29
GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of Valencia COSMO - August ‘17 Based on a work in preparation with W. Hu, H. Motohashi and O. Mena.

GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

GSR approach to Horndeski inflation

Héctor RamírezIFIC - University of Valencia

COSMO - August ‘17

Based on a work in preparation with W. Hu, H. Motohashi and O. Mena.

Page 2: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

S =5X

i=2

Zd4x

p�gLi

L2 = K (�, X)

L3 = �G3 (�, X)⇤�

L4 = G4 (�, X)R+G4X

h(⇤�)2 � (rµr⌫�)

2i

L5 =G5 (�, X)Gµ⌫rµr⌫�

� G5X

6

h(⇤�)3 � 3 (⇤�) (rµr⌫�)

2 + 2 (rµr⌫�)3i

X ⌘ �1

2@µ�@

µ�

“The most general scalar-tensor theory, in curved spacetime, which leads to second-order equations of motion”:

Page 3: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

S

(2)⇣ =

Zd4x

a

3bs✏H

c

2s

✓⇣

2 � c

2sk

2

a

2⇣

2

S

(2)� =

X

�=+,⇥

Zd4x

a

3bt

4c2t

✓�

2� � c

2tk

2

a

2�

2�

Horndeski inflation

bs = bt = cs = ct = 1

In canonical inflation:

• Kobayashi et al.; 1105.5723 • Motohashi, Hu; 1704.01128

Page 4: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

bs =c2s✏H

w1(4w1w3 + 9w2

2)

3w22

c2s =3(2w2

1w2H � w22w4 + 4w1w1w2 � 2w2

1w2)

w1(4w1w3 + 9w22)

bt = w1c2t c2t =

w4

w1

Scalar parameters:

Tensor parameters:

✏H = � H

H2

w1 = M2pl � 2

⇣3G4 + 2HG5�

⌘+ 2G5,�X ,

w2 = 2M2plH � 2G3�� 2

⇣30HG4 � 5G4,��+ 14H2G5�

⌘+ 28HG5,�X ,

w3 = �9M2plH

2 + 3⇣X + 12HG3�

⌘+ 6

⇣135H2G4 � 2G3,�X � 45HG4,��+ 56H3G5�

⌘� 504H2G5,�X ,

w4 = M2pl + 2

⇣G4 � 2G5�

⌘� 2G5,�X .

Page 5: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

S

(2)⇣ =

Zd4x

a

3bs✏H

c

2s

✓⇣

2 � c

2sk

2

a

2⇣

2

d2v

d⌧2+

✓c2sk

2 � 1

z

d2z

d⌧2

◆v = 0

v = z⇣

z = a

s2bs✏Hc2s

,

Mukhanov - Sasaki equation

Page 6: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

S

(2)⇣ =

Zd4x

a

3bs✏H

c

2s

✓⇣

2 � c

2sk

2

a

2⇣

2

d2v

d⌧2+

✓c2sk

2 � 1

z

d2z

d⌧2

◆v = 0

v = z⇣

z = a

s2bs✏Hc2s

Mukhanov - Sasaki equation

Either,

• Assume slow-roll approximation.

• Use GSR techniques.

• Solve numerically.

Page 7: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

S

(2)⇣ =

Zd4x

a

3bs✏H

c

2s

✓⇣

2 � c

2sk

2

a

2⇣

2

d2v

d⌧2+

✓c2sk

2 � 1

z

d2z

d⌧2

◆v = 0

v = z⇣

z = a

s2bs✏Hc2s

Mukhanov - Sasaki equation

Either,

• Assume slow-roll approximation.

• Use GSR techniques.

• Solve numerically.

Page 8: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

Generalized slow-roll recipe:

• Stewart; 0110322 • Dvorkin, Hu; 0910.2237 • Hu; 1104.4500 • Hu; 1405.2020 • Motohashi, Hu; 1503.04810 • Motohashi, Hu; 1704.01128

… and others.

Page 9: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

1. Write down Mukhanov-Sasaki equation.Generalized slow-roll recipe:

Page 10: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

1. Write down Mukhanov-Sasaki equation.2. Isolate deviations from de Sitter background.

d2y

dx2+

✓1� 2

x

2

◆y =

f

00 � 3f 0

f

y

x

2

ss ⌘Z

csd⌧y ⌘p

2cskv x ⌘ kss

f =

r8⇡2

bs✏HcsH2

aHsscs

Generalized slow-roll recipe:

Page 11: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

1. Write down Mukhanov-Sasaki equation.2. Isolate deviations from de Sitter background.

3. Apply Green function techniques (GSR).

ln �2(1) = G (ln x

m

) +

Z 1

xm

d(ln x)W (kx)G0 (ln x)

d2y

dx2+

✓1� 2

x

2

◆y =

f

00 � 3f 0

f

y

x

2

G = �2ln f +2

3(ln f)0

W (u) =3 sin(2u)

2u3� 3 cos(2u)

u2� 3 sin(2u)

2u

Generalized slow-roll recipe:

Page 12: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

4. Taylor expand GSR formula and write down analytic equations (OSR).

1. Write down Mukhanov-Sasaki equation.2. Isolate deviations from de Sitter background.

3. Apply Green function techniques (GSR).

ln �2(1) = G (ln x

m

) +

Z 1

xm

d(ln x)W (kx)G0 (ln x)

d2y

dx2+

✓1� 2

x

2

◆y =

f

00 � 3f 0

f

y

x

2

Generalized slow-roll recipe:

Page 13: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

Optimized SR for Horndeski (leading order):

ln�2⇣ ⇡ ln

✓H2

8⇡2bscs✏H

◆� 10

3✏H � 2

3�1 �

7

3�s1 �

1

3⇠s1

���x=x1

ns � 1 ⇡ �4✏H � 2�1 � �s1 � ⇠s1 �2

3�2 �

7

3�s2 �

1

3⇠s2

���x=x1

↵s ⇡ �2�2 � �s2 � ⇠s2 �2

3�3 �

7

3�s3 �

1

3⇠s3 � 8✏2H � 10✏H�1 + 2�21

���x=x1

ln�2� ⇡ ln

✓H2

2⇡2btct

◆� 8

3✏H � 7

3�t1 �

1

3⇠t1

���x=x1

nt ⇡ �2✏H � �t1 � ⇠t1 �7

3�t2 �

1

3⇠t2

���x=x1

↵t ⇡ ��t2 � ⇠t2 �7

3�t3 �

1

3⇠t3 � 4✏2H � 4✏H�1

���x=x1

Tensors

Scalars

ln �2 ' G (ln xf ) +1X

p=1

qp (ln xf )G(p) (ln xf )

G = �2ln f +2

3(ln f)0

f =

r8⇡2

bs✏HcsH2

aHsscs

• Motohashi, Hu; 1704.01128

Page 14: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

Optimized SR for Horndeski (leading order):

r ⌘4�2

�2⇣

⇡ 16✏Hbscsbtct

⇡ �8bscsbtct

nt,

Deviations from the standard consistency relation in the observations could be checked in this context.

Page 15: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+ chaotic inflation = G-inflationG3

WMAP7

Ohashi, Tsujikawa; 1207.4879

L2 = X � V (�) =1

2�2 � 1

2m2�2

L3 = M�3X⇤�

L4 =1

2M2

plR *Using SR techniques*

Page 16: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

0.930 0.945 0.960 0.975 0.990Primordial tilt (ns)

0.08

0.16

0.24

0.32

Tenso

r-to

-sca

lar

ratio

(r)

Planck TT + lowPPlanck TT,TE,EE + lowP

Galileon inflation

(c)(b)

(a)

WMAP7

+ chaotic inflation = G-inflationG3

Ohashi, Tsujikawa; 1207.4879

L2 = X � V (�) =1

2�2 � 1

2m2�2

L3 = M�3X⇤�

L4 =1

2M2

plR *Using SR techniques*

Page 17: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

M = 3⇥ 10�4Mpl

M = 4.2⇥ 10�4Mpl

M = 1⇥ 10�3Mpl

a)

b)

c)

c2s > 0 M > 4.2⇥ 10�4MplFor ,

Ohashi, Tsujikawa; 1207.4879

L3 = M�3X⇤�

Page 18: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

Page 19: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

M = 3⇥ 10�4Mpl

M = 4.2⇥ 10�4Mpl

M = 1⇥ 10�3Mpl

a)

b)

c)

(c)

(b)

(a)

�r = 5Mpl

75 76 77 78 79 800.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c2 s

N

d = 3Mpl

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

Page 20: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

d = Mpl

d = 2.1Mpl

d = 5Mpl

Condition: d �r

�r = 5Mpl

75 76 77 78 79 800.0

0.5

1.0

1.5

2.0

c2 s

N

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

Page 21: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

�r = 5Mpl

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

5 10 50 100 5000

2

4

6

8

10

12

14

N

ϕ/Mpl

N

�/M

pl

d = 0.1Mpl

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

m2�2

G3

Page 22: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

�r = 13.5Mpl

d = 0.1Mpl

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

1 5 10 50 100 5000.00

0.01

0.02

0.03

0.04

0.05

Chaotic inflation

G-model

Step model

N

✏ H

m2�2

G3

✏H = � H

H2✏H = � H

H2

Page 23: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

1 5 10 50 100 5000.00

0.01

0.02

0.03

0.04

0.05

Chaotic inflation

G-model

Step model

+tanh + chaotic inflationG3

�r = 13.5Mpl

d = 0.1Mpl

N

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

✏ HHR, H. Motohashi, W. Hu, O. Mena; in preparation.

m2�2

G3

r ' 16✏H

✏H = � H

H2✏H = � H

H2

Page 24: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

�r = 13.5Mpl

d = 0.1Mpl

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

m2�2

10-12 10-7 0.01 1000.00

5

10

50

100

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

k [Mpc-1 ]

109Δ2

ξ(k)

N

10-12 10-7 0.01 1000.00

0.25

0.30

0.35

0.40

0.45

0.50

0.55

8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

k [Mpc-1 ]

109Δ2t(k

)

N

k [Mpc�1] k [Mpc�1]

N N

109�

2 h(k)

109�

2 ⇣(k)

m2�2

G3

G3

*Using GSR techniques*

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

Page 25: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

�r = 13.5Mpl

d = 0.1Mpl

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

m2�2

10-12 10-7 0.01 1000.00

5

10

50

100

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

k [Mpc-1 ]

109Δ2

ξ(k)

N

10-12 10-7 0.01 1000.00

0.25

0.30

0.35

0.40

0.45

0.50

0.55

8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

k [Mpc-1 ]

109Δ2t(k

)

N

k [Mpc�1] k [Mpc�1]

N N

109�

2 h(k)

109�

2 ⇣(k)

m2�2

G3

G3

*Using GSR techniques*

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

ns = 0.9556 r = 0.0155

Page 26: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

0.930 0.945 0.960 0.975 0.990Primordial tilt (ns)

10�3

10�2

10�1

Tens

or-to

-sca

larr

atio

(r)

Planck TT + lowPPlanck TT,TE,EE + lowP

G3 - inflationG3+ step - inflation (N = 55)

Canonical m2�2

Msmaller

N = 60N = 50

M = 2⇥ 10�4Mpl � 8⇥ 10�3Mpl

*Using GSR techniques*

Page 27: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

�r = 13.5Mpl

d = 0.1Mpl

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

109�

2 ⇣(k)

N

k [Mpc�1]

N

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

109�

2 h(k)

GSRSR

OSRGSRSR

OSR10-12 10-7 0.01 1000.00

5

10

50

100

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

10-12 10-7 0.01 1000.00

0.26

0.28

0.30

0.32

0.348 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

k [Mpc�1]

Page 28: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

+tanh + chaotic inflationG3

�r = 13.5Mpl

d = 0.1Mpl

HR, H. Motohashi, W. Hu, O. Mena; in preparation.

109�

2 ⇣(k)

N

k [Mpc�1]

N

L3 = M�3

1 + tanh

✓�� �r

d

◆�X⇤�

109�

2 h(k)

GSRSR

OSRGSRSR

OSR10-12 10-7 0.01 1000.00

5

10

50

100

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

10-12 10-7 0.01 1000.00

0.26

0.28

0.30

0.32

0.348 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

k [Mpc�1]

ns = 0.9456

ns = 0.9556

ns = 0.9551

r = 0.0154

r = 0.0160

r = 0.0155

Page 29: GSR approach to Horndeski inflationcosmo17.in2p3.fr/talks/parallel/Ramirez_COSMO17.pdf · 2017-09-06 · GSR approach to Horndeski inflation Héctor Ramírez IFIC - University of

Conclusions

Inflation in the Horndeski framework is viable and could cure some popular models.

Our model allows us to compute observables during a G-inflation period and to end inflation as canonical.

‣ Extra note: Generalized slow-roll and Optimized slow-roll techniques are efficient tools for computing the power spectra in noncanonical models.