26
Status and main challenges for detectors in Hadron Therapy European Radiation Detection and Imaging (ERDIT) Bernd Voss GSI Helmholtzzentrum für Schwerionenforschung GmbH

Guideline

  • Upload
    hesper

  • View
    31

  • Download
    2

Embed Size (px)

DESCRIPTION

Status and main challenges for detectors in Hadron Therapy European Radiation Detection and Imaging ( ERDIT) Bernd Voss GSI Helmholtzzentrum für Schwerionenforschung GmbH. Guideline. What is Hadron Therapy about? - PowerPoint PPT Presentation

Citation preview

Page 1: Guideline

Status and main challenges for detectors in Hadron Therapy

European Radiation Detection and Imaging (ERDIT)

Bernd VossGSI Helmholtzzentrum für Schwerionenforschung GmbH

Page 2: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Guideline

What is Hadron Therapy about? What are the methods & instruments offering particles for

treatment during the evolution ‘State-of-the-art’ ‘Modern’ ‘Futuristic’ accelerators?

Which tasks do we have to perform and which questions do we have to answer in radio therapy (RT)?

Which requirements & challenges for detector systems result? Are there already practical solutions?

11.04.2013

Page 3: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Hadron-Therapy Light Ions vs. Photons

Ions… Show inverse depth-dose profiles with a finite range

and low lateral scattering at least in the plateau region Allow superior tumor-dose conformality

Introduce increased sensibility to range uncertainties (wrong dosage) daily positioning for 30 days, intra- & inter-fractional target movement 11.04.2013

IMRT 12CJäkel et al, Med Phys 35 2008

Fragment tail

Schardt et al, Rev Med Phys 82 2010

Page 4: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Hadron-Therapy Knowledge of base data is crucial Depth-dose/range distributions

Nuclear fragmentation cross-sections

Conversion of CT planning data (Hounsfield Units) into range of ions

Existing detector equipment for the base-data collection is

mature

11.04.2013

Wat

er e

quiv

alen

t pat

h le

ngth

CT number

Depth in water (mm)

Rel

ativ

e i

oniz

atio

n

Rietzel et al, Rad Onc 2,14 2007

OHHU 21000

HU:

Page 5: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

‘Standard’ Accelerator structures Cyclotron,

Synchrotron, Synchro-cyclotron

‘State-of-the-art’ Hadron Therapy facilities

11.04.2013

Beam application

Beam transport

Basic research & Quality assurance

Mature detector equipment pick up, SEM, SCI,

rest-gas monitors, IC, CG, MWPCUnder investigation:

GEM-TPC, Diamond, Si

Beam preparationHeidelberg Ion Therapy:

Page 6: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

‘State-of-the-art’ beam delivery Minor Challenges

On-line monitoring of irradiation exhibits…

Local saturationspoiling width determination for wire based gaseous systems in high-flux areas esp. for point-like (pencil) beams with high LET radiation (12C-RT)

Potential solutionExploit robust amplification methods e.g. based on GEM technology First prototypes show feasibility

11.04.2013

Page 7: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

E ≥1012V/cm

Relativistic e-

‘Modern’ Accelerators LASER driven accelerator

11.04.2013

LASER 1 PW250TW, Ti-Saphire, Neodynium-Glass, O(100m2) space req. Pulse 25700fs, 25/w10/s conventional p-cyclotron:

100MHz Dose Rate (2 Gy/(min l)) ~10-3 Gy/pulse ~10-10 Gy/pulse Spot point like O(10µm2), O(1021W cm-2) Proton energy 10170MeV with exponential energy spectra (factor 2 still missing)

Targets thin foils (50nm-10µm Si,Ti,Hydro-Carbon), H2droplets

Limited mass to increase proton energy at given power at decreased divergence and to obtain (quasi) mono-chromatic beams!

Page 8: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN Y. -J. Chen et al. LLNL-CONF-414222, 2009

‘Futuristic’ Accelerators Dielectric Wall Accelerator

CT-guided rotational (200°) IMPT Pulsed HF fields, p(200MeV) in 2m (E,I,spot) variable pulse-to-pulse Pulse length O(ns)@50Hz On-line monitoring beam-application?

11.04.2013

Lawrence Livermore National Laboratory (LLNL)

Page 9: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

‘Modern’ beam delivery Major Challenges

DWA & PRIOR (???) still in a very early stage or just sketched

LASER based systems are set up; open questions: Shielding the patient against beam contaminations (hard-X,e-,n) Formation of irradiation-field from non-monochromatic beams Dosimetry for exponential energy spectrum

recently solved by conventional IC calibrated against FC Measurements for (x,y,z) steering and control for ultra-fast (ns)

irradiation techniques; how to do an intensity modulation & dose control particle therapy?

11.04.2013

Page 10: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Intermediate Summary …ongoing detector R&D

Besides ongoing attempts to optimize equipment for online monitoring of beam delivery & control (MWPC)

existing detector equipment for base-data collection and state-of-the-art ion-beam application is mature R&D endeavors concentrate on: methods to reduce range uncertainties

(anatomy, patient positioning, inter- and intra fractional motion of target volume)

attempting to obtain 3D in-vivo on-line dosimetry & tomography using available information emerging from the target volume

developing dedicated imaging detector systems

11.04.2013

Page 11: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Insight into target volume Interaction & products

for 1010 protons (170 MeV, ~2Gy): (3·109) n(9·108) p(1·107) a(2·105)

Aim: In-beam in-vivo single particle tomography & dosimetryExploit information on the target volume by emerging radiation

11.04.2013

Time (s) after collision

10-21 10-18 10-15 10-12 10-9 10-6 10-3 100 103

ParticlesPrompt -rays

+-decay

Nucleons& clusters

Projectile

Target

Projectile fragment

Target fragment

Fireball

Prompt -rays

Fragmented ions

radioactive nuclides

Page 12: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Single particle (in-vivo) imaging

11.04.2013

SPECTPrompt -rays

Interaction Vertex Imaging Light charged particles

Proton beams

Light ion beams

Electronic collimationCompton camera

SiliconScintillator

ScintillatorScintillator

CdZnTe = ScattererSCI,CZT = Absorber

Passive collimationSlit cameras

Singleslit

Multislit

ICT Primaries

Range telescope

PET ß+emitter

Single Particle Tomography on-line / in-beam ‘off-line’

Mostly completely new methods (except PET) Clinical applicable technical solutions not elaborated Appropriate detectors not commercially available

in-beamin-roomoff-line

Page 13: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Positron Emission Tomography

11.04.2013

PET ß+emitter

Single Particle Tomography on-line / in-beam ‘off-line’

in-beamin-roomoff-line

protonprotonprojectile

neutron16O 15O

target fragment nucleus of tissue

target fragment

12C ion projectile

nucleus of tissue

16O 15Oneutrons

12C 11C projectile fragment

Required devices: PET Camera

15O, 11C, ...

11C, 10C

15O, 11C, ...

β+ production is a by-product of the irradiation

Parodi et al, IEEE TNS 2005

Page 14: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

In-beam: GSI Darmstadt Off-line: MGH Boston, HIT Heidelberg

more…• HIMAC, Chiba• NCC, Kashiwa • HIBMC, Hyogo• MDACC, Houston• Univ. of Florida

Positron Emission Tomography …some Hardware

11.04.2013Courtesy W. Enghardt / OncoRay

In-vivo range measurements In-vivo dosimetry & real-time image guidance Ongoing developments (TOF-PET, PET+CT)

reduce unfavorable in-beam random coincidences/background (by 20-30%)

Mature technology

Page 15: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Prompt -ray imaging

11.04.2013

SPECTPrompt -rays

Electronic collimationCompton camera

SiliconScintillator

ScintillatorScintillator

CZTSCI,CZT

Passive collimationSlit camera

Singleslit

Multislit

Single Particle Tomography on-line / in-beam

Required devices: Hodoscope (x,y,t) Scatterer (x,y,E) Absorber (x,y,z,E,t)

Ray (IPN Lyon)

Ray (IPN Lyon)

Page 16: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Nucleonsand clusters

Prompt -rays

Primary ions

Prompt -ray imaging Technique

11.04.2013

12C(75/95 AMeV) on PMMA

BP position

BP position

Prieels et al (IBA) Dauvergne et al (IPNL Lyon) A. Ferrari and FLUKA collaboration

blue FLUKAred Data

P R E L I M I N A R Y

Proton treatment plan -rays MC simulation

Page 17: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Prompt -ray imaging …some Hardware

11.04.2013

Krimmer, De Rydt IPN Lyon

Scintillating-fibre Hodoscope

Timing ASIC

t~1ns@108 s-1

CZT-strip+LYSO-block Detector

T. Kormoll, et al., NIM A626 (2011) 114,

IEEE NSS-MIC, 2011, pp. 3484

22Na%3

EE

2x128 (1x1mm2)

54x54x20 mm3

20x20x5 mm3

Le Foulher et al. 2010 IPN Lyon

single slit

multi slit

Page 18: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Interaction-Vertex imaging (secondary protons)

11.04.2013

Interaction Vertex Imaging Light charged particles

Proton beams

Light ion beams

Single Particle Tomography on-line / in-beam

Dauvergne et al 2009

AQUA Project: G4 simulations

Required devices: Hodoscope (x,y,t) Trackers (x,y,z,E,t)

in coincidence

Page 19: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Prompt -rays

Nucleons (protons)

Primary ions

Interaction-Vertex imaging Technique

11.04.2013

Single proton

Courtesy of E. Testa

Double proton

Page 20: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Interaction-Vertex imaging …some Hardware

11.04.2013

GANIL (95 AMeV) & HIT (200-300 AMeV)

CMOS

PMMA

‘PRR30’ 2x SCI Stack (r,E)

GEM tracker

30x30cm2

2D-strips ~106 s-1

rad.hard

48x3mm plastic 15cm WEPL

(30-190 MeV)WLS fibres

MPPC SiPM

>106 s-1

Hodoscope

Courtesy of

TERA

2x2cm2

4 planes

10°

Page 21: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Interaction-Vertex imaging …some Results

GEM-spatial 400m

6mrad Angular resolution

~0.3% (0.04 sr) Solid angle

11.04.2013

10 cm

secondary protons__ primary protons

1.5 m

target

GEM

GEM

PRR30

1010 s-1

~5×10

5 s-1

Large-angles beam diagnostics is feasible

at an acquisition rate of 106 tracks/s

reconstructed vertices

Courtesy of

TERA

Page 22: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Primary-Ion Radiography / Tomography

11.04.2013

Single Particle Tomography on-line / in-beam

Required devices: IC Range Telescope (r(Ei))

(Trackers (x,y)i,e)

For transmission ion-imaging prior to or in-between RT

Traversing particles Bragg peak position depends

on the traversed materials

Prompt -rays

Nucleons (protons)

Primary ions

ICT Primaries

Range telescope

Page 23: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Primary-Ion Radiography / Tomography

Transmission ion imaging prior to or in-between RT is feasible

11.04.2013

Water equivalent thickness

12C ions Radiography X-rays

Water equivalent path length

Tomography

61x ICs & PMMA slabs (300x300x3)mm3

Electrometer(www.ptcusa.com)

3x0.6mm21x1mm2

Rinaldi et al 2012

Page 24: Guideline

                                                                                    

B. Voss

Rinaldi, Gianoli et al 2012

P R E L I M I N A R Y

3D ART Reconstruction

12C Ion Tomography

ERDIT for Horizon2020, CERN

Rinaldi, Gianoli et al 2012

P R E L I M I N A R Y

11.04.2013

Page 25: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Summary

Several ‘modern’ beam production scenarios under investigation LASER driven accelerators are not table-top like so far

Dosimetry by IC with FC calibration successfull DWA & 4.5 GeV Proton Camera (@FAIR) are far from being reality

Detectors for Beam Control & Treatment Steering are mature Imaging setups to gain inside in on-line dosimetry are required

Most detector systems exist on a prototype/proof-of-principle base, larger scales are needed

Several ‘new’ detector materials are under investigation (CdZnTe,LaBr,LYSO,..)

Imaging results are promising for PET, prompt gamma, secondary proton, primary-ion tomography

Serious applications as standard medical device still pending

11.04.2013

Page 26: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Acknowledgement

Special thanks to:

Ilaria Rinaldi (Heidelberg University Hospital, Heidelberg) Katia Parodi (Ludwig-Maximilians University, Munich) Wolfgang Enghardt (OncoRay, Dresden) from whom I borrowed some of the information shown.

11.04.2013