Ha Ram Esl Ides

Embed Size (px)

Citation preview

  • 8/14/2019 Ha Ram Esl Ides

    1/46

    Communications R&D Center

    Status and Trends of SiGe BiCMOS Technology

    David HarameManager SiGe BiCMOS Simulation,

    Modeling, Design Automation,Verification, and Release Department

    IBM Communications Research and Development CenterEssex Junction, VT

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    2/46

    Communications R&D Center

    Outline - Introduction

    Introduction

    IBM Technology overview

    Total Technology SupportSiGe BiCMOS production circuits

    Summary

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    3/46

    Communications R&D Center

    Graded Base SiGe HBT

    Narrow bandgap baseBase "quasi-electric field"Small EG at E-B jct.

    G e r m a n i u m

    C o n

    t e n t

    Emitter Base Collector

    E n e r g y ( e v

    )

    N P N

    Si

    SiGe

    EF

    EV

    EC

    e -

    e -e -

    High emitter dopingMedium base dopingPolysilicon emitter

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    4/46

    Communications R&D Center

    Key Technology Enablers and Issues

    Key Enablers: CMOS integration + PassivesHigh Level Integration differentiates BiCMOS from III-V

    CMOS in BiCMOS must exactly match base CMOS

    HIgh Q passives differentiate technology providersMonolithic circuits require high Q passives

    Key issues: Process IntegrationConflicting CMOS / HBT thermal budget requirements

    Addressed with integration methodology

    Shrinking CMOS interconnects non-optimal for RFSpecialized metal systems for RF

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    5/46

    Communications R&D Center

    Outline - SiGe Technology

    Introduction

    Technology overview

    SiGe HBT BiCMOS integrationSiGe HBT DifferentiatorsPassives

    Total Technology SupportSiGe BiCMOS production circuits

    Summary

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    6/46

    Communications R&D Center

    "Base-after-gate" integration flow

    Major thermal cycles prior to base depositionLow thermal-cycle HBT module

    CMOS / Common Bipolar/Analog

    Ref: S. St Onge, BCTM 99

    Shallow Trench Isolation

    FET Well ImplantsDual Gate Oxide & Gate Formation

    LDD Implants & AnnealsSpacer Formation

    Silicide & ContactsStandard 2 to 6 Metal Layers

    Includes MIM Capacitor

    Subcollector & n-EPI Deep Trench Isolation

    Collector Plug Implant

    Thick Metal Add-On Module

    pFET S/D/G Implants nFET S/D/G Implants

    HBT Module: Bipolar Window Open SiGe Epi Base Growth Extrinsic Base, Collector & Emitter Formation

    Source/Drain and Emitter Anneal

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    7/46

    Communications R&D Center

    Process Flow for 0.25 m SiGe BiCMOS

    Poly Resistor

    N-N+NWellN+

    P-

    N

    N+

    P-

    N+

    P-

    N- EpiN+

    P-

    N+

    N- Epi

    Single Crystal UHV/CVD SiGe Window Poly protect

    P-

    N-N+NN+

    P-

    NWELLN+

    Gate Poly

    P-

    N-N+N

    N+

    P-

    NWELL

    N+

    P P

    NPN PFET

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    8/46

    Communications R&D Center

    Process Flow for 0.25 m SiGe BiCMOS

    Poly ResistorNPN PFET

    P-

    N-N+N

    N+

    P-

    NWELL

    N+

    P P

    P-

    N-N+N

    N+P-

    NWELL

    N+

    P P

    P-

    N-N+N

    N+

    P-

    NWELLN+

    P P

    P P

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    9/46

    Communications R&D Center

    Process Flow for 0.25 m SiGe BiCMOS

    Poly ResistorNPN PFET

    P-

    N-N+N

    N+

    P-

    NWELL

    N+

    P P

    P P

    P-

    N-N+N

    N+

    P-

    NWELL

    N+

    P P

    P P

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    10/46

    Communications R&D Center

    Process Flow for 0.25 m SiGe BiCMOS

    Poly ResistorNPN PFET

    P-

    N-N+N

    N+

    P-

    NWELL

    N+

    P P

    P P

    P-

    N-N+N

    N+

    P-

    NWELL

    N+

    P P

    P P

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    11/46

    Communications R&D Center

    SiGe HBT Cross Section ( 0.25 m SiGe BiCMOS)

    Deep Trench

    ExtrinsicBase

    Collector

    EmitterIntrinsic

    Base

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    12/46

    Communications R&D Center

    f T comparison

    0.18 m generation performance increase 2.5XVertical + lateral scaling gives higher performance atlower power

    1E-5 0.0001 0.001 0.01 0.1

    Ic (Amps)

    0

    20

    40

    60

    80

    100

    120

    140

    f T ,

    G H z

    0.5 mgeneration1m2

    VCB = 1V0.18umgeneration1m2

    0.16 m2

    0.25 mgeneration0.35 m2

    Lateralscaling

    Verticalscaling

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    13/46

    Communications R&D Center

    HBT MAG and h21

    120 GHz f T

    100 GHz f MAX (fit to MAG @ 40-70GHz)

    h212

    MAG

    0.18x4 junction areaVBE=0.90V V CB=1V

    10 100

    Freq (GHz)

    1

    10

    100

    M

    A G

    , h 2 1 * * 2

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    14/46

    Communications R&D Center

    SiGe Bipolar/BiCMOS Roadmap

    3 generations of SiGe Production

    Production

    1997 1998 1999 2000 2001 2002 2003

    Main Technology DerivativeHigh Speed NPN Ft / BVceo

    High Breakdown NPN Ft / BVceo

    Bipolar

    CMOS

    0.5um3.3v

    0.5um3.3, 5v

    0.25um2.5v

    0.18um1.8v

    0.13um1.2v

    45 GHz / 3.3v25 GHz / 5.5v

    19971996

    50 GHz / 3.3v19 GHz / 7.8v

    5B0

    5MR20 GHz / 9.5v

    50 GHz / 3.3v

    29 GHz / 5.5v5HP

    6HP50 GHz / 3.3v29 GHz / 5.5v

    7HP120 GHz / 2.0v50 GHz / 3.3v25 GHz / 5.5v

    > 150 GHz / 2.0Vtbd / tbd

    8T

    BiCMOS Production

    5HE Bipolar Production

    Base DuringGateIntegration

    Base AfterGateIntegration

    End OfLife

    BiCMOS Production

    BiCMOS Production

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    15/46

    Communications R&D Center

    Technology Summary Table

    Lithography m 0.5 0.25 0.18NPN fT (Hi BV/HP) GHz 28/45 28/45 30/120

    NPN fMAX GHz 50/60 50/60 50/100NPN BVCEO V 5.5/3.3 5.5/3.3 5.0/2.1

    NPN Density relative 1x 1.15x 1.52x

    Emitter Width m 0.42 0.3 0.18

    NFMIN dB 0.8 0.8 0.4CMOS Supply V 3.3 2.5/ 3.3 1.8/ 3.3

    CMOS Pwr mW/MHz/gt 0.3 0.1 0.03CMOS Gate Delay ps 90 50 33

    CMOS Density relative 1x 4x 7.5x

    BEOL M1 CurrentDensity

    relative 1x 0.94x 1.5x

    BEOL Metal Material Al Al Cu

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    16/46

    Communications R&D Center

    Differentiator: Performance - f T Range

    Epi base and SiGe grading enable 150-200Ghz. HBT performance.Generations of HBT's are selected by market needs, eg.BVceo.

    f T & f max alone provide no information as to technology advancement.

    Johnson Limit

    Peak F (Ghz)0 20 40 60 80 100 120

    0

    2

    4

    6

    8

    10

    B

    V c e o

    ( V o

    l t s )

    t

    Gen 5&6 HBT

    SiGe HBT'sSi BJT's

    Gen 7 HBT

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    17/46

    Communications R&D Center

    Differentiator: Linearity

    Linearity efficiency = OIP3 / PDC

    Technology OIP 3 (dBm) P DC (mW) Linearity Eff.

    IBM SiGe HBT 25 16.2 19.5GaAs HBT 25 29.1 11GaAs HEMT 23 20 10GaAs MESFET 20 60 2Si BJT (max.linearity) 27 46 11

    Si BJT (max. f T) 22 40 4

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    18/46

    Communications R&D Center

    Differentiator: Noise Performance

    Excellent NF MINNoise improvements into 0.18 m generation

    0 1 2 3 4 5 6 7 8 9 10 110.00.20.4

    0.60.81.01.21.4

    1.61.82.02.22.4

    2.62.8

    Present (34 m2, 3 mA, 3 V)

    Next (56 m2, 10.7 mA, 2 V)

    M i n

    . N o

    i s e

    F i g u r e

    ( d B )

    Frequency (GHz)

    0

    2

    4

    6

    810

    12

    14

    16

    18

    20

    solid lines = model

    A s s o c i a

    t e d G ai n

    ( d B

    )

    Ref: D.R.Greenberg IMS 2000GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    19/46

    Communications R&D Center

    Passives DevelopmentTwo Modes of Development

    New Technology DevelopmentEnhancements on existing technologies

    Device Type Issues Solutions

    Inductors Spiral Q Thick dielectric moduleThick metal10-20 -cm substrates

    Capacitors Poly-Ins-Single xtalPoly-Ins-PolyMetal-Ins-Metal

    DensityReliability(Voltage rating)

    VCCQ

    Optimize processesOffer variety

    Resistors PolysiliconBEOL thin filmSingle-crystal diff'n

    ToleranceTCRParasitic C

    Current rating

    Process controlOffer varietyLayout options for low C

    Varactor JunctionMOS accumulation

    Tuning rangeQLinearity

    Offer varietyLayout tradeoffscaptured in models

    Interconnect Transmission line

    Local interconnect

    CMOS compat.

    ElectromigrationLoss

    Low levels - CMOS

    Upper levels - thickCopper

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    20/46

    Communications R&D Center

    Metal Layer Stack Comparison0.25 mBiCMOS

    DTSTI

    M1

    MT

    M2

    M3

    AM

    0.5 mBiCMOS

    M1

    M2

    LM

    DTSTI DT

    LY

    M1

    M2

    M3

    M4

    STI

    AM

    0.18 m

    BiCMOS

    "Analog" metallevels

    CMOS ASIC

    compatiblelevels

    CMOSscaling

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    21/46

    Communications R&D Center

    Typical spiral cross-section and model topology

    Silicon

    Inductor Spiral

    Via

    Underpass

    Si02dielectricheight

    (P-)

    SPICEmodel

    L1: spiral inductance

    R1: spiral series resistanceC3: spiral to underpass +turn-to-turn capacitance

    C1&C2: spiral to substratecapacitance

    R2&R3: substrate resistance

    C4&C5: substrate capacitance

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    22/46

    Communications R&D Center

    Thick metal/dielectric add-on module100% increase in metal thickness (2 m to 4 m)

    75% increase in dielectric thickness (5 m to 8.7 m)

    4m

    3m

    P- substrate (15 -cm)

    Standardmetal

    Achieves inductor Q values approaching 20GGF 12/8/99

    MOM simulation of multi-turn spiral

  • 8/14/2019 Ha Ram Esl Ides

    23/46

    Communications R&D Center

    pcurrent flow

    Current crowding more pronounced in multi-turn coils

    Additional metal thickness

    allows more "sidewall" forcurrent flow, reducingeffective resistance

    Edge Current

    More even distribution

    Edge current

    Spiral line with current crowding

    Expected areaof sidewallcurrent flow

    4m

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    24/46

    Communications R&D Center

    Outline - Total Technology Support

    IntroductionTechnology overview

    Total Technology SupportOverviewModels

    Design AutomationSiGe BiCMOS production circuits

    Future directions

    Summary

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    25/46

    Communications R&D Center

    Total technology supportFoundry and internal designs supported by IBM

    ModelsAccurate, scalable & statistical RF models includingmatching, temperature, frequency, & bias

    Cadence and ADS based design environmentsTime Domain and Frequency Domaing simulation

    Application support organizationsTechnical specialists for analog and CMOS ASICTraining in technology & design environment

    Product engineering organizationSupports customer through manufacturing environment

    First-pass design successGGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    26/46

    Communications R&D Center

    IBM BiCMOS Model Methodology

    AdvancedAdvancedModels forModels forAdvancedAdvanced

    DesignDesign

    Process Based Statistics!"Optimal Prediction of ManufacturingLine"

    Scalable Models!"Optimal DesignFlexibility"

    ScalableScalableStatisticalStatistical

    ModelModel

    PhysicalPhysicalLayoutLayout

    Device ScalingDevice ScalingEquationsEquations

    In-lineIn-lineElectricalElectrical

    DataData

    StatisticalStatisticalProcessProcess

    DescriptionDescription

    Nominal LotNominal LotCharacterizationCharacterization

    Split LotSplit LotCharacterizationCharacterization

    DesignDesignRulesRules

    DeviceDevice

    PhysicsPhysics

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    27/46

    Communications R&D Center

    Characterization Data Inputs to Final Model

    Physical &Physical &ProcessProcess

    SimulationSimulationDataData

    FinalFinalModelModel

    In-LineIn-LineElectricalElectrical

    DataData

    Test SiteTest SiteHardwareHardware

    DataData

    Rc

    W/2 XATAN

    Arc Edge

    Body

    L d r a w n

    L e f f

    1E-4 1E-3 1E-2 1E-1Ic (A)

    0

    50

    100

    150

    200

    f T ( G H z

    )

    0.25x5 m2

    0.5V V CB

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    28/46

    Communications R&D Center

    Important Modeling Aspects

    Physics/process based models simplify development of newfeatures or extensionsUse of industry standard models allows support for multiple vendorsimulators

    e.g. HSPICE, SPECTRE, HP-ADS

    Model GenerationParameter extraction using near-nominal hardwar

    Nominal models re-centered

    Salability across range of device geometriesStatistical tolerances based on in-line data and process splitlots

    Model Verification

    Device /Model across bias, temperature conditionsReview parameter correlations with process splitsEnsure corner definitions maintain proper physical relationsVerify Monte Carlo analysis results against process specs

    Ensure Kit Integration correct

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    29/46

    Communications R&D Center

    General

    Define Gaussian distributions to representprocess/lithography variations/some extracted parametersFirst order correlations based on physical relationships orcommon/shared process steps

    e.g. NPN Ic and Va correlated with base pinch resistanceDevice models include localized device mis-matchMonte Carlo

    Random variation of all defined process distributionsModel parameters recalculated for each combination ("case")Each "case" represents one point of expected process rangeGives best approximation of manufacturing process variationMost time consuming but best analysis

    Corner Models

    Specific skew of dominant parameters assumedRepresents typical "up" / "down" device performanceDefault "up" / "down" may not be valid for all bias,temperature conditions or circuit applications

    Statistical Philosophy - Monte Carlo/Corners

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    30/46

    Communications R&D Center

    RF CMOS (MOSFETs) Models

    Current MOSFET models:AC characterized to 50 GHzExtrinsic gate and substrate resistance elements added to

    BSIM3v3.2 core for improved frequency responseScalable width, length and multiple gate finger geometriesUse of the BSIM3v3 thermal and 1/f noise equationsNon-quasi-static (NQS) model, device temperature differences,and adjacent Vth mis-match f(W,L)

    Future Enhancements:Migration from BSIM3 to BSIM4 modelNoise figure / large signal measurements & correlation g

    Rgate Rsub Simplest Case

    GGF 12/8/99

    Resistor Model Topology

  • 8/14/2019 Ha Ram Esl Ides

    31/46

    Communications R&D Center

    Distributed R-C subcircuit improves accuracy athigher frequencies over single lumped R-C elements

    Typical resistance model accuracy within 5% across-55C to +125C range (body and end R separate T coef)

    Additional parasitic diiode element included forresistor within NWELL or NS, as needed

    Scalable width and length geometries

    Rend/2 Rbody/2 Rbody/2 Rend/2

    Cpar/6 2Cpar/3 Cpar/6

    GGF 12/8/99

    Ad d SiG HBT VBIC M d l

  • 8/14/2019 Ha Ram Esl Ides

    32/46

    Communications R&D Center

    Advanced SiGe HBT VBIC Models

    Advanced VBIC modeltopology includes separateelements:

    Current source for impactionizationSelf-heating networkFixed oxide capacitances(E-B, C-B)Extrinsic seriesresistancesParasitic PNP to substrate

    Separate impact ionizationcurrent source required toproperly modelhigh-breakdown type NPN

    GGF 12/8/99

    SiG HBT F M d l G h

  • 8/14/2019 Ha Ram Esl Ides

    33/46

    Communications R&D Center

    SiGe HBT Future Model Growth

    Evaluation / extraction for other advanced BJT models:

    HiCUM (Schroter)MEXTRAM (Phillips)

    Extend model and measurement correlation for:Noise figure data and Large signal data

    GGF 12/8/99

    SiGe Design Methodology

  • 8/14/2019 Ha Ram Esl Ides

    34/46

    Communications R&D Center

    SiGe Design Methodology

    Frequency Domain SimulationAgilent ADS

    Harmonic Balance/HF SpiceCircuit Envelope

    Schematic CaptureCadence Composer

    LayoutParameterized Cells (PCells)Virtuoso-XL/DLE LayoutEditor

    ID F

    R e s

    i m u

    l a t i o n

    IBM SiGe Design KitScaleable VBIC HBT ModelPFET, NFETSpiral inductors, StackedMIM, Resistors, Varactor,ESD

    Parasitic ExtractionCoeffgen, PRE, LPESequence Columbus RF (1Q01)Cadence RCX (2Q01)

    Time Domain SimulationCadence Analog ArtistSpectre Direct

    Design VerificationLVS/DRCHierarchical CheckingDIVA & Assura

    R e s

    i m u

    l a t i o n

    GDS II

    GGF 12/8/99

    Outline SiGe Production Circuits

  • 8/14/2019 Ha Ram Esl Ides

    35/46

    Communications R&D Center

    Outline - SiGe Production Circuits

    IntroductionTechnology overview

    Total Technology SupportSiGe BiCMOS production circuits

    Wireless

    WiredStorage

    Future directions

    Summary

    GGF 12/8/99

    Tri-Band LNA/Image Reject Mixer

  • 8/14/2019 Ha Ram Esl Ides

    36/46

    Communications R&D Center

    Tri Band LNA/Image Reject Mixer

    ProductTri-band GSM Image Reject Mixer with LNA

    Features900MHz, 1.8GHz and 1.9GHz operationLow power with sleep mode and singlesupply (3.0V) operationFully integrated differential design includingLNA for improved performance

    Integrated IF phase shifter/combiner and LOquadrature generator which simplifies useFlexible design with external low sensitivitymatching

    CMOS compatible band select logic control

    RCpoly-phasefilter

    IF+IF-

    DCSLO

    GSMLO

    LOQuadGen.

    4:1RF+

    4:1

    RF-

    RF-

    RF+

    Band Control

    Band sel.

    Bias Control

    VccLNA

    VccMix

    Sleep

    LO LO LO LO

    Frequency (MHz) 935-960 MHz (GSM)1.8-2.0GHz(DCS/PCS)

    Cascade Gain 22 dB

    NF 3.5 dBRF Input VSWR < 2:1

    LO Input VSWR < 2:1

    IIP3 -14 dBm

    LO Power 200mVp ECLSupply Voltage 2.7-3.3 V

    Supply Current < 30 mA

    Port Isolation (min) 20 dB (all ports)

    Image Rejection > 30 dB

    IF Frequency 400 MHzIF Load Impedance 600

    Package TSSOP24Temperature -40 to +85C

    GGF 12/8/99

    TDMA Power Amp

  • 8/14/2019 Ha Ram Esl Ides

    37/46

    Communications R&D Center

    IBM

    Measured"Typical"

    GaAs Data

    SheetTypical

    AMPSP OUT 31 32

    Gain 27 26PAE 53% 50%NADCP OUT 29.5 30

    Gain 29.5 28PAE 48 45ACPR -26 -28ALT -48 -48Ruggedness 10:1@5V 10:1@5

    V

    TDMA Power Amp

    Competitive specs to GaAsIntegration potential, lower cost

    GGF 12/8/99

    2 5 GHz Frequency Synthesizer

  • 8/14/2019 Ha Ram Esl Ides

    38/46

    Communications R&D Center

    2.5 GHz Frequency SynthesizerExample of non scaling in Analog & RF chips

    Wirebond pad counts and passives do not scale withreducing lithography dimensions

    Pad count detemining peripheral chip dimensionsLarge passives dominate space consumption

    40% of space determined by two capacitorsLarge area inductors

    3.8x2.0 mm2

    M. Soyuer, IBMYorktown Hts., NY

    GGF 12/8/99

    Intersil Wireless LAN Chipset

  • 8/14/2019 Ha Ram Esl Ides

    39/46

    Communications R&D Center

    Intersil Wireless LAN Chipset

    Commercial product2.4 GHz (ISM Band)3 SiGe BICMOS + 1 CMOS chipsReplaces 8 chips (some GaAs) +board components

    > 2 Million chip sets shipped

    Block Diagram, I/Q Modulator/ Demodulator

    CAL ENABLE

    IF DETECTOR OUTRECEIVE AGCBASEBAND RXI

    BASEBAND RXQ

    OFFSETCAL

    I

    Q

    TRANSMIT IF AGC

    BASEBAND TXQ

    BASEBAND TXI

    IF_IN

    IF_OUT

    0/ 90 PLL MODULE IF 2X LO/VCO INCHARGE PUMP OUT3-WIRE INTERFACEREF IN

    O

    Specification HFA 3726 (old) HFA 3783 (new-SiGe)Pin Count 80 48Radio Bit Rate 2 MBit/ s 11 MBit/ sReceiver Icc 70 mA 36 mA

    2x Loc. Osc. Freq. 20-800 MHz 160-1200 MHzGain Control Limiter Tx and Rx AGCRX Phase Balance +/- 4 degrees +/- 2 degreesTx Carrier Suppression -28 dBc max -30 dBc maxPhase detector Icc 0.8 mA 0.1 mA

    Baseband Coupling AC DC w/ internal offsetcorrection

    GGF 12/8/99

    Digital Network Switch

  • 8/14/2019 Ha Ram Esl Ides

    40/46

    Communications R&D Center

    Digital Network Switch

    Highest level of HBT integration published (1997)(highest integration today > 150K - not published)

    GGF 12/8/99

    Production PRML Read Channel

  • 8/14/2019 Ha Ram Esl Ides

    41/46

    Communications R&D Center

    First SiGe product at 0.25 m1200 SiGe HBT's300K Gates 0.25 m CMOS Logic (>1,000,000 Transistors)>75 200mm wafers/day in production at IBM Burlington

    GGF 12/8/99

  • 8/14/2019 Ha Ram Esl Ides

    42/46

    Alcatel 10Gbit/sec SONET

    10 and 40 Gbps Circuits with IBM SiGe

    First Experimental Multi Chip Reticle 18 x 18 mm All 10 Gbps circuits were first time right The chips have been moved to production directly The average circuit yield is > 90%

    10 Gbps Clock and Data Recovery Multi Chip Module

    8:1 MUX13 Gbps5 V, 2.5 W2000 Tr.

    3 x 3 mm

    GGF 12/8/99

    68x69 Cross-Point Switch

  • 8/14/2019 Ha Ram Esl Ides

    43/46

    Communications R&D Center

    68 x 69 differential crosspoint switch

    NRZ data rates up to 3.2 GbpsRise/fall times of 85 picoseconds1.8 picoseconds typical RMS jitter accumulationBandwidth-to-power ratio over 30 gigabits per watt

    SAN DIEGO, August 22, 2000 - Applied Micro Circuits Corp. (AMCC) [NASDAQ:AMCC], a leader inhigh-bandwidth silicon connectivity solutions for the world's optical networks, today announced theS2090, the industry's first very high-speed Silicon Germanium (SiGe) 68 x 69 differential crosspointswitch with full broadcast switching capability. Ideal for use in high-speed applications such as DenseWavelength Division Multiplexing (DWDM) switching, digital video, high-speed automatic testequipment (ATE), and datacom or telecom switches, the S2090 can handle NRZ data rates up to 3.2Gbps per channel with corresponding output rise/fall times of 85 picoseconds. Furthermore, the S2090also demonstrates and unprecedented 1.8 picoseconds typical Root Mean Square (RMS) jitteraccumulation and sports power optimization features, which can achieve typical power dissipation aslow as 7 Watts.

    AMCC Introduces Industry's First Silicon Germanium 68 x 69Differential Crosspoint Switch with over 200 Gbps SwitchingCapacity

    GGF 12/8/99

    POS/ATM SONET Mapper

  • 8/14/2019 Ha Ram Esl Ides

    44/46

    Communications R&D Center

    pp

    Single chip OC-48c SONET/SDH Mapper with integratedserializer / deserializer, integrated clock recovery (CDR),clock synthesis (CSU)Highly integrated HBT and

    ASIC methodology1.2M CMOS devices6K SiGe HBTsDie size 10.84x10.84 mm 2

    65 percent reduction inboard real estate comparedto existing solutions

    3.3V technology with 3.4Wof typical power

    GGF 12/8/99

    Outline - Introduction

  • 8/14/2019 Ha Ram Esl Ides

    45/46

    Communications R&D Center

    IntroductionTechnology overview

    Total Technology SolutionSiGe BiCMOS production circuits

    Summary

    GGF 12/8/99

    Summary

  • 8/14/2019 Ha Ram Esl Ides

    46/46

    Communications R&D Center

    SiGe HBT BiCMOS is integrated into a wide rangemainstream products today

    Key differentiators for the SiGe HBThigh integration : HBT count and CMOS

    power, linearity, noiseVolume products in wired, wireless, storage, test andother applications

    Two generations of SiGe BiCMOS in production

    Highly integrated parts with > 1.6 M FETs, 150K HBTsRoadmap to continuous improvements

    Passives and interonnect improvements are central

    Models and Design Kits -> tools for circuit designersAccurate statistical models across T, Freq., BiasRobust design platforms with state of the art point tools

    GGF 12/8/99