24
Gravitation: Theories & Experiments Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics Washington University, St. Louis USA http://wugrav.wustl.edu/people/CMW [email protected] Clifford M. Will and Gilles Esposito-Farèse Part 1

Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Embed Size (px)

Citation preview

Page 1: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Gravitation: Theories & ExperimentsGravitation: Theories & Experiments

Clifford WillJames S. McDonnell Professor of PhysicsMcDonnell Center for the Space SciencesDepartment of PhysicsWashington University, St. Louis USA

http://wugrav.wustl.edu/people/[email protected]

Clifford M. Will and Gilles Esposito-Farèse

Part 1

Page 2: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Outline of the LecturesOutline of the Lectures

Lecture 1: The Einstein Equivalence PrincipleLecture 2: Post-Newtonian Limit of GRLecture 3: The Parametrized Post-Newtonian FrameworkLecture 4: Tests of the PPN Parameters

Page 3: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Outline of the LecturesOutline of the Lectures

Lecture 1: The Einstein Equivalence Principle Review of dynamics in special relativity The weak equivalence principle The Einstein equivalence principle Tests of EEP

o Tests of WEPo Tests of local Lorentz invarianceo Tests of local position invariance

Metric theories of gravity Non metric theories of gravity Physics in curved spacetime

Lecture 2: Post-Newtonian Limit of GRLecture 3: The Parametrized Post-Newtonian FrameworkLecture 4: Tests of the PPN Parameters

Page 4: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Special Relativistic Electrodynamics

I = − m0ac −η μν uμ uν dτ +∫a

∑ ea

ca

∑ Aμ dx μ∫

−1

16π−ηη μαη νβ Fμν Fαβ d4 x∫

Fμν = Aν ,μ − Aμ ,ν

Page 5: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

400 CE Ioannes Philiponus: “…let fall from the same heighttwo weights of which one is many times as heavy as theother …. the difference in time is a very small one”

1553 Giambattista Benedettiproposed equality

1586 Simon Stevinexperiments

1589-92 Galileo GalileiLeaning Tower of Pisa?

1670-87 Newtonpendulum experiments

1889, 1908 Baron R. von Eötvöstorsion balance experiments (10-9)

1990s UW (Eöt-Wash) 10-13

The Weak Equivalence Principle (WEP)The Weak Equivalence Principle (WEP)

Bodies fall in a gravitational field with an accelerationthat is independent of mass, composition or internal structure

Page 6: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

QuickTime™ and aPhoto - JPEG decompressor

are needed to see this picture.

Page 7: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

The Einstein Equivalence Principle (EEP)The Einstein Equivalence Principle (EEP)

Test bodies fall with the same accelerationWeak Equivalence Principle (WEP)

In a local freely falling frame, physics (non-gravitational) is independent of frame’s velocity

Local Lorentz Invariance (LLI)In a local freely falling frame, physics (non-gravitational) is independent of frame’s location

Local Position Invariance (LPI)

Page 8: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Tests of the Weak Equivalence PrincipleTests of the Weak Equivalence Principle

APOLLO (LLR) 10-13

Microscope 10-15(2008)

STEP 10-18 (?)

Page 9: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

I = − m0a 1− va2 dt +∫

a

∑ ea

a

∑ (−Φ + A ⋅va )dt∫

−1

8π(E 2 − c 2B2)d3x∫ dt

E 2 − c 2B2 → E 2 − c 2B2

+(1− c 2)γ 2{2v ⋅(E × B) + v 2(ET2 + BT

2 )}

Lorentz non-invariant EM actionLorentz non-invariant EM action

Under a Lorentz transformation, eg

′ t = γ(t − vx)

x = γ(x − vt)γ =1/ 1− v 2

Page 10: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Tests of Local Lorentz InvarianceTests of Local Lorentz Invariance

Page 11: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

v = gt

= gh

Light falling down a tower

Page 12: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Tests of Local Position InvarianceTests of Local Position Invariance

ACES(2010) 10-6

Page 13: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Constant

Limit (yr-1) Z Method

<30 X 10-16 0 Clock comparisons

<0.5 X 10-16 0.15 Oklo reactor

<3.4 X 10-16 0.45 187Re decay

(6.4±1.4) X 10-

16

3.7 Quasar spectra

<1.2 X 10-16 2.3 Quasar spectra

W

<1 X 10-11 0.15 Oklo reactor

<5 X 10-12 109 BBN

me/mp <3 X 10-15 2-3 Quasar spectra

Tests of Local Position InvarianceTests of Local Position Invariance

Page 14: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Metric Theories of GravityMetric Theories of Gravity

Spacetime is endowed with a metric g

The world lines of test bodies are geodesics of that metric

In a local freely falling frame (local Lorentz, or inertial frame), the non-gravitational laws of physics are those from special relativity

“universal coupling principle”

Page 15: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Metric theories, nonmetric theories and electrodynamics

I = − m0ac −η μν uμ uν dτ +∫a

∑ ea

ca

∑ Aμ dx μ∫

−1

16π−ηη μαη νβ Fμν Fαβ d4 x∫

Page 16: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Metric theories, nonmetric theories and electrodynamics

I = − m0ac −gμν uμ uν dτ +∫a

∑ ea

ca

∑ Aμ dx μ∫

−1

16π−ggμα gνβ Fμν Fαβ d4 x∫

Page 17: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Metric theories, nonmetric theories and electrodynamics

I = − m0ac −gμν uμ uν dτ +∫a

∑ ea

ca

∑ Aμ dx μ∫

−1

16π−hhμα hνβ Fμν Fαβ d4 x∫

Page 18: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

I = − m0a T − Hva2 dt +∫

a

∑ ea

a

∑ (−Φ + A ⋅va )dt∫

−1

8π(εE 2 − μ−1B2)d3x∫ dt

The ThThe Th Framework Framework

T, H, , are functions of an external static spherical potential U(r)

Metric theory action iff

= =(H /T)1/ 2

g00 = −T(U)

gij = H(U)δ ij

with

Page 19: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Metric theories, nonmetric theories and electrodynamics

I = − m0ac −gμν uμ uν dτ +∫a

∑ ea

ca

∑ Aμ dx μ∫

−1

16π−ggμα gνβ Fμν Fαβ d4 x∫

Page 20: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

THTH Framework: Violation of WEP Framework: Violation of WEP

Page 21: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

THTH Framework: Violation of LLI Framework: Violation of LLI

I = − m0a 1− va2 dt +∫

a

∑ ea

a

∑ (−Φ + A ⋅va )dt∫

−1

8π(E 2 − c 2B2)d3x∫ dt

BL ≠ 0, c =1

c ≠1, BL⊥V

c ≠1, BL ||V

Page 22: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Standard Model Extension (SME)Standard Model Extension (SME)

If the universe is fundamentally isotropic

•Clock comparisons•Clocks vs cavities•Time of flight of

high energy photons•Birefringence in

vacuum•Neutrino

oscillations•Threshold effects in

particle physics

L = η + (kφ )μν[ ](Dμφ)† Dν φ − m2φ†φ

−1

4η μαη νβ + (kF )μναβ

[ ]Fμν Fαβ

Dμφ = ∂μφ + ieAμφ

Kostelecky et al

D. Mattingly, Living Reviews in Relativity 8, 2005-5

Page 23: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Electrodynamics in curved spacetime

I = − m0ac −gμν uμ uν dτ +∫a

∑ ea

ca

∑ Aμ dx μ∫

−1

16π−ggμα gνβ Fμν Fαβ d4 x∫

Page 24: Gravitation: Theories & Experiments Clifford Will James S. McDonnell Professor of Physics McDonnell Center for the Space Sciences Department of Physics

Outline of the LecturesOutline of the Lectures

Lecture 1: The Einstein Equivalence PrincipleLecture 2: Post-Newtonian Limit of GRLecture 3: The Parametrized Post-Newtonian FrameworkLecture 4: Tests of the PPN Parameters