegetation cooled pools 3 years PM

9 m & 6 m into ROW warmer

0

10

20

30

40

50

60

70

80

90

100

17 18 19 20 21 22 23 24 25 26

Perc

ent S

urvi

val

Mean Temperature (°C)

(rs = -0.207, P < 0.01)

Results – Larvae

Results – Metamorphs Smaller metamorphs (TL) 9 m into ROW from the AT

2-years 4 -years

P < 0.03 P < 0.02

Smaller size : Decreased survivorship and adult fitness

Wilbur-Collins Model 1973

Unfavorable conditions: •  Smaller •  Reduced time to metamorphosis

Semlitsch et al. 1988 Scott et al. 2007

Page 24: HamedDefenseWeb - University of Tennessee

4/2/14  

24  

15  

20  

25  

30  

35  

40  

45  

50  

55  

17   18   19   20   21   22   23   24   25   26  

Mea

n D

ays

to

Met

amor

phos

is

Mean Temperature (°C)

Results – Larvae Quicker metamorphosis 6 & 9 m into ROW in both treatments

Other Plethodontids Beachy 1995

(rs = -0.589, P < 0.01)

Summary

•  Impacts of ROW Mowing last for at least 3 years of the 5- year mowing cycle

• ROW nests are abandoned significantly more than forest nests for 3 years PM

• Females nesting in the ROW appear to not return for future nesting attempts • Embryonic survival is significantly less in ROW for 3 of 5 years

Summary • Larval survival was significantly reduced 9 & 6 m into the ROW, but improved 3 years PM

• Larvae metamorphosed significantly smaller 9 m into the ROW within the AT

• Larvae metamorphosed significantly quicker 9 & 6 m into the ROW • Time to metamorphosis was negatively related to temperatures

Page 25: HamedDefenseWeb - University of Tennessee

4/2/14  

25  

Management Recommendation Integrated Vegetation Management (IVM)

Yahner et al. 2001

“The best and cheapest controls for vegetation are not chemicals but other plants” Rachel Carson, Silent Springs

5-year cycle

6-year cycle

Special Thanks: Funding

University of Tennessee Institute of Agriculture: •  Hazelwood Scholarship

Virginia Community College System: •  Paul Lee Professional Development Grant •  Chancellor’s Faculty Fellowship •  Tech Prep Program

Virginia Department of Game & Inland Fisheries: •  State Wildlife Grant from U.S. Fish & Wildlife Service

Tennessee Wildlife Resource Agency: •  State Wildlife Grant from U.S. Fish & Wildlife Service

Special Thanks: Logistics & Field Work

•  Dr. & Mrs. James Organ •  Aaron Horton •  Brian Park •  Joey McKenna •  Gary Poe •  Greg Schneider & Univ. of Michigan Museum of Zoology •  Clive Devoy & Marianne Lagerklint - Univ. of Maine •  Numerous Private Property Owners •  Mt. Rogers National Recreation Area - USFS •  VA Dept of Game & Inland Fisheries •  Tennessee Valley Authority •  Appalachian Well Drilling •  City of Bristol TN

Logistics & Field Work:

Page 26: HamedDefenseWeb - University of Tennessee

4/2/14  

26  

Questions