76
TDW Pigging Products & Services Guide to Pigging

Guide to Pigging - ELEKOMS · 2020. 7. 11. · 1. Purpose of Pigging S e c t i o n I 1.0 Introduction. There are four basic reasons to pig a pipeline: A. Cleaning: Lines are cleaned

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • TDW Pigging Products & Services

    Guide to Pigging

  • © Copyright 2011All rights reserved.

    T.D. Williamson, Inc.

    NOTICE

    Any operation involving work on pipe containing

    liquids or gases under pressure is potentially hazardous.

    It is necessary, therefore, that correct procedures be

    followed in the use of any equipment to maintain a safe

    working environment.

    This publication is not intended to replace product

    manuals. Please see the appropriate product manuals

    for complete instructions/procedures.

    P.O. Box 3409Tulsa, OK 74101- 3409 USA

    In the U.S. toll free 888-TDWmSon (839-6766)Phone (918) 447-5100

    Fax (918) 446-6327E-mail: [email protected]

    Explore the TDW Web Site at www.tdwilliamson.com.

    T.D. Williamson, Inc. is ISO 9001 Certified.

    ™ Trademark of T.D. Williamson, Inc. in the United States and foreign countries.

    ® Registered trademark of T.D. Williamson, Inc. in the United States and foreign countries.

  • ii

    TABLE OF CONTENTS

    SECTION I: PURPOSE OF PIGGING

    1.0 Introduction .........................................................................................1

    2.0 Cleaning ..............................................................................................1

    3.0 Batching ..............................................................................................2

    4.0 Displacement .......................................................................................3

    5.0 Internal Inspection ................................................................................3

    SECTION II: PIPELINE DESIGN CONSIDERATIONS

    1.0 Introduction .........................................................................................5

    2.0 Pipeline Design for Pigging ....................................................................5

    SECTION III: PIG LAUNCHING AND RECEIVING TRAPS

    1.0 Introduction .........................................................................................9

    2.0 Launch and Recovery Procedures ...........................................................10

    3.0 Sample Pigging Systems.......................................................................15

    SECTION IV: SELECTING THE RIGHT PIPELINE PIG

    1.0 Introduction ........................................................................................17

    2.0 Pig Selection.......................................................................................18

    SECTION V: PIGGING NEW CONSTRUCTION

    1.0 Introduction ........................................................................................23

    2.0 Selecting the Pig .................................................................................23

    3.0 Propelling the Pig ................................................................................24

    SECTION VI: ONSTREAM PIGGING OF NATURAL GAS LINES, NATURAL GAS LIQUIDS AND REFINED PETROLEUM PRODUCTS

    1.0 Introduction ........................................................................................29

    2.0 Selecting the Pig .................................................................................30

    3.0 Speed ................................................................................................31

    4.0 Frequency ...........................................................................................32

    5.0 Performance .......................................................................................32

    SECTION VII: ONSTREAM PIGGING OF CRUDE OIL LINES

    1.0 Introduction ........................................................................................33

    2.0 Selecting the Pig .................................................................................34

    3.0 Pigging Speed .....................................................................................35

    4.0 Frequency ...........................................................................................35

    5.0 Performance .......................................................................................36

  • iii

    SECTION VIII: INLINE INSPECTION TECHNOLOGY

    1.0 Introduction ........................................................................................37

    2.0 Preparing the Line ...............................................................................37

    3.0 Inline Inspection ..................................................................................38

    4.0 Survey Selection .................................................................................38

    5.0 Geometry Inspection ............................................................................39

    6.0 Metal Loss Inspection ..........................................................................41

    7.0 Seam Weld Inspection and Other Longitudinally Oriented Anomalies ...........43

    8.0 Geometry, Metal Loss, Long-Seam, Longitudinal, Hard Spot Inspection .......44

    9.0 Crack Inspection .................................................................................46

    10.0 Pipeline XYZ Mapping ...........................................................................46

    11.0 Leak Detection and Location .................................................................49

    12.0 Survey Results ....................................................................................50

    SECTION IX: Maintenance, Cleaning and Storage of Pigs and Components

    1.0 Introduction ........................................................................................53

    2.0 Maintenance .......................................................................................53

    3.0 Cleaning .............................................................................................53

    4.0 Storage ..............................................................................................55

    Appendix I:

    Pipeline Pigging Questionnaire .......................................................................57

    Appendix II:

    Inline Inspection Questionnaire ......................................................................61

    Appendix III:

    Useful Conversion Factors .............................................................................67

    Appendix IV:

    Common Acronyms .......................................................................................69

  • • 1

    Purpose of Pigging

    S e c t i o n I

    1.0 Introduction

    Therearefourbasicreasonstopigapipeline:

    A. Cleaning:Linesarecleanedtoimproveflow(throughput)andtocontrolinternalcorrosion.

    B. SeparatingProducts(Batching):Pigsareofteninsertedbetweentwodissimilarproductstoavoidmixing.Thisisreferredtoasbatchpigging.

    C. Evacuation(Displacement):Pigsareusedtodisplaceoneproducttypewithanother.Forexample:Inanewconstructionapplication,theairisdisplacedwithwater,thewaterisdisplacedwithairandthepipedried;thedryairisdisplacedwithnitrogenortheprimaryproducttobemovedthroughthepipeline(oil,refinedproductsorgas).

    D. InternalInspection:Federallawrequirespipelineownerstoperiodicallyinspecttheirpipelines.SeeSectionVIIIformoreinformation.MostpipelineoperatorsarerequiredtoimplementanIMP(IntegrityManagementPlan).MostIMP’sincorporatetheuseofinternalinspectionpigs.Theseinspectionpigscomeinavarietyofshapesandsizeswitheachprovidingdatawhichdetectsdents,buckles,metallossandcracking.

    2.0 Cleaning

    2.1 Increase Pipeline Flow Efficiency

    Pigsareruntomaintainlineefficiency.Anydecreaseinpipelineefficiencyreducesthethroughputofapipeline,leadingtolostrevenue.Theimportanceofoperatingathighefficiencyisillustratedbythefollowingexamples:

    A. Aonepercentincreaseinefficiencyofanaturalgaspipelinetransporting100millioncubicfeetaday(2.8millioncubicmeters)canincreasethroughputbyonemillioncubicfeetaday(.028millioncubicmeters).

    B. Athreepercentincreaseinefficiencyofacrudeorproductpipelinetransporting50,000barrelsaday(135,950cubicmeters)canincreasethroughputby1,500barrelsaday(4,078.5cubicmeters).

    Itisdifficulttomakeapipeline100percentefficient.Frictionandotherphysicalfactorsreduceflow.Inanaturalgastransmissionline,compressoroverflowoil,corrosiveelements,millscale,dust,distillate,andcondensationcanformtocoattheinsideofthepipe.Paraffinandsandbuildupincrudelines,increasedliquidsinmultiphasegaslines,andsolidsbuildupinproductlinespresentsomewhatthesameproblem.Inallcases,thecontaminationbuildupincreasesresistancetoflowwhichdecreasespipelineefficiencyorincreasescostoftransmission.

    Flow,pressuredrop,andoperatingcostarefactorsusedtodeterminelineefficiency.Shouldalineneedcleaning,apigisinsertedintothestreamtocleanthepipewall,therebyincreasingflow.Figure1showsacleaningpigbeingloadedintolauncher.

    Fig 1. Loading a Cleaning Pig

  • • 2

    2.2 Corrosion Control

    Pigsareusedtoimproveandmaintaininternalpipecleanlinessbyremovingcontaminatesanddepositsonthepipewall.Periodiclinecleaningwithpigscanremovemanyofthecorrosiveelements.Pigscanalsobeusedwithchemicalcorrosioninhibitorstomitigatetheeffectsofcorrosion.Forexample,aspecialtypigcandistributecorrosioninhibitorontotheinsideofthepipewallsasshowninFigure2.

    Corrosivesituationswhichcanberemedied,atleastinpartbypigging,include:

    A. Waterandotherfluidswhichsettleoutofgas,crude,orproductsduetoinsufficientflowvelocityforentrainment,intermittentflow,orpressure/temperaturerelatedsolubilitychanges.Thesefluidscancontainoxygen,hydrogensulfide,carbondioxide,chlorine,salts,acidsandothercorrosives.

    B. Loosesediment,includingcorrosionproducts,scale,sandanddirt,whichusuallypromoteformationoflocalcorrosioncellsonapipe’sbottomquadrant,especiallyinconjunctionwithconditionslistedabove.

    C. Corrosionproductssuchaswaxorothersoliddepositsadheringtothepipewallcanshieldcorrodingareas,therebylimitingeffectivenessofothercorrosionmitigationmeasuressuchaschemicalinhibition.

    3.0 Batching

    Themixingoftwoproductsastheyarepumpedthroughthelineissometimesreferredtoascontamination.Thereareatleastthreesourcesthatcreatethiscontaminationinaproductspipeline,namely:

    A. Flowregime

    B. Pipelinedesign

    C. Operatingprocedures

    Whencontaminationoccursbetweentwoproducts,themixturemustbehandledinsomemanner.Themostfrequentoccurrenceistocutoutthemixtureandre-blenditwithoneofthetwoproductsoranotherproductbeingcurrentlyhandled.

    Topreventcontamination,abatchingpig,showninFigure3,isinsertedintothestream,eitherattheinterfaceoratthebeginningandendofabufferbatchwhichisinsertedbetweenthetwoproducts.Whentheproductarrivesatthefinalterminal,contaminationandre-blendingareminimal.

    Fig 3. OptionAll™ Batching Pig

    Fig 2. V-Jet® Corrosion Inhibitor Pig

  • • 3

    4.0 Displacement

    Hydrostatictestinginvolvespurgingasectionofpipelineofallair,fillingitwithwater,andthenpressurizingthelinetoaspecifiedtestpressureforsomeperiodoftime.Uponcompletionofthetest,thewaterisremovedsothelinecangoon-stream.

    Displacementpigsareusedtodisplaceairaheadofthehydrostatictestwater,andtodisplacewaterafterthehydrostatictest.

    Displacementpigsarealsousedtodisplaceahazardoushydrocarbonmaterialwithaninertgastoperformfieldrepairs.AbidirectionaldisplacementpigisshowninFigure4.Insomecases,multi-cuppedandfoampigscanalsobeusedfordisplacement.

    5.0 Internal Inspection

    Internalinspectionpigs,sometimesreferredtoas“smartpigs,”areusedtodetectpipeanomalieswhichmayresultinpipefailure,lossoflife,andpropertydamage.RefertoSectionVIIItogainabetterunderstandingofinlineinspection(ILI)pigtechnology.

    Fig 5. Magnetic Flux Leakage Tool (Smart Pig)

    Fig 4. 24-inch Displacement Pig for Bidirectional Applications

  • • 4

  • • 5

    Pipeline Design Considerations

    S e c t i o n I I

    Fig 6. Radius

    1.0 Introduction

    Pipelinesshouldbedesignedtoensureatrouble-freepiggingoperation.Basically,apipelineneedsaconsistentopenborefromstarttofinishifitistobepiggedsuccessfullyandconsistently.Indesigningapipelinetobepigged,thefollowingshouldbeconsidered:

    • Lengthofpigrun

    • Bendradiusanddegreeofbend

    • Valvetype

    • Pigpassageindicators

    2.0 Pipeline Design for Pigging

    2.1 Length of Pig Run (Distance between Launching and Receiving Traps)

    Thedistancebetweenpigtrapsisoftendeterminedbyeitherthepumpstationlocations,naturallengthofpipeline,and/ortheavailabilityofasitecapableoflaunchingandreceivingpigs.Thefollowingaremaximumrecommendeddistancesforgivenproducttypes.Theserecommendeddistancesarebaseduponapigbeingabletotraverseadistanceinagivenproductandremainrelativelyeffectivethroughoutthelength.Naturalgaslines,duetothenatureofadrygascontain-ingsandormillscale,tendtobemostabrasive,causingpigstowear-outmorequickly.Crudeoilpipelinesofferanaturallubrication,prolongingthelifeofpigs.

    A. 100miles(160km)forgaspipelines.

    B. 150miles(240km)forproductlines.

    C. 200miles(320km)forcrudeoillines.

    2.2 Bends

    A. BendRadiusisdefinedas:thearclengthtakenfromtheradiuspointtothecenterofthebend,measuredinpipediameters.SeeFigure6.

    B. Eachpigisdesignedtotraverseacertainminimumradiusbend.Onepigmaytraversea1.5DR-90degreebend;anothermaytraversea1.5DR-45degreebendwhileathirdmayonlytraversea3DR-90degreebend.Itiscommontofind1.5DRbendsinnaturalgaslines,3DRbendsinliquidsystems,andpossibly1DRbendsinsmallrefinerypiping,Abendhastwoidentifyingcomponents:1)Bendradius2)DegreeofBend.

    C.DegreeofBendisdefinedastheanglechangeindirectionofthepipe,measuredindegrees.ThedegreeofbendinFigure6is90degrees.Mostpigswillnottraverse1DRbendsnormiterbends.Examplesoftypicalbendsinclude:

    • Tees

    • Laterals

    • Pipeinsidediameter

    • Dualdiameterlines

  • • 6

    • 1.5DRBend:A1.5DRelbowhasabendradiusequalto1.5timesthenominalpipediameter.A1.5bendina12”pipelinewouldhaveabendradiusof18”andisshowninFigure7.

    • 3DRBend:A3DRelbowhasabendradiusequalto3timesthenominalpipediameter.A3DRbendina12”pipelinewouldhaveabendradiusof36”,asshowninFigure8.

    • FieldBend:Afieldbendisabendconductedinthefieldduringthepipelineconstruction.Thisisnormallyaccomplishedusingabendingmachineandthebendradiusinusually5DRorgreater.SeeFigure9.

    • MiterBend:Miterbendssometimesoccurinolderpipelineswhenthedirectionchangeisaccomplishedbymitercuttingshortsectionsofpipe,thenweldingthemtogethertochangethepipedirection,asshowninFigure10.Today’spipelineconstructioncodesdonotallowtheuseofmiterbendsinenergyrelatedpipelinesduetothepressurecontainingweakness.

    1.5x12=18”Radius

    12-inchNominalPipe(304.8mm)(12.750-inchactualO.D.)(323.8mm)

    18”R.(457.2mm)

    Fig 7. 1.5 DR Bend

    3x12=36”Radius

    36”R.(914mm)

    12-inchNominalPipe(304.8mm)(12.75-inchactualO.D.)(323.8mm)

    Fig 8. 3 DR Bend

    5x12=60”Radius

    60”R.(1254mm)

    12-inchNominalPipe(304.8mm)(12.75-inchactualO.D.)(323.8mm)

    Fig 9. Field Bend

    Min. Spacing

    Min. I.D

    .

    Max. Angle

    Max. Angle

    Fig 10. Miter Bend

  • • 7

    2.3 Valves

    Full-opening/Full-borethroughconduitgatevalvesandballvalvesprovideunobstructedpigpassagethroughtheline.However,ifoldergatevalves,suchasthatshowninFigure11areused,comparetheirseatringspacingwiththemaximumseatringspacingspecifiedforthepig.

    Ifcheckvalvesareused,thepigmustbeabletospanthebowllength(seeFigure12).Spheresandshortpigswilloftenstopinthebowlandallowtheproducttobypassaroundtheminthisoversizedarea.

    Ifmotorizedautomatedvalvesareusedinstationpiping,electricpigsignalindicators(Figures13-15)canbeconsideredasswitchestoopenandclosevalvesasthepigtraversesthroughthestationmainlinepiping.

    2.4 Pig Passage Indicators

    Pigpassageindicators,showninFigures13-15,areusedtodetectapigpassingagivenpoint.Theyarecommonlyusedtoshowthatapighasleftalauncherorhasenteredthereceivertrap.

    Pigsignalindicatorsarealsousedasswitchestoautomaticallycontrolvalvingatpumporcompressorstationsasthepigpassesthrough.

    Fig 11. Seat Ring Spacing

    Fig 14. PIG-SIG® V with Electrical and Flag Indicators

    Fig 15. PIG-SIG® NIXT Pig Passage Indicator

    Fig. 13. PIG-SIG® IV Pig Passage Indicators

    Fig 12. Sphere in a Check Valve

  • • 8

    2.5. Tees

    Inlineteeswithoutletswhichare50percentorgreaterofmainlinepipesizeshouldhaveguidebarsinstalledacrossthebranch.Thispreventsthepigorcleaningelementfromenteringthebranchoutlet.Thecouponshouldbereplacedinthetappedhole(Figure16)onSTOPPLE®fittings.Ontappingtie-infittingsitisrecommendedaflow-throughplugassemblybeinstalled(Figure17).

    Avoidweldingteesadjacenttooneanother.Suchfabricationcancauseapigtostopinthelinebecauseofthelargevolumeofbypassaroundthecups.SeeFigure18.

    2.6. Laterals

    Figure19illustratesanangledlateral.Comparethelateralbranchlengthtopiglength.Thepigmustbeabletospanthelateralopening.

    2.7 Pipe Inside Diameter

    Drasticchangesinthepipeinsidediameter(ID)shouldbeavoided.Comparethe(ID)ofthelinetothepigcup’sminimumandmaximumpipelineinsidediameter.LineIDchangesshouldbewithinthesespecifications.

    2.8 Dual Diameter Lines

    Pipelinescontainingdifferentdiametersofpipeshouldbeavoided.However,thereisaselectionofdual-diametercleaning,batchingandinspectionpigs.Werecommendcarefullyselectingadual-diameterpigforthegivenapplication.

    Fig 16. Coupon Attached to Completion Plug

    Fig 17. LOCK-O-RING® with Guide Bars

    Fig 18. Bypassing at Side Openings Causes Pig Stoppage

    Fig 19. Typical Lateral

    Coupon(rotatedforclarity

    STOPPLE®Fitting

    Pipeline

  • • 9

    1.0 Introduction

    Theprimarypurposeofapiglauncherandreceiveristolaunchand/orreceiveapipelinepiginto/fromapipelinesystemwithoutinterruptionoftheflow.Pipelinesoperate24houraday,sevendaysaweek,365daysayeardeliveringproducttotheirusers.Operatorscannotaffordtoshutdowntheoperatingsystemjusttopigtheline.Besidesthat,itisproductflowthroughthepipelinethatmovesthepigalong.Therefore,apiggingsystemallowsthepigstobelaunchedandreceivedwithoutflowinterruption.

    Piglaunchingandreceivingsystemsvaryfromonetoanotherdependingonspecificpurposeandproduct.Variationsincludeplacementofvalves,lengthoflaunch/receivetube,andtypeofclosuredoor,tonameafew.Inrecentyears,thedesignof“standard”launchersandreceivershaschangedbecauseoffederalregulationsrequiringin-lineinspection,thelengthandweightofin-lineinspectiontools,andresultantsafetyconsiderations.Thus,proceduresforoperatingasystemwillvaryfromonesystemtoanother.Specificlaunchandreceiveproceduresmustbedevelopedforeachsystem.Varioussystemsareshownattheendofthissection.AtypicalpiglaunchsystemisshowninFigure20.

    Useofalltheidentifiedvalvesisrequiredtocompleteasafeandsuccessfulpiglaunch.Ifthevalvesarenotopenedorclosedinthepropersequence,damagetopigandpipelinesystemmayoccur.Thereforeaprovenoperatingproceduremustbefollowedineachlaunchoperation.

    Pig Launching and Receiving Traps

    S e c t i o n I I I

    Fig 20. Typical Pig Launching System

  • • 10

    2.0 Launch and Recovery Procedures

    Duetothevaryingconfigurations,launchingandreceivingproceduresmustbeestablishedforeachuniquesystemdesign.Thefollowingproceduresaretobeusedasguidelinesforabasicpiggingsystemandmaynotbeappropriateforanygivensystem.

    Oneofthemostcriticaloperationsisopeningtheclosuredoor(accesstothetrap).Theoperatormustensurethatthetraphasbeendrainedandthatthereisnopressureinsidebeforeopening.Examplesofclosuresshownbelowhaveapressurewarninglockwhichmustbeopenedpriortoopeningtheclosuredoor.Openingthislockprovidesapositiveindicationofwhetherpressureexistsornot.

    ShowninFigure21areathreadedclosureforsmallertrapsandaclampringclosure,whichcanbeusedonthelargestclosure.Onthelargerclampringclosure,ratchetassistsareavailabletohelptheoperatoropentheclamprings,thenopenthedoor.Eachofthesetypeshasapressurewarninglockthatmustbeopenedpriortoopeningthedoor.

    Thingstorememberinlaunchingandreceivingapig:

    •Neveropenorcloseavalvewithoutknowingthespecificfunctionofthatvalve.

    •Openandclosevalvesslowly.

    •Whentheclosuredoorisopenduringtheinsertionorremovalofapig,thereisariskofexplosivegas-airmixture.Anyignitionsourceshouldbeeliminated.

    •Neverstandinfrontaclosuredoorwhenopeningorclosing.

    •Beforeattemptingtoopenaclosuredoor,confirmthatthereisnointernalpressureinthetrap.Makesureventanddrainvalvesarefullyopen.

    •Wearappropriatesafetyclothingwhenconductingpiggingoperations.

    •Haveappropriatesafetyequipmentavailableincaseofemergency.

    •Avoidbreathinghazardousmaterial,andalwaysfollowdescribedproceduresforthedisposalofhazardouswaste.

    •Thefollowingaregenericlaunchandrecoveryproceduresfortypicaloperatingsystems.Sincetheproceduresforliquidandgassystemsaredifferent,theyarecoveredseparately.Aliquidlaunchermustbedrainedintoasumptankwhereasagaslauncherisnormallyventedtotheatmosphere.

    D-500ThreadedClosure

    D-2000ClampRingClosure

    Fig 21. Trap Closures

  • • 11

    2.1 Launch Procedures Liquid Service *

    RefertoFigure22.Startingcondition:Thetrapispressurizedandfullofliquid.ValvesA,BandCareopen.ValvesD,EandFareclosed.

    A.CloseMainlineTrapValveAandTrapKickerValveC.

    B.DrainthelaunchingtrapbyopeningDrainValveEandallowairtodisplacetheliquidbyopeningVentValve(s)D.

    C. Whenthetrapiscompletelydrainedandvented(zeropsig),withvalvesDstillopen,opentheclosuredoorandinsertthepigsothatthefirstcupformsatightfitinthereduceratpointX.Ifalargeandheavyinlineinspectionpig,itcanbepulledintothetrapbyopeningandusingthepullingnozzles.

    D. Closeandsecuretheclosuredoor.CloseDrainValveEandleaveVentValve(s)Dopen.Ifthepullingnozzleswereused,closethesevalvesorreplacetheflanges.SlowlyfillthetrapthroughtheTrapKickerValveCandEqualizationValveF,andventtheairthroughVentValve(s)D.Whenfillingiscompleted,closevalve(s)DtoallowpressuretoequalizethenclosevalveCandF.

    E. OpenValveAfirstandthenValveC.Thepigisnowreadyforlaunching.

    F. PartiallyclosetheMainlineBypassValveB.ThiswillincreasetheflowofliquidthroughValveCandintothetrapbehindthepig.ContinuetocloseValveBuntilthepigmovesoutofthetrapintothemainlineassignaledbythePIG-SIG®pigpassageindicator.

    G.Whenthepigleavesthetrapandentersthemainline,openValveBfully.

    mainlinebypassvalve

    BF

    closure

    mainlinetrap valve

    equalizationvalve

    ventvalve

    pullingnozzle

    ventvalve

    DDpressuregauge

    A

    Ctrapkickervalve

    Edrainvalve

    pig signal

    �owXFig 22. Launching Procedures, Liquid Pipeline

    *Thispublicationisnotintendedtoreplaceproductmanuals.Pleaseseetheappropriateproductmanualsforcompleteinstructions/procedures.

  • • 12

    mainlinebypass

    valveB

    �ow closure

    mainlinetrap valve

    ventvalve DD

    pressuregauge

    ventvalve

    A

    Creturnlinevalve

    E drainvalve

    X

    pig signal

    2.2 Receiving Procedures Liquid Service *

    Receivingsystemsareslightlydifferentthanlaunchsystems.Themostnotabledifferencesarelengthofpiping,locationofPIG-SIGIndicatorandbypasspiping.

    Asinlaunchingapig,receivingapigshouldfollowadescribedsequencetoavoidsimilarproblems.Therefore,thefollowingproceduresshouldbeutilizedtoreceivepigs.RefertoFigure23.

    Starting Condition:Trapisemptyatatmosphericpressure.TheMainlineBypassValveB,DrainValve(s)DandVentValveEareopen.TheMainlineTrapValveA,andtheReturnLineValveCisclosed.Theclosuredoorisclosedandsecure.

    A. CloseDrainValveE.SlowlyfillthetrapbyopeningReturnLineValveC,ventingairthroughValve(s)D.

    B. Whentrapisfull,closeVentValvesDtoallowtrappressuretoequalizewithlinepressurethroughReturnLineValveC.

    C. WithReturnLineValveCopen,openMainlineTrapValveA.Thetrapisnowreadytoreceiveapig.

    D. Whenthepigarrives,itmaystopbetweentheteepointXandtheMainlineTrapValveA.

    E. PartiallycloseValveB.ThiswillforcethepigintothetrapduetoincreasingflowthroughValvesAandC.

    F. WhenthepigisinthetrapassignaledbythePIG-SIGpigpassageindicator,openValveBcompletelyandcloseValvesAandC.

    G. OpenDrainValveEandVentValvesDanddrainthetrapofliquidandpressure.

    H. Afterthetrapisfullydrained(0psig),withvalvesDandEstillopen,opentheclosuredoorandremovethepig.

    I. Closeandsecuretheclosuredoor.

    Fig 23. Receiving Procedures, Liquid Pipeline

    *Thispublicationisnotintendedtoreplaceproductmanuals.Pleaseseetheappropriateproductmanualsforcompleteinstructions/procedures.

  • • 13

    2.3 Launch Procedures Gas Service *

    RefertoFigure24.Startingcondition:Trapispressurizedandfullofgas.MainlineTrapValveA,Main-lineBypassValveBandTrapKickerValveCareopen.VentValve(s)D,DrainValveEandEqualizationValveFareclosed.

    A. CloseMainlineTrapValveAandTrapKickerValveC.

    B. OpenVentValve(s)DandDrainValveEtoventtraptoatmosphere.

    C. Whenthetrapiscompletelyvented(zeropsig)withVentValvesDstillintheopenposition,opentheclosuredoorandinsertthepigsothefirstcupformsatightfitinthereducer(pointX).Ifalargeandheavyinlineinspectionpig,itcanbepulledintothetrapbyopeningandusingthepullingnozzles.

    D. Closeandsecuretheclosuredoor.OpenEqualizationValveFtoallowpermitpressureequalizationinfrontofandbehindthepig.Ifthepullingnozzleswereusedtoloadthepig,closethemorreplaceandsecureblindflanges.PurgeairfromtrapthroughVentValvesDandDrainValveEbyslowlyopeningTrapKickerValveC.Whenpurgeiscompleted,closeVentValvesDandDrainValveEtoallowpressureintraptoequalizewithpipelinepressure.Then,closeValvesCandF.

    E. OpenMainlineTrapValveA,thenTrapKickerValveC.Thepigisnowreadyforlaunching.

    F. PartiallycloseMainlineBypassValveB.ThiswillincreasegasflowthroughValveCandbehindthepig.ContinuetocloseValveBuntilthepigmovesoutofthetrapassignaledbythePIG-SIGscraperpassageindicator.

    G.Whenthepigleavesthetrapandentersthemainline,openMainlineBypassValveBfully.

    mainlinebypassvalve

    BF

    closure

    mainlinetrap valve

    equalizationvalve

    ventvalve

    pullingnozzle

    ventvalve

    DDpressuregauge

    A

    Ctrapkickervalve

    Edrainvalve

    pig signal

    �owX Fig 24. Launching Procedures, Gas Pipeline

    *Thispublicationisnotintendedtoreplaceproductmanuals.Pleaseseetheappropriateproductmanualsforcompleteinstructions/procedures.

  • • 14

    2.4 Receiving Procedures Gas Service *

    Pigreceivesystemsareslightlydifferentthanlaunchsystems.Themostnotabledifferencesarelengthofpiping,locationofPIG-SIGIndicatorandbypasspiping.

    Asinlaunchingapig,receivingapigshouldfollowadescribedsequencetoavoidsimilarproblems.Therefore,thefollowingproceduresshouldbeutilizedtoreceivepigs.RefertoFigure25.StartingCondition:Trapisemptyatatmosphericpressure.MainlineBypassValveB,VentValve(s)DandDrainValveEareopen.MainlineTrapValveAandReturnLineValveCareclosed.

    A. Topurgeairfromthetrap,closeDrainValveE.SlowlyopenTrapKickerValveC.

    B. Afterpurging,allowthetrappressuretoequalizetopipelinepressurebyclosingVentValve(s)D,leavingTrapBypassValveCopen.

    C. WithTrapBypassValveCstillopen,openMainlineTrapValveA.Thetrapisnowreadytoreceivethepig.

    D. Whenthepigarrives,itmaystopbetweenthetee(pointX)andtheMainlineTrapValveA.

    E. PartiallyclosetheMainlineBypassValveB.ThiswillforcethepigintothetrapduetoincreasingflowbehindthepigthroughtheMainlineTrapValveAandReturnLineValveC.

    F. Afterthepigisinthetrap,asindicatedbythePIG-SIGpigpassageindicator,openMainlineBypassValveBandcloseMainlineTrapValveAandReturnLineValveC.

    G. OpenDrainValveEandVentValvesDtoventthetraptoatmosphericpressure.

    H. Afterthetrapisvented(zeropsig)anddrained,withvalvesDandEopen,opentheclosuredoorandremovethepig.

    I. Closeandsecuretheclosuredoor.

    mainlinebypass

    valveB

    �ow closure

    mainlinetrap valve

    ventvalve DD

    pressuregauge

    ventvalve

    A

    Creturnlinevalve

    E drainvalve

    X

    pig signal

    Fig 25. Receiving Procedures, Gas Pipeline

    *Thispublicationisnotintendedtoreplaceproductmanuals.Pleaseseetheappropriateproductmanualsforcompleteinstructions/procedures.

  • • 15

    3.0 Sample Pigging Systems

    Piglauncherandreceiversmaylookthesameinapipingandinstrumentationdiagram(P&ID)orschematicdrawing;however,theymaylooktotallydifferentinthefield.Piggingsystemsaredesignedtofitthespecificsofapipelineandoftentofulfillaspecificpurpose.Thefollowingaresomeexamplesofthevariousconfigurationsusedtolaunch/receivepigs.

    3.1 Vertical Launcher

    Figure26showsaverticalautomatedsystemthatwillholdthreedisplacementpigs.ThislauncherwasinstalledinawaterfloodsystemontheNorthSlopeofAlaska.Thelaunchercanbeoperatedremotelytolaunchpigsonapre-settimescheduletoremovewaterfrompipingbeforefreezingifthesystemwreretofail.

    3.2 Standard Pig Launcher

    Figure27showsa“standard”piglauncherifthereisanythingsuchasstandard.Itisdesignedtolaunchonepig.Clearlyshownarethemainlinetrapvalve,mainlinebypassvalveandthetrapkickervalve.

    3.3 Dual Launcher

    Figure28showsauniquecombinationoftwolaunchers,servingtwopipelines,installedonthesameskid.Thissystemwasdesignedforuseinclosequartersonanoffshoredrillingplatform.

    3.4 Automated Batch System

    Figure29showsa42-inchautomatedbatchsystem.Fivebatchingpigsareloadedandwillbelaunchedin-dependently.Afterloading,alllaunchesaredonefromaremotelocation.Thefivedevicesontopofthebarrelarelaunchpinsthatholdthepigsinposition.Duringlaunchoperations,thevalvesaresequencedandalaunchpinretracted,launchingapig.Pigpassageindicatorsconfirmthelaunch.

    Fig 26. Vertical Launcher

    Fig 27. Standard Pig Launcher

    Fig 28. Dual Launcher

    Fig 29. Automated Batch System

  • • 16

    3.5 Sloped Launcher

    AsopposedtotheverticallaunchershowninFigure26,thelaunchershowninFigure30isconstructedonaslope.Itholdsfourpigsandisdesignedtolaunchpigsthatwillbatchmultipleproducts.Thepigsarecontrolledbytwolaunchpinsontopofthetrap.Exceptforloading,thetrap,whichhastwotrapkickerlines,isonlineallofthetime.Tolaunchapig,alaunchpinisretractedandthepigslidesdownintotheline.

    UNISPHERE™launcherscanbeconstructedinasimilarmanner,withlaunchpinscontrollingthelaunchofasmanyastwelvespheres.AdiagramofoneisshowninFigure31.

    3.6 Combo Pig/Sphere Launcher

    Whenitisnecessarytorunmultiplespherestoremoveliquidsbutretaintheoptiontorunacleaningpigorinspectiontool,acombinationpig/spherelauncherisdesirable.

    3.7 Inline Inspection Pig Launcher

    Aninlineinspectionpiglauncherissimilartothestandardlauncherexceptthatithasamuchlongerbarreltoaccommodatethelongerinlineinspectiontools.Clearlyshownarethemainlinetrapvalve,mainlineby-passvalveandthetrapkickervalve.Thereducer,thepointatwhichthebarrelsizereducestopipelinesize,canbeseen.Accessflanges(pullingnozzles)shownonthelinesizepipeprovideaccesstothetrapforpullinganinspectiontoolintothetrap.ThispullingnozzleconfigurationisshownonthediagraminFigure24.

    Fig 30. Sloped Launcher

    Fig 31. Combo Pig/Sphere Launcher

    Fig 32. Inline Inspection Pig Launcher

  • • 17

    1.0 Introduction

    Pigsareavailableinavarietyofcombinationstoperformvariousfunctionsinapipeline.Figure33showsanalmostendlesscombinationofpigsthatperformavarietyoffunctionsinseveraldifferenttypesoflines.

    Pigsaredesignedtoperformaspecificfunction.Toselectaproperpigconfiguration,theoperatormustknowthefollowingthings:

    • PipelineSize

    • WallThickness(es):

    • MinimumBendRadius(radius&degreeofbend)

    • PipelineLength

    • ProductMedia(gas,oil,etc.)

    • FlowRate/Velocity:

    • SideConnections(teesbarred/unbarred)

    • ValveType(Valvesshouldbefullbore/fullopening.Valveshaveinternalcavity)

    • PiggingApplication

    • PiggingHistory

    1.1 Pig Components

    Pigscanbeconfiguredwithdifferentcomponentstoperformspecificfunctions.Thefollowingisalistofthesecomponentsandtheirfunctions.

    A. Brushes:Brushesareusedprimarilyforremovinghardinternaldepositssuchasscaleandcorrosionoffpipewalls.Somebrushesarewear-compensating.Anothertypeofbrushisusedtoremovedepositsfrompitstoallowcorrosioninhibitorsandbiocidestodetercorrosioninthepipeline.

    B. Cups:Cupsprovidethesealofthepiginsidethepipelineandpermittheflowinthepipelinetomovethepigalong.Theyalsoprovidesomecleaningofthepipewall.Theyarealsousedforbatchingproducts.

    C. Discs:Discsareusedtoenhancecleaningandprovidesupporttothepigwhileinthepipeline.Apigequippedwithdiscsmayrunbidirectionally.

    D. Blades:Bladesareusedtoremovesoftdepositssuchasparaffinandsludgethatformonthewallsincrudeoillines.

    Fig 33. Variety of Pigs

    Selecting the Right Pipeline Pig

    S e c t i o n IV

  • • 18

    E. Magnets:Magnetsareusedtoremoveferrousmetalslikemetalchips,usedweldingrodsandironoxidescontainedinblackpowder.Magnetsarealsousedtotripnon-intrusivepigpassageindicators.

    F. FoamPigs:Foampigsarenormallyusedindryingpipelinesfollowinghydrostatictesting.

    1.2 Reasons for Pigging

    A. Construction

    1.Removingconstructiondebrisfromtheline.

    2.Hydro-test(waterfilling,dewatering).

    3.Gauging.

    B.Operation

    1.Commissioning.

    2.Cleaning.

    3.Condensate/waterremoval.

    4.Productseparation(batching).

    5.Applicationofinhibitors.

    C.Inspection

    1.Tocheckforphysicaldamage(geometry).

    2.Todetectmilldefects,corrosion,laminationsorcracking.

    D.MaintenanceandRepair

    1.Pre-inspectioncleaning.

    2.Isolation.

    E.Renovation/Rehabilitation.

    1.Chemical/gelpigging.

    2.Scaleremoval.

    3.Cleaningforproductconversion.

    4.Decommissioning.

    5.Recommissioning.

    2.0 Pig Selection

    Thefollowingaregeneralguidelinestoapplywhenselectingapig.Completingapigapplicationform,asampleofwhichiscontainedinAppendixI,andprovidingittoyoursupplierwillassisttheminrecommendingapig.

    2.1 Cleaning a Line (New Construction, Refined Products, Natural Gas or Crude Oil)

    A.Thebestchoiceofapigisonewithdiscs,conicalcups,spring

    Fig 34. Pig with Brushes, Cups and Discs

    Fig 37. Pig with Spring Mounted Brushes

    Fig 38. Pig with Urethane Blades

    Fig 35. Pig with Discs Only

    Fig 36. Pig with Cups Only

  • • 19

    mountedbrushesorurethaneblades,andbypassports,asshowninFigure34.

    B.Discs(Figure35)areeffectiveatpushingoutsolidswhilealsoprovidinggoodsupportforthepig.

    C.Conicalcups,showninFigure36,provideexcellentsealingcharacteristics,areabletotraversesignificantreductionsandwearwell.

    D.Springmountedbrushes(Figure37)arewear-compensatingandprovidecontinuousforcefulscrapingforremovalofrust,scaleandotherbuildupsonthepipewall.

    E.Whencleaningwaxycrudeoilfromthewallsofcrudeoillines,urethanescraperblades,showninFigure38,areoftenpreferredbecausetheyareeasiertocleanthanbrushes.

    F.Bypassportsallowsomeofthepipelineproducttoflowthroughthepig,asshowninFigure39.Thishelpsminimizesolidsbuild-upinfrontofthepig.Bypassmayalsoreducethespeedofthepigthroughthepipeline.

    G.Whencleaningnewconstruction,pigswithmagneticcleaningassemblies,showninFigure40,arerecommendedforremovingferrousmetaldebrissuchasweldingrods,nutsandbolts,andtools.

    2.2 Displacement Applications

    Displacementapplicationsincludefillinganddewatering,commissioninganddecommissioningapplications,nitrogenpurging/inertingandbatchingproductsinrefinedproductlines.

    Thebestchoicewouldbeafourcuppigwithmulti-lippedconicalcups.

    A. Conicalcupswillmaintaincontactwiththepipewall,eveninout-of-roundpipe.Asthepipesizeincreases,theout-of-roundnessconditionbecomesmorecommon.Conventionalcupsanddiscscannotmaintainasealinout-of-roundordentedpipe.

    B. Multi-lippedcupshavenumerousindependentsealinglipsoneachcup,suchasthoseshowninFigure41,whichgreatlyimprovesitsabilitytomaintainaseal.

    Otheralternativesinclude:

    A. FoamPigs.Somefoampigsprovidearelativelygoodsealovershorttomoderatedistances.Thecostsarelowandthereislittleriskofgettingstuck.Lowdensityfoampigsarecommonlyusedinlargenumbersfordryingpurposesafterinitialwaterremoval.

    B. Bidirectionaldiscpigsaretypicallyusedinfillinganddewateringoperationsassociatedwithhydrostatictestingwhenthewaterusedtofillthelinehasto

    Fig 39. Flow Through Bypass Pushes Debris Ahead of Pig

    Fig 40. Pig with Magnets to Collect Debris

    Fig 42. Foam Pigs

    Fig 43. 6-Disc Bidirectional Pig

    Fig 41. Multi-lipped Cup

  • • 20

    bepushedbacktoitssourceaftercompletionofthetest.Ifitispossibletoreverseflow,thispigcanbereturnedtoitslaunchpointifthereisafearofthepiggettingstuck.

    2.3 Removing Liquids from Wet Gas Lines

    A. UNISPHERE™pigs(Figure44)arethepreferredchoiceforremovingliquidsfromgaslines.

    B. Spherepiggingsystemsareusuallydesignedtoautomaticallylaunchandreceivespheres.Anumberofspherescanbeloadedintotheautomaticlauncherandarelaunchedatpredeterminedfrequencies.

    C. Atthereceivingendoftheline,aslugcatcherisinstalledtocapturetheliquidpushedinbythesphere.Spheresarelaunchedatafrequencythatpreventsexceedingthecapacityoftheslugcatcher.

    D. Atthereceivingend,spheresarecapturedinareceivingtrap.Pigpassageindicatorsareinstalledonthelaunchersandreceiverstocountthespherelaunchesandrecoveries.Alaunchermayalsobeequippedwithverticallaunchpinsthatwillextendandretract,cyclingthelaunchingofspheres.

    E. Pipelinesystemsarenormallydesignedfortheuseofspheresorpigs,butnotboth.Systemsdesignedforlaunchingandrecoveryofspheresmayrequiremodificationoflaunchersandreceiversbeforeconventionalpigscanbeused.

    2.4 Removal of Ferrous Debris

    Debrissuchasweldingrods,bolts,tools,etc.,leftafterpipelineconstruction,mustberemovedbeforeattemptingtoruncorrosioninspectionorothertypesofinspectionpigs.Itisverydifficulttoremovethisdebriswithconventionalpigs.Conventionalpigswillpushtheseobjectsforadistancethenrideoverthem.Themosteffectivewaytoremovethisdebrisisattachingamagneticcleaningassemblytoaconventionalpig.Amagneticcleaningassemblynormallyconsistsofamagneticbeltthatwrapsaroundthebodyofapig.Figure45showstheferrousdebristhatcanbepickedupbymagnetsattachedtothepig.

    2.5 Removal of Hard Scale Deposits

    Cleaninghard,largedepositsisaspecialapplicationthatwouldnormallybeprovidedbyapipelinecleaningservicecompany.Aggressivepigscombinedwithcleaningfluidsarerequiredforthisapplication.Referredtoaschemicalcleaning,theyareoftenusedwithcleaningdetergentfluidsthathelptoattackthedepositsandkeeptheremoveddebrisinsuspensionwhilebeingpushedoutoftheline.Thispermitsremovaloflargevolumesofsolidsinonepigrun.

    Fig 44. UNISPHERE™ Pigs

    Fig 46. Portable Separator - to Remove Liquids and Debris from Natural Gas Pipelines

     

    Fig 45. Pig with Magnets to Collect Debris

  • • 21

    A. Thecleaningfluidsarecapturedbetweenbatchingandcleaningpigs.Normally,aslugofthefluidisintroducedinfrontofthefirstpig.

    B. Samplesofthedepositsmayberequiredforchemicalanalysisandtodeterminethebesttypeofcleaningfluids.

    2.6 Applying Corrosion Inhibitors

    Corrosioninhibitorsarenormallyinjectedintothelineonacontinuousbasisandcarriedthroughthelinewiththeproductflow.Often,inhibitorsarebatchedbetweentwopigs.Sincethemajorityoftheflowisinthebottomhalfofthepipe,thereislittleassurancethatthetopwallofthepipe(12o’clockposition)istreatedbytheinhibitor.

    Specialpigshavebeendevelopedthatsprayinhibitortothetopofthepipeastheytravelthroughthepipeline,asshowninFigure47.Thisisdonebyusingasiphoningeffectcreatedbybypassflowthroughanorificespecificallydesignedtopickupinhibitorfromthebottomofthepipe.

    2.7 Pre-Inspection Cleaning

    Priortoconductinganinlinecorrosioninspectionsurvey,thepipelinemustbeclean.Thecleanertheline,themoreaccuratethesurveydata.

    Linescarryingrefinedproductsrequireverylittlecleaningwhileacrudeoillinemayrequireextensivecleaning.Dozensofindividualpigruns,oroneormoretrainpigs(twoorthreepigscoupledtogetherwithflexibleconnectors)mayberequired.Trainpigsnormallyhavemultiplediscs,cups,extrabrushesandmagneticcleaningassemblies.

    Chemicalcleaning,describedinparagraph2.5,mayberequiredonlonglinescontainingexcessiveparaffin,ironoxideorothersolids.

    2.8 Cleaning Lines with Known Internal Corrosion

    Specialpigsavailableforthisapplicationhaveindependentscrapingwiresthatwillgointoapittobreakupandremovedeposits.Suchdeposits,ifleft,wouldpreventcorrosioninhibitorsfromgettingintothecorrosionarea.SuchapigisshowninFigure48.Brushesonconventionalpigswillnotextendintopitsintheline.

     

    Fig 47. Corrosion Inhibitor Distributed to Top of the Pipe

    Fig 48. PitBoss™ Pigs

  • • 22

    2.9 Cleaning Internally Coated Lines

    Thepreferredchoiceforthisapplicationisapigwithdiscsandcups.Becauseofthecharacteristicsofepoxycoatings,discsandcupswillnormallyremovedepositswithoutharmingthecoating.

    Conventionalcleaningpigswith“prostran”brushesorpolyurethanebladesisanotheroptionforcleaninginternallycoatedpipe.

    2.10 Pigging Offshore Pipelines

    Offshorepipelinesusuallyrequirespeciallydesignedpigsinordertoaccommodate:

    A. Veryheavywallpipe.

    B. Largevariationsinwallthicknessesduetodifferentdesigncodesforplatformandriserpipingversussubseamainlinepipe.

    C. Lateralsandwyefittingsareoftenusedwhichrequireextralongpigs.

    Effectivepigscanbeprovidedforthesesystemsbutmayrequirespecialdesignfeatures.

    Fig 49. Urethane Blades and Plow

  • • 23

    1.0 Introduction

    Pigginganewconstructionline,beforeitisplacedinservice,isdoneforanumberofreasons.Firstofall,theoperatorwantstoremoveconstructiondebrisleftinthepipe.Thelinemustbefilledwithwaterandhydrostaticallytested.Oncehydro-testingiscompleted,thewatermustberemoved.ThelinethenmustbeinspectedusingaGeometryInspectionTooltoassurethelineisfreeofdentsorbuckles.Thelinemustbefurthercleanedanddriednormallytoadewpointspecification(-20ºFto40ºF).

    • Ifthepurposeofpiggingistoensurethatthelinehasafullroundopeningfromoneendtotheother,agaugingpigcanbeused.Thegaugingpigwillalsoremovemostconstructiondebrissuchasskidsandweldingrods.

    • Ifthepurposeistocleanrust,dirt,ormillscale,astandardcleaningpigcanbeutilized.

    • Ifthepurposeofpiggingistofillwithhydrostatictestwater,adisplacementpigisused.

    2.0 Selecting the Pig

    2.1 Gauging Pigs

    A. TheKALIPER®360Surveydevice,showninFigure50,isaself-contained,instrumentedtoolwhichrecordssizeandlocationofpipediameterreductions.Itcandetectdents,buckles,flatspotsandconstructiondebris.TheKALIPER360toolcanalsodetectachangeinpipewallthickness.Additionally,theKALIPER360toolwillprovideinformationontheo-clockpositioningoftheanomaly.

    B. Aconventionalgaugingpig,showninFigure51,isequippedwithaslottedaluminum“gaugingflange”.Thisgaugeplatepigwillprovidelimitedinformationonminimumborewithinagivensectionofpipe.

    2.2. Cleaning Pigs

    TDWcleaningpigsmayemploymagnetsforremovalofferrousmetals,discsandcleaningelements,includingbrushesorurethaneblades.Brushescanbeusedinnewlineconstructiontoremovemillscaleorconstructiondebris.Figure52isanexampleofapigwithwear-compensatingbrushes.

    2.3. Displacement Pigs

    Displacementpigsarealsousedfordisplacingairandhydrostaticwaterpriortocommissioninganewpipeline.Theycanbeusedbidirectionally(runinbothdirections).

    Fig 52. Cleaning Pig with Wear-Compensating Brushes

    Fig 51. Conventional Gauging Pig

    Fig 50. KALIPER® 360 Inspection Tool

    Pigging New Construction

    S e c t i o n V

  • • 24

    A. Abidirectionalpig,showninFigure53,iseffectivefordisplacingairorhydrostatictestwater.Thebidirectionalpigmaybeleftinthelinewhilethetestisbeingconducted,thenreversedforwaterremovalifdesired.

    B. Theurethanediscisaneffectivecleaningelement,providespigsupportandcanrunbidirectionally.

    C. TheOptionAll™BatchingPig,showninFigure54,canbeusedtodisplaceairorhydrostatictestwater.Itisfittedwithpolyurethaneconicalcupsthatpermitthepigtopassoverobstructionsinthelinewithoutpigdamage.Conicalcupsconformtoout-of-roundpipe,providingacontinuousseal.

    D. TheInflatableUNISPHERE™,showninFigure55,isaseamless,liquidcastpolyurethaneball.Itwilltraverseshortradiusbendswherethebodytypepigwillnot.UNISPHEREPigsareidealforremovingliquidsfromnaturalgaslineswherefrequentrunsarerequired.Automatedspherelaunchersandreceiversarenormallyusedintheseapplications.TheycanbesizedtomatchmostpipeIDs,rangingfromstandardwalltoultra-thinwallpipe.

    UNISPHEREPigsarefilledcompletelywithliquid(usuallyglycoland/orwater).Theinflatingvalveisremovedandliquidispoureddirectlyintothesphere.Thevalveisreplacedandthesphereissizedbypumpinginadditionalliquid.

    3.0 Propelling the Pig

    3.1 Speed

    Themosteffectivespeedforpiggingduringconstructionisconsideredtobe1to5miles(1.60to8km)perhour.Pigvelocitiesmuchgreaterwillcausethepigstobecomelesseffective.

    3.2 Propelling the Pig with Air

    Manytimesagaugingorcleaningpigispushedwithairthroughshorttestsectionsofpipe.Itisrecommendedthatthelinebeprepackedwith50-100psiandcarefullycontrolledasthepigsarepropelledthroughtheline.

    WARNING: High speed runs through bends can cause damage to the pipeline, the pig, or both.

    Fig 55. Inflatable UNISPHERE™ Pigs

    Fig 54. OptionAll™ Batching Pig

    Fig 53. 6-Disc Bidirectional Pig

  • • 25

    Table1listsvariouspipesizes,recommendedcubicfeetperminute(CFM)andmeterscubedperhour(m3/h),atatmosphericconditions.

    Table 1. Compressed Air Required vs. Pipe Size

    PipeSize(in.) mm CFM@150psi M3/h

    6 200 100 170

    12 300 300 510

    18 450 700 1,190

    24 600 1,200 2,040

    30 750 1,900 3,230

    36 900 2,800 4,750

    42 1,050 3,800 6,450

    48 1,200 5,000 8,500

    A. Pigsoftenrequiremorepressuretostartmovement.Dependinguponpiggingapplication,compressorsshouldbeabletodeliverthedesiredCFMat150psi.

    B. Thepigwillstalliftheairoutputvolumeisnotlargeenoughtofillthelineatauniformrateandpressure.Ifthepigstops,pressurewillbuilduntilthepressurereachesasufficientlevel,thenthepigwillbepropelledatahighrateofspeedandwillcontinueatthisrateuntiltheflowandpressureisinsufficienttokeepitmovingconsistently.Thisiswhyitisimportanttohavesufficientflow,pressureandexperienceinconductingthisoperation.

    3.3 Propelling the Pig with Water

    A. Waterisoneofthemorecommonfluidsusedtopropelpigsthroughanewline.

    B. Whenahydrostatictestisconducted,apigisplacedaheadofthewatertoremoveairfromtheline.Itiscriticaltoachieveacompletelinefill,allowingnoairinthehydrostaticwaterlinefill.

    C. Theprincipalconsiderationforfillingthelineis:

    1.Wateravailabilityandfillrate.Itisrecommendedtosizefillpumpsthatwillfillthelineatarateof1mphorgreater.

    2.Fillpumpsareconsideredhighvolume-lowpressurepumps.

  • • 26

    D. Table2listspumprecommendationsfordifferentsizepipe.Theflowratesshowninthetablewillpropelthepigataspeedofapproximatelyonemile(1.6km)perhour.Thefollowingformulamaybeusedtodeterminethespeedofthepig.

    S=,where:

    S=speed,milesperhour

    GPM=gallonsperminute

    d=Insidediameterofpipe,ininches

    TABLE 2. Pump Recommendations vs. Pipe Size

    PipeSize(in.) mm GallonsPerMinute(GPM) LitersPerMinute(LPM)

    6 200 150 570

    12 300 500 1,900

    18 450 1,000 3,800

    24 600 2,000 7,600

    30 750 3,000 1,400

    36 900 4,500 17,000

    42 1,050 6,000 22,700

    48 1,200 8,000 30,300

    E. Hydrostatictestpumpsareconsideredlowvolume-highpressure.Atestpumpmusthavetheabilitytoincreasethelinepressuretothetestpressure.Ahighpressurepumpratedat95gallonsperminute(gpm)at5,000psi(360litersperminute,LPM,at345bar)shouldbesuitableforthepressurizingoperation.

    Positionofwaterdisplacementpigorpigs

    Inletforgastopushpigsoutofheads

    Inletforeitherwaterorgas

    Rearpositionofairdisplacementpig

    Blow-Off Blow-Off

    Fig 56. Launching Test Header for Filling Two Test Stations

    Positionofwaterdisplacementpig

    Positionofwaterandairdisplacementpigsat

    completionofwatertransfer

    ReceivingHeadLaunchingHead

    Rearpositionofairdisplacementbeforewatertransfer

    Inletforgastopushpigsoutofheads

    Blow-Off

    Blow-Off

    Fig 57. Launching and Receiving Test Header for Water Transfer from One Section to Another

    .278

    d2

  • • 27

    Positionofwaterdisplacementpigorpigs

    Inletforgastopushpigsoutofheads

    Inletforeitherwaterorgas

    Rearpositionofairdisplacementpig

    Fig 58. Launching Test Header Equipped for Filling of One Test Section Only

    Gasinlet

    Waterfillinlet

    Waterfillanddraintaps

    Inletforgastopushpigoutofhead

    PositionofNo.3waterremovalpig

    PositionofNo.2waterremovalpig

    PositionofNo.1waterremovalpig

    Rearpositionofairdisplacementpig

    Fig 59. Multiple Pig Launching Test Header

    F. Oncompletionofthepressuretest,thewatercanbedisplacedbypushingthedisplacementpigwithair.Pigspeedshouldberegulatedbycontrollingtheflowofwateroutofthedischargeendofthesection.

    3.4 Launching and Receiving Test Headers and Traps

    A. Pigscanbelaunchedinnewpipelinesbyprovidingaheader/trapontheupstreamendoftheline.Theheader/trapwillallowthepushingfluidtoenterbehindthepig.

    B. Areceivingheader/trapisnecessaryonthedownstreamendoftheline.Thereceivingheader/trapwillallowthefluidtoexitaheadofthepig.

    C. Figures56,57,58and59arefourgeneraltypesofdesignforlaunchingandreceivingtestheaders.Figure56isforfillingtwosectionsinoppositedirections.Figure57transferswaterfromonesectionthathasbeentestedintoanothersectiontobetested.FillingatoneendofasectiononlyisshowninFigure58.AsetupforrunningseveralpigsisshowninFigure59.Thesetestheadersmaybeandoftenarereplacedwithtemporarypigtrapswithvalvesthatallowformultiplepigruns:cleaning,fill,dewatering,inspectionanddrying.

  • • 28

  • • 29

    1.0 Introduction

    1.1 Raw Gas (Gathering Systems)

    Rawnaturalgastypicallyconsistsofmethanecontainingvaryingamountsofthefollowing:

    A. Heaviergaseoushydrocarbonssuchasethane,propane,normalbutane,isobutaneandpentanes

    B. Watervaporandliquidwater

    C. Liquidhydrocarbons.

    D. Acidgasessuchascarbondioxide,hydrogensulfide,andmercaptanssuchasmethanethiolandethanethiol.

    Producedgasfromthewellheadistransportedtoprocessingplantsthroughanetworkofgatheringpipelines,whichareusuallysmall-diameterlines.Acomplexgatheringsystemcanconsistofthousandsofmilesofpipes,interconnectingmorethan1000wells.

    1.2 Processed Gas (Transmission Systems)

    Processedgasisthatgaswhichistransportedviatransmissionlinesfromtheprocessingplanttotheutilityandpowercompanies.

    1.3 Refined Products

    Refinedpetroleumproductsarederivedfromcrudeoilsthroughprocessessuchascatalyticcrackingandfractionaldistillation.Severalexamplesofrefinedpetroleumproductsandtheirpropertiesinclude:

    A. Gasoline:Alightweightmaterialthatflowseasily,andmayevaporatecompletelyinafewhours.

    B. Kerosene/JetFuel:Alightweightmaterialthatflowseasilyandevaporatesquickly.

    C. No.2FuelOil:Alightweightmaterialthatflowseasilyandiseasilydispersed.

    D. No.4FuelOil:Amedium-weightmaterialthatflowseasily,andiseasilydispersediftreatedpromptly.

    E. LubricatingOil:Amediumweightmaterialthatflowseasilyandiseasilydispersediftreatedpromptly.

    F. No.5andNo.6fueloil,BunkerBandBunkerC,arealsorefinedproducts,butareincludedinSectionVII.

    Onstream Pigging Natural Gas Lines, Natural Gas Liquids and Refined Petroleum Products

    S e c t i o n VI

  • • 30

    2.0 Selecting the Pig

    Ifthepurposeofpiggingistoremoveinternalbuild-uponthepipewallwhichmayshieldcorrodingareas,acleaningpigshouldbeutilized.

    Ifthepurposeofpiggingistoremovecorrosiveorheavyliquids,adisplacementpigorspherecanbeutilized.

    Ifmorethanonetypeofproductistransportedthroughapipeline,batchingpigscanbeusedtoseparatetheproducts.

    2.1 Cleaning Pigs

    TDWcleaningpigsemployfourtypesofcleaningelements:brushes,urethaneblades,discsandmagnets.

    A. Brushescanbeusedifthelinecontainsmillscaleorharddepositsadheringtothepipewall.Figure60isanexampleofapigwithsteelwirebrushes.

    B. Urethanebladescanbeusedtoremovesoft,sludgedeposits.Figure61isanexampleofapigwithurethaneblades.

    C. Bypassportsareincorporatedintomostcleaningpigs.Byopeningtheby-passplug(s),partoftheflowisdivertedthroughoraroundthepigbodytocreateturbulenceaheadofthepig.Thishelpstokeepforeignmattersuspendedinfrontofthepiginsteadofallowingthedirttoaccumulateinandaroundthecupsandcleaningelements.Figure62showsdebrissuspendedinfrontofthepig.

    2.2. Batching/Displacement Pigs

    A. TDWbatching/displacementpigsemploymultiplecupsordiscsthatmaintainasealthroughbendsandfull-diameterbranchopenings.

    B. TheVANTAGE®VPig,showninFigure63,isfittedwithconicalcupsthatpermitthepigtopassoverobstructionsinthelinewithoutpigdamage.Conicalcupsconformtoout-of-roundpipe,providingacontinuousseal.

    C. TheInflatableUNISPHERE™Pig,showninFigure64,isaseamless,liquidcastpolyurethaneball.Itwilltraverseashortradiusbendwhereabodytypepigwillnot.TheycanbesizedtomatchanysizepipeIDrangingfromstan-dardwalltoultrathinwallpipe.Twoinflatingvalvesareincorporatedforuseinsystemsthatdonothaveoversizebarrelsforsphereinsertionorremoval.

    UNISPHEREPigsarefilledcompletelywithliquid(usuallyglycoland/orwater).Oneinflatingvalveisremovedandliquidispoureddirectlyintothesphere.Thevalveisreplacedandtheballissizedbypumpinginadditionalliquid.Anyhandpumpcapableofpumpingfluidat250psi(17bar)canbeused.

    Fig 64. Inflatable UNISPHERE™ Pigs

    Fig 60. VANTAGE® Plus Pig with Brushes

    Fig 61. VANTAGE® Plus Pig with Blades

    Fig 63. Batching Pig

    Fig 62. Debris Suspended in Front of the Pig

  • • 31

    1447QPb

    P(Fpv)2d2

    3.0 Pigging Speed

    Normally,pigsarerun“onstream”withthespeedbeingthesameasthestreamvelocity.However,themostefficientspeedsforbodytypepigsare3-7mph(4.8-11.2kmperhour).

    Thespeedofcleaningpigscanbevariedslightlybyopeningthebypassport(s).

    Howfastdoesgasmoveinapipeline?Thefollowingformulaprovidesacloseapproximationofthespeedofgas.

    S=,where

    S=Speed,milesperhour

    Pb=Absolutebasepressure(barometric)(pressureatcompressor)

    P=Absolutelinepressure,

    Fpv=SupercompressibilityFactor(SeeTable3)

    d=Insidediameterofpipeininches

    Table 3. Super-Compressibility Factors Fpv Base Data – 0.6 Specific Gravity Hydrocarbon Gas

    Pressure 20ºF(-7ºC) 60ºF(16ºC) 100ºF(38ºC)

    psig bar Fpv Fpv2 Fpv Fpv2 Fpv Fpv2

    200 13.8 1.0212 1.0428 1.0160 1.0323 1.0123 1.0248

    400 27.6 1.0442 1.0904 1.0327 1.0665 1.0247 1.0500

    600 41.4 1.0690 1.1428 1.0499 1.1023 1.0370 1.0754

    800 55.2 1.0955 1.2001 1.0674 1.1393 1.0492 1.1008

    1000 69.0 1.1231 1.2614 1.0847 1.1766 1.0609 1.1255

    1200 82.7 1.1506 1.3239 1.1013 1.2129 1.0719 1.1490

    1400 96.5 1.1764 1.3839 1.1166 1.2468 1.0818 1.1703

    1600 110.0 1.1978 1.4347 1.1298 1.2764 1.0904 1.1890

    1800 124.0 1.2126 1.4704 1.1400 1.2996 1.0974 1.2043

    2000 138.0 1.2202 1.4889 1.1470 1.3156 1.1026 1.2157

  • • 32

    4.0 Frequency

    Thefrequencyofpigrunsandthenumberofpigstoberunwilldependontheconditionsexistingintheline.Eachsectionofasystemcanhavedifferentrequirements,dependingonvaryingaccumulationsofdirt,ironoxide,liquids,etc.

    Thesectionsclosesttoproductionoftenhavecondensatesaswellassomedirtthatwasnotremovedatthedehydratingplant.Allsectionsmayhaveaccumulationsofcompressoroilfromtimetotime.Periodicefficiencytestsshouldbemadeoneachsectiontodeterminepiggingschedule.Thecostofrunningapigcanbecomparedtotheefficiencydrop(andassociatedlossinthroughput)todeterminetheeconomicsofpigging.

    5.0 Performance

    Apig’sperformancecanbedeterminedbyseveralmethods:

    A. Measurableincreaseinlineefficiency.

    B. Measurableincreaseinthroughput.

    C. Pressuredrop.

    D. Dewpointdifferentialbeforeandafterpigging.

    E. Amountofforeignmatterinthepigreceiver.

    F. Amountofliquidsinareservoirbarrel.

    G. Reducedcorrosion.

  • • 33

    1.0 Introduction

    Crudeoilisthetermforunprocessed,orunrefinedoil,asitcomesoutofthewell.Itvariesincolorandinviscosity.Itcontainshundredsofdifferenthydrocar-bons,basicsedimentsandwaterthathavetobeseparatedbyrefiningintodiffer-enttypesofhydrocarbonstoproduceproductssuchasgasoline,plastics,etc.

    1.1 Light Crude

    Lightcrudeoilisalowviscositycrudeoil,normallywithalow-waxcontent.

    1.2 Heavy Crude

    Heavycrudeisanytypeofcrudeoilwhichdoesnotfloweasily.Itpresentsspecialchallengeswithregardtotransportingbyapipeline.Bitumen,fromthetarsandsinCanada,isconsideredtobeextraheavycrudeasitdoesnotflowatallinambientconditions.Tofacilitateflow,extra-lightformsofoilorliquidnaturalgasareaddedatregulardistancesinpipelines.

    1.3 Waxy Crude Oils

    Wheneverawaxyoilcomesincontactwithacoldpipewall,solidparaffincrystalscanprecipitateanddepositonthepipewallsurface.Eventually,thismaysignificantlyreduceorevenblocktheareaopentoflow.

    A. Waxycrudesarewidespreadintheworld.Themajorproblemsrelatedtothetransportationofthiscrudethroughpipelinesisnotjustcrystallizationoftheirwaxcontentatlowtemperatures,buttheformationofdepositswhichdonotdisappearuponheating.Theywillnotbecompletelyremovedbypigging.

    B. Waxycrudesarenotcleanand,inadditiontowax,theycontainotherorganicssuchasasphalteneandresin.Theseotherheavyorganicsdonotgenerallycrystallizeuponcoolingand,forthemostpart,theymaynothavedefinitefreezingpoints.Asaresult,applicationofchemicalanti-foulantsandfrequentpiggingbecomenecessary.

    C. Severalmethodshavebeenusedtoremoveparaffindeposits,includingmechanicallyscrapingthepipewalls(pigging),contactingtheparaffindepositswithvariousorganicsolventsystemsandtheapplicationofhotoilsorexternalheat.RefertoSectionIVforinformationoncleaningpigs.Figure65showscleaningpigsafterarunthroughacrudepipelinewithparaffindeposits.

    Onstream Pigging Crude Oil Lines

    S e c t i o n VII

    Fig 65. Cleaning Pigs Packed with Paraffin

  • • 34

    1.4 Sour Crude

    Sourcrudeiscrudeoilcontainingsulfur.Whenthetotalsulfurlevelintheoilsisgreaterthan0.5percent,theoiliscalled“sour.”Itisgenerallylowinparaffin,andnotwaxy.

    A. Impuritiesneedtoberemovedbeforethislowerqualitycrudecanberefinedintogasolineanddieselfuel.Thisresultsinhigherpricedfuelsthanthosemadefromsweetcrude.

    B. Sourcrudecanbetoxicandcorrosive,especiallywhentheoilcontainshighlevelsofhydrogensulfide.Atlowconcentrations,theoilhasthesmellofrotteneggs,butathighconcentrations,theinhalationofhydrogensulfideisinstantlyfatal.

    C. Athighlevelsofhydrogensulfideandpressure,somesteelswillfailduetosulfidestresscracking.Whentheseconditionsexist,normalspringsteelsandbrushbristleswillbreakunderverylittleload.Alternativematerialsarerequiredforsprings,andstainlesssteelwiresforbrushes.Moststructuralsteelsusedforpigbodiesarenotaffectedbytheseconditions.

    1.5 Refined Products

    Somerefinedproducts,becauseoftheirweightanddensity,areincludedinthissectionalso:

    • No.5FuelOil(BunkerB):Amedium-weighttoheavyweightmaterial.Preheatingmaybenecessaryincoldclimates,andthisfueloilisdifficultifnotimpossibletodisperse.

    • No.6FuelOil(BunkerC):Aheavyweightmaterialthatisdifficulttopumpandrequirespreheatingforuse.Thisfueloilmaybeheavierthanwater,isnotlikelytodissolve,isdifficultorimpossibletodisperse,andislikelytoformtarballs,lumpsandemulsions.

    2.0 Selecting the Pig

    Ifthepurposeofpiggingistoremoveforeignmatterandparaffindepositsorscalewhichmayshieldcorrodingareas,acleaningpigcanbeutilized.

    Ifthepurposeofpiggingistoseparateproductsorremoveunwantedliquidsandcorrosionproducts,abatching/displacementpigcanbeutilized.

    RefertoSectionIVforselectionoftheproperpigtodothejob.

    Bypassportsareincorporatedintomostcleaningpigs.Byopeningthebypassplug(s),partoftheflowisdivertedthroughoraroundthepigbodytocreateturbulenceaheadofthepig.Thishelpstokeepforeignmattersuspendedinfrontofthepiginsteadofallowingthedirttoaccumulateinandaroundthecupsandcleaningelements.

  • • 35

    3.0 Pigging Speed

    Normally,pigsarerun“onstream”withthespeedbeingthesameasspeedofflowthroughthepipeline.However,themostefficientspeedsforbodytypepigsare3-7mph(4.8to11.3kmperhr.).Flowcanbedeterminedusingthefollowingformula.AppendixIIIcontainshelpfulconversionfactors.

    S=,where

    S=Speed,MPH

    Q=Throughput,bpd

    d=Insidediameterofpipeininches

    Thespeedofcleaningpigscanbevariedslightlybyopeningthebypassport(s).

    4.0. Frequency

    Thefrequencyofpigruns,andthenumberofpigstoberun,willdependontheconditionsexistingintheline.Eachsectionofasystemcanhavedifferentrequirements,dependingonvaryingaccumulationsofdirt,paraffin,liquids,etc.

    Periodicefficiencytestsshouldbemadeoneachsectiontodeterminepiggingschedule.

    Thecostofrunningapigcanbecomparedtotheefficiencydrop(andassociatedlossinthroughput)todeterminetheeconomicsofpigging.

    0.0081xQ

    d2

  • • 36

    5.0. Performance

    5.1 Cleaning Pig Performance

    Acleaningpig’sperformancecanbedeterminedbyseveralmethods:

    A. Measurableincreaseinlineefficiency.

    B. Measurableincreaseinpumpefficiency.

    C. Measurableincreaseinthroughput.

    D. Pressuredrop.

    E. Amountofforeignmatterinthepigreceiver.

    F. Milliporetest.

    G. Reducedcorrosion.

    5.2 Batching Pig Performance

    Abatching/displacementpig’sperformancecanbedeterminedbyseveralmethods:

    A. Pigonoroffstream.

    B. Lengthofinterface.

    C. Amountofcontaminationatinterface.

    D. Reducedcorrosion.

  • • 37

    1.0 Introduction

    Inlineinspection(ILI)techniqueshavebeenusedsincethe1960stohelpassessintegrityofpipelines.Whilenotarequirementthiswasthebestmethodtodeterminewhetherapipelinewasfit-for-service.In2001,theUnitedStatesOfficeofPipelineSafety(OPS)introducednewfederalrulesandregulationsrequiringliquidpipelineownersandoperatorstoinspecttheirlinesfordefectswhichcouldcausefailuresinhighconsequenceareas.Twoyearslater,theOPSextendedtheseregulationstoincludenaturalgaspipelinesystems.

    Stringentregulationscalledforpipelineownerstomakeintegrityassessmentsusinghydrostatictesting,ILIorDirectAssessment(DA).MostoperatorselecttoutilizeILItoolssincetheyprovidedetailedinformationaboutthepipeline’scondition.PrescriptiverepairsbasedonILIdatawereestablishedincludingimmediate,60-dayand180-daytimeframesforhazardousliquidsoperatorsandimmediate,one-yearandmonitoredfornaturalgastransmissionoperators.ThetwoprimaryusesofILItoolsaretodetectandquantifyborechanges(suchasdents,ovalitiesandexpansions)andmetalloss(suchascorrosionandgouging).From1990through2009,excavationdamage,whichincludesthirdpartydamage,accountedfor20.3percentofallSignificantIncidentsrelatedtoonshorehazardousliquidspipelines;excavationdamageinonshorenaturalgastransmissionlinesequatedto22.0percentforthesametimeperiod.Corrosion,anotherleadingcauseofSignificantIncidentsamongonshorehazardousliquidsandnaturalgastransmission,accountedfor23.6percentand18.6percentrespectivelyofallincidentcauses.SeeFigures66and67formoredetailsonSignificantIncidentCausesforU.S.onshorepipelines.Whilethislevelofhistoricaldetailisnotavailableinallregions,similarthreatsareknowntoexistwhichindicatetheneedforassessmentstosecurepublicsafetyandprolongassetlife.

    2.0 Preparing the Line

    Pre-surveypreparationsshouldnotbecurtailedinanattempttoreducetheoveralltimeandthecostofasurvey.Thisisinvariablycounter-productivebecausearerunisalltoooftenrequired,whichimmediatelyeliminatesanygainsthatmayotherwisehavebeenmade.

    Waxdeposits,ferrousmaterialandotherdebriscanaffecttheperformanceofintegrityinspections.Athoroughcleaningprogramisusuallyessentialpriortotheinspectionrun.Thecleanerthepipe,themoreaccuratetheinspectionresults.PleaserefertoSectionIVformoredetailsoncleaningoptions.

    Priortorunninganyinspectiontoolitisrecommendedtolaunchagaugingpigtoconfirmpipelinebore.Thisisacost-effectivewaytodeterminewhetherthescheduledinspectiondevicewillbeabletonegotiatetheline.Pipelinesbeinginspectedforthefirsttimearerecommendedtohaveaseparategeometryinspectionperformed.Thisinstrumentedtoolwillconfirmpipelineboreandobtaininformationaboutthegeneralpipelineconfiguration,includingfittingwallthickness,bendradius,degreeanddirection.Gatheringthisinformationonaline

    Inline Inspection Technology

    S e c t i o n VII I

    22.4%

    3.9%1.3%

    20.9%

    20.3%

    7.6% 23.6%

    SignificantIncidentCauseBreakdownNational,HazardousLiquidOnshore,1990-2009

    Source:PHMSASignificantIncidentsFilesOctober29,2010

    ALLOTHERCAUSES

    CORROSION

    EXCAVATIONDAMAGE

    INCORRECTOPERATION

    NATURALFORCEDAMAGE

    MATERIAL/WELD/EQUIPMENTFAILURE

    OTHEROUTSIDEFORCEDAMAGE

    Fig 66. Pipeline and Hazardous Materials Safety Admin-istration Hazardous Liquids Significant Incident Cause Breakdown for years 1990 through 2009. Significant Incidents are those incidents reported by pipeline operators when any of the following conditions are met: 1) Fatality or injury requiring in-patient hospitalization. 2) $50,000 or more in total costs, measured in 1984 dollars. 3) Highly volatile liquid releases of 5 barrels or more or other liquid releases of 50 barrels or more. 4) Liquid releases resulting in an unintentional fire or explosion.

    8.3%

    4.4%

    2.2%

    Source:PHMSASignificantIncidentsFilesOctober29,2010

    ALLOTHERCAUSES

    CORROSION

    EXCAVATIONDAMAGE

    INCORRECTOPERATION

    NATURALFORCEDAMAGE

    MATERIAL/WELD/EQUIPMENTFAILURE

    OTHEROUTSIDEFORCEDAMAGE

    23.0%

    21.7%

    22.0%

    18.6%

    SignificantIncidentCauseBreakdownNational,NaturalGasTransmissionOnshore,1990-2009

    Fig 67. Pipeline and Hazardous Materials Safety Administration Natural Gas Transmission Significant Incident Cause Breakdown for years 1990 through 2009. Significant Incidents are those incidents reported by pipeline operators when any of the follow-ing conditions are met: 1) Fatality or injury requiring in-patient hospitalization. 2) $50,000 or more in total costs, measured in 1984 dollars. 3) Highly volatile liquid releases of 5 barrels or more or other liquid releases of 50 barrels or more. 4) Liquid releases resulting in an unintentional fire or explosion.

  • • 38

    notpreviouslyinspectediscriticaltothesuccessofsubsequentinspections.Incaseswherethelinehasbeenpreviouslyinspectedagaugingpigrunmaybesufficientpriortolaunchinganinspectiontool.Theinspectionserviceprovidercanassistindeterminingbestpathforwardtohelpensurethetoolrunissuccessful.

    3.0 Inline Inspection

    Inlineinspectionservicesutilizean“intelligentpig”toprovideinformationaboutthepipeline.Inspectiontoolswillmeasureandrecordboththemagnitudeandthepositionofanomaliesorfeaturestheyaredesignedtodetect.Thesetoolswillbeusedtoinspectthelinewhileitisinservice.TheILItoolgathersthedatawhichistheninterpretedbytechniciansoranalyststodevelopareportontheconditionoftheline.

    TheinformationprovidedbytheseILIservicescoversawiderangeofpipelinefeatures.Thetwomostcommonaremetalloss,includinginternalandexternalcorrosion,andgeometricanomaliessuchasdents,ovalitiesandpipelineexpansions.Otherpipelinethreatsincludelongitudinalseam-weldanomalies,longitudinalfeaturesinthepipebody(i.e.gouging)andstresscorrosioncracking.

    4.0 Survey Selection

    Onceriskrankinghasbeenperformedincludingpipelinesegmentsrequiredforinspection,threatidentificationforeachsegment,HighConsequenceArealocations,etc.thenextstepistodrafttherequirementsorscope-of-workfortheinformationrequired.ManyILIcompaniescansupportbuildingtheinspectionrequirementsifnecessary.Thescope-of-workcanthenbematchedwithtechnologycapabilitiesandserviceproviders.

    Havingdeterminedthetypeofsurveyrequired,theselectionoftheindividualpigorservicecompanytocarryoutthesurveywilldependonanumberoffactors:

    • Thepipelinespecifications,whencomparedwithvarioustoolspecifications,willautomaticallyeliminatesomeoptions.Wherethepigspecificationsareclosetotherequirements,orwheresomeparticulardataisunpublished,itisrecommendedtocontactthesupplierforclarification.Frequently,intelligentpigscanbeeasilymodifiedtomeetaparticularrequirement.

    • Assumingthereismorethanoneinstrumentedpigwhichseeminglymeetstherequirements,thereareanumberofotherconsiderationssuchastrackrecordoftheserviceprovider,levelofcustomerservice,availabilityandaccuracyofresults,andtheoverallcostoftheinspection.

    CompletionofaPipelineQuestionnaire,whichrequestsspecificinformationaboutapipelinerequiringinspection,istypicallythenextstageinthesurveyselectionprocess.Examplesofpertinentinformationincludepipelinediameter,lengthofline,wallthicknesses,producttype,pressure,flow,bendradius,launcherandreceiverdimensionsandsoon.Whiletheinformationrequestedbytheinspectioncompanymayseem

  • • 39

    excessive,thedataisextremelyimportanttohelpingensurefirstrunsuccessandaccuracyofresults.AsamplequestionnaireiscontainedinAppendixII,whichincludesallinformationrequiredpriortoaninspection.

    Understandingthethreatstoagivenpipelineisrequiredinordertoensuretheappropriatetechnologyisselectedforidentificationofthosethreats.Thefollowingsectionswilldetailspecificinspectiontechnologiesandtheircapabilities.

    5.0 Geometry Inspection

    Apipelineisapressurevesselandissubjectedtorelativelyhighstresslevelsandoftentocyclicpressures.Beingburiedprovidesahighlevelofprotection,butitcannotprovidecompleteprotection.Therearenaturalhazardssuchasearthquakes,landslides,subsidenceandfloods.Therearealsothemorecommonriskssuchasthirdpartydamage.

    Anyoftheseeventsmaycausephysicaldamage,resultingindents,buckles,gougesetc.,buttheyrarelycausethelinetoruptureimmediately.Mostly,theyresultindeformationoftheline.Suchdeformationsmayhavegraveconsequencesoveraperiodoftime.Therefore,itisvitallyimportantthateverysignificantdeviationfromtheoriginalshapeofapressurevesselisinvestigated.Toinvestigatethesedeviations,itisnecessarytofindthem,andthisisthemainpurposeoftherangeofpigswhicharedesignedtolocateandmeasurereductionsindiameter.Furthermore,U.S.regulationsrequireremediationofdentsviaprescriptiverepaircriteria.

    5.1 Gauging Pigs

    Thegaugingpighasbeenusedformanyyearstoverifyreductionsintheinternaldiameter.Thisisacleaningpigequippedwithamildsteeloraluminumplate.Gaugeplatesaremachinedtoapercentage,commonly95percent,ofthenominalinsidediameterofthepipeline.Itisimportanttonotethattherearenoodometers,sensorsorelectronicsonboardthetool.Thisisabasicmethodtoprovepipelinebore.Ifthepigisremovedfromthereceiverwithdents,scratchesorotherabrasionstotheplate,measurementsaretakentodetermineiftheminimumboreasdetectedbythegaugeplateissufficientforinspectiontoolpassage.Apigthatsuccessfullynegotiatesthepipelinewithoutdamagetotheplateisassumedtorevealthepipelinedoesnothavereductionsindiametergreaterthanthepredeterminedpercentageamount,andsafepassageofsubsequentinspectiontoolsisexpected.Insomecasesadamagedgaugepigrunmayresultintheneedtomakeaseparategeometryinspectiontobetterunderstandwhatcauseddamagetothegaugeplate.AgaugingpigisshowninFigure68.

    5.2 Geometry Tools

    Geometryinspectionsareperformedtoidentifychangestotheinternaldiameterofthepipelinecausedbyovality,dents,partiallyclosedvalves,changesinwallthickness,etc.Geometrytoolsweredesignedtoaccuratelydetectandquantify

    Fig 68. Gauging Pig

  • • 40

    thesechangesinpipelinebore.Thesetoolsareequippedwitharms,orfingers,whicharespringloadedinordertokeepthempressedagainstthepipewall.Theymayeithercontactthepipewalldirectly,orindirectlybybeingmountedinsidethedrivecupattherearofthetool.Anychangeindiametercausesthesearmsorfingerstomovemechanically.Thesemovementsarethenrecordedinonboardelectronicsalongwithodometerinformationforsizingandlocationoftheanomaliesalongthepipeline.

    TheTDWKALIPER®pigwasintroducedinthe1960stoovercometheuncertaintiesleftwhenusinggaugepigs.Itusedanodometerwheeltomeasurethedistancetraveledandastylustoindicatetheextentofthedentdamage.Skilledanalysiscouldnotonlyprovideameasureofthereductionbutalsoareliableestimateofitsshapeandphysicallocation.

    TheKALIPERtechnologyhasbeencontinuouslyadvancedtoincreaseperformanceandresolution.TheKALIPER360,showninFigure69,containsanelectronicpackageandcomputeranalysisthatgreatlyenhancesboththeaccuracyandlevelofdetailreportedversustheoriginalKALIPERtechnology.Thistechnologywillreportthelocation,clockorientationandseverityoftheanomalydetectedwithintwopercentoftheoutsidepipediameter.KALIPER360wasprimarilydesignedforuseinnewconstructiongeometryapplicationstoprovepipelineboreafterconstruction.Itssingle-body,lightweightdesignispropelledeasilywithcompressedairafterhydrostatictestingofnewlyconstructedpipelines.

    5.3 Deformation Tools (DEF)

    Deformationtoolsprovideanunparalleledlevelofaccuracyinmeasuringdentsandovalitiesthatrivalshandmeasurements.Thesetoolsalsodetectandaccuratelysizeothercrucialanomaliessuchaspipeexpansionsandgirth-weldmisalignments.ExamplesofgeometricanomaliesareprovidedinFigures70through71b.

    Eachlineonthegraphisindicativeofasensororarmonthetool(refertoFigure73forviewoftoolconfiguration).Dataontheleftrevealsthedentasdepictedinrawdata.Thecross-sectionontherightshowsvariousdiameterreadingsandminimumboreatthedentlocation.Notethedentappearstobeat7o’clock.Deformationdataprovidesdetailssuchasminimum,averageandmaximumbore,calculatedwallthickness,orientation,individualarmdeflection,etc.atanyprescribeddistanceinterval.

    Thetopexampleshowsasectionofthreejointsoflargediameterpipe.Thejointinthecenterexhibitsanincreaseintheinsidediameterofthepipethatreachesamaximumdiameternearthedownstreamgirthweld.Theoutwardmovementofthesensorarmsisnotedbyanupwarddeflectionofthetracesandalighteningofthebackgroundgrayscale.Theincreaseddiameterendsabruptlyatthegirthweld.Thecross-sectiononthebottomshowstheexpandedpipeorientationfrom10o-clockto4o’clockaroundthecircumference.Theorangecirclerepresentsnominalinternaldiameterwhilethebluerepresentsactualinternaldiameterdue

    Fig 69. KALIPER® 360 Geometry Inspection Tool

    Fig 70. Dent from High Resolution Deformation Tool

    Fig 71a. Expanded Pipe

    Fig 71b. Expanded Pipe

    GirthWeld

    Areaofnominalpipe

    GirthWeld GirthWeld GirthWeld

    Areaofexpanded

    pipe

  • • 41

    Fig 73. Deformation Tool: each arm rides independently and travels along the internal diameter with direct pipewall contact.

    Fig 72. Dent strain analysis. DEF inspection data provides high-quality representation of dent shape. Local dent strain can be estimated by analyzing the deformed shape.

    toexpansionatthelocation.

    DifferingfromKALIPER360,measurementarmsridedirectlyontheinternalpipewallratherthanbehindacupforincreasedsensitivity.Armspacingisalsosignificantlytighter,averaging0.50incheswhencontractedintheinternaldiameter.Highresolutiondatafromthesetoolsisalsoutilizedforinducedmaterialstrainanalysis,asshowninFigure72.

    DEFtechnologycanbejoinedwithothertoolstoobtainmultipledatasetsfromasingleinspection.ADEFtoolisshowninFigure73.

    6.0 Metal Loss Inspection

    Corrosionisoneofthemostcommonpipelinethreats,nexttoexcavationdamage,andcanbecategorizedintwomainareas:internalandexternal.Externalcorrosionmayresultfromdisbondedcoatingsorcoatingdamage,straycurrents,inadequatecathodicprotectiontonameseveral.Internalcorrosioncausesarelinkedtodebris,waterandothercorrosivecontaminants.Billionsofdollarsarespentannuallytomitigatecorrosionanditscause.Utilizingadvancedinstrumentedtoolsformetallossinspectionisacriticalcomponentofapipelineoperator’sintegritymanagementprogram.

    ThetwomaininspectiontechniquesusedtodetectandquantifycorrosionareMagneticFluxLeakage(MFL)andUltrasonics(UT).TheseapproachestometallossinspectiondifferinthatMFLisanindirectmeasurementofamagneticfieldwhileUTisadirectmeasurementofthepipewall.Eachhasitsadvantagesanddisadvantagesasaresult.Somearelistedbelow.

    SizingAccuracy:

    • UTsizingtolerancesaretighterthanMFLduetodirectmeasurementtechnique

    LineCleanliness:

    • PipelinecleanlinessiscriticaltosuccessfulinspectionthoughUTrequirescleanlinesstoanextremelyhighlevelforaccurateinspection

    InspectableWallThickness:

    • UThasdifficultyinspectinglowerwallthicknesswhileMFLmayhavedifficultywithsignificantlythickwalldependingonpipediameter

    ToolVelocities:

    • MFLgenerallyhasnominimumvelocityspecificationandcanberunupto7mph(3m/s)whileUTrequiresveryslowspeedsrangingfrom0.2to2mph(0.1to1.0m/s)

    Couplant:

    • MFLrequiresnocouplant,thusitcanberuninamultitudeofinspectionmediums.UTrequiresacouplantsimilartoaUTprobe,whichlimitsapplication.

    MFLwillbedetailedinSection6.1.

    Directionofflow,topofpipe

  • • 42

    6.1 Magnetic Flux Leakage (MFL)

    MFLtoolshavebeenusedtoinspectpipelinesformetallosssincethe1960s.Atthattimeonlythebottomquadrantwasinspected.Thetechnologyadvancedtoincludefullcircumferenceinspectionalongwithdepthrangesofanyindicatedmetalloss.Thisrobusttechnologycontinueditsevolutiontoincludeanomalydimensionssuchasdepth,lengthandwidth;increasedsamplingdistance,sensorcount,resolutionandinspectionranges;andlatertheabilitytobecombinedwithothertechnologiessuchasdeformationtoolsforenhancedanalysisandoperationalimprovementsforthepipelineowner.

    Thetechnologyworksbyinducingmagnetismintothepipewallto“saturation.”Sensorsorientedwithinthemagneticfieldthendetectanychanges.Iftherearenoconditionsthatdisturbthefieldno“leakage”occurs.Whenthefieldisdisturbedthesensorsorientedwithinthefielddetectthechangesandrecordtheinformation.Thisinformationisstoredonboardthetoolandlaterdownloadedforanalysis.Allchangesinthemagneticfieldarerecorded,includinggirthwelds,valves,fittings,metalloss,extrametal,casingsandotherpipelinefeatureswithferrouscharacteristics.Metallossisalsocategorizedbetweeninternalandexternalanomaliesviaasecondarysetofsensorsspecificallydesignedforthispurpose.SeeFigure74formoredetailsonthemagneticfield.

    HistoricallyMFLtoolsweredesignedwithasolidmagnetizerusingwirebrushestoinducemagnetism(seeFigure75).

    Solidmagnetizersworkwellinliquidlines,areabletonegotiate1.5Dbendsandgenerallyhavetheabilitytonegotiateupto15%reductions.Thisdesign,however,hasnotbeenconducivetosuccessfullyinspectingnaturalgaspipelinesduetothedragandfrictioncreatedbythedesign.Therefore,anothermagnetizerdesignexistsforinspectingpipelinesincompressiblemediums(seeFigure76).Thisdesignallowsforupto25%reductioncapabilityandsignificantlyreduceddragduetoitscollapsiblenatureanduseofskidplatestotransfermagnetismversus

    Fig 74. Magnetic Flux Leakage Principle: (A) magnets are oriented in opposing poles to create a magnetic

    current. (B) mechanism used to transfer magnetism into the pipewall, usually wire brushes or skid plates. Refer to

    Figures 75, 76, 77 and 78 for more details on types of magnetizers and how they appear on a physical ILI tool.

    Fig 75. Solid Body Magnetizer: note the fixed body design, wire brushes to transfer magnetism and ring of

    sensors mounted around circumference.

    Fig 76. Collapsible (floating) Magnetizer. On right: note the separate magnetizer bars with plates to transfer

    magnetism; each bar contains its own sensors. On left: cross-section view showing collapsibility once the tool is

    inserted into the pipeline.

  • • 43

    Fig 77. MFL Tool with Fixed Brush Magnetizer

    Fig 78. MFL Tool with Collapsible Magnetizer

    Fig 79. Patch of Metal Loss Detected by an MFL Tool.

    wirebrushes.Asaresult,lesspressureisrequiredtomovethetool.Thiscreatesamoreconsistentvelocityprofileandhelpseliminatespeedexcursionsoutsideoftheupperlimits.Theresultissuccessfulmagnetizationofthepipewallandaccuracyinthereporteddata.ActualphotosofeachtoolcanbefoundinFigures77and78.

    7.0 Seam Weld Inspection and Other Longitudinally Oriented Anomalies

    Insufficientqualityandmanufacturingpracticesofpipebuiltpriorto1970hascreatedintegritythreatsoutsideofdeformationsandmetalloss.Longitudinalseamweldanomaliessuchaslack-of-fusionandhookcrackshaveresultedinflawsthatgoundetectedbyMFLortraditionalUT,andmanyhaveresultedinleaksorruptures.Additionally,therearevariouslongitudinallyorientedanomaliesthatgoundetectedinMFLduetotheirorientationtotheaxialmagneticfield.

    InSection6.1theMFLtechniquewasdiscussedindetail;magnetismisinducedinthepipewall,changesinthepipewalldisturbthemagneticfieldandsensorsorientedinthefieldrecordthechanges.Anomaliesthatarenarrow;i.e.littleornowidtharoundthepipecircumference,andlongitudinalinnaturecangoundetectedbyMFL.ThiscanoccursimplybecausethereisnotenoughwidthtodisturbtheaxialmagneticfieldinducedbyMFLtools.AsaresulttheMFLtechniquewasmodifiedtoorientmagnetismtransversely,orcircumferentially,tobisectlongitudinalfeaturesandthuscreatethe“leakage”requiredtodetectsuchanomalies.RefertoFigure80.

    Fig 80. Axial MFL is excellent at detecting volumetric flaws or anomalies with circumferential width. Longitu-dinally oriented anomalies can go undetected by axial MFL. Circumferential or transverse MFL was developed to detect those anomalies oriented longitudinally and narrow in width.

    AxialMFL

    NotDe-tected

    Detected

    CircumferentialMFL

  • • 44

    Fig 81. TFI: Magnetism induced circumferen-tially between poles as depicted here creates inspection gaps where magnets are located.

    An offset magnetizer is required to ensure one-hundred percent coverage is achieved.

    Fig 82. SMFL: Magnetism induced diago-nally or spirally along the pipeline. This design facilitates one-hundred percent

    coverage with a single magnetizer.

    Fig 83. SMFL and MFL magnetizers com-bined for superior seam assessments and

    metal loss inspection with a single tool.

    7.1 Transverse Field Inspection (TFI)

    TFItoolsweredevelopedtodetectlongitudinallyorientedanomalies.Thesetoolsinducemagnetismataninety-degreeangle,orcircumferentially,ratherthanalongtheaxisaswithMFLtools.Thisdesignallowsfordetectionofseamweldandotherlongitudinalanomalies,thoughitsdesigncreatessomedisadvantages.Inordertoinducemagnetismaroundthecircumference,andachieveone-hundredpercentcoverage,twooffsetmagnetizersmustbeutilized.Thismakesforalongertoolandwouldrequiremultipleinspectionsifthereisaneedformetalloss,deformationandlongitudinallyorientedanomaliesinasingleinspection.SeeFigure81.

    7.2 Spiral Magnetic Flux Leakage (SMFL)

    Aninnovativeapproachtodetectingseamweldandlongitudinalanomaliesinthepipe-bodyresultedinSMFL.Thistechnologyprovidesassessmentofthelongitudinalpipeaxisinasinglecompactmagnetizer(seeFigure82).ThebenefitiscompleteassessmentoflongitudinalanomaliesanditsabilitytobecombinedwithMFLforsuperioraccuracy(refertoFigure83).InmanycasesTFIwillindicate“crack-like”or“possiblecrack-like”anomalies,causingthepipelineoperatortomakeverificationdigs.WhenpairingSMFLwithMFLthereisextremeclaritybroughttoseamdefectsandwhethertheyaretruly“crack-like”,i.e.lackoffusion,hookcracks,etc.(seeFigure84).TheseenhancedresultsbroughtaboutbyfusingMFLandSMFLdataresultsinreducedexcavationsforthepipelineoperatorandthussignificantcostssavingsrelativetostand-aloneTFI.

    8.0 Geometry, Metal Loss, Long-Seam, Longitudinal, Hard Spot Inspection

    Untilrecently,inspectingforvariouspipelinethreatsrequiredmultipleinspections.Withinthelasttenyears,combiningdeformationwithMFLbecamethestandardformanyinspectionserviceproviders.Theseadvancementsassistedboththeinspectioncompanyandpipelineoperator.Theserviceprovideronlyhadtomanageonetool,andintegratingbothdatasetsintoasinglefinalreportenhancedtheanalysisprocess.Forthepipelineoperator,theyonlyneededtoscheduleproductforoneinspectionandtrackasingletool,amongotherbenefits(seeFigure85forexampleofadeformationandMFLcombinationtool).

    Whenanoperatorrequiredgeometry,metallossandseamassessments,multipleinspectionswerestillrequired.Thatis,untilrecentdevelopmentsincreatingamultipledatasetplatformthatcanincludeDeformation,MFL,SMFLandResidualsensorsfordetectionofhardspotsandmechanicalstrain.Combiningthesedatasetsonasingletoolbuildsuponthebenefitstoboththeinspectioncompanyandpipelineoperatorasdescribedpreviously.Notonlyaregeometry,metalloss,long-seamandstrainanomaliesdetectedandreported,analyzingalldatasetsfromasingleinspectionproducessuperiorresultscomparedwithperformingindividualinspections.

  • • 45

    MFL SMFL

    Fig 84. Data from an MFL+SMFL inspection. MFL data on the left indicates two slight metal loss anomalies. The SMFL data on the right confirms those two anoma-lies but also reveals a planar seam-weld feature that is not detected in MFL.

    Fig 85. Example of a “combination tool” with deforma-tion and MFL datasets.

  • • 46

    RES

    SMFL

    DEF

    MFL-ID/OD

    Forexample,Figure86,isindicativeofthebenefitsofutilizingamultipledatasetapproach.Additionalstraincausedbyapotentiallyinsignificantdentbydepthpercentagecanimpactprioritizationofsuchanomalies.OntopoftheidentifiedstrainisconfirmationofmetallossinthedentfromtheSMFLdata.DuetothenatureofthemetallossshapeitisnotdetectedinMFL(referbacktoSection7.0fordetailsonthissubject).Figure87showsanexampleofamultipledatasettoolusedtoprovidethedatarepresentedinFigure86.

    9.0 Crack Inspection

    Crackingcancomeinmanyforms,suchasstresscorrosioncracking(SCC),andgoesundetectedbyanyofthepreviouslymentionedtechnologies.Themostcommonlyused,andwidelyaccepted,technologyforcrackdetectionisUltrasonicTechnology(UT).ThesameoperationalrequirementsexistaswithUTtoolsformetallossinspection,includinglinecleanliness,toolvelocityrangeandrequiredcouplant.UTcracktoolsdifferfromUTmetallossinspectiontoolsmainlyintheangleofthetransducer.AnemergingtechnologyforcrackdetectionisElectromagneticAcousticTransducer(EMAT).

    WhileimplementationofEMATtechnologyisdifferentfromUTtheapproachissimilar:transmitasonicwaveintothepipewalltodetectcracking.UTutilizesapiezoelectrictransducertoimpartasonicwavetoamaterialthrougha“mechanical”couplant.Iftheacousticwaveisaltered,areflectionoccursandareflectedwaveindicatesananomalyispresent.UTtransducersimpartandmeasurethesonicwaveandreflections.EMATreliesonaninteractionbetweenamagneticfieldandawirecoiltoimpartasonicwavewithinthepipewall.Eddycurrentscreatedbythewirecoilinteractwithmagneticfieldtoimpartsonicwaveswithintheinspectedmaterial.Iftheacousticwaveisaltered,areflectionoccursandareflectedwaveindicatesananomalyispresent.EMATsensorsetsutilizetransmittersandreceiverstoimpartandthenreceivethereflectedsignals,re-spectively.Figure88graphicallydepictsthedifferencebetweenUTandEMAT.

    10.0 Pipeline XYZ Mapping

    Submetermappinginformationforapipelinecanbeextremelyvaluable.Usesincluderefininggeographicinformationsystem(GIS)data,pipelinedisplacement,bendingstrain(Figure89)andpinpointlocationofanomaliesinthefield.Dataisprovidedviaanonboardinertialmeasurementunit(IMU)inconjunctionwithanabove-groundsurvey.Controlpointsmustbeestablishedalongthepipecenterlinetrajectoryspacedatperiodicintervalsbetweenthelauncherandreceiver.Thesecontrolpointsareusedtoprovidecoordinateupdatestoaidthefinalprocessingoftheinertialdatagatheredfromtheinstrumentsonboardtheinspectionvehicle.

    Fig 86. Data from a multiple-dataset tool; dent with metal loss. First from top left reveals dent with mechanical strain in Residual Data; top right is the deformation data showing the dent in raw data and orientation in the cross-section view; bottom left is MFL data inclusive of ID/OD data which also depicts the dent but does not show metal loss; bottom right screen from left is the SMFL data which reveals the long-seam and the dent; note that in this view metal loss in the dent is confirmed.

  • • 47

    Fig 87. 10-inch multiple dataset tool. From right to left: drive section including odometers, Spiral MFL, Deformation with IDOD Sensors, MFL and Residual Sensors (SMFL+DEF+IDOD+MFL+RES).

    Fig 88. Ultrasonic Technology (UT) versus Electromagnetic Acoustic Transducer (EMAT)

  • • 48

    Mostcontrolpointswillalsoserveaslocationsfortooltrackingbymeansofabovegroundmarkers(AGMs).

    Forinspectionstoberunattoolspeedsatorabove1m/s(3.3ft/s),selectcontrolpointlocationsspacednomorethan2km(1.24mi)apartalongthepipecenterlinetrajectory.Forinspectionsslowerthan1m/s(3.3ft/s),selectcontrolpointlocationsspacedsuchthatthetoolwillpassacontrolpointevery20to30minutes.Closerintervalswillimprovetheaccuracyofthedataprovided.Whenselectinglocationsandconsideringsurveystrategiesateachlocation,rememberthattheeventualcoordinatesofinterestarelocatedalongthecenterlineofthepipeline.

    Requiredlocations:

    • Launcherdoor,upstreamweldoflauncherreducer,andlaunchervalve

    • Receiverdoor,downstreamweldofreceiverredu