23
Grid Forming Control for Stable Power Systems with up to 100 % Inverter Based Generation: A Paradigm Scenario Using the IEEE 118-Bus System Mario Ndreko, Sven Rüberg, Wilhelm Winter 17 Oct 2018

Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Grid Forming Control for Stable Power Systems with

up to 100 % Inverter Based Generation: A Paradigm

Scenario Using the IEEE 118-Bus System

Mario Ndreko, Sven Rüberg, Wilhelm Winter

17 Oct 2018

Page 2: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Power System Stability with High Level of

Power Electronic Interfaced Generation (PEIG)

2

Power System Stability

(voltage, rotor angle,

frequency)

Associated with

physical response of

synchronous

generation units

Associated with the control

loops of AC/DC power

converters used in RES and

HVDC systems

today

future

SGs provide: Synchronization

effect, system Inertia, high

short circuit currents

PE-Based RES and HVDC

systems do not provide

inherently a synchronization

effect to the system, neither

contribution to system inertia

Page 3: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

3

PEIG Main Characteristics?

Power Electronic

Interfaced Generators

Need a minimum short circuit power level in order to properly

synchronise to the grid (during normal and fault conditions )

Highly controllable non-linear modules which interact dynamically with

the grid resonance in the sub- and super-synchronous region

The prime mover is generally decoupled from the grid through the power

electronic interfaces – Possible to release stored energy via control loops

Exhibit limited overloading capacity and fault current injection – highly

controllable in the positive and negative sequence

Page 4: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Instability of Power Electronic Dominated Grids

4

Instability of

systems

with PEIG Loss of synchronism

from RES/HVDC when

the short circuit power

is reduced below

certain levels.

Erroneous contribution

to grid support

functions (voltage,

frequency control and

synthetic inertia).

Undamped oscillations

between PEIG/HVDC

and the grid in the sub-

synchronous as well

above-synchronous

frequency.

Loss of fault ride

through capability and

trip during grid faults

which could also place

risks for frequency

stability.

Page 5: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Enhancement of

system stability

Synthetic

Inertia

Grid

Forming

Control

Advanced

use of

HVDC

synchrornous condensers

Long-term

solutions

Anscilary

services

Short-term

solutions

Mitigation

measures

RES/

Storage

Grid Connection

Codes

5

Realising a PE-Dominated Power System

Page 6: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Vectorcurrentcontrolscheme s

Phase-Locked Loop (PLL)

AC

Inverter based plant

AC

GridEquivalent

Zc ZgridZline

Load

cI

cI

,c refI

cU sU

sU

6

Generic illustration

of a Grid following

VSC unit:

Sources of instability

1. PLL

2. AC current controller

Grid forming

Control for power

systems with up to

100% PE based

generation units

Grid forming control,ref ref

c cP Q

AC

inverter based plant

ZvscZc

AC

GridEquivalent

ZgridZline

Load

cU

cI

Grid Forming Control Concept

Page 7: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Grid Forming Control Schemes

7

Available grid forming control concepts: • Virtual Synchronous machine (VSM) - Mimics the swing equation of the synchronous generator - Usually does not use a PLL during normal operation - Provides inherent inertia without frequency measurements - Fault response not well studied in the literature • Power Synchronization Control (PSC) - Does not use a PLL for normal operation but requires a back-up PLL during faults in order to limit the current - Demonstrate proven response for very weak grids - During grid faults, shifts to current control with PLL - Provides inherent inertia through the power synchronization loop • Direct power control (DPC) - It controls the voltage and angle of the converter - very simple in its use and implementation - used widely for stand alone applications and UPS systems

Page 8: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

8

abc dq

Lsai

,s au

r

Lr

Lr

sbi

sci,s bu

,s cu

,c au

,c bu

,c cu

,max2

abcdc c

mU u

chR

sdc

dc

PI

U

Voltagelimiter

dcU

Cdc

wt wtdc

dc

PI

U

,d outm,q outm

3

11G

Js

abcmx

2

dcUPLL

,s abcu

pll

psc

c

dx m

x

qy m

y

refP

P

pllf

reff

1

vT srefQ

Q

CurrentLimitation

During Grid Faults

1dR

sP

,s abcu,s abci

abc dq abc dq

,s dqi

,s dqu

pll pll

• The VSC unit during normal operation regulates the active and the reactive power via controlling its internal voltage angle and amplitude. • The output current is the result of voltage drop across the phase reactor. • During faults, a current controller is used to limit the current.

Enhanced DPC

plltdm

q- axis

d- axis

c

sU

,q s su U

cU

c cjZ I

qm

, 0d su

Page 9: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

9

Control block which enables fault current limitation

1

sT

sT

1

sT

sT

Fault Detect

,s di

,s qi

,

ref

s di

,

ref

s qi

,d su

,q su

dm

dm

,d outm

,q outm

+

+ +

+

-

-

-

-

,limdm

,limqm

During grid faults, the converter shifts its operation to current limiting mode.

No need to activate and deactivate the PLL

No angle jumps

Enhanced DPC

Page 10: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

10

Simple Test System- Proof of Concept

After the BRK1 opens the gray zone goes to 100% inverter based generation

AC

DC

Inverter based power plant

T:380/150kVUk=15%

T:150/33kVkVUk=10%

T:150/33kVkVUk=10%

pi-Section Line

pi-Section Line

ResistiveLoad

pi-Se

ction

Line

''

kS

380kVGrid

pi-Section Line pi-Section Line

pi-Section Line

PCCBRK1

Page 11: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

11

VSC current

VSC response for a 150s fault (at t=6s) Spike due to detection delay

active current

reactive current

Simple Test System- Proof of Concept

Page 12: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

12

VSC response for islanding

Grid

Current

Converter

angle

Frequency

of the PLL

Simple Test System- Proof of Concept

kA deg

Hz

Page 13: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

13

• 345kV, 138kV

• 7 Large SGs

• 18 VSC-Based units

• Three fault

locations

• 50% and 70% PE generation

VSC with current control

Synchronous

generator

B90

B107

B55

Voltage Stability Assessment – IEEE 118-Bus

Page 14: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

>> 150ms fault at B55 – Voltage and angle response at the HV level

70% 50%

70% • In the 70% case, the voltage

drops are bigger and the effect

a wider area.

The simulations are for the case that the VSCs apply conventional control

14

Voltage Stability Assessment – IEEE 118-Bus

Page 15: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Effect of high levels of PE – Above 70%

SG2

SG1

SG3

WPP_3

15

WPP_10

Disconnectionof SG1

Disconnectionof SG3 time (s)

5s 8s

Simulated events

67% 80% 90%

Reduction of the SCR at PCC leads to control interactions observed in the sub-synchronous range

Page 16: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

BUS1 BUS2

BUS3

BUS4

BUS5

BUS6

BUS7

BUS8

BUS11

BUS12

BUS13

BUS14

BUS117

BUS16

BUS17

BUS18

BUS19

BUS20

BUS15

BUS21

BUS22

BUS33

BUS37

BUS30

BUS31

BUS29 BUS113

BUS32

BUS28

BUS114

BUS115

BUS27

BUS25

BUS26

BUS23

BUS24

BUS72 BUS71

BUS73

BUS70

BUS34

BUS43 BUS44

BUS45

BUS46

BUS36

BUS35

BUS38

BUS74

BUS47

BUS65

BUS69

BUS39

BUS40

BUS48

BUS49

BUS41

BUS42

BUS55

BUS54

BUS53

BUS52

BUS51

BUS58

BUS57

BUS56

BUS66

BUS67

BUS62

BUS60

BUS61

BUS64

BUS63

BUS59

BUS68BUS75

BUS80

BUS81

BUS118

BUS76

BUS77

BUS78

BUS79

BUS97

BUS82

BUS83

BUS96

BUS98

BUS99

BUS100

BUS104

BUS103

BUS84

BUS85

BUS88

BUS86

BUS89

BUS90

BUS91

BUS95

BUS94

BUS93

BUS92

BUS102 BUS101

BUS106

BUS107

BUS105

BUS108

BUS109

BUS110

BUS112

#1

#2

100.0

[MVA]

142.1

4 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

143.5

2 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

345.0

0 [k

V] / 1

40.7

6 [k

V]

#1

#2

100.0

[MVA]

142.8

3 [k

V] / 3

45.0

0 [k

V]

#1 #2

100.0 [MVA]345.00 [kV] / 138.00 [kV]

#1 #2

100.0 [MVA]345.00 [kV] / 138.00 [kV]

#1

#2

100.0

[MVA]

138.0

0 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

138.0

0 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

345.0

0 [k

V] / 1

38.0

0 [k

V]

2.0

8931 [

uF]

6.2

8185 [u

F]

P+jQ

P+

jQ

P+

jQP+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+

jQ

P+jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+

jQ

P+

jQ P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

TL_1_2_1

TL_3_1_1

TL_2_12_1

TL_3_5_1

TL_3_12_1

TL_4_5_1

TL_4_11_1

TL_5_6_1

TL_5_11_1

TL_6_7_1

TL_12_7_1

TL_8_30_1

TL_11_12_1

TL_11_13_1

TL_12_14_1

TL_12_16_1

TL_117_12_1

TL_13_15_1

TL_14_15_1

TL_17_15_1

TL_19_15_1

TL_15_33_1

TL_16_17_1

TL_18_17_1

TL_31_17_1

TL_113_17_1

TL_18_19_1

TL_19_20_1

TL_19_34_1

TL_20_21_1

TL_21_22_1

TL_23_22_1

TL_23_24_1

TL_25_23_1

TL_32_23_1

TL_24_70_1

TL_24_72_1

TL_27_25_1

TL_30_26_1

TL_28_27_1TL_32_27_1

TL_115_27_1

TL_29_28_1

TL_29_31_1

TL_31_32_1

TL_113_32_1

TL_32_114_1

TL_33_37_1

TL_34_36_1

TL_34_37_1

TL_34_43_1

TL_35_36_1

TL_35_37_1

TL_37_39_1

TL_37_40_1

TL_38_65_1

TL_39_40_1

TL_40_41_1

TL_40_42_1

TL_41_42_1

TL_42_49_1TL_42_49_2

TL_43_44_1

TL_44_45_1 TL_45_46_1

TL_45_49_1

TL_46_47_1

TL_46_48_1

TL_47_49_1

TL_47_69_1

TL_49_50_1

TL_51_49_1TL_49_54_1

TL_49_54_2

TL_49_66_1TL_49_66_2TL_49_69_1

TL_50_57_1

TL_51_52_1

TL_51_58_1

TL_52_53_1 TL_53_54_1

TL_54_55_1

TL_56_54_1

TL_54_59_1

TL_56_55_1

TL_59_55_1

TL_57_56_1

TL_58_56_1

TL_56_59_1TL_56_59_2

TL_59_60_1

TL_61_59_1

TL_61_60_1

TL_62_60_1

TL_62_61_1

TL_66_62_1

TL_67_62_1

TL_64_63_1

TL_65_64_1

TL_65_68_1

TL_66_67_1

TL_68_81_1

TL_70_69_1

TL_75_69_1

TL_69_77_1

TL_71_70_1

TL_70_74_1

TL_70_75_1

TL_72_71_1

TL_71_73_1

TL_74_75_1

TL_75_77_1

TL_75_118_1

TL_76_77_1

TL_118_76_1

TL_77_78_1

TL_77_80_1

TL_77_80_2

TL_77_82_1

TL_78_79_1

TL_79_80_1

TL_80_96_1

TL_80_97_1

TL_80_98_1TL_80_99_1

TL_83_82_1

TL_82_96_1

TL_83_84_1

TL_83_85_1

TL_85_84_1

TL_86_85_1

TL_85_88_1

TL_85_89_1

TL_88_89_1

TL_89_90_1TL_89_90_2

TL_89_92_1TL_89_92_2TL_90_91_1

TL_91_92_1

TL_93_92_1

TL_94_92_1

TL_92_100_1

TL_92_102_1

TL_94_93_1

TL_95_94_1

TL_96_94_1

TL_94_100_1

TL_96_95_1

TL_97_96_1

TL_98_100_1TL_99_100_1

TL_100_101_1

TL_100_103_1

TL_100_104_1

TL_100_106_1

TL_102_101_1

TL_104_103_1

TL_103_105_1

TL_103_110_1

TL_104_105_1

TL_106_105_1

TL_105_107_1

TL_105_108_1

TL_106_107_1

TL_108_109_1

TL_110_109_1

TL_110_112_1

TL_114_115_1

P+

jQ

BUS50

TL_48_49_1

P = -86.81Q = 13.73V = 98.8

V

A

P = 45.26Q = 9.924V = 102.1

V

A

P =

0.0

02295

Q =

0.0

07486

V =

101.3

V A

P = 89.64Q = -14.18

V = 102

V

A

P = 205.3Q = 82.73V = 128

V

A

P =

170.6

Q =

-26.9

7V =

116.4

VA

P = 140.7Q = -22.25

V = 120

V

A

P = -139.3Q = 22.01V = 118.7

V

A

P =

0.0

0795

Q =

0.0

08334

V =

137.5

VA

P = -138.7Q = 21.93V = 118.5

V

A

P =

88.6

1Q

= -1

4.0

2V =

100.9

V A

P = 118.9Q = -18.87V = 101.7

V

A

P = 85.52Q = -13.53V = 97.4

V

A

P =

155.1

Q =

-24.5

3V =

106

V A

P =

172.6

Q =

7.0

1V =

114.2

VA

P =

120.3

Q =

-18.9

8V =

102.8

VA

TL_30_38_1

SWING

VSC 1

VSC 2

VSC 3

VSC 4

VSC 5

VSC 6

#1#2

100.0 [MVA]138.00 [kV] / 33 [kV]

VSC 7

VSC 8

VSC 10

P =

38.5

Q =

-21.5

3V =

107.4

VA

P =

19.3

6Q

= 3

.399

V =

97.6

6

VA

P =

-15.3

4Q

= -

11.7

7V =

97.6

6

VA

P =

1.8

02

Q =

-12.5

4V =

103.8

VA

#1 #2

100.0 [MVA]138.00 [kV] / 33 [kV]

VSC 201

#1#2

100.0 [MVA]138.00 [kV] / 33 [kV]

VSC 204

VSC 203

P = 0.1429Q = -0.1017

V = 106

V

A

VSC 206

P = 70.94Q = -11.21V = 121.2

V

A

VSC 207

#1

#2

100.0

[M

VA]

138.0

0 [

kV]

/ 33 [

kV]

VSC 2

09

P = 104Q = -16.45V = 118.5

V

A

VSC 210

TimedBreaker

LogicClosed@t0

BRK1

BRK2

TimedBreaker

LogicClosed@t0

BRK3

TimedBreaker

LogicClosed@t0

TimedBreaker

LogicClosed@t0

BRK4

BRK1

BRK1

BRK1

BRK1

SG

3

SG 4

50.0 [MVAR]

P =

-0.0

02896

Q =

-60.3

7V =

107.4

V A

100.0 [MVAR]

200.0

[M

VAR]

100.0

[M

VAR]

P = 0.01203Q = -0.01703V = 118.7

V

A

Isc_abc

Isc

P = 0Q = 0

V = 107.4

V

A

Isc=6kA

Isc=20 kA

Isc=12kA

BRK2

BRK2

P = 18.28Q = 7.151V = 95.45

V

A

P = -25.04Q = -13.74V = 96.21

V

A

P = 48.52Q = 21.38V = 97.08

V

A

P = 3.746Q = 0.2673V = 95.94

V

A

P = 72.26Q = 24.09V = 95.94

V

A

P = -12.07Q = -6.707V = 96.04

V

A

P = -16.76Q = -9.499V = 98.01

V

A

Isc=5kA

V =

120

VA

T imedFaultLogic ABC->G

Battery with PSC

SG 1

BRK_SG1

BRK_SG1

TimedBreaker

LogicClosed@t0

Battery with PSCP = -54.17Q = -9.813V = 120

V

A

P = -54.26Q = -10.16V = 121.2

V

A

Battery with PSC

trip

trip

trip

trip

P =

71.4

Q =

-95.9

1V =

253.1

VA

t rip

TimedBreaker

LogicClosed@t0

Battery with PSC

Battery with PSC

P = 45.04Q = 9.569V = 99.51

V

A

Battery with PSC

trip_SG4

P = -54.15Q = -9.658V = 111.5

V

A

Battery with PSC

trip_SG4

TimedBreaker

LogicClosed@t0

TimedBreaker

LogicClosed@t0

trip_SG3

trip

_SG

3

Battery with PSC

100.0 [MVAR]

50.0 [MVAR]

P = -0.143Q = -0.2939V = 99.12

V

A

P = 50.04Q = 9.348V = 98.82

V

A

BRK_VSC10

TimedBreaker

LogicClosed@t0

BRK_VSC10

16

part of the unstable

PPMs are replaced by

PPMs using grid

forming control.

It is assumed here that

the DC voltage is

constant and there is

storage element

available.

SG1

SG2

SG3

PPM

Grid forming to mitigate instability

Page 17: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

17

• The system is stable

when part of generated

power from PPMs is

with grid forming control

• Grid forming units can

change P and Q

(assuming DC constant

voltage)

• The lower voltage

profiles are due to lack

of reactive power flow in

the network.

d-axis voltage

q-axis voltage

Effect of high levels of PE – Use of Grid forming

Trip SG1

time (s)2s

Simulated events

67%

Trip SG2

Trip SG3

100 %

3s 4s

Fault Trip PPM

Page 18: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Effect of high levels of PE – Use of Grid forming

Trip SG1

time (s)

2s

Simulated events

67%

Trip SG2

Trip SG3

100 %

3s 4s

PLL frequency of grid forming PPM Internal voltage angle of grid forming PPM

18

Page 19: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

19

• Time domain response of selected voltages in the IEEE-118 for a three phase fault in the case of 100% PE. • The fast reactive current injection provides a voltage boosting at all monitored nodes.

Effect of high levels of PE – Use of Grid forming

Note: In the 100% PE case the frequency variation reflects the changes in the voltage angles in the system

Trip SG1

time (s)2s

Simulated events

67%

Trip SG2

Trip SG3

100 %

3s 4s

Fault Trip PPM

PLL frequency of grid forming PPM

Page 20: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

70% Penetration and VSCs with grid forming on

the IEEE 118 – Compatibility with SGs BUS1 BUS2

BUS3

BUS4

BUS5

BUS6

BUS7

BUS8

BUS11

BUS12

BUS13

BUS14

BUS117

BUS16

BUS17

BUS18

BUS19

BUS20

BUS15

BUS21

BUS22

BUS33

BUS37

BUS30

BUS31

BUS29 BUS113

BUS32

BUS28

BUS114

BUS115

BUS27

BUS25

BUS26

BUS23

BUS24

BUS72 BUS71

BUS73

BUS70

BUS34

BUS43 BUS44

BUS45

BUS46

BUS36

BUS35

BUS38

BUS74

BUS47

BUS65

BUS69

BUS39

BUS40

BUS48

BUS49

BUS41

BUS42

BUS55

BUS54

BUS53BUS52

BUS51

BUS58

BUS57

BUS56

BUS66

BUS67

BUS62

BUS60

BUS61

BUS64

BUS63

BUS59

BUS68BUS75

BUS80

BUS81

BUS118

BUS76

BUS77

BUS78

BUS79

BUS97

BUS82

BUS83

BUS96

BUS98

BUS99

BUS100

BUS104

BUS103

BUS84

BUS85

BUS88

BUS86

BUS89

BUS90

BUS91

BUS95

BUS94

BUS93

BUS92

BUS102 BUS101

BUS106

BUS107

BUS105

BUS108

BUS109

BUS110

BUS112

#1

#2

100.0

[MVA]

142.1

4 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

143.5

2 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

345.0

0 [k

V] / 1

40.7

6 [k

V]

#1

#2

100.0

[MVA]

142.8

3 [k

V] / 3

45.0

0 [k

V]

#1 #2

100.0 [MVA]345.00 [kV] / 138.00 [kV]

#1 #2

100.0 [MVA]345.00 [kV] / 138.00 [kV]

#1

#2

100.0

[MVA]

138.0

0 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

138.0

0 [k

V] / 3

45.0

0 [k

V]

#1

#2

100.0

[MVA]

345.0

0 [k

V] / 1

38.0

0 [k

V]

2.0

8931 [

uF]

6.2

8185 [u

F]

P+jQ

P+

jQ

P+

jQP+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+

jQ P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+

jQ

P+

jQ P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

P+

jQ

P+jQ

P+jQ

P+

jQ

P+

jQ

P+jQ

P+jQ

P+jQ

P+jQ

TL_1_2_1

TL_3_1_1

TL_2_12_1

TL_3_5_1

TL_3_12_1

TL_4_5_1

TL_4_11_1

TL_5_6_1

TL_5_11_1

TL_6_7_1

TL_12_7_1

TL_8_30_1

TL_11_12_1

TL_11_13_1

TL_12_14_1

TL_12_16_1

TL_117_12_1

TL_13_15_1

TL_14_15_1

TL_17_15_1

TL_19_15_1

TL_15_33_1

TL_16_17_1

TL_18_17_1

TL_31_17_1

TL_113_17_1

TL_18_19_1

TL_19_20_1

TL_19_34_1

TL_20_21_1

TL_21_22_1

TL_23_22_1

TL_23_24_1

TL_25_23_1

TL_32_23_1

TL_24_70_1

TL_24_72_1

TL_27_25_1

TL_30_26_1

TL_28_27_1TL_32_27_1

TL_115_27_1

TL_29_28_1

TL_29_31_1

TL_31_32_1

TL_113_32_1

TL_32_114_1

TL_33_37_1

TL_34_36_1

TL_34_37_1

TL_34_43_1

TL_35_36_1

TL_35_37_1

TL_37_39_1

TL_37_40_1

TL_38_65_1

TL_39_40_1

TL_40_41_1

TL_40_42_1

TL_41_42_1

TL_42_49_1TL_42_49_2

TL_43_44_1

TL_44_45_1 TL_45_46_1

TL_45_49_1

TL_46_47_1

TL_46_48_1

TL_47_49_1

TL_47_69_1

TL_49_50_1

TL_51_49_1TL_49_54_1

TL_49_54_2

TL_49_66_1TL_49_66_2TL_49_69_1

TL_50_57_1

TL_51_52_1

TL_51_58_1

TL_52_53_1 TL_53_54_1

TL_54_55_1

TL_56_54_1

TL_54_59_1

TL_56_55_1

TL_59_55_1

TL_57_56_1

TL_58_56_1

TL_56_59_1TL_56_59_2

TL_59_60_1

TL_61_59_1

TL_61_60_1

TL_62_60_1

TL_62_61_1

TL_66_62_1

TL_67_62_1

TL_64_63_1

TL_65_64_1

TL_65_68_1

TL_66_67_1

TL_68_81_1

TL_70_69_1

TL_75_69_1

TL_69_77_1

TL_71_70_1

TL_70_74_1

TL_70_75_1

TL_72_71_1

TL_71_73_1

TL_74_75_1

TL_75_77_1

TL_75_118_1

TL_76_77_1

TL_118_76_1

TL_77_78_1

TL_77_80_1

TL_77_80_2

TL_77_82_1

TL_78_79_1

TL_79_80_1

TL_80_96_1

TL_80_97_1

TL_80_98_1TL_80_99_1

TL_83_82_1

TL_82_96_1

TL_83_84_1

TL_83_85_1

TL_85_84_1

TL_86_85_1

TL_85_88_1

TL_85_89_1

TL_88_89_1

TL_89_90_1TL_89_90_2

TL_89_92_1TL_89_92_2TL_90_91_1

TL_91_92_1

TL_93_92_1

TL_94_92_1

TL_92_100_1

TL_92_102_1

TL_94_93_1

TL_95_94_1

TL_96_94_1

TL_94_100_1

TL_96_95_1

TL_97_96_1

TL_98_100_1TL_99_100_1

TL_100_101_1

TL_100_103_1

TL_100_104_1

TL_100_106_1

TL_102_101_1

TL_104_103_1

TL_103_105_1

TL_103_110_1

TL_104_105_1

TL_106_105_1

TL_105_107_1

TL_105_108_1

TL_106_107_1

TL_108_109_1

TL_110_109_1

TL_110_112_1

TL_114_115_1

P+

jQ

BUS50

TL_48_49_1

P = -132.2Q = -29.53V = 128.1

V

A

P = 128.9Q = 29.99V = 125

V

A

P =

274.3

Q =

231

V =

140.4

V A

P = 126.6Q = 29.99V = 122.8

V

A

P = 142.9Q = -1.397V = 138.3

V

A

P =

180.5

Q =

-5.4

18

V =

139.7

VA

P = 147.2Q = -13.89V = 142.5

V

A

P = -134.7Q = -22.15V = 130.5

V

A

P =

427.5

Q =

111.5

V =

134.5

VA

P = -111.3Q = 68.02V = 138.2

V

A

P = 142.8Q = -1.079V = 138.2

V

A

P =

0Q

= 0

V =

99.9

8

V A

P =

116.9

Q =

-0.0

1371

V =

131.3

V A

P = 107.1Q = 94.27V = 135.4

V

A

P = 145.4Q = -8.703V = 140.8

V

A

P = 139.9Q = 7.352V = 135.4

V

A

P =

148.6

Q =

-18

V =

143.8

V A

P =

165.3

Q =

7.3

69

V =

143.8

V A

P =

144.6

Q =

-6.2

51

V =

140

VA

P =

142.9

Q =

-1.5

81

V =

138.4

VA

TL_30_38_1

SWING

VSC 1

VSC 2

VSC 3

VSC 4

VSC 5

VSC 6

VSC 7

VSC 8

VSC 9

VSC 10

P =

51.4

1Q

= -

20.5

8V =

143.8

VA

P =

10.6

5Q

= 6

.925

V =

126.8

VA

P =

-20.4

7Q

= -

8.4

23

V =

126.8

VA

P =

-9.1

79

Q =

6.7

45

V =

129.3

VA

VSC 201

VSC 202

VSC 204

VSC 203

P = 146.5Q = -11.71V = 141.7

V

A

VSC 206

P = 146.5Q = -11.71V = 141.7

V

A

VSC 207

#1

#2

100.0

[M

VA]

138.0

0 [

kV]

/ 33 [

kV]

VSC 2

09

P = 142.8Q = -1.079V = 138.2

V

A

VSC 210

TimedBreaker

LogicClosed@t0

BRK1

BRK2

BRK2

TimedBreaker

LogicClosed@t0

BRK3

TimedBreaker

LogicClosed@t0

BRK1

TimedBreaker

LogicClosed@t0

BRK4

BRK1

BRK1

BRK1

BRK1

BRK1

BRK1

BRK1

BRK2

BRK2

BRK3

BRK3

BRK3

SG 2

SG

3

SG

4

SG 7

50.0 [MVAR]

P =

0.0

00503

Q =

-108.6

V =

143.8

V A

100.0 [MVAR]

200.0

[M

VAR]

100.0

[M

VAR]

P = -132.1Q = -79.83V = 142.5

V

A

SG 1

P =

145.4

Q =

-8.7

03

V =

140.8

VA

BRK3

BRK3

BRK3

BRK3

P =

10.2

1Q

= 5

.108

V =

136.5

V A

P =

-11.8

1Q

= -

5.1

77

V =

325.5

VA

ABC->G

TimedFaultLogic

BRK3

BRK3

ABC->G

TimedFaultLogic

Psg2

Psg1

SG 5

20

Page 21: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

• The presented results with the IEEE 118-Bus shows that bulk transmission systems

are stable when part of the PEIG applies grid forming control.

• Balancing active power in the case of the 100% PE-based network is performed using

the PLL frequency.

• The PLL frequency reflects the changes in the voltage angles as a result of changes

in the power flow.

• The stability of the 100% PE-Based system lies in the ability to maintain the voltage

angle stability.

• The provision of rated reactive current injection from VSCs with grid forming control

requires additional control and fast fault state detection to avoid over-current spikes.

21

Summary

Page 22: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

Haftung und Urheberrechte TenneTs

Diese PowerPoint-Präsentation wird Ihnen von der TenneT TSO GmbH („TenneT“) angeboten. Ihr Inhalt, d.h. sämtliche

Texte, Bilder und Töne, sind urheberrechtlich geschützt. Sofern TenneT nicht ausdrücklich entsprechende Möglichkeiten

bietet, darf nichts aus dem Inhalt dieser PowerPoint-Präsentation kopiert werden, und nichts am Inhalt darf geändert

werden. TenneT bemüht sich um die Bereitstellung korrekter und aktueller Informationen, gewährt jedoch keine

Garantie für ihre Korrektheit, Genauigkeit und Vollständigkeit.

TenneT übernimmt keinerlei Haftung für (vermeintliche) Schäden, die sich aus dieser PowerPoint-Präsentation ergeben,

beziehungsweise für Auswirkungen von Aktivitäten, die auf der Grundlage der Angaben und Informationen in dieser

PowerPoint-Präsentation entfaltet werden.

Disclaimer

Page 23: Grid Forming Control for Stable Power Systems with up to ... · 15 WPP_10 D is c o n n e c tio n o f S G 1 D is c o n n e c tio n o f S G 3 time (s ) 5 s 8 s S imu late d e v e n

www.tennet.eu

TenneT ist der erste grenzüberschreitende Übertragungsnetzbetreiber für Strom in

Europa. Mit rund 21.000 Kilometern an Hoch- und Höchstspannungsleitungen, 36 Millionen Endverbrauchern in den Niederlanden und in Deutschland gehören wir zu

den Top 5 der Netzbetreiber in Europa. Unser Fokus richtet sich auf die Entwicklung eines nordwesteuropäischen Energiemarktes und auf die Integration erneuerbarer

Energie. Taking power further