8
Vol. 171, No. 10 JOURNAL OF BACTERIOLOGY, OCt. 1989, p. 5422-5429 0021-9193/89/105422-08$02.00/0 Copyright © 1989, American Society for Microbiology Gramicidin S Biosynthesis Operon Containing the Structural Genes grsA and grsB Has an Open Reading Frame Encoding a Protein Homologous to Fatty Acid Thioesterases JORN KRATZSCHMAR, MICHAEL KRAUSE, AND MOHAMED A. MARAHIEL* Institut fur Biochemie und Molekulare Biologie, Technische Universitat Berlin, Franklinstrasse 29, D-1000 Berlin 10, Federal Republic of Germany Received 2 May 1989/Accepted 26 June 1989 The DNA sequence of about 5.9 kilobase pairs (kbp) of the gramicidin S biosynthesis operon (grs) was determined. Three open reading frames were identified; the corresponding genes, cafled grsT, grsA, and grsB, were found to be organized in one transcriptional unit, not two as previously reported (M. Krause and M. A. Marahiel, J. Bacteriol. 170:46694674, 1988). The entire nucleotide sequence of grsA, coding for the 126.663-kilodalton gramicidin S synthetase 1, grsT, encoding a 29.191-kilodalton protein of unknown function, and 732 bp of the 5' end of grsB, encoding the gramicidin S synthetase 2, were determind. A dngle initiation site of transcription 81 bp upstream of the grsT initiation codon GTG was identified by high-resolution S1 mapping studies. The sequence of the grsA gene product showed a high degree of homoogy to the tyrocidine synthetase 1 (TycA protein), and that of grsT exhibited a signUicant degree of homology to vertebrate fatty acid thioesterases. In response to certain nutrient conditions usually associ- ated with nutrient depletion, gram-positive bacteria of the genus Bacillus induce the process of endospore formation as well as the production of secondary metabolites such as peptide antibiotics and extracellular proteases (4, 26, 41). In both cases, genes are activated at the transition from loga- rithmic to stationary phase of growth. Expression of these genes depends on the products of spoO loci (10, 26, 30, 41). To understand the complex relationship between induction of sporulation'and production of secondary metabolites, we and others have isolated and studied the organization and regulation of some antibiotic biosynthesis genes at the mo- lecular level. Genes encoding multifunctional enzymes in- volved in biosynthesis of the cyclic antibiotics bacitracin, gramicidin S, and tyrocidine have been identified (16, 20, 33). The nonribosomal synthesis of these antibiotics by the so-called protein-thiotemplate mechanism has been studied extensively (18, 22, 23, 25). In analogy with fatty acid synthetase, the cofactor 4'-phosphopantetheine is involved in translocation of the growing polypeptide chain through transthiolation. However, there is one important difference: the fatty acid chain is synthesized by condensation of identical carbon units, whereas in polypeptide synthesis, different amino acids are polymerized in a defined sequence given by the position of the corresponding domain on the multienzyme. Recently, we reported that the biosynthesis genes for gramicidin S, grsA and grsB, and those involved in tyroci- dine biosynthesis, tycA and tycB, are clustered (20, 33). We demonstrated that tycA and tycB are organized in an operon and presented evidence for their expression as a polycis- tronic transcriptional unit (33). In this paper, we present the DNA sequence of a major part of the gramicidin S gene cluster. Sequence data revealed the presence of an open reading frame (ORF), called grsT, encoding a protein similar to the fatty acid thioesterases isolated from rat mammary * Corresponding author. gland and duck uropygial gland (38, 39). In addition, Si nuclease protection studies located a single transcription initiation site upstream of the grsT OREF, which may control the expression of the entire antibiotic biosynthesis operon in vivo. MATERIALS AND METHODS Bacterial strains and growth coditions. Escherichia coli JM105 and JM83 (32) we're used as hosts for the recombinant plasmids and were grown in L-broth medium supplemented with the appropriate antibiotics. Bacillus brevis ATCC 9999, the gramicidin S producer strain, was grown in nutrient broth (28) or sporulation medium (14). Plasmid construction and DNA sequencing. DNA frag- ments obtained after partial or complete digestion of the previously described plasmids pGS1-2, pMK12, pMK21, and pK El (20) with restriction enzymes were subcloned into plasmid vectors (pUC18, pUC19, and pGEM-3Z; Promega Biotec) or the replicative forms of the bacteriophage vectors M13mpl8 and -mpl9 (32). Fragment preparation and ligation were achieved in low-melting-point agarose (Bethesda Re- search Laboratories, Inc.) as described by Crouse et al. (7). Plasmids were prepared from E. coli cells by the alkaline extraction method of Birnboim and Doly (3). Single-stranded DNA of M13 derivatives was isolated by the method of Messing (32). Sequencing of single-stranded DNA and alkali-denatur- ated plasmid DNA by the dideoxy-chain termination method of Sanger et al. (40), using modified T4 DNA polymerase (Sequenase; United States Biochemical Corp.), yielded a set of overlapping partial sequences from both DNA strands of the grs operon region (Fig. 1). For the S1 mapping experi- ments, DNA fragments labeled at one 5' end were sequenced by the chemical cleavage method of Maxam and Gilbert (31). Sequence analysis was carried out by using the programs WORDSEARCH, BESTFIT, and GAP, included in the University of Wisconsin Genetics Computer Group se- quence analysis software package. RNA preparation. Cells of B. brevis ATCC 9999 were 5422 on September 16, 2020 by guest http://jb.asm.org/ Downloaded from

Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

Vol. 171, No. 10JOURNAL OF BACTERIOLOGY, OCt. 1989, p. 5422-54290021-9193/89/105422-08$02.00/0Copyright © 1989, American Society for Microbiology

Gramicidin S Biosynthesis Operon Containing the Structural GenesgrsA and grsB Has an Open Reading Frame Encoding a Protein

Homologous to Fatty Acid ThioesterasesJORN KRATZSCHMAR, MICHAEL KRAUSE, AND MOHAMED A. MARAHIEL*

Institut fur Biochemie und Molekulare Biologie, Technische Universitat Berlin, Franklinstrasse 29, D-1000 Berlin 10,Federal Republic of Germany

Received 2 May 1989/Accepted 26 June 1989

The DNA sequence of about 5.9 kilobase pairs (kbp) of the gramicidin S biosynthesis operon (grs) was

determined. Three open reading frames were identified; the corresponding genes, cafled grsT, grsA, and grsB,were found to be organized in one transcriptional unit, not two as previously reported (M. Krause andM. A. Marahiel, J. Bacteriol. 170:46694674, 1988). The entire nucleotide sequence of grsA, coding for the126.663-kilodalton gramicidin S synthetase 1, grsT, encoding a 29.191-kilodalton protein of unknown function,and 732 bp of the 5' end of grsB, encoding the gramicidin S synthetase 2, were determind. A dngle initiation

site of transcription 81 bp upstream of the grsT initiation codon GTG was identified by high-resolution S1mapping studies. The sequence of the grsA gene product showed a high degree of homoogy to the tyrocidinesynthetase 1 (TycA protein), and that ofgrsT exhibited a signUicant degree of homology to vertebrate fatty acidthioesterases.

In response to certain nutrient conditions usually associ-ated with nutrient depletion, gram-positive bacteria of thegenus Bacillus induce the process of endospore formation aswell as the production of secondary metabolites such aspeptide antibiotics and extracellular proteases (4, 26, 41). Inboth cases, genes are activated at the transition from loga-rithmic to stationary phase of growth. Expression of thesegenes depends on the products of spoO loci (10, 26, 30, 41).To understand the complex relationship between inductionof sporulation'and production of secondary metabolites, weand others have isolated and studied the organization andregulation of some antibiotic biosynthesis genes at the mo-lecular level. Genes encoding multifunctional enzymes in-volved in biosynthesis of the cyclic antibiotics bacitracin,gramicidin S, and tyrocidine have been identified (16, 20,33). The nonribosomal synthesis of these antibiotics by theso-called protein-thiotemplate mechanism has been studiedextensively (18, 22, 23, 25). In analogy with fatty acidsynthetase, the cofactor 4'-phosphopantetheine is involvedin translocation of the growing polypeptide chain throughtransthiolation. However, there is one important difference:the fatty acid chain is synthesized by condensation ofidentical carbon units, whereas in polypeptide synthesis,different amino acids are polymerized in a defined sequencegiven by the position of the corresponding domain on themultienzyme.

Recently, we reported that the biosynthesis genes forgramicidin S, grsA and grsB, and those involved in tyroci-dine biosynthesis, tycA and tycB, are clustered (20, 33). Wedemonstrated that tycA and tycB are organized in an operonand presented evidence for their expression as a polycis-tronic transcriptional unit (33). In this paper, we present theDNA sequence of a major part of the gramicidin S genecluster. Sequence data revealed the presence of an openreading frame (ORF), called grsT, encoding a protein similarto the fatty acid thioesterases isolated from rat mammary

* Corresponding author.

gland and duck uropygial gland (38, 39). In addition, Sinuclease protection studies located a single transcriptioninitiation site upstream of the grsT OREF, which may controlthe expression of the entire antibiotic biosynthesis operon invivo.

MATERIALS AND METHODSBacterial strains and growth coditions. Escherichia coli

JM105 and JM83 (32) we're used as hosts for the recombinantplasmids and were grown in L-broth medium supplementedwith the appropriate antibiotics. Bacillus brevis ATCC 9999,the gramicidin S producer strain, was grown in nutrientbroth (28) or sporulation medium (14).

Plasmid construction and DNA sequencing. DNA frag-ments obtained after partial or complete digestion of thepreviously described plasmids pGS1-2, pMK12, pMK21,and pK El (20) with restriction enzymes were subcloned intoplasmid vectors (pUC18, pUC19, and pGEM-3Z; PromegaBiotec) or the replicative forms of the bacteriophage vectorsM13mpl8 and -mpl9 (32). Fragment preparation and ligationwere achieved in low-melting-point agarose (Bethesda Re-search Laboratories, Inc.) as described by Crouse et al. (7).

Plasmids were prepared from E. coli cells by the alkalineextraction method of Birnboim and Doly (3). Single-strandedDNA of M13 derivatives was isolated by the method ofMessing (32).

Sequencing of single-stranded DNA and alkali-denatur-ated plasmid DNA by the dideoxy-chain termination methodof Sanger et al. (40), using modified T4 DNA polymerase(Sequenase; United States Biochemical Corp.), yielded a setof overlapping partial sequences from both DNA strands ofthe grs operon region (Fig. 1). For the S1 mapping experi-ments, DNA fragments labeled at one 5' end were sequencedby the chemical cleavage method ofMaxam and Gilbert (31).Sequence analysis was carried out by using the programs

WORDSEARCH, BESTFIT, and GAP, included in theUniversity of Wisconsin Genetics Computer Group se-quence analysis software package.RNA preparation. Cells of B. brevis ATCC 9999 were

5422

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 2: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

GRAMICIDIN S BIOSYNTHESIS OPERON 5423

_ 0_

I I

: Fe-4 n

aUsXSI -W0 a aI 1

I t t Ir I

ort5X> QI grsT > [

_ d<44 =

,, I,IL ( z II I II

2 3

grsA

5

> grsB

~~~~~-~~ ~ ~_~ _~

FIG. 1. Partial restriction map and sequencing strategy for the 5' region of the grs operon. Potential ORFs, direction of transcription, andrelevant restriction sites used for sequencing are indicated; for restriction enzymes in parentheses, not all sites are shown. Arrows indicatethe direction of sequencing and the extent of sequence obtained from individual clones, as determined by the dideoxy-chain terminationprocedure.

grown in Hanson sporulation medium (14) at 37°C. Samples(50 ml) of cell culture were collected at different timesaround To, the production phase of gramicidin S. Totalcellular RNA was prepared by the procedure of Penn et al.(37) as modified by Igo and Losick (15). RNA pellets were

suspended in 200 ,I of diethylpyrocarbonate-treated watercontaining 10 U of RNase inhibitor (Boehringer GmbH) per

ml.Si nuclease protection assay. Mapping of 5' ends of mRNA

was performed by the method of Murray (35). Double-stranded DNA probes were 5' end labeled by a standardmethod (27).

Mixtures of DNA probes (ca. 10 ng; specific activity, 10,uCi/,g) and total cellular RNA (20 ,ug) were dried in a

vacuum microfuge and suspended in 20 ,u of hybridizationbuffer [3 M sodium trichloroacetate, 50 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES; pH 7.0), 5 mMEDTA]. After heating at 70°C for 5 min, samples were

incubated at 45°C for 4 h. Reassociation was terminated byaddition of 200 ,ul of ice-cold solution containing 250 mMNaCl, 40 mM sodium acetate (pH 5.5), 1 mM ZnCl2, 20 ,ug ofdenatured calf thymus DNA per ml, and 2,000 U of S1nuclease (Boehringer) per ml. After 30 min at 37°C, sampleswere extracted with phenol-chloroform-isoamyl alcohol (25:24:1), ethanol precipitated, denaturated in 10 ,lI of formam-ide loading dye, and electrophoresed on 6% polyacrylamide-urea gels (31). Dried gels were exposed to Kodak XAR5 filmfor 16 h at room temperature.

RESULTS

Nucleotide sequence of the grs operon. In a previous work,we reported the identification and physical characterizationof a 14-kilobase-pair (kbp) DNA fragment from an EMBL3library containing the entire grsA gene and a major part ofthe grsB gene (20). Approximately 5.9 kbp of this region,located between the far-left ClaI site and the second-leftPvuII site, were sequenced (Fig. 1). The sequence showedfour potential ORFs (Fig. 2). orfX extends from the 3'-end678 nucleotides to the end of the determined sequence. The5' end of the grsT coding region is separated by a 326-bpnoncoding sequence from the 3' end of orJX. The grsT geneencodes a protein of 256 amino acid residues with a deducedmolecular mass of 29,191 daltons (Da). It is followed by 26untranslated nucleotides and then by 3,297 nucleotides of thegrsA coding region. grsA encodes the 1,089-amino-acid(126,661 Da) gramicidin S synthetase 1, as indicated previ-ously by immunological and enzymatic studies (20). Thededuced amino acid sequence of the grsA gene has recentlybeen confirmed by determination of the amino-terminal

sequence (10 residues) of the purified gramicidin S syn-

thetase 1 from B. brevis (J. Vater, W. Schlumbohm, J.Salnikow, K. D. Irrgang, M. Miklus, T. Choli, and H.Kleinkauf, Biol. Chem. Hoppe-Seyler, in press). The grsAgene is followed by a noncoding region of 71 nucleotides andthen by an ORF (grsB gene) ascribed to the multifunctionalenzyme gramicidin S synthetase 2 (see below). About 730nucleotides of coding region of the grsB gene were se-

quenced (Fig. 2). grsA and grsB reading frames are initiatedat an ATG codon preceded by reasonable ribosome-bindingsites. In contrast, grsT is initiated at a GTG codon that ispreceded by two overlapping strong ribosome-binding sites,one of them located at optimal distance. The unusual GTGinitiation codon has been reported for the Bacillus genesspoVG, 0.3 kb (34), sprE (47), cerB (12).The close location of the grsB gene to the 3' end of grsA

was confirmed by deletion analysis at the grsB 3' end and bythe expression of the corresponding truncated but immuno-reactive gene products (J. Kratzschmar, Diplomarbeit,Technische Universitat Berlin, 1989). For example, thepreviously constructed (20) plasmids pKC2, pMK18, andpKE1, containing grsB inserts of 2.7, 3.3, and 4.4 kbp (seenfrom the 3' end of the grsB moiety to its initiation codonlocated at position 5150) were shown to express immunore-active GrsB fragments of 105, 135, and 170 kDa, respectively(data not shown).

High-resolution S1 protection analysis of the grs promoterregion. Analysis of the DNA sequence in the intergenicregions between grsT and grsA (26 bp) as well as betweengrsA and grsB (71 bp) revealed no sequences resembling theRNA polymerase-binding sites utilized by any of the holo-enzyme forms so far characterized in the genus Bacillus (26).Si protection experiments (data not shown) using probesfrom the two intergenic regions (the 1,042-bp PvuII-ClaIfragment for the grsT-grsA region and the 447-bp Hindlllfragment for the grsA-grsB region) showed full protectionand defined no sites of transcription initiation. These resultsindicate that the promoter for the grs operon may be locatedin front of the grsT gene. To determine the location of thetranscriptional start site(s) in this region, an S1 protectionexperiment was carried out by using the 5'-end-labeled335-bp HindlIl fragment spanning the area from nucleotide32 downstream of the 3' end of orJX to nucleotide 65, withinthe grsT coding sequence (Fig. 2). The results obtained byusing total RNA isolated from B. brevis cells at To are shownin Fig. 3. The protected fragments were run against a

Maxam-Gilbert sequencing ladder, with the result that a

single prominent band within a much weaker band set wasfound to correspond to the adenine residue indicated in Fig.

kb

VOL. 171, 1989

-7-A

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 3: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

5424 KRATZSCHMAR ET AL. J. BACTERIOL.

Clal - --or X-l-ATCGATAGGCATGTGTTTAACTTCTTGTCATCAAATGTGAGTAAGGAAAAACAGCAGGCGTTTGTTCGATACGTTAATGTGAAAGATGCTTATCGTTCTC 100I D R H V F N F L S S N V S K E K Q Q A F V R Y V N V K D A Y R S L

TTTTAGGGGAATT2CTTATTAGAAAATATTTGATACAAGTATTAAACATTCCTAATCAAAACATTCTATTTAGGAAAAATGAATATGGAAAACCTTTTGT200L G E L L I R K Y L I Q V L N I P N E N I L F R K N E Y G K P F V

EcoRVTGATTTCGATATTCATTTTAATATTTCCCACTCTGATGAATGGGTTGTATGTGCAATTTCAAATCATCCTGTTGGAATTGATATCGAGCCTATTTCGGAG 300D F D I H F N I S H S D E W V V C A I S N H P V C I D I E R I S E

ATAGACATTAAAATAGCAGAACAATTTTTTCATCAAAATGAATATATATGGTTGCAGTCTAAAGCCCAAAATAGTCAAGTTTCTTCTTTTTTTGAGCTTT 400I D I K I A E Q F F H E N E Y I W L Q S K A Q N S Q V S S F F E L W

GGACTATTAAAGAAAGTTATATAAAAGCTATTGGTAAAGGTATGTACATACCGATTAATTCATTTTGGATTGATAAGAATCAAACACAAACTGTAATTTA 500T I K E S Y I K A I G K G U Y I P I N S F W I D K N Q T Q T V I Y

CAAACAGAATAAAAAAGAACCTGTTACTATTTATGAACCAGAGTTGTTTGAGGGCTACAAGTGTTCTTGTTGTTCTTTGTTTTCTTCTGTAACGAACTTG 600K Q N K K E P V T I Y E P E L F E G Y K C S C C S L F S S V T N L

TCTATTACTAAATTGCAAGTGCAAGAGTTATGTAATTTGTTTCTAGATTCTACATTTTCTGAAAATAATAACTTTTAGTTACTGTATTGAAAAAAAATGT 700S I T K L Q V Q E L C N L F L D S T F S E N N N F.

HindIIIAAAATCCAATAAGCTTAACTCGAATCAGGTAAATAATGTATTAAAGTGATTTTTCTTCCATCCTGTGTAATTCAGCCAGCCCAAATTTAAATTTGAAAGAT 800

EcoRIAGTATTATTACTTTACTTATATATTATATAAGCAAGGAAAAATAAAGAATTGGCTGCCTCAAGATTTAAACATACTACATTTATCCATTCGGAATTCACT 900

'-40 -10"r-o_l -_ SD - gruT

TCATAAGCAATTTATTCTTACATATATTTTTGCGTGATTTAATTTATTAATTAGATATTAAAAATGAATAAAGGGAGAGGTGAATGTGACTTTTATTTCA 1000+1 SD V T F I S

PVUII HindIllCAAGTAAATAAATGGTTTGTTAATGCTAATGTTAACTCAGCTGCAAAGCTTAGGCTATTCTGTATTCCATATGCAGGCGGTGGTGCTTCCGCCTTTTATG 1100Q V N K W F V N A N V N S A A K L R L F C I P Y A G G G A S A F Y E

AATGGAGTCATTTTTTTCCAAAGGAAATTGAAGTTTGTTCAATTCAATTACCTGGAAGGGAAAATAGGGGGGCGGAAGTTCCGCTAACAAATTTACAACA 1200W S H F F P K E I E V C S I Q L P G R E N R G A E V P L T N L Q Q

GATAGTAGAAATAGTAGCTGAGGAAATACAACCATTAATAAATATTCCATTTGCTTTTTTGGGGCATAGCATCGGACCATTAATAAGTTTTGAACTGGCT 1300I V E I V A E E I Q P L I N I P F A F L G H S M G A L I S F E L A

HpaIICGCACAATACGGCAAAAGAGTAATGTTAATCCGGTTCACTTGTTTGTTTCAGGGCGACATGCACCTCAAATCCCATGTGCAAAACAAGACTATCATTTAC 1400R T I R Q K S N V N P V H L F V S G R H A P Q I P C A K Q D Y H L L

TTCCCGATGAACAATTTATACAAGAATTGCGTTCATTGAATGGAACTCCAGAGATAGTATTACAAGACGCAGAGATGATGACTATATTACTCCCAAGACT 1500P D E Q F I Q E L R S L N G T P E I V L Q D A E M U S I L L P R L

TCGGGCTGATTTTTCTGTGTGTGGCTCCTATCAGTACAAAAACGACGAGCCTTTTGAATGCCCAATCACTGCTTTTGGAGGAAAAAATGATAATGGTGTT 1600R A D F S V C G S Y Q Y K N D E P F E C P I T A F G C K N D N G V

Sau3AACTTATCAATCATTAGAAGCCTGGAGAGACCAAACCAAGAGGGAATTTTCTGTGTGTATGTATCCAGGTGATCATTTTTTTCTTTACGAAAGCAAATATG 1700T Y Q S L E A W R E Q T K R E F S V C U Y P G D H F F L Y E S K Y E

gruAAAATGATTGAGTTCATGTGTAAACAATTACGTTTAGTATTAGCTCCTAAAATATAAATAACTATTTTTTACAGGGGGTATATATGTTAAACAGTTCTAAA 1800

U I E F U C K Q L R L V L A P K I * SD U L N S S K

AGTATATTGATTCATGCTCAAAATAAAAATGGAACGCATGAAGAGGAGCAGTATCTCTTTGCTGTGAACAACACCAAAGCGGAGTATCCACGTGATAAGA 1900S I L I H A Q N K N G T H E E E Q Y L F A V N N T K A E Y P R D K TSau3ACGATCCATCAGTTATTTGAAGAGCAGGTTAGTAAGAGACCAAACAATGTAGCCATTGTATGTGAAAATGAGCAACTTACCTACCATGAGCTTAATGTGAA 2000

I H Q L F E E Q V S K R P N N V A I V C E N E Q L T Y H E L N V KClaI

AGCCAATCAACTAGCACGGATTTTTATAGAAAAAGGGATTGGAAAAGACACTCTTGTTGGAATTATGATGGAGAAATCTATCGATTTATTTATAGGCATA 2100A N Q L A R I F I E K G I G K D T L V G I U U E K S I D L F I G I

EcoRITTAGCCGTTTTAAAAGCAGGTGGAGCATATGTTCCGATTGATATTGAATATCCTAAGGAAAGAATTCAATATATTCTTGATGATAGTCAGGCAAGAATGC 2200L A V L K AG G A Y V P I D I E Y P K E R I Q Y I L D D S Q A R U L

TACTTACCCAGAAGCATTTGGTTCATTTAATTCATAATATTCAATTTAATGGGCAAGTGCAAATTTTTGAACAAGATACTATCAAAATTAGAGAAGGAAC 2300L T Q K H L V H L I H N I Q F N G Q V E I F E E D T I K I R E G T

TAATCTACATGTACCAAGTAAATCAACCGATCTTGCTTATGTTATTTATACTTCTGGTACAACAGGCAATCCAAAAGGTACAATGCTGGAGCATAAAGGA 2400N L H V P S K S T D L A Y V I Y T S G T T G N P K G T U L E H K G

ATAAGTAATCTAAAGGTATTTTTCGAAAATAGTCTTAACGTGACTGAAAAGGATAGAATTGGTCAATTTGCCAGCATCTCTTTTGATGCATCTGTATGCC 2500I S N L K V F F E N S L N V T E K D R I G Q F A S I S F D A S V W E

AGATGTTTATGGCTTTGTTAAC2GGGGCTAGCCTGTATATTATCCTGAAGGATACAATCAATGATTTTGTGAAGTTTGAACAATACATTAACCAAAAGGA2600U F M A L L T G A S L Y I I L K D T I N D F V K F E Q Y I N Q K E

ClIaAATCACTGTTATTACGTTACCACCTACCTATGTAGTTCATCTTGATCCAGAACGTATTTTATCGATACAAACGTTAATTACAGCAGGCTCAGCTACCTCG 2700I T V I T L P P T Y V V H L D P E R I L S I Q T L I T A G S A T S

CCTTCCTTAGTAAACAAGTGGAAGGAGAAAGTAACTTACATAAATGCCTATGGCCCTACGGAAACAACTATTTGTGCGACTACATG( sTAGCCACCAAAG 2800P S L V N K W K E K V T Y I N A Y G P T E T T I C A T T W V A T K E

AAACAATAGGTCATTCAGTTCCAATCGGAGCACCAATTCAAAATACACAAATTTATATTGTCGATGAAAATCTTCAATTAAAATCGGTTGGTGAAGCTGG 2900T I G H S V P I G A P I Q N T Q I Y I V D E N L Q L K S V G E A G

TGAATTGTGTATTGGTGGAGAAGGGTTAGCAAGGGGATATTCGAAGCGACCGGAATTAACTTCCCAGAAGTTCGTTGATAACCCGTTTGTTCCAGGAGAG 3000E L C I G G E G L A R G Y W K R P E L T S Q K F V D N P F V P G E

FIG. 2. DNA sequence of the 5,881-bp DNA fragment shown in Fig. 1. The encoded amino aciu sequences of four ORFs (3' end of orJX;grsT, grsA, and the 5' end of grsB) are shown. Potential ribosome-binding sites (SD) and the putative promoter (-10 and -40) region areunderlined. The long arrow at position +1 upstream of grsT coding region defines the transcription initiation site determined byhigh-resolution S1 mapping.

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 4: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

VOL. 171, 1989 GRAMICIDIN S BIOSYNTHESIS OPERON 5425

AAGTTGTATAAAACAGAGATCAGGCAAGATGGCTATCTGATGGAAATATTGAATATCTCGGAAGAATAGATAACCACCTAAAGATTAGAGGTCACCGAG 3100

K L Y K T O D Q A R W L S D O N I E Y L G R I D N Q V K I R G H R VPaltI

TTGAACTAGAAGAAGTTGAGTCTATTCTTCTAAAGCATATGTATATTAGCGAAACTGCAGTAAGTGTGCATAAAGATCACCAAAACAGCCGTATTTGTG 3200

E L E E V E S I L L K H M Y I S E T A V S V H K D H Q E Q P Y L C

CGCTTATTTTGTATCGGA^AAAGCATATAC CACTAGAACAGTTAAGACAATTCTCATCAGAAGAACTGCCAACGTATATGATCCCTTCTTATTTTATCCAG 3300

A Y F V S E K H I P L E Q L R Q F S S E E L P T Y M I P S Y F I QAcoI

TTAGACAAAATGCCGCTTACATCAAATGGGAAGATTGATCGAAAGCAGTTGCCGGAACCTGATTTAACTTTCCGGATGACGGTAGACTATGAAGCGCCGC 3400

L D K M P L T S N O K I D R K Q L P E P D L T F 0 M R V D Y E A P R

GAAATGAAATCGAGGAAACGCTTGTTACTATCTGGCAGGATGTATTAGGTATTGAGAAAATCGGTATTAAAGATAATTTCTATGCATTAGGTGGAGATTC 3500

N E I E E T L V T I W Q D V L G I E K I G I K D N F Y A L O G D S

TATTAAAGCAATACAGGTTGCTGCTCGCCTGCATTCCTACCAATTAAAGCTAGAAACAAAAGATTTATTAAAGTATCCAACAATCGATCAACTCGTTCAT 3600

1 K A I Q V A A R L H S Y Q L K L E T K D L L K Y P T I D Q L V H

TATATAAAAGATAGTAAAAGAAGAAGTGAGCAAGGTATTGTGGAAGGTGAGATTGGACTTACACCTATTCAGCATTGCTTCTTTGAACAACAATTTACAA 3700

Y I K D S K R R S E Q G I V E G E I G L T P I Q H W F F E Q Q F T N

ATATGCACCATTGGAACCAATCGTATATGTTGTATAGACCAAATGGGTTTGATAAAGAGATCTTGCTAAGGGTATTTAATAAAATTGTTGAGCATCATGA 3800

M H H T N Q S Y M L Y R P N O F D K E I L L R V F N K I V E H H DSau3A

TGCATTACGTATGATATACAAACATCATAACGGAAAGATCGTGCAGATAAATCGGGGGCTTGAAGGTACGTTGTTTGATTTTTATACCTTTGATTTAACT 3900

A L R M I Y K H H N O K I V Q I N R G L E 0 T L F D F Y T F D L TCfol

GCAAATGATAATGAGCAACAGGTGATTTGTGAAGAATCTGCTCGATTACAAAATAGTATAAACTTGGAAGTAGGCCCTCTAGTAAAGATAGCGCTGTTTC 4000

A N D N E Q Q V I C E E S A R L Q N S I N L E V O P L V K I A L F H

Sau3AATACTCAGAATGGAGATCACCTGTTTATGGCTATTCATCATTTCGTTGTGGATGGTATTTCTTGGAGGATTTTGTTTGAGGATTTGGCCACAGCTTATGA 4300

T Q N G D H L F M A I H H L V V D O I S V R I L F E D L A T A Y E

ACAAGCAATGCATCAGCAAACGATTGCTTTACCAGAGAAAACAGATTCATTTAAGGACTGGTCTATTGAATTAGAAAAATATGCGAACAGCGAATTATTC 4200

Q A M H Q Q T I A L P E K T D S F K D W S I E L E K Y A N S E L F

CTAGAAGAAGCTGAATATTGGCATCATTTGAATTATTATACCGAGAACGTTCAAATTACAGAAAATTATGTCACCATGAACAATAAACAsAACAGATATAC 4300

L E E A E Y W H H L N Y Y T E N V Q I K K D Y V T M N N K Q K N I R

HinclIGTTATGTAGGAATGGAGTTAACAATAGAAGAGACAGAAAAATTATTGAAAAATGTAAATAAAGCGTATCGAACAGAAATTAATGATATTTTATTAACGGC 4400

Y V G M E L T I E E T E K L L K N V N K A Y R T E I N D I L L T A

ACTTGGCTTTGCACTCAAAGAATGGCCGCATATTGATAAAATTGTAATTAACTTAGAGGGACACGGACGGGAAGAAATACTGGAACAGATGAACATTGCA 4500

L G F A L K E W A D I D K I V I N L E G H G R E E I L E Q M N I A

AGGACGGTAGGCTGGTTTACTTCCCAGTATCCTGTTGTACTTGATATGCA^AAATCGGATGATTTGTCTTATCAAATCAAATTAATGAAAGAAAATTTAC 4600

R T V G W F T S Q Y P V V L D M Q K S D D L S Y Q I K L M K E N L R

4CA0AATACCTAACAA0AGTCGGATATGAAATTTTTAAGTATTTAACAACTGAATATTTACGGCCTGTTTTACCCTTTACATTAAAGCCGGAAATTAA 4700

R I P N K G I G Y E I F K Y L T T E Y L R P V L P F T L K P E I N

CTTTAACTACTTAGGACAGTTCGATACGGACGTGAAGACTGAATTGTTTACTCGTTCTCCTTATAGCATGGGTAATTCATTAGGACCAGATGGAAAAAAT 4800

F N Y L G Q F D T D V K T E L F T R S P Y S M G N S L G P D G K NHindII

AATTTAAGCCCAGAAGGGAAAGTTATTTTGTACTCAATATTAATGGTTTTATTGAAGAAGGTAAGCTTCACATCACCTTTTCTTATAATGAACAGCAGT 4900

N L S P E G E S Y F V L N I N O F I E E G K L H I T F S Y N E Q Q Y

ATAAGGAGGATACCATTCAGCAATTGAGCCGGAGCTATAAGCAACATCTTTTGGCCATCATTGAACATTGTGTACAGAAGGAAGATACTGAGTTAACTCC 5000

K E D T I Q Q L S R S Y K Q H L L A I I E H C V Q K E D T E L T P

AAGTGATTTCAGTTTCAAGGAACTTGAATTAGAAGAGATGGATGATATTTTCGATTTGTTGGCCGATTCATTAACGTAAATATAACCAACTAAATCCATG 5100

S D F S F K E L E L E E M D D I F D L L A D S L TgruB _

GTTTTTTAATGATAAATGCTTTGAAAATTCATTATTATGAGGTGCTAGCATGAGTACATTTAAAAAAGAACATGTTCACGATATGTATCGTTTATCTCCC 5200SD M S T F K K E H V Q D M Y R L S P

PvuI

ATGCAGGAAGGCATGTTGTTTCACGCATTACTTGATAAAGATAAAAATGCTCACCTGGTACAAATGTCTATCGCGATCGAAGGTATCGTGGATGTGGAGC 5300

M Q E G M L F H A L L D K D K N A H L V Q M S I A I E 0 I V D V E L

HindIITGCTTAGTGAAAGCTTGAACATATTGATTGATAGATACGATGTGTTTAGAACAACATTCTTACATGA^AAAATTAAACAACCGCTTCAGGTAGTGCTAAA 5400

L S E S L N I L I D R Y D V F R T T F L H E K I K Q P L Q V V L K

GGAACGGCCTGTTCAGCTTCAATTTAAAGACATATCATCCTTAGATGAAGAAAAAAGAGAACAGGCTATTGAGCAGTATAAGTATCAAGATGGGGAAACA 5500

E R P V Q L Q F K D I S S L D E E K R E Q A I E Q Y K Y Q D O E T

GTCTTTGATTTAACAAGAGATCCCTTGATGAGAGTAGCTATTTTTCAAACTGGTAAGGTTAACTACCAAATGATCTGCAGCTTCCACCATATTTTAATGG 5600

V F D L T R D P L M R V A I F Q T G K V N Y Q M I W S F H H I L M D

ATGGTTGGTGCTTCAACATTATATTTAATGACTTGTTCAATATATATCTGTCATTAAAAGAGAAGAAACCTCTTCAGTTAGAGGCGGTGCAACCATATAA 57000 W C F N I I F N D L F N I Y L S L K E K K P L Q L E A V Q P Y K

GCAGTTTATTAAGTGGCTTGAAAAACAAGATAAACAGGAAGCTCTTCGCTACTGGAAAGAACATTTAATCAATTATGATCAATCAGTA^CATTACCTAAA 5800

Q F I K W L E K Q 1) K Q E A L R Y W K E H L M N Y D Q S V T L P KPvuII

AAGAAAGCAGCTATTAATAATACTACATATGAACCAGCACAGTTTCGTTTTGCGTTTGACAAGTGCTTACCCAGCAGCTG....................5881K K A A I N N T T Y E P A Q F R F A F D K V L T Q Q L

FIG. 2-Continued

3. This experiment located the major start site of transcrip- Comparison of the GrsA amino acid sequence with that oftion initiation for the grs operon exactly 81 bp (position + 1) TycA and the amino termini of GrsB and TycB. Biosynthesisupstream of the grsT initiation codon GTG. Table 1 com- of the related peptide antibiotics gramicidin S and tyrocidinepares the DNA sequence found upstream of the identified by two different B. brevis strains is initiated by the enzymestranscription initiation site with the recognition sequences of gramicidin S synthetase 1 (GrsA) and tyrocidine synthetasethree well-characterizedBacillus subtilis promoters (1, 5, 6, 1 (TycA), respectively (21). Both enzymes activate and15, 17, 47). racemize the amino acid phenylalanine as the first step in the

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 5: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

5426 KRATZSCHMAR ET AL.

2

Prs gs

-188 '1 +147

FIG. 3. High-resolution S1 nuclease mapping of the grs tran-script. The radiolabeled DNA probe (a 335-bp HindlIl fragment)shown at the bottom was combined with total RNA of B. brevisisolated at To under hybridization conditions (see Materials andMethods). After Si treatment, the nuclease-resistant hybrids were

denaturated and resolved by electrophoresis on a 6% polyacryl-amide-8 M urea gel. The probe was also subjected to the base-specific cleavage reactions of Maxam and Gilbert (31). Arrowheadsindicate the position of a protected band (lane 2). Lane 1, Si-treatedprobe without RNA. The grs promoter is indicated by Pgrs at theposition of transcription initiation (+1).

initiation of the corresponding peptide synthesis. The acti-vated amino acid is transferred to a thiol group (a cysteineresidue) on the enzyme, yielding a covalently boundthioester-linked amino acid (25). The two enzymes havesimilar molecular masses and cross-react immunochemically(29). To evaluate the possibility that the two enzymes mighthave a common evolutionary ancestry or have been gener-

ated by gene duplication, we compared their predictedamino acid sequences. Comparison of the deduced aminoacid sequences of GrsA and TycA (46) revealed an extensivedegree of homology of over 56% (Fig. 4A). If similar amino

acids are also considered, the degree of homology increasesto over 70%. Although the TycA protein is 11 amino acidsshorter and the lowest degree of homology is located at theamino termini, no extensive deletions or insertions in theinternal segments have been observed. It is important tonote that 4 of 6 cysteine residues in GrsA (residues 331, 377,474, and 1065) share almost the same location with 4 of 12cysteine residues in TycA.We also compared the available sequences of the amino-

terminal parts of GrsB and TycB (Fig. 4B). The grsB gene

encodes the gramicidin S synthetase 2 (280 kDa), a multi-functional enzyme able to activate and polymerize the aminoacids proline, valine, ornithine, and leucine (11). The tycBgene encodes the tyrocidine synthetase 2 (230 kDa), whichactivates and polymerizes the amino acids proline, phenyl-alanine, and D-phenylalanine (23). The comparison revealedover 54% identical residues within the first 244 residues ofboth enzymes.

Similarity of GrsT to other proteins. A computer search forsimilarities between the deduced amino acid sequence of theGrsT protein and other protein sequences revealed a signif-icant degree of homology to the medium-chain S-acyl fattyacid synthetase thioester hydrolase (thioesterase II) from ratmammary gland (39) and to another thioesterase II frommallard duck uropygial gland (38) (Fig. 5). The overall levelof homology was more than 30%. Both thioesterases and theGrsT protein have a molecular mass of approximately 29kDa. Both thioesterases are serine active-site enzymes thathydrolytically release the fatty acid acyl moiety from itsthioester linkage to the 4'-phosphopantetheine prostheticgroup (44). The rat mammary gland thioesterase II can

functionally replace the thioesterase domain of the fatty acidsynthetase (thioesterase I) but releases shorter fatty acidchains (24). The sequence surrounding the proposed active-site serine in both thioesterases, GHSFG, was found to bealmost perfectly conserved in the GrsT protein (GHSMG;positions 99 to 103) (Fig. 5). In addition, two regions ofstriking homology in both thioesterases, residues 28 to 38and 235 to 246, were found to be strongly conserved in theGrsT protein.

DISCUSSION

We have determined the nucleotide sequence of a majorpart of the gramicidin S biosynthesis operon and located a

transcription initiation site through high-resolution Si pro-tection mapping. The results revealed the presence of threeORFs, referred to as grsT, grsA, and grsB, and indicatedthat transcription was initiated 81 bp upstream of the grsTgene and extended through grsA and grsB. The entirenucleotide sequences of grsT (771 bp) and grsA (3,297 bp)and about 730 bp of the 5'-end coding region of grsB were

determined. Two short noncoding intergenic regions of 26and 71 bp were observed between grsT and grsA andbetween grsA and grsB, respectively. No sites for initiation

TABLE 1. Comparison of the putative grs promoter sequence with recognition sequences of minorsigma factor promoters from B. subtilisa

Promoter -35 region Spacer -10 region

grs TCAAGATTTAAA CATACTACATTTATCCATTC GGAATTCACTctc AGG.TTTAAA TCCTTATCGTTATG GGTATTGTTTspoVG (P1) GCAGGATTTCAG AAAAAATCGT GGAATTGATArpoD (P3) GCAGGAGTTTAA TGGAGGGATGG AGAATTACTC

a DNA sequences are from references 5, 6, 15, and 17.

J. BACTERIOL.

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 6: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

GRAMICIDIN S BIOSYNTHESIS OPERON 5427

1 MLNSSK3ILI TQHEEb0TH YAHQYL TKAYPR IHHQLMQVS 50

1 ...........LANQANLIDNKRELEQHALVPYAQGKSIHQLFZEQAE 361 KRPNNVAIVCENEQLTYHELNVXANQLARIFIEGIG TLVGICSI 100

I 111I 11 I I III 1111111 III 11111139 AFPDRVAIVFENRRLSYQZLN3CQL ARALLEIMVQT I0VM I 66

101 DLFIGILAVLICAG0AYVPIDIEYPMMIQYILDDSQALLTQLVHLLI 160I 1111111111111111111 M111111 III ti11

69 ENVIAILAVLKAGGAYVPIDIERDRIQYILQDSQTKIVLTQKSVSQLV 136

151 HNIQFtNGQVEIFTDTIKIREGTNUHVPSKTDLAYVIYTSOTTGNPKGT 200

139 HDVOYS9GVVVLDE3QLDARZTANLHQPSIPTDLAYVIYT9GTT0KPIMT 166

201 MLEHCGI SNLXVFF7NSLNVTZIDRIOQFA8ISFDASVVL MALLTOAS 250

189 MLEHKGIAICNPFSXIRLASPSK 9G. FLPACRSTMPFGKCWLCCLAP 237

251 LYI ILXDTINDFVICFEQYINQKEITVITLPPTYVVILDPZRILSIQTLIT 300

236 RVHQSKQTtHDF8LAA7LENELTI ITLPPTYLTHLTPERITSLRIMIT 267

301 AG8ATSPSLI YINAYGPTETTICATTWVA. TKETIGOHVPIO 3491111 111111 1111111111 1-11 11 11111

266 AGSAS3APLVNKwKDKLRYINAYGPTETUICATIEAP8NQLSVQSVPIC 337

350 APIQNTQIYIVDENLQLU VEAOGELCIGGEGLARGYWKRPELTSQMFVD 39911111 11111 III 111-111 1111111 11 11 till

336 XPIQNTHIYIVNEDLQLLPTADEGELCI00VGLARGYWNRPDLTAE7VD 387

400 NPFVPiCLYKTODQABWLSDGNIEYLGRIDIQVKIRGHRVELZEVEIL 44911111111 I II I 11 11 11 111111 1i1111it 11 1 11 1

366 NPFVPOiYROTDLAKUWLTDOTIEFULORIIDHQVKIRGHRIELGEIESVL 437

450 LXHOYISETAVSVHKDHQEQPYLCAYFVSEDcIPLEQLRQFSSEELPTYM 499I I I 1 tt.l III 11 11

436 LAHEHITEAVVIALZDQHAGQYLCAYYISQQEATPAQLRDYAAQKLPAYM 467

600 IPSYFIQLDXYPLT8NCXIDRXQWEPDLT . IGMRVDYEAPMZIEETLV 646Jill 1111111 I 11111 1111111 11 I1 1 l

486 LPSYKLTDUMPLTPNIKIDRXALPZPDLTANQSQAAYIWPRT3TZSILV 537

549 TIWQDVLOIEKIGIGINFYALGDS IKAIQVAARLHSYQLXLETXDLLXY 696111 III,1111 111111 Jill 1111111111I

5368 IWQNVLGIEKIGIRDKFYSLGGDSIQAIQVVARLHSYQLXLETIDLLNY 567

599 PTIDQLVHYIK EQOIVEOEIOLTPIQHWFFQQFTNWHIWNQSY 646ItI I III I JIMt III IIItt l

666 P?IEQVALFVKSTTRKSDQGI IAONVPLTPI QWF TNTOHWNQSS 637

649 MLYRPNGFDKEILLRVFNXIVDHDALRMIYXHHNIGKIVQINRGLEOTLF 696Jill III I 11 JIM1 11 I I'll 11 1111 I 1

636 VLYRPEGFDPICVIQSVMI IZHDDAVRMVQHDNNVVQHNRGLOOQLY 667

699 DFYTFDLTANDNQQVICZEEARLQNSINLEVOPLVKIALFHTQNODHLF 74611 III 1I 11 I 11 Hi1 l I II I III I

666 DFFBYNLTAQPDVQQAIEAE?QRLHISMLQDGPLVtVALFQTLHGIDF 737

749 MAIDLVVDISMRILFZDLATAYQAMHQQTIALPECTDSKDWUIELE 796

738 LAIMLVVDGIUWRILFKIWQPDTRRLQGXMSVCPKKRILFKAOHNGCK 767

799 KYANSELFLEEAEYWHHLNYYTIVQI YI XIRYVMELTI 646

766 NNANZADLLBZIPYWZBLSQADVSLPDVTDCY VRN IRLHP 637

649 EETULLZNVNKAYRTEINDILLTALOFALKZWADIDKIVINLrGHGRZE 696tilt ItI t1 11tHi 11 III I 11 Ii

636 3ET?QLLIIANQAYQT3INDLLLAALOLAFAEWMsLAKSSFIWURGTGART 667

699 ILQNNIARTVGWFITQYPVVLDUQKDDLSYQIKLNKENL RIPMCXIG 9481111111111111 11 11 III III I 11 1111

666 SNWRQTVARTVOISQYPVLLDLCQTAPLSDYIKLTKYMRIPRKlG 937

949 Y3IFKYLTTEYLRPVLP7TLXPrINFNYLGQ7DTDVXT3L7TRsPYSMN 996Il tI 11 Ili1il 1111111111 11

936 YDILXHVTVLPD638LsFRVQPEVTFNYLIQrDADRTEL7rTRSPY900N 967

999 SLOPDGOXNLSPEESYFVLNINGFIEOGKLIITFT QQYKZDTIQQL 104611 1Ii1111 I I IIIt 11 I 1i11 11 I 1111

966 TL0ADGXNNL6PEB3VYTALNITG0LI0GGELVLTFSYSSEQYRE3SIQQL 1037

1049 SRKQHLLAI IEHCVQ EDTELTPSDFS LELEDDIFDLLADSLT 10961 11 11111 I* 'I I 111111 I I 1111111 III 1

1036 XQSYQIULLAI IACTEKKZVRTPSDFSVCOLQMEBMDDIFZLLANTLR 1067

1 MST OIVQD MY3LSPUQ6MLFALLUIAHLVQMSIAIXGIVDV3 60li I tiHill I llltlttt illit Ii

I MV VQDYALTPSCYMLFHALLDQfONUHLVQMIJLQ0DLDV0 60

61 LLS33LNILIDRYDVFRTFLH.IZKPLQVVLX. RPVQLQFXDIUSL 96ii11 1 ltltit111 i11 1111

51 LFTD6LNVLVZRYDVFRTLFLY.cPEA3PLQVVUcPTtLF3SXFTHILPCL 100

99 D ZQAIE DLTUDPL VAIFQTKVNYQMIWmI 146

101 RTSPUOFAIIRNTKPDQRTFHLAKDPLHAOA. PKCP6OLQVIW3FMI 149

149 LDGWCFNI IrNDLNIYL6LKUKLQL3AVQPYKQFLKWUQ 19611111- III I 11111 I 11 tilt 11 11111 11 1

160 LXGWCSI IFZYLLAIYLQ LTAL3LZVQPY3INwLQ 199

199 LRYWgKUILWYDQVTLPIXKAAINNTTYZPAQFRFAF.VLTQQL.... 244It tTtIJIMI .iIt 2300 LNYW3DYLZAYZQKTLPIOcEAA.FPAKA?QPTQYRFXLNRTLTKQLG... 246

of transcription were found in these two regions, and analysisof their sequences revealed no potential sites for RNA poly-merase binding. This result suggests that transcription isdirected only by the putative promoter mapped upstream ofthe grsT gene. The sequence data, in addition to the resultsobtained from Si protection analysis and from deletion stud-ies at the 3' end of the grsB gene (J. Kratzschmar, Diplomar-beit), corrected our earlier observations on the location ofgrsB and on the direction of grsA transcription (20). Inconclusion, these data strongly suggest that the genes grsT,grsA, and grsB are organized in an operon and transcribedundirectionally as one polycistronic transcriptional unit.The DNA sequence comparison in Table 1 reveals a

certain degree of homology between the putative grs pro-moter sequence and B. subtilis promoters recognized byminor forms of RNA polymerase sigma factors: both ctc andspoVG are transcribed by aB (U37) RNA polymerase holo-enzyme in vitro (15, 17). Whereas ctc transcription isblocked in sigB null mutant strains, recent data suggest thatthe spoVG promoter, like one of three rpoD operon promot-ers, is also recognized by crH ((r30) RNA polymerase holo-enzyme (5, 6). The spacing of the putative -10 and -35sequences of the grs promoter is 6 to 10 bp higher than in theknown cB and (H promoters. Recognition sequences spacedby 20 bp are not expected to form a functional complex withRNA polymerase holoenzymes (34). However, spacing of 21and 22 bp was observed in two functional promoters, thedevelopmentally regulated promoters of spoIIE and spolIG(13, 19). In contrast to the putative grs promoter, those ofspoIIE and spoIIG are known to be recognized by thevegetative crA (U43)-associated form of RNA polymerase. Toovercome the inappropriate spacing between the consensussequences, an interaction with modified conventional formsof RNA polymerase or the assistance of a helix-distortingprotein in transcription has been suggested (13). Perhapsnew, uncharacterized forms of RNA polymerase holoen-zymes might recognize these unusually spaced promoters.We regard it as an open question whether the grs promoteris actually utilized in vivo by RNA polymerase holoenzymecontaining minor sigma factors. This evaluation should awaitstudies on the transcription in B. subtilis strains bearing asigB null mutation (2).The grsA gene encodes a protein of 126,631 Da, which is

in agreement with the apparent molecular mass of 120,000Da previously determined for the gramicidin S synthetase 1(29, 45). The DNA sequence is further supported by thecoincidence of its predicted amino acid sequence with therecently determined amino-terminal sequence (10 residues)of the gramicidin S synthetase 1 purified from B. brevis(Vater et al., in press). Comparison of the GrsA sequencewith the predicted amino acid sequence of the tycA geneproduct revealed over 56% of identical residues. Theseresults supported the functional relationship, since bothenzymes activate and racemize the amino acid phenylalanineas the first step in nonribosomal biosynthesis of the peptideantibiotics gramicidin S and tyrocidine. On the basis of thesesimilarities, four of six cysteine residues in GrsA were foundto be conserved in TycA, suggesting a possible role for one of

FIG. 4. Alignment of the deduced amino acid sequences of grsAand tycA (A) and of the amino-terminal sequences (about 244residues) of grsB and tycB (B). Matches are marked by vertical linesbetween the corresponding amino acids; asterisks indicate positionsof conserved cysteine residues. The sequences of tycA and tycB are

from references 46 and 33, respectively.

VOL. 171, 1989

A)OrsAGroATycA

TysA

OrsA

TyoA

OrsA

TycA

OrmA

TycA

OrsA

TycA

GrsA

TyoA

GrwA

TyCA

OrsA

TycA

GroAOrsA

TycA

OrmA

TyCA

TroA

crsA

TGoA

GrsA

TyoA

OrsA

TyoA

TycAGrsA

TyoA

GrmA

TycA

TycA

OrsAi

TGoA

OrmA

TycA

OrsA

TycA

GrsA

TycA

GriB

TyoB

GraB

TycB

GrsD

Tyao

raD^

TyoD

GrAD

TyoD

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 7: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

5428 KRATZSCHMAR ET AL.

GrmT HT F I SQ V N K W F V NA. N V S A A K L R Y AGG AiAF1Y E[W]S H FJP K EI E V

Rat M E T AHVN A K]P RHNE]KLHNC L Y QNPNDA V FKL I C F P W A OG GS I HIFIA KIWIGQK I N D S L EV

Duck M D[JI A R P]K Nii[]L C| W A C F F I R W C E A[3S S I[

10 20 30 40 60

GruT CS GRENRG AVP L T N L QQ E VA E EI Q PLINIPFAFGH A F E[

Rat H A VR L A G RETRLG EP

ND

IYQ

QID EI

V TA| L LP I QI KAF AFF OHSFH S Y[ L ITDuck S V|I R L A G R EiC'mRD TSE PFPE D A EVNNI N LLK D EEKPFAF H S F [SjFY A

60 70 80 90 100 110

GrsT AR T I R KS N VN H L F VSGR HN;p,QIP C A K QD5iHL P F Iq E LR S[FL E I

Rat AlL LILK E K Y K E P ]HIF V S G AS A PH S|S S R PWV P DIL INEL T EQV R HHLL D_GGT P|K H

Duck [JV HHLK E KH [ [L|E P V HMFS Y G PHE Y F H L KLPJJV ES RL L E L I H T G G T P|P E

120 130 140 150 160

GraT VLA E MM S I LIL]R AF SHVc SQ Y K N D E P.. E C PI A F GKNND NO VT Y Q S L

Rat L D Q D V L R MFIPL LK ADIA 0 IV V K K F I F D K P SKA LLSLD I T|CIFILG|E[DJ. TI K D I

Duck F N E Q I T K HLR V L KJE D Q K L V TjP V H D V R K K Y F S C D C F N D E K N H G S

170 180 190 200 210 220

GroT E VR E QKRESVcMPGDHF ES K Y E M I E F M C K Q L R A P K IRat IEWIQ D L TOKjD H[MLP G D H F Y LMPDN EN F I K NYIA KCL E L S L T

Duck HI A IT D TL YI IS

230 240 250 260FIG. 5. Comparison of the amino acid sequence encoded by grsT (GrsT) with the amino acid sequences of rat mammary gland (rat) and

mallard duck uropygial gland (duck) thioesterase II enzymes. The sequences have bene aligned via the proposed active-site region (GHSXG).Homologous residues are enclosed in boxes; the active-site serine is indicated by asterisks.

them in thioester formation. This hypothesis can now beconfirmed by deleting or modifying these residues. The ob-served homology in the amino-terminal regions of GrsB andTycB sequences deduced from their nucleotide sequencessuggest that this conserved region (at least 244 residues) mightbe part of the proline activation domain. Proline is the firstamino acid activated by both enzymes. A cysteine residue(position 154 in GrsA; position 155 in TycB) that might be thesite of proline thioester formation is conserved in both se-quences. Completion of the nucleotide sequences for grsBand tycB, which is in progress, may provide further insightinto the domain structures of these proteins.One of the most surprising features of the sequence

analysis presented here was the discovery of the strikinghomology between the grsT gene product (GrsT) and fattyacid thioesterase II enzymes. The grsT gene encodes apolypeptide of 256 residues with a calculated Mr of 29,191,which is very close to those of rat (molecular weight, 29,471)and mallard duck thioesterase II (Mr- 28,800) enzymes (38,39). The overall level of homology is about 30%. Interest-ingly, the active-site serine residue that is a part of the motifGXSXG in thioesterase II was found to be conserved withinthe same motif in GrsT. This active-site motif is also presentin the sequence of the thioesterase domain of fatty acidsynthetase from rat (thioesterase I) (36, 43). In addition, twoother clusters of conserved homologies in thioesterase IIenzymes located near the N and C termini were also found tobe conserved in the GrsT sequence (Fig. 5). It is now wellestablished that thioesterase II enzymes form complexes, insome specialized tissues, with their respective fatty acidsynthetases, causing the premature release of medium-chain-length (C8, C1o, and C12) fatty acids (24). In contrast, nothingat all is known about a possible function for the GrsT protein.

Interestingly, the active-site GHSXG motif also occurs inlipases (8) and in fatty acid synthetase domains associatedwith acyl group transfer (malonyl/palmitoyl transferase andacetyl transferase) (9, 42). During gramicidin S biosynthesis,repeated acyl transfer reactions of the growing peptide chaintake place between thiol groups of the enzymes GrsA andGrsB. Therefore, purification of the grsT gene product andanalysis of its enzymatic activity are of interest.

ACKNOWLEDGMENTS

We thank S. Smith, E. Schweizer, and M. Schweizer for supply-ing unpublished and published sequence information, J. Alonso forassistance with computer analysis, R. Weckermann for discussion,H. Kleinkauf for support, and J. Bittner for excellent technicalassistance.

This work was supported by the Deutsche Forschungsgemein-schaft (Sfb9-D6) and in part by the Technical University of Berlin.

ADDENDUM IN PROOF

The sequence reported in this paper is being deposited inthe EMBL/GenBank data base (accession no. X15577).

LITERATURE CITED1. Banner, C. D. B., C. P. Moran, and R. Losick. 1983. Deletion

analysis of a complex promoter for a developmentally regulatedgene from B. subtilis. J. Mol. Biol. 168:351-365.

2. Binnie, C., M. Lampe, and R. Losick. 1986. Gene encoding theT37 species of RNA polymerase a factor from B. subtilis. Proc.Natl. Acad. Sci. USA 83:5943-5947.

3. Birnboim, M. C., and J. Doly. 1979. A rapid alkaline extractionprocedure for screening recombinant plasmid DNA. NucleicAcids Res. 7:1513-1523.

4. Brehm, S. P., and J. A. Hoch. 1973. Phenotypic negative sporu-

J. BACTERIOL.

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from

Page 8: Gramicidin S Biosynthesis Operon Containing Structural ... · GRAMICIDIN S BIOSYNTHESIS OPERON 5423 _ 0 I I: Fe-4 n UsXSIa-W 0I a a1 r II t t I ort5X> QI grsT >[ _ d

GRAMICIDIN S BIOSYNTHESIS OPERON 5429

lation mutants of Bacillus subtilis. J. Bacteriol. 115:1063-1070.5. Carter, L., and C. P. Moran. 1986. New RNA polymerase uf

factor under spoO control in Bacillus subtilis. Proc. Natl. Acad.Sci. USA 83:9438-9442.

6. Carter, L., L. F. Wang, R. H. Doi, and C. P. Moran. 1988. rpoDoperon promotor used by aH RNA polymerase in Bacillussubtilis. J. Bacteriol. 170:1617-1621.

7. Crouse, G. C., A. Frischauf, and H. Lehrach. 1983. An inte-grated and simplified approach to cloning into plasmids andsingle-stranded phages. Methods Enzymol. 101:78-89.

8. Docherty, A. J. P., M. W. Bodmer, S. Angal, R. Verger, C.Riviere, P. A. Lowe, A. Lyons, J. S. Emtage, and T. J. R. Harrys.1985. Molecular cloning and nucleotide sequence of rat linguallipase cDNA. Anal. Biochem. 112:295-298.

9. Engeser, H.-J., K. Hubner, J. Straub, and F. Lynen. 1979.Identity of malonyl and palmitoyl transferase of fatty acidsynthetase from yeast: comparison of active site peptides. Eur.J. Biochem. 101:413-422.

10. Ferrari, E., D. J. Henner, M. Perego, and J. A. Hoch. 1988.Analysis of transcription of Bacillus subtilis subtilisin and itsexpression in sporulation mutants. J. Bacteriol. 170:289-295.

11. Gevers, W., H. Kleinkauf, and F. Lipmann. 1968. The activationof amino acids for biosynthesis of gramicidin S. Proc. Natl.Acad. Sci. USA 60:269-276.

12. Gilmore, S. M., A. L. Gruz-Rodz, M. Leimeister-Wachter, J.Kraft, and W. Goebel. 1989. A Bacillus cereus cytolytic deter-minant, cereolysin AB, which comprises the phospholipase Cand sphingomycelinase genes: nucleotide sequence and geneticlinkage. J. Bacteriol. 171:744-753.

13. Guzman, P., J. Westpheling, and P. Youngmann. 1988. Charac-terization of the promoter region of the Bacillus subtilis spolIEoperon. J. Bacteriol. 170:1598-1609.

14. Hanson, R. S., B. J. Blicharska, and J. Szulmajester. 1964.Relationship between the tricarboxylic acid cycle enzymes andsporulation of B. subtilis. Biochem. Biophys. Res. Commun.17:1-7.

15. Igo, M. M., and R. Losick. 1986. Regulation of a promoter thatis utilized by minor forms of RNA polymerase holoenzyme in B.subtilis. J. Mol. Biol. 191:615-624.

16. Ishihara, H., N. Hara, and T. Iwabuchi. 1989. Molecular cloningand expression in Escherichia coli of the B. licheniformisbacitracin synthetase 2 gene. J. Bacteriol. 171:1705-1711.

17. Johnson, W. C., C. P. Moran, and R. Losick. 1983. Two RNApolymerase sigma factors from Bacillus subtilis discriminatebetween overlapping promotors for a developmentally regulatedgene. Nature (London) 302:800-804.

18. Katz, E., and A. L. Demain. 1977. The peptide antibiotics ofbacilli: chemistry, biogenesis and possible functions. Bacteriol.Rev. 41:449-474.

19. Kenney, T. J., and C. P. Moran, Jr. 1987. Organization andregulation of an operon that encodes a sporulation-essentialsigma factor in Bacillus subtilis. J. Bacteriol. 169:3329-3339.

20. Krause, M., and M. A. Marahiel. 1988. Organization of thebiosynthesis genes for the peptide antibiotic gramicidin S. J.Bacteriol. 170:4669-4674.

21. Kurahashi, K. 1974. Biosynthesis of small peptides. Annu. Rev.Biochem. 43:445-459.

22. Laland, S. G., and T. L. Zimmer. 1973. The protein thiotemplatemechanism synthesis for the peptide antibiotics produced byBacillus brevis. Essays Biochem. 9:31-57.

23. Lee, S. G., and F. Lipmann. 1975. Tyrocidine synthetasesystem. Methods Enzymol. 43:585-602.

24. Libertini, L. J., and S. Smith. 1978. Purification and propertiesof a thioesterase from lactating rat mammary gland whichmodifies the product specificity of fatty acid synthetase. J. Biol.Chem. 253:1393-1401.

25. Lipmann, F. 1980. Bacterial production of antibiotic polypep-tides by thiol-linked synthesis on protein template. Adv. Micro-biol. Physiol. 21:227-260.

26. Losick, R., P. Youngman, and P. J. Piggot. 1986. Genetics ofendospore formation in Bacillus subtilis. Annu. Rev. Genet.20:625-669.

27. Maniatis, T., E. F. Fritsch, and J. Sambrooke. 1982. Molecular

cloning: a laboratory manual. Cold Spring Harbor Laboratory,Cold Spring Harbor, N.Y.

28. Marahiel, M. A., W. Danders, M. Krause, and H. Kleinkauf.1979. Biological role of gramicidin S in spore function: studieson gramicidin S-negative mutants of B. brevis ATCC 9999. Eur.J. Biochem. 99:49-55.

29. Marahiel, M. A., M. Krause, and H. J. Skarpeid. 1985. Cloningof the tyrocidine synthetase I gene from B. brevis and itsexpression in E. coli. Mol. Gen. Genet. 201:231-236.

30. Marahiel, M. A., P. Zuber, G. Czekay, and R. Losick. 1987.Identification of the promoter for a peptide antibiotic biosynthe-sis gene from Bacillus brevis and its regulation in Bacillussubtilis. J. Bacteriol. 169:2215-2222.

31. Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeledDNA with base-specific chemical cleavages. Methods Enzymol.65:499-650.

32. Messing, J. 1983. New M13 vectors for cloning. MethodsEnzymol. 101:20-78.

33. Mittenhuber, G., R. Weckermann, and M. A. Marahiel. 1989.Gene cluster containing the genes for tyrocidine synthetases 1and 2 from Bacillus brevis: evidence for an operon. J. Bacteriol.171:4881-4887.

34. Moran, P. C., N. Lang, S. F. J. LeGrice, G. Lee, M. Stephens,A. L. Sonnenschein, J. Pero, and R. Losick. 1982. Nucleotidesequences that signal the initiation of transcription and transla-tion in B. subtilis. Mol. Gen. Genet. 186:339-346.

35. Murray, M. 1986. Use of sodium trichloroacetate and mungbean nuclease to increase sensitivity and precision during tran-script mapping. Anal. Biochem. 158:165-170.

36. Naggert, J., A. Witkowski, J. Mikkelsen, and S. Smith. 1988.Molecular cloning and sequencing of a cDNA encoding thethioesterase domain of the rat fatty acid synthetase. J. Biol.Chem. 263:1146-1150.

37. Penn, M., D. Thireos, and H. Greer. 1984. Temporal analysis ofgeneral control of amino acid biosynthesis in Saccharomyces:role of positive regulatory genes in initiation of mRNA depres-sion. Mol. Cell. Biol. 4:520-528.

38. Poulose, A. J., L. Rogers, T. M. Cheesbrough, and P. E.Kolattukudy. 1985. Cloning and sequencing of cDNA for S-acylfatty acid synthetase thioesterase from uropygial gland of mal-lard duck. J. Biol. Chem. 260:15953-15958.

39. Randhawa, Z. T., and S. Smith. 1987. Complete amino acidsequence of medium-chain S acyl fatty acid synthetase thio-lester hydrolyse from rat mammary gland. Biochemistry 26:1365-1373.

40. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequenc-ing with chain-termination inhibitors. Proc. Natl. Acad. Sci.USA 74:5463-5467.

41. Schaffer, P. 1969. Sporulation and the production of antibiotics,exoenzymes and exotoxins. Bacteriol. Rev. 33:48-71.

42. Schweizer, M., L. M. Roberts, H.-J. Moltke, K. Takabayashi, M.Molierer, B. Hoffmann, G. Muller, M. Kotting, and E. Sch-weizer. 1986. The pentafunctional fas-1 gene of yeast-its nu-cleotide sequence and order of catalytic domains. Mol. Gen.Genet. 203:479-486.

43. Schweizer, M., K. Takabayashi, T. Laux, K.-F. Beck, and R.Schreglmann. 1989. Rat mammary gland fatty acid synthetase:localization of the constituent domains and two functionalpolyadenylation/termination signals in the cDNA. Nucleic Ac-ids Res. 17:567-586.

44. Smith, S. 1981. Medium-chain fatty acyl-S-4'-phosphopant-etheine fatty acid synthetase thioester hydrolase from lactingmammary gland of rat. Methods Enzymol. 71:188-200.

45. Vater, J., and H. Kleinkauf. 1976. Gramicidin S synthetase: afurther characterization of phenylalanine racemase, the lightenzyme of gramicidin S synthetase. Biochim. Biophys. Acta429:1062-1072.

46. Weckermann, R., R. Furbaf, and M. A. Marahiel. 1988. Com-plete nucleotide sequence of the tycA gene coding the tyrocidinesynthetase 1 from Bacillus brevis. Nucleic Acids Res. 16:11841.

47. Wong, S. L., C. W. Price, D. S. Goldfar, and R. H. Doi. 1984.The subtilisin E gene of B. subtilis is transcribed from a a"promoter in vivo. Proc. Natl. Acad. Sci. USA 81:1184-1188.

VOL. 171, 1989

on Septem

ber 16, 2020 by guesthttp://jb.asm

.org/D

ownloaded from