25
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute of Nanotechnology; Physikalisches Institut, Faculty of Physics, KIT www.kit.edu 13.04.2012 Graphene Field-Effect Transistors on Hexagonal Boron Nitride Operating at Microwave Frequencies Christian Benz 1,4 , Emiliano Pallecchi 2 , Zeineb Ben Aziza 1,4 , Jens Mohrmann 1,4 , Andreas C. Betz 2 , Kenji Watanabe 3 , Takashi Taniguchi 3 , Hilbert v. Löhneysen 1,4 , Bernard Plaçais 2 , and Romain Danneau 1,4 1 Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Germany — 2 Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris, France — 3 National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan — 4 Physikalisches Institut, KIT, Germany

Graphene Field-Effect Transistors on Hexagonal Boron Nitride … · 2015. 6. 8. · Gate sweeps and IV curves for SP34 (hBN) 13.04.2012. Christian Benz-2,5 -2,0 -1,5 -1,0 -0,5 0,0

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

    Institute of Nanotechnology; Physikalisches Institut, Faculty of Physics, KIT

    www.kit.edu

    13.04.2012

    Graphene Field-Effect Transistors on Hexagonal Boron Nitride Operating at Microwave Frequencies Christian Benz1,4, Emiliano Pallecchi2, Zeineb Ben Aziza1,4, Jens Mohrmann1,4, Andreas C. Betz2, Kenji Watanabe3, Takashi Taniguchi3, Hilbert v. Löhneysen1,4, Bernard Plaçais2, and Romain Danneau1,4 1Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Germany — 2Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris, France — 3National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan — 4Physikalisches Institut, KIT, Germany

  • Institute of Nanotechnology, KIT 2

    Outline

    1. Introduction to graphene RF applications

    2. Graphene FETs at microwave frequencies

    2.1 GFETs on sapphire substrates 2.2 Using hexagonal boron nitride (hBN) 2.3 Using hBN & few-layer graphene gates

    3. Summary & conclusions

    Christian Benz 13.04.2012

  • Institute of Nanotechnology, KIT 3

    Graphene RF applications

    High carrier mobility & thinness

    Focus on analog RF (small on/off ratio ~2 – 20)

    High transit frequencies fT

    Christian Benz 13.04.2012

    14.7 GHz 100 GHz 155 GHz 300 GHz Meric et al. (2008) Lin et al. (2010) Wu et al. (2011) Liao et al. (2010) Columbia University IBM T. J.Watson R.C. IBM T. J.Watson R.C. University of California Tech. Dig. IEDM 4796738 Nano Lett. 9, 422 Nature 472, 74 Nature 467, 305

    350 GHz Sung et al. (2012) IBM

  • Institute of Nanotechnology, KIT 4

    Broadband RF mixer / voltage amplifier

    Christian Benz 13.04.2012

    Lin Y.-M., Valdes-Garcia A., Han S.-J., et al. Science, 332(6035):1294-1297

    Han S.-J., Jenkins K.A., Valdes-Garcia A., et al. Nano letters; 2011;11(9):3690-3

  • Institute of Nanotechnology, KIT 5

    Problems / our approach

    Interactions with the substrate

    Impurity scattering

    Losses due to resistivity

    Sapphire substrate

    Interaction with the gate dielectric

    Inertness of graphene

    Oxidized Al + Al2O3 (ALD)

    Later: hexagonal boron nitride

    Christian Benz 13.04.2012

    Si/SiO2

  • Institute of Nanotechnology, KIT 6 Christian Benz 13.04.2012

    Test setup at ENS, Paris

    AC AC DC DC

  • Institute of Nanotechnology, KIT 7

    Microwave measurements

    S-parameter measurement with vector network analyzer (VNA)

    GFET + pads GFET dummy-open dummy-short

    De-embedding (subtracting parasitic capacitances) Ydeemb = YGFET - Ydummy

    Extraction of current gain |h21| and transit frequency fT

    Christian Benz 13.04.2012

    S S G D S S

    Source Gate Drain Source

  • Institute of Nanotechnology, KIT 8

    RF performance of our GFET on sapphire

    1 10 100

    1

    10

    100

    1000

    1 100,1

    1

    10

    0,1

    1

    10

    Cur

    rent

    gai

    n Ih

    21I

    f (GHz)

    -101

    -1,0 -0,5 0,0 0,5 1,0

    Vds (V) g

    mRF

    (mS)

    U

    MAG

    f (GHz)

    Christian Benz 13.04.2012

    ~ 1/f

    fT ~ 3 GHz fT-deemb ~ 80 GHz

    Pallecchi E., Benz C., et al. Appl. Phys. Lett. 99(11):113502 (2011)

    gmRF max = 250 µS/µmV

    Similar performance @ 300K & 77K

  • Institute of Nanotechnology, KIT 9

    RF transistors on hBN

    Christian Benz 13.04.2012

    Atomically flat -> higher mobility

    Gate dielectric with κ = 4

    Reversed preparation cycle

    Transfer of exfoliated

    hBN and graphene

    Graphene hBN

    Wang H et al. Electron Device Lett., IEEE. 2011;32(99):1–3

  • Institute of Nanotechnology, KIT 10

    Linear IV characteristics Vds -1.0 to 1.0V Ids max ~ 9 mA

    Gate sweep to find maximum transconductance

    Gate sweeps and IV curves for SP34 (hBN)

    Christian Benz 13.04.2012

    -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0100

    110

    120

    130

    140

    150

    160

    170

    180

    190

    200

    210

    220

    230

    R ds (Ω

    )

    Vg (V)

    Vds 0.08 V 0.2 V 0.5 V 0.8 V 1.2 V

    0,00 0,25 0,50 0,75 1,000,000

    0,125

    0,250

    0,375

    0,500

    0,625

    Vg 0.80 V 0.40 V 0 V -0.40 V -0.80 V

    I ds (m

    A/µm

    )

    Vds (V)

  • Institute of Nanotechnology, KIT 11

    S-parameter measurement up to 40 GHz Gate length 100 nm, channel width ~ 16 µm fT ≈ 53 GHz gmRF ≈ 90 µS/µm

    1 100

    25

    50

    75

    100

    Re[Y

    21] (

    µS/µ

    m)

    Frequency (GHz)40 0,1 1 10 100

    0,1

    1

    10

    100

    1000

    curre

    nt g

    ain

    |h21

    |

    Frequency (GHz)

    h21 h21 (de-embeded)

    RF results from SP34 (hBN)

    Christian Benz 13.04.2012

    fT = 6.4 GHz

    fT ~ 53 GHz

  • Institute of Nanotechnology, KIT 12

    Ripples in Graphene on hBN

    Christian Benz 13.04.2012

  • Institute of Nanotechnology, KIT 13

    RF transistors on hBN with graphene gates

    Christian Benz 13.04.2012

    Few-layer graphene gate

    Improved flatness

    Total device thickness: < 10 nm

    Only one metal evaporation step

  • Institute of Nanotechnology, KIT 14

    Preparation steps – ML graphene gate device

    Christian Benz 13.04.2012

    Exfoilation of (multilayer) graphene

  • Institute of Nanotechnology, KIT 15

    Preparation steps – ML graphene gate device

    Christian Benz 13.04.2012

    Oxygen plasma etch

  • Institute of Nanotechnology, KIT 16

    Preparation steps – ML graphene gate device

    Christian Benz 13.04.2012

    Transfer of hBN flake (highlighted)

  • Institute of Nanotechnology, KIT 17

    Preparation steps – ML graphene gate device

    Christian Benz 13.04.2012

    Transfer of mono-layer graphene flake

  • Institute of Nanotechnology, KIT 18

    Preparation steps – ML graphene gate device

    Christian Benz 13.04.2012

    Electron beam lithography: PMMA mask

  • Institute of Nanotechnology, KIT 19

    Preparation steps – ML graphene gate device

    Christian Benz 13.04.2012

    Metal evaporation Ti (10nm) / Al (100 nm)

    Gate Drain

    Source

    Source

  • Institute of Nanotechnology, KIT 20

    AFM – less ripples / bubbles due to dry transfer

    Christian Benz 13.04.2012

    Source

  • Institute of Nanotechnology, KIT 21

    Gate sweeps and IV curves for SP38

    0,0 0,2 0,4 0,6 0,80,00

    0,04

    0,08

    0,12

    0,16

    0,20

    0,24

    0,28

    I ds (m

    A/µm

    )

    Vds (V)

    Gate voltage Vg 0.2 V 0.3 V 0.4 V 0.5 V 0.6 V 0.7 V 0.8 V

    Christian Benz 13.04.2012

    -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2

    40

    60

    80

    100

    R ds (Ω

    )

    Vg (V)

    SP38_1_-1.00Vg»[email protected] SP38_2_1.00Vg»[email protected]

    Small hysteresis

    Linear IV characteristics

  • Institute of Nanotechnology, KIT 22

    Gate length 100 nm, channel width ~ 27 µm

    1 10 100

    1

    10

    100

    h21

    Frequency (GHz)

    SP48 (Vds = 0.53V, Vg = 0.46V)fT = 4.8 GHz h21fT = 27.1 GHz h21 (deembedded)

    Experimental results from SP48

    Christian Benz 13.04.2012

    fT = 4.8 GHz

    fT ~ 27 GHz

  • Institute of Nanotechnology, KIT 23

    Summary & Conclusion

    Christian Benz 13.04.2012

    Sapphire – suitable low loss substrate for RF

    hBN – substrate and gate dielectric < 4 nm

    Few-layer graphene gates applicable

    Device thicknesses < 10 nm

    Future applications & experiments

    Monolayer graphene gate / bilayer channel

    Transparent electronics

    Integration into cryogenic amplifier

  • Institute of Nanotechnology, KIT 24

    E. Pallecchi, A. C. Betz, and B. Plaçais at ENS, Paris K. Watanabe and T. Taniguchi at NIMS, Japan for hBN crystals

    Christian Benz 13.04.2012

    Romain Danneau, Kristina Hönes, Jens Mohrmann, Christian Benz, Simon Ketterer, Julien Bordaz, Pablo Robert, Zeineb Ben Aziza and Renjun Du

    Acknowledgments

    Appl. Phys. Lett. 99(11):113502

  • Institute of Nanotechnology, KIT 25

    E. Pallecchi, A. C. Betz, and B. Plaçais at ENS, Paris K. Watanabe and T. Taniguchi at NIMS, Japan for hBN crystals

    Christian Benz 13.04.2012

    Romain Danneau, Kristina Hönes, Jens Mohrmann, Christian Benz, Simon Ketterer, Julien Bordaz, Pablo Robert, Zeineb Ben Aziza and Renjun Du

    Acknowledgments

    Appl. Phys. Lett. 99(11):113502

    Thank you for your attention!

    Slide Number 1OutlineGraphene RF applicationsBroadband RF mixer / voltage amplifierProblems / our approachSlide Number 6Microwave measurementsRF performance of our GFET on sapphireRF transistors on hBNGate sweeps and IV curves for SP34 (hBN)RF results from SP34 (hBN)Ripples in Graphene on hBNRF transistors on hBN with graphene gatesPreparation steps – ML graphene gate devicePreparation steps – ML graphene gate devicePreparation steps – ML graphene gate devicePreparation steps – ML graphene gate devicePreparation steps – ML graphene gate devicePreparation steps – ML graphene gate deviceAFM – less ripples / bubbles due to dry transferGate sweeps and IV curves for SP38Experimental results from SP48Summary & ConclusionSlide Number 24Slide Number 25