2
1.3. VER TEX DEGREES  11 1.3 Vertex Degrees Vertex Degree for Undire cted Graphs:  Let  G  be an undirected graph and  x  ∈  V  (G). The  degree  d G (x) of  x  in  G: the num ber of edges incide nt with  x, each loop counting as two edges. For the graph  G  shown in Figure 1.9 (a), for instance, d G (x 1 ) =  d G (x 3 ) = 4, d G (x 2 ) = d G (x 4 ) = 3. x1 x2 x3 x4 e1 e2 e3 e4 e5 e6 e7 (a) x1 x2 x3 x4 a2 a7  a3 a4 a5 a6 a1 (b) Figure 1.9:  (a) an undirected graph  G  (b) a digraph  D A vertex of degree  d  is called a  d-degree vertex. A 0-degree vertex is called an isolated vertex. A vertex is calle d to be odd or even if its degre e is odd or eve n. A graph  G  is  k-regular if  d G (x) =  k  for each  x  ∈  V  (G), and  G is  regular  if it is k-regular for some  k , and  k  is called the  regularity of  G. For instance,  K n  is (n1)-regular;  K n,n  is  n-regular; Petersen graph is 3-regular; the  n -cube is  n -regular. The  maximum degree of  G: (G) = max{d G (x) :  x ∈  V  (G)}. The  minimum degree of  G:  δ (G) = min{d G (x) :  x ∈  V  (G)}. Clearly,  δ (G) = k  = (G) if  G  is  k -regular. Vertex Degree for Digraphs:  Let  D  be a digraph and  y  ∈  V  (D). E + D (y): a set of out-going edges of  y  i n  D . E D (y): a set of in-coming edges of  y  in  D . The  out-degree of  y :  d + D (y) =  | E + D (y)|. The  in-degree of  y :  d D (y) = | E D (y)|. For the digraph  D  shown in Figure 1.9 (b), for instance, d + D (y 1 ) = 2, d + D (y 2 ) = 1 , d + D (y 3 ) = 1, d + D (y 4 ) = 3; d D (y 1 ) = 2, d D (y 2 ) = 2 , d D (y 3 ) = 3, d D (y 4 ) = 0, A vertex  y  is called to be  balanced  if  d + D (y) =  d D (y), and  D  is called to be

Graph theory chapter 2

Embed Size (px)

Citation preview

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 1/8

1.3. VERTEX DEGREES    11

1.3 Vertex Degrees

Vertex Degree for Undirected Graphs:   Let   G   be an undirected

graph and  x  ∈  V  (G).

The  degree   dG(x) of   x   in   G: the number of edges incident with   x, each loop

counting as two edges.

For the graph G  shown in Figure 1.9 (a), for instance,

dG(x1) =  dG(x3) = 4, dG(x2) = dG(x4) = 3.

x1

x2

x3x4

e1e2

e3e4

e5

e6

e7

(a)

x1

x2

x3x4

a2

a7   a3a4

a5

a6

a1

(b)

Figure 1.9:  (a) an undirected graph  G   (b) a digraph  D

A vertex of degree  d  is called a  d-degree vertex. A 0-degree vertex is called an

isolated vertex. A vertex is called to be odd or even if its degree is odd or even.

A graph  G   is  k-regular  if  dG(x) =  k  for each  x  ∈  V  (G), and  G   is  regular  if it is

k-regular for some k , and  k  is called the  regularity

 of  G.For instance, K n is (n−1)-regular; K n,n is  n-regular; Petersen graph is 3-regular;

the  n-cube is n-regular.

The  maximum degree of  G: ∆(G) = max{dG(x) :   x ∈  V  (G)}.

The  minimum degree of  G:  δ (G) = min{dG(x) :   x ∈  V  (G)}.

Clearly,  δ (G) = k  = ∆(G) if  G  is  k -regular.

Vertex Degree for Digraphs:   Let  D  be a digraph and  y  ∈  V  (D).

E +

D

(y): a set of out-going edges of  y  in  D .

E −D(y): a set of in-coming edges of  y   in  D .

The  out-degree of  y :   d+D(y) =  |E +D(y)|.

The  in-degree  of  y :   d−D(y) = |E −D(y)|.

For the digraph D  shown in Figure 1.9 (b), for instance,

d+D(y1) = 2, d+

D(y2) = 1, d+D(y3) = 1, d+

D(y4) = 3;d−D(y1) = 2, d−

D(y2) = 2, d−D(y3) = 3, d−

D(y4) = 0,

A vertex   y   is called to be   balanced   if   d+D(y) =   d−

D(y), and   D   is called to be

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 2/8

12   Basic Concepts of Graphs 

balanced  if each of its vertices is balanced. The parameters

∆+(D) = max{d+D(y) :   y ∈  V  (D)},   and

∆−(D) = max{d−D(y) :   y ∈  V  (D)}

are the  maximum out-degree  and  maximum in-degree of  D, respectively. The

parameters

δ +(D) = min{d+D(y) :   y ∈  V  (D)},   and

δ −(D) = min{d−D(y) :   y ∈  V  (D)}

are the  minimum out-degree  and  minimum in-degree  of  D , respectively. The

parameters

∆(D) = max{∆+(D),   ∆−(D)},   andδ (D) = min {δ +(D), δ −(D)}

are the   maximum   and the   minimum degree   of a digraph   D, respectively. A

digraph  D  is  k -regular if ∆(D) = δ (D) = k.

The First Theorem:   Let G  be a bipartite undirected graph with a bipar-

tite   {X, Y }. It is easy to see that the relationship between degree of vertices and

the number of edges of  G  is as follows.

x∈X

dG(x) =  ε(G) =y∈Y  

dG(y).   (1.3)

As a result, we have

2 ε(G) =

x∈V  (G)

dG(x).   (1.4)

Generally, for any a digraph  D  we have the following relationship between degree

of vertices and the number of edges of  G.

Theorem 1.1   For any digraph   D,

ε(D) =x∈V  

d+D(x) =

x∈V  

d−D(x).

Proof:   Let  G  be the associated bipartite graph with  D   of bipartition  {X, Y }.

Note that  dG(x′

) = d

+

D(x), dG(x′′

) =  d−

D(x),   ∀  x  ∈  V  (D).  By the equality (1.3),we have that

x∈V  

d+D(x) =

x′∈X

dG(x′) = ε(G) =x′′∈Y  

dG(x′′) =x∈V  

d−D(x).

Since  ε(D) =  ε(G) by (1.2), the theorem follows.

Corollary 1.1   For any undirected graph   G,

2ε(G) =x∈V  

dG(x)

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 3/8

1.3. VERTEX DEGREES    13

and the number of vertices of odd degree is even.

Proof:   Let  D  be the symmetric digraph of  G. Then  ε(D) = 2ε(G). Note that

dG(x) = d+D(x) =  d−

D(x),   ∀  x ∈  V .

By Theorem 1.1, we have that

x∈V  

dG(x) =x∈V  

d+D(x) =

x∈V  

d−D(x) = ε(D) = 2ε(G).

Let  V  o   and  V  e  be the sets of vertices of odd and even degree in  G, respectively.

Thenx∈V  o

dG(x) +x∈V  e

dG(x) =x∈V  

dG(x) = 2ε(G).

Since  x∈V  e

dG(x) is even, it follows that  x∈V  o

dG(x) is also even. Since  dG(x) is odd

for any  x  ∈  V  o, thus,  |V  o|  is even.

Others Notations:   The following notation and terminology are useful and

convenient to our discussions later on.

Let D  be a digraph,  S  and  T  are disjoint nonempty subset of  V  (D). The symbol

E D(S, T ) denotes the set of edges of  D  whose tails are in  S  and heads are in  T , and

µD(S, T ) =  |E D(S, T )|. When just one graph is under discussion, we usually omit

the letter   D   from these symbols and write (S, T ) and   µ(S, T ) instead of  E D(S, T )

and µD(S, T ) for short. [S, T ] = (S, T )∪ (T, S ). If  T   = S  =  V  (D)\S , then we write

E +D(S ) (resp.   E −D(S )) instead of (S, S ) (resp. (S, S )), and  d+D(S ) =  |E +D(S )|  (resp.

d−D(S ) =  |E −D(S )|).

The symbol N +D (S ) (resp.   N −D (S )) denotes the set of heads (resp. tails) of edges

in  E D[S ], which is called a set of  out-neighbors (resp.   in-neighbors)  S   in  D .

For instance, consider the digraph  D  shown in Figure 1.9. Let S  =  {y1, y2}, then

E +D(S ) =  {a3}, d+D(S ) = 1, N +D(S ) =  {y3},

E −D(S ) =  {a4, a7}, d−D(S ) = 2, N −D (S ) =  {y3, y4}.

Similarly, for an undirected graph   G   and   S  ⊂   V  (G), the symbols   E G(S ) and

N G(S ) denote the set of edges incident with vertices in   S   in   G   and the set of 

neighbors of  S   in  G,  dG(S ) = |E G(S )|.

Example 1.3.1   Prove that ε(G) ≤   14   v2 for any simple undirected graph G

without triangles.

Proof:   Arbitrarily choose   xy   ∈   E (G). Since   G   is simple and contains no

triangle, it follows that

[dG(x) − 1] + [dG(y) − 1] ≤  v − 2,

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 4/8

14   Basic Concepts of Graphs 

that is,

dG(x) + dG(y) ≤  v.

Then summing over all edges in  G yields

x∈V  

d2G(x) ≤  v ε.

By Cauchy’s inequality and Corollary 1.1, we have that

v ε ≥x∈V  

d2

G(x) ≥  1

v

x∈V  

dG(x)

2

= 4

v  ε2,

that is,  ε(G) ≤   1

4  v2.

Example 1.3.2   Let G  is a self-complementary simple undirected graph with

v  ≡  1 (mod 4). Prove that the number of vertices of degree   1

2  (v − 1) in   G   is odd

(the self-complementary graph is defined in the exercise 1.2.6).

Proof:   Let   V  o   and   V  e   be the sets of vertices of odd and even degree in   G,

respectively. Then   |V  o|  is even by Corollary 1.1. Since   v  ≡  1 (mod 4),   v  must be

odd and, thus,  |V  e|  is odd and   1

2  (v − 1) is even. Let

V   ′ = {x ∈  V   (G) :   dG(x) = 1

2  (v − 1)}.

To prove the conclusion, we only need to show that   |V   ′ |   is even. To the end, let

x  ∈  V   ′ with  dGc(x)  =   12

  (v − 1) since   G  ∼=  Gc. Then there must exist  yx  ∈  V   (G)

with  dG(yx) =  dGc(x). Note that

dG(yx) =  dGc(x) = (v − 1) − dGc(x) = 1

2  (v − 1).   (1.5)

Thus,  yx = x  from (1.5) and  yx ∈  V   ′ . Furthermore, yx  = yz   if  x, z  ∈  V   ′ and  x = z .

This fact implies that the vertices in  V   ′ occur in pairs, which shows that |V   ′ | is even.

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 5/8

1.4. SUBGRAPHS AND OPERATIONS    15

1.4 Subgraphs and Operations

A subgraph is one of the most basic concepts in graph theory. In this section,

we first introduce various subgraphs induced by operations of graphs.

Subgraphs:   Suppose that   G   = (V  (G), E (G), ψG) is a graph. A graph

H   = (V  (H ),   E (H ), ψH ) is called a   subgraph   of   G, denoted by   H   ⊆   G, or   G

is a  supergraph  of  H   if  V  (H ) ⊆  V  (G),  E (H ) ⊆  E (G) and  ψH  is the restriction of 

ψG  to  E (H ). A subgraph H  of  G  is called a  spanning subgraph if  V  (H ) =  V  (G).

Let  S  be a nonempty subset of  V  (G). The   induced subgraph  by   S , denoted

by G[S ], is a subgraph of   G   whose vertex-set is   S  and whose edge-set is the set of 

those edges of  G  that have both end-vertices in  S . The symbol  G − S   denotes the

induced subgraph G[V    \ S ].

Let   B   be a nonempty subset of   E (G), the   edge-induced subgraph   by   B,

denoted by   G[B], is a subgraph of   G   whose vertex-set is the set of end-vertices

of edges in   B   and whose edge-set is   B. The symbol  G −  B  denotes the spanning

subgraph   G[E  \  B] of   G. Similarly, the graph obtained by adding a set of extra

edges   F   to   G  is denoted by  G + F . Subgraphs of these various types are depicted

in Figure 1.10.x1

x2

x3x4

x5

e1

e2

e3

e4

e5

e6

e7

e8

G

x1

x2

x3x4

x5

e1

e2

e3

e4

e5

e6

e8

A spanning subgraph of  G

x2

x4

x5

e4

e7

e8

G − {x1, x3}

x1

x2

x3x4

x5

e2

e3

e4 e6

e7

e8

G − {e1, e5}

x1

x2

x4

e1

G[{x1, x2, x4}]

x1

x2

x3x4

x5

e1

e3

e5

e8

G[{e1, e3, e5, e8}]

Figure 1.10:  A graph and its various types of subgraphs

Operations:   Let G1  and  G2  be subgraphs of  G. We say that  G1  and  G2  are

disjoint  if they have no vertex in common, and edge-disjoint if they have no edge

in common.

The union G1∪G2  of  G1  and  G2  is the subgraph with vertex-set V  (G1)∪V   (G2)

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 6/8

16   Basic Concepts of Graphs 

and edge-set   E (G1) ∪  E (G2). We write   G1  +  G2   for   G1  ∪  G2   if   G1   and   G2   are

disjoint, and G1 ⊕G2  for  G1 ∪G2  if  G1  and  G2   are edge-disjoint. If  Gi ∼= H  for each

i = 1, 2, · · · , n, then write  nH   for  G1 + G2 + · · · + Gn.

The  intersection G1∩G2 of  G1 and G2 is defined similarly if  V  (G1)∩V  (G2) = ∅.

These operations of graphs are depicted in Figure 1.11.

x1

x2   x3

x2   x3

x4

=

x1

x2   x3

x4

x1

x2   x3

x2   x3

x4

=

x2   x3x1

x2

x3   x4

x5

x1

x2

x3   x4

x5

=

x1

x2

x3   x4

x5

Figure 1.11:   Union and intersection of graphs

An edge  e  of  G  is said to be   contracted  if it is deleted and its end-vertices are

identified; the resulting graph is denoted by  G · e. This is illustrated in Figure 1.12.

x2

x1

x5

x4   x3

G

x1

x2

x3  =  x5

x4

G · eFigure 1.12:   A graph  G · e   by contracting the edge   e  of  G

Example 1.4.1   Let   G  be a balanced digraph. Then   d+G(X ) =   d−

G(X ) for

any nonempty proper  X  ⊂ V  (G).

Proof:   Let H  = G[X ]. Since G  is balanced,  d+G(x) = d−

G(x) for each x  ∈  V  (G).

By Theorem 1.1, we have that x∈X

d+H (x) =

 x∈X

d−H (x). Thus,

d+G(X ) =

x∈X

d+G(x) −

x∈X

d+H (x) =

x∈X

d−G(x) −

x∈X

d−H (x) =  d−

G(X )

as required.

Example 1.4.2   Let   G   be an undirected graph without loops. Then   G

contains a bipartite spanning subgraph   H  such that   dG(x)  ≤  2dH (x) for any   x  ∈

V  (G). Hence  ε(G) ≤  2 ε(H ).

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 7/8

1.4. SUBGRAPHS AND OPERATIONS    17

Proof:   Let   H   be a bipartite spanning subgraph of   G  with as many edges as

possible, and let {X, Y } be a bipartition. Arbitrarily choose x  ∈  V  (G), without loss

of generality, say  x  ∈  X . Let  d  =  dG(x) − dH (x).

We claim that  d  ≤  dH (x). In fact, suppose to the contrary that  d > dH (x). Let

X ′ =  X  \ {x}  and  Y  ′ = Y   ∪ {x}. Consider a bipartite spanning subgraph H ′ of  G

with the bipartition  {X ′, Y ′}. Then

ε(H ) ≥  ε(H ′) =  ε(H ) + d − dH (x) > ε(H ),

a contradiction. Thus,  dG(x) =  d + dH (x) ≤  2 dH (x).  Summing up all vertices in  G

yields that  ε(G) ≤  2 ε(H ) by Corollary 1.1.

Cartesian Product of Graphs:   The   cartesian product  G1 × G2   of 

two simple graphs   G1   and   G2   is a graph with the vertex-set   V  1  ×  V  2, in which

there is an edge from a vertex   x1x2   to another   y1y2, where   x1, y1   ∈   V  (G1) and

x2, y2  ∈  V  (G2), if and only if either   x1  =  y1  and (x2, y2) ∈  E (G2), or  x2  =  y2  and

(x1, y1) ∈  E (G1). See

Figure 1.8, for example,  Q2  =  K 2 × K 2,  Q3  =  K 2 × Q2  and  Q4  =  K 2 × Q3, in

general,  Qn =  K 2 × Qn−1.

Some simple properties are stated in the exercise 1.4.6. Particularly, the cartesian

product satisfies   commutative and associative laws  if we identify isomorphic

graphs. It is the two laws that can make us greatly simplify proofs of many propertiesof the cartesian products.

Let   Gi  = (V  i, E i) be a graph for each   i  = 1, 2, · · · , n. By the commutative and

associative laws of the cartesian product, we may write  G1 × G2 × · · · × Gn  for the

cartesian product of  G1, G2, · · · , Gn, where V  (G1×G2×···×Gn) =  V  1×V  2×···×V  n.

Two vertices x1x2 · · ·xn  and  y1y2 · · · yn  are linked by an edge in  G1 ×G2 × · · · ×Gn

if and only if two vectors (x1, x2, · · · , xn) and (y1, y2, · · · , yn) differ exactly in one

coordinate, say the   ith, and there is an edge (xi, yi) ∈  E (Gi).

Example 1.4.3   An important class of graphs, the well-known hypercube

Qn, defined in Example 1.2.1, can be defined in terms of the cartesian products,

that is,

Qn =  K 2 × K 2 × · · · ×K 2   n

of   n   identical complete graph   K 2, see Figure 1.8 for   Q1,   Q2,   Q3   and   Q4. The

hypercube is an important class of topological structures of interconnection networks,

some of whose properties will be further discussed in some sections in this book.

7/27/2019 Graph theory chapter 2

http://slidepdf.com/reader/full/graph-theory-chapter-2 8/8

18   Basic Concepts of Graphs 

Line Graphs:   The   line graph   of  G, denoted by   L(G), is a graph with

vertex-set  E (G) in which there is an edge (a, b) if and only if there are vertices

x,y,z   ∈  V  (G) such that  ψG(a) = (x, y) and  ψG(b) = (y, z). This is illustrated in

Figure 1.13. Some simple properties of line graphs are stated in the exercise 1.4.4.

0 1

0001

10

11

B(2, 1) =  K +

2

00

10

01

11

000001

010

011

100

101

110

111

B(2, 2) =  L(B(2, 1))

000

100

001

010 101

110

011

111

B(2, 3) = L(B(2, 2))

Figure 1.13:   Graphs and their line graphs

Assume that L(G) is the line graph of a graph  G. If  L(G) is non-empty and has

no isolated vertices, then its line graph  L(L(G)) exists. For integers  n  ≥  1,

Ln(G) = L(Ln−1(G)),

where  L0(G) and  L1(G) denote  G  and  L(G), respectively, and  Ln−

1(G) is assumed

to be non-empty and has no isolated vertex. The graph Ln(G) is called the   nth

iterated line graph  of a graph  G.

Example 1.4.4   Two important classes of graphs, the well-knownn-dimensional

d-ary  Kautz digraph  K (d, n) and  de Bruijn digraphs  B(d, n) can be defined as

K (d, n) =  Ln−1(K d+1)   B(d, n) =  Ln−1(K +d ),

where  K +d (d  ≥  2) denotes a digraph obtained from a complete digraph  K d  by ap-

pending one loop at each vertex. The digraphs in Figure 1.13 are  B(2, 1),  B(2, 2)

and  B(2, 3).

The original definitions of  K (d, n) and  B(d, n) will be given in Section 1.8,

Exercises: 1.3.5, 1.3.6