17
Demtröder Atoms, Molecules and Photons

[Graduate Texts in Physics] Atoms, Molecules and Photons ||

Embed Size (px)

Citation preview

Page 1: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

DemtröderAtoms, Molecules and Photons

Page 2: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

GRADUATE TEXTS IN PHYSICS

Graduate Texts in Physics publishes core learning/teaching material for graduate- andadvanced-level undergraduate courses on topics of current and emerging fields withinphysics, both pure and applied. These textbooks serve students at the MS- or PhD-leveland their instructors as comprehensive sources of principles, definitions, derivations,experiments and applications (as relevant) for their mastery and teaching, respectively.International in scope and relevance, the textbooks correspond to course syllabi sufficientlyto serve as required reading. Their didactic style, comprehensiveness and coverage offundamental material also make them suitable as introductions or references for scientistsentering, or requiring timely knowledge of, a research field.

Series Editors

Professor Richard NeedsCavendish LaboratoryJJ Thomson AvenueCambridge CB3 0HE, UKE-mail: [email protected]

Professor William T. RhodesFlorida Atlantic UniversityImaging Technology CenterDepartment of Electrical Engineering777 Glades Road SE, Room 456Boca Raton, FL 33431, USAE-mail: [email protected]

Professor H. Eugene StanleyBoston UniversityCenter for Polymer StudiesDepartment of Physics590 Commonwealth Avenue, Room 204BBoston, MA 02215, USAE-mail: [email protected]

Page 3: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Wolfgang Demtröder

Atoms, Moleculesand PhotonsAn Introduction to Atomic-, Molecular-and Quantum-Physics

With 677 Figures and 42 Tables

123

Page 4: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Professor Dr. Wolfgang DemtröderUniversität KaiserslauternFB PhysikErwin-Schrödinger-Str. 4667663 [email protected]

ISSN 1868-4513 e-ISSN 1868-4521ISBN 978-3-642-10297-4 e-ISBN 978-3-642-10298-1DOI 10.1007/978-3-642-10298-1Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010935944

c© Springer-Verlag Berlin Heidelberg 2006, 2010This work is subject to copyright. All rights are reserved, whether the whole or part of the materialis concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of thispublication or parts thereof is permitted only under the provisions of the German Copyright Law ofSeptember 9, 1965, in its current version, and permission for use must always be obtained from Springer.Violations are liable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevantprotective laws and regulations and therefore free for general use.

Cover design: Integra Software Services Pvt. Ltd., Pondicherry

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 5: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Preface to the Second Edition

The first edition of this textbook had found a friendly acceptance. This secondedition does not change the concept of the representation which combines the ex-perimental techniques for the investigation of atoms and molecules and their resultsthat have lead to the development of quantum physics. Some new developmentsin laser physics and quantum optics have been inserted in Chapter 12 in order togive the reader some ideas about the frontiers in these fields regarding experimentaltechniques and physical insight.

This second edition represents a thoroughly revised version of the first edition,which, unfortunately, contained a lot of errors and misprints. I am grateful to manyreaders who have informed me about such errors and who offered corrections andimprovements of the representation for a better understanding. I am particularly in-debted to Dr. Nico Dam, Raboud University Nijmegen, Netherland and Prof. ZamikRosenwaks, Ben Gurion University, Israel, who have sent me an extensive correctionlist.

The author hopes, that this new edition will be well accepted and that criticalreaders will send their comments or ideas about possible improvements.

I thank Dr. Th. Schneider, Springer Verlag for his continuous interest andencouragement.

Kaiserslautern,October 2010 Wolfgang Demtröder

Page 6: [Graduate Texts in Physics] Atoms, Molecules and Photons ||
Page 7: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Preface to the First Edition

The detailed understanding of matter, its phase transitions and its interaction with ra-diation could be only reached, after its microscopic structure determined by the kindof atoms or molecules as basic constituents of matter had been investigated. Thisknowledge allowed the controlled optimization of characteristic properties of mat-ter. Atomic physics therefore represents not only an area of important fundamentalresearch, but has furthermore many applications which have essentially formed ourpresent technical world. The understanding of materials and their use in daily life,has major impact of our culture and our attitude towards nature and our environment.

This textbook is aimed as an introduction to the microscopic world of atoms,molecules and photons. It illustrates how our knowledge about the microscopic struc-ture of matter and radiation came about and which crucial experiments forced anextension and refinement of existing classical theories, culminating in the develop-ment of quantum theory, which is now accepted as the basic theory of atomic andmolecular physics.

The book therefore starts with a short historical review about the role of ex-periments for correcting erroneous ideas and proving the existence of atoms andmolecules. The close interaction between experiments and theory has been one of thereasons for the rapid development of atomic physics in the 19th and 20th centuries.Examples are the kinetic theory of gases, which could be completely understood bythe assumption of moving atoms in the gas, or the postulation of energy quanta in theradiation field, which could explain the discrepancy between measurements of thespectral energy distribution of thermal radiation fields and classical electrodynamics.

The new ideas of quantum physics and their corroboration by experiments arediscussed in Chap. 3 while the fundamental equations of quantum mechanics andtheir applications to some simple examples are explained in Chap. 4.

A theory can be best understood by applications to a real situation. In Chap. 5 thequantum theory of the simplest real system, namely the hydrogen atom, is presented.Here it is again illustrated, that experiments enforced an extension of quantum me-chanics to quantum electrodynamics in order to understand all experimental results.The description of larger atoms with many electrons is treated in Chap. 6, which alsoreduces the chemical properties of chemical elements to the structure of the electronshells and explains why all elements can be arranged in a periodic table.

The important subject of interaction of matter with radiation is discussed inChap. 7. This prepares the ground for the explanation of lasers, treated in Chap. 8.

Molecules, consisting of two or more atoms, form the basis for the great varietyof our world. They are discussed in Chaps. 9 and 10. In particular the question, whyand how atoms can form stable molecules, and which kind of interaction occurs,

Page 8: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

VIII Preface to the First Edition

is treated in more detail. In Chap. 11 the different experimental techniques for theinvestigation of atoms and molecules are presented, in order to give the reader a feel-ing for the inventive ideas and the necessary experimental skill for their realization.The last chapter presents a short overview on recent developments in atomic andmolecular physics, which shall demonstrate that physics will be never a completeand finalized field. There is still much to explore and new ideas and scientific enthu-siasm is needed, to push the border of our knowledge further ahead. Some examplesin this chapter also illustrate possible important applications of new ideas such asthe quantum computer or new techniques of frequency metrology used in the worldwide global positioning system GPS.

Many people have helped to publish this book. First of all I would like to thankthe team of LE-TeX, who have made the layout. In particular Uwe Matrisch, who haslooked after the editing process and who has taken care of many handwritten remarksand corrections of the author with great patience. Dr. Schneider from Springer-Verlaghas always supported this project, although it took longer as anticipated.

Many thanks go to all colleagues who have given their permission to reproducefigures or tables.

This book is an extended version of volume 3 of a German textbook consistingof 4 volumes. The authors hopes, that it will find a comparable good acceptance asthe German version. He will be grateful for any reply of readers, giving correctionsof possible errors or hints to improvements. Any of such replies will be answeredas soon as possible. A textbook lives from the active collaboration of its readers andthe author looks foreward to a lively correspondence with his readers. He hopes thatthis book can contribute to a better understanding of this fascinating field of atoms,molecules and photons.

Kaiserslautern,August 2005 Wolfgang Demtröder

Page 9: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Contents

1. Introduction

1.1 Contents and Importance of Atomic Physics . . . . . . . . . . . 11.2 Molecules: Building Blocks of Nature . . . . . . . . . . . . . . . 31.3 Survey on the Concept of this Textbook . . . . . . . . . . . . . . 4

2. The Concept of the Atom

2.1 Historical Development . . . . . . . . . . . . . . . . . . . . . . 72.2 Experimental and Theoretical Proofs for the Existence

of Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2.1 Dalton’s Law of Constant Proportions . . . . . . . . . 92.2.2 The Law of Gay-Lussac and the Definition

of the Mole . . . . . . . . . . . . . . . . . . . . . . . 112.2.3 Experimental Methods for the Determination

of Avogadro’s Constant . . . . . . . . . . . . . . . . . 122.2.4 The Importance of Kinetic Gas Theory

for the Concept of Atoms . . . . . . . . . . . . . . . . 172.3 Can One See Atoms? . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . 202.3.2 Cloud Chamber . . . . . . . . . . . . . . . . . . . . . 242.3.3 Microscopes with Atomic Resolution . . . . . . . . . . 24

2.4 The Size of Atoms . . . . . . . . . . . . . . . . . . . . . . . . . 292.4.1 The Size of Atoms in the Van der Waals

Equation . . . . . . . . . . . . . . . . . . . . . . . . . 292.4.2 Atomic Size Estimation from Transport

Coefficients . . . . . . . . . . . . . . . . . . . . . . . 292.4.3 Atomic Volumes from X-Ray Diffraction . . . . . . . . 312.4.4 Comparison of the Different Methods . . . . . . . . . . 32

2.5 The Electric Structure of Atoms . . . . . . . . . . . . . . . . . . 332.5.1 Cathode Rays and Kanalstrahlen . . . . . . . . . . . . 342.5.2 Measurement of the Elementary Charge e . . . . . . . 352.5.3 How to Produce Free Electrons . . . . . . . . . . . . . 372.5.4 Generation of Free Ions . . . . . . . . . . . . . . . . . 392.5.5 The Mass of the Electron . . . . . . . . . . . . . . . . 412.5.6 How Neutral is the Atom? . . . . . . . . . . . . . . . . 44

2.6 Electron and Ion Optics . . . . . . . . . . . . . . . . . . . . . . 452.6.1 Refraction of Electron Beams . . . . . . . . . . . . . . 452.6.2 Electron Optics in Axially Symmetric Fields . . . . . . 47

Page 10: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

X Contents

2.6.3 Electrostatic Electron Lenses . . . . . . . . . . . . . . 492.6.4 Magnetic Lenses . . . . . . . . . . . . . . . . . . . . . 502.6.5 Applications of Electron and Ion Optics . . . . . . . . 52

2.7 Atomic Masses and Mass Spectrometers . . . . . . . . . . . . . 532.7.1 J.J. Thomson’s Parabola Spectrograph . . . . . . . . . 542.7.2 Velocity-Independent Focusing . . . . . . . . . . . . . 552.7.3 Focusing of Ions with Different Angles

of Incidence . . . . . . . . . . . . . . . . . . . . . . . 572.7.4 Mass Spectrometer with Double Focusing . . . . . . . 572.7.5 Time-of-Flight Mass Spectrometer . . . . . . . . . . . 582.7.6 Quadrupole Mass Spectrometer . . . . . . . . . . . . . 612.7.7 Ion-Cyclotron-Resonance Spectrometer . . . . . . . . 632.7.8 Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.8 The Structure of Atoms . . . . . . . . . . . . . . . . . . . . . . 652.8.1 Integral and Differential Cross Sections . . . . . . . . . 652.8.2 Basic Concepts of Classical Scattering . . . . . . . . . 662.8.3 Determination of the Charge Distribution

within the Atom from Scattering Experiments . . . . . 702.8.4 Thomson’s Atomic Model . . . . . . . . . . . . . . . . 712.8.5 The Rutherford Atomic Model . . . . . . . . . . . . . 732.8.6 Rutherford’s Scattering Formula . . . . . . . . . . . . 74

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3. Development of Quantum Physics

3.1 Experimental Hints to the Particle Characterof Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . 813.1.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . 823.1.2 Cavity Modes . . . . . . . . . . . . . . . . . . . . . . . 843.1.3 Planck’s Radiation Law . . . . . . . . . . . . . . . . . 863.1.4 Wien’s Law . . . . . . . . . . . . . . . . . . . . . . . . 883.1.5 Stefan–Boltzmann’s Radiation Law . . . . . . . . . . . 883.1.6 Photoelectric Effect . . . . . . . . . . . . . . . . . . . 893.1.7 Compton Effect . . . . . . . . . . . . . . . . . . . . . . 913.1.8 Properties of Photons . . . . . . . . . . . . . . . . . . . 933.1.9 Photons in Gravitational Fields . . . . . . . . . . . . . 943.1.10 Wave and Particle Aspects of Light . . . . . . . . . . . 95

3.2 Wave Properties of Particles . . . . . . . . . . . . . . . . . . . . 973.2.1 De Broglie Wavelength and Electron Diffraction . . . . 973.2.2 Diffraction and Interference of Atoms . . . . . . . . . . 983.2.3 Bragg Reflection and the Neutron Spectrometer . . . . . 1003.2.4 Neutron and Atom Interferometry . . . . . . . . . . . . 1003.2.5 Application of Particle Waves . . . . . . . . . . . . . . 101

3.3 Matter Waves and Wave Functions . . . . . . . . . . . . . . . . . 1023.3.1 Wave Packets . . . . . . . . . . . . . . . . . . . . . . . 1033.3.2 The Statistical Interpretation of Wave Functions . . . . 1053.3.3 Heisenberg’s Uncertainty Principle . . . . . . . . . . . 106

Page 11: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Contents XI

3.3.4 Dispersion of the Wave Packet . . . . . . . . . . . . . . 1093.3.5 Uncertainty Relation for Energy and Time . . . . . . . 110

3.4 The Quantum Structure of Atoms . . . . . . . . . . . . . . . . . 1113.4.1 Atomic Spectra . . . . . . . . . . . . . . . . . . . . . . 1123.4.2 Bohr’s Atomic Model . . . . . . . . . . . . . . . . . . 1133.4.3 The Stability of Atoms . . . . . . . . . . . . . . . . . . 1173.4.4 Franck–Hertz Experiment . . . . . . . . . . . . . . . . 118

3.5 What are the Differences Between Classicaland Quantum Physics? . . . . . . . . . . . . . . . . . . . . . 1203.5.1 Classical Particle Paths Versus Probability

Densities in Quantum Physics . . . . . . . . . . . . . . 1203.5.2 Interference Phenomena with Light Waves

and Matter Waves . . . . . . . . . . . . . . . . . . . . 1213.5.3 The Effect of the Measuring Process . . . . . . . . . . . 1233.5.4 The Importance of Quantum Physics

for our Concept of Nature . . . . . . . . . . . . . . . . 124Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4. Basic Concepts of Quantum Mechanics

4.1 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . 1294.2 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 The Free Particle . . . . . . . . . . . . . . . . . . . . . 1314.2.2 Potential Barrier . . . . . . . . . . . . . . . . . . . . . 1324.2.3 Tunnel Effect . . . . . . . . . . . . . . . . . . . . . . . 1354.2.4 Particle in a Potential Box . . . . . . . . . . . . . . . . 1384.2.5 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . 141

4.3 Two-and Three-Dimensional Problems . . . . . . . . . . . . . . 1444.3.1 Particle in a Two-dimensional Box . . . . . . . . . . . . 1444.3.2 Particle in a Spherically Symmetric Potential . . . . . . 145

4.4 Expectation Values and Operators . . . . . . . . . . . . . . . . . 1494.4.1 Operators and Eigenvalues . . . . . . . . . . . . . . . . 1504.4.2 Angular Momentum in Quantum Mechanics . . . . . . 152

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5. The Hydrogen Atom

5.1 Schrödinger Equation for One-electron Systems . . . . . . . . . 1595.1.1 Separation of the Center of Mass

and Relative Motion . . . . . . . . . . . . . . . . . . . 1595.1.2 Solution of the Radial Equation . . . . . . . . . . . . . 1615.1.3 Quantum Numbers and Wave Functions

of the H Atom . . . . . . . . . . . . . . . . . . . . . . 1635.1.4 Spatial Distributions and Expectation Values

of the Electron in Different Quantum States . . . . . . . 166

Page 12: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

XII Contents

5.2 The Normal Zeeman Effect . . . . . . . . . . . . . . . . . . . . 1685.3 Comparison of Schrödinger Theory with Experimental Results . . 1705.4 Relativistic Correction of Energy Terms . . . . . . . . . . . . . . 1725.5 The Electron Spin . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.5.1 The Stern–Gerlach Experiment . . . . . . . . . . . . . 1755.5.2 Experimental Confirmation of Electron Spin . . . . . . 1765.5.3 Einstein–de Haas Effect . . . . . . . . . . . . . . . . . 1775.5.4 Spin-Orbit Coupling and Fine Structure . . . . . . . . . 1785.5.5 Anomalous Zeeman Effect . . . . . . . . . . . . . . . 181

5.6 Hyperfine Structure . . . . . . . . . . . . . . . . . . . . . . . . 1845.6.1 Basic Considerations . . . . . . . . . . . . . . . . . . . 1845.6.2 Fermi-contact Interaction . . . . . . . . . . . . . . . . 1865.6.3 Magnetic Dipole-Dipole Interaction . . . . . . . . . . . 1875.6.4 Zeeman Effect of Hyperfine Structure Levels . . . . . . 187

5.7 Complete Description of the Hydrogen Atom . . . . . . . . . . . 1885.7.1 Total Wave Function and Quantum Numbers . . . . . . 1885.7.2 Term Assignment and Level Scheme . . . . . . . . . . 1885.7.3 Lamb Shift . . . . . . . . . . . . . . . . . . . . . . . . 191

5.8 Correspondence Principle . . . . . . . . . . . . . . . . . . . . . 1945.9 The Electron Model and its Problems . . . . . . . . . . . . . . . 195Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6. Atoms with More Than One Electron

6.1 The Helium Atom . . . . . . . . . . . . . . . . . . . . . . . . . 2016.1.1 Approximation Models . . . . . . . . . . . . . . . . . 2026.1.2 Symmetry of the Wave Function . . . . . . . . . . . . 2036.1.3 Consideration of the Electron Spin . . . . . . . . . . . 2046.1.4 The Pauli Principle . . . . . . . . . . . . . . . . . . . 2056.1.5 Energy Levels of the Helium Atom . . . . . . . . . . . 2066.1.6 Helium Spectrum . . . . . . . . . . . . . . . . . . . . 208

6.2 Building-up Principle of the Electron Shell for Larger Atoms . . 2096.2.1 The Model of Electron Shells . . . . . . . . . . . . . . 2096.2.2 Successive Building-up of Electron Shells

for Atoms with Increasing Nuclear Charge . . . . . . . 2106.2.3 Atomic Volumes and Ionization Energies . . . . . . . . 2126.2.4 The Periodic System of the Elements . . . . . . . . . . 216

6.3 Alkali Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2186.4 Theoretical Models for Multielectron Atoms . . . . . . . . . . . 221

6.4.1 The Model of Independent Electrons . . . . . . . . . . 2216.4.2 The Hartree Method . . . . . . . . . . . . . . . . . . . 2226.4.3 The Hartree–Fock Method . . . . . . . . . . . . . . . . 2246.4.4 Configuration Interaction . . . . . . . . . . . . . . . . 224

6.5 Electron Configurations and Couplings of Angular Momenta . . . 2246.5.1 Coupling Schemes for Electronic

Angular Momenta . . . . . . . . . . . . . . . . . . . . 2246.5.2 Electron Configuration and Atomic States . . . . . . . 229

Page 13: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Contents XIII

6.6 Excited Atomic States . . . . . . . . . . . . . . . . . . . . . . . 2316.6.1 Single Electron Excitation . . . . . . . . . . . . . . . . 2326.6.2 Simultaneous Excitation of Two Electrons . . . . . . . 2326.6.3 Inner-Shell Excitation and the Auger Process . . . . . . 2336.6.4 Rydberg States . . . . . . . . . . . . . . . . . . . . . . 2346.6.5 Planetary Atoms . . . . . . . . . . . . . . . . . . . . . 236

6.7 Exotic Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2376.7.1 Muonic Atoms . . . . . . . . . . . . . . . . . . . . . . 2386.7.2 Pionic and Kaonic Atoms . . . . . . . . . . . . . . . . 2396.7.3 Anti-hydrogen Atoms and Other Anti-atoms . . . . . . 2406.7.4 Positronium and Muonium . . . . . . . . . . . . . . . 241

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

7. Emission and Absorption of Electromagnetic Radiation by Atoms

7.1 Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . 2487.1.1 Induced and Spontaneous Transitions,

Einstein Coefficients . . . . . . . . . . . . . . . . . . . 2487.1.2 Transition Probabilities, Einstein Coefficients

and Matrix Elements . . . . . . . . . . . . . . . . . . . 2507.1.3 Transition Probabilities for Absorption

and Induced Emission . . . . . . . . . . . . . . . . . . 2537.2 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

7.2.1 Selection Rules for Spontaneous Emission . . . . . . . 2537.2.2 Selection Rules for the Magnetic Quantum Number . . 2547.2.3 Parity Selection Rules . . . . . . . . . . . . . . . . . . 2557.2.4 Selection Rules for Induced Absorption and Emission . 2567.2.5 Selection Rules for the Spin Quantum Number . . . . . 2567.2.6 Higher Order Multipole Transitions . . . . . . . . . . . 2577.2.7 Magnetic Dipole Transitions . . . . . . . . . . . . . . . 2597.2.8 Two-Photon-Transitions . . . . . . . . . . . . . . . . . 259

7.3 Lifetimes of Excited States . . . . . . . . . . . . . . . . . . . . . 2607.4 Line Profiles of Spectral Lines . . . . . . . . . . . . . . . . . . . 261

7.4.1 Natural Linewidth . . . . . . . . . . . . . . . . . . . . 2627.4.2 Doppler Broadening . . . . . . . . . . . . . . . . . . . 2647.4.3 Collision Broadening . . . . . . . . . . . . . . . . . . . 267

7.5 X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2707.5.1 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . 2717.5.2 Characteristic X-Ray-Radiation . . . . . . . . . . . . . 2727.5.3 Scattering and Absorption of X-Rays . . . . . . . . . . 2737.5.4 X-ray Fluorescence . . . . . . . . . . . . . . . . . . . . 2787.5.5 Measurements of X-Ray Wavelengths . . . . . . . . . . 278

7.6 Continuous Absorption and Emission Spectra . . . . . . . . . . . 2807.6.1 Photoionization . . . . . . . . . . . . . . . . . . . . . . 2817.6.2 Recombination Radiation . . . . . . . . . . . . . . . . 284

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Page 14: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

XIV Contents

8. Lasers

8.1 Physical Principles . . . . . . . . . . . . . . . . . . . . . . . . . 2898.1.1 Threshold Condition . . . . . . . . . . . . . . . . . . . 2908.1.2 Generation of Population Inversion . . . . . . . . . . . 2928.1.3 The Frequency Spectrum of Induced Emission . . . . . 295

8.2 Optical Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 2958.2.1 The Quality Factor of Resonators . . . . . . . . . . . . 2958.2.2 Open Optical Resonators . . . . . . . . . . . . . . . . 2968.2.3 Modes of Open Resonators . . . . . . . . . . . . . . . 2978.2.4 Diffraction Losses of Open Resonators . . . . . . . . . 3008.2.5 The Frequency Spectrum of Optical Resonators . . . . 301

8.3 Single Mode Lasers . . . . . . . . . . . . . . . . . . . . . . . . 3018.4 Different Types of Lasers . . . . . . . . . . . . . . . . . . . . . 304

8.4.1 Solid-state Lasers . . . . . . . . . . . . . . . . . . . . 3058.4.2 Semiconductor Lasers . . . . . . . . . . . . . . . . . . 3078.4.3 Dye Lasers . . . . . . . . . . . . . . . . . . . . . . . . 3088.4.4 Gas Lasers . . . . . . . . . . . . . . . . . . . . . . . . 310

8.5 Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 3138.5.1 Optical Frequency Doubling . . . . . . . . . . . . . . 3148.5.2 Phase Matching . . . . . . . . . . . . . . . . . . . . . 3148.5.3 Optical Frequency Mixing . . . . . . . . . . . . . . . . 316

8.6 Generation of Short Laser Pulses . . . . . . . . . . . . . . . . . 3168.6.1 Q-Switched Lasers . . . . . . . . . . . . . . . . . . . . 3168.6.2 Mode-Locking of Lasers . . . . . . . . . . . . . . . . 3188.6.3 Optical Pulse Compression . . . . . . . . . . . . . . . 3218.6.4 Measurements of Ultrashort Optical Pulses . . . . . . . 322

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

9. Diatomic Molecules

9.1 The H+2 Molecular Ion . . . . . . . . . . . . . . . . . . . . . . . 3279.1.1 The Exact Solution for the Rigid H+2 Molecule . . . . . 3289.1.2 Molecular Orbitals and LCAO Approximations . . . . 3319.1.3 Improvements to the LCAO ansatz . . . . . . . . . . . 334

9.2 The H2 Molecule . . . . . . . . . . . . . . . . . . . . . . . . . 3359.2.1 Molecular Orbital Approximation . . . . . . . . . . . . 3369.2.2 The Heitler–London Method . . . . . . . . . . . . . . 3379.2.3 Comparison Between the Two Approximations . . . . . 3389.2.4 Improvements to the Approximations . . . . . . . . . . 339

9.3 Electronic States of Diatomic Molecules . . . . . . . . . . . . . 3409.3.1 The Energetic Order of Electronic States . . . . . . . . 3409.3.2 Symmetry Properties of Electronic States . . . . . . . . 3419.3.3 Electronic Angular Momenta . . . . . . . . . . . . . . 3419.3.4 Electron Spins, Multiplicity and Fine

Structure Splittings . . . . . . . . . . . . . . . . . . . 343

Page 15: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Contents XV

9.3.5 Electron Configurations and MolecularGround States . . . . . . . . . . . . . . . . . . . . . . 344

9.3.6 Excited Molecular States . . . . . . . . . . . . . . . . 3469.3.7 Excimers . . . . . . . . . . . . . . . . . . . . . . . . . 3479.3.8 Correlation Diagrams . . . . . . . . . . . . . . . . . . 348

9.4 The Physical Reasons for Molecular Binding . . . . . . . . . . . 3499.4.1 The Chemical Bond . . . . . . . . . . . . . . . . . . . 3499.4.2 Multipole Interaction . . . . . . . . . . . . . . . . . . 3509.4.3 Induced Dipole Moments and van der

Waals Potential . . . . . . . . . . . . . . . . . . . . . 3529.4.4 General Expansion of the Interaction Potential . . . . . 3559.4.5 The Morse Potential . . . . . . . . . . . . . . . . . . . 3559.4.6 Different Binding Types . . . . . . . . . . . . . . . . . 356

9.5 Rotation and Vibration of Diatomic Molecules . . . . . . . . . . 3579.5.1 The Born-Oppenheimer Approximation . . . . . . . . 3579.5.2 The Rigid Rotor . . . . . . . . . . . . . . . . . . . . . 3599.5.3 Centrifugal Distortion . . . . . . . . . . . . . . . . . . 3619.5.4 The Influence of the Electron Motion . . . . . . . . . . 3619.5.5 Vibrations of Diatomic Molecules . . . . . . . . . . . . 3639.5.6 Interaction Between Rotation and Vibration . . . . . . 3649.5.7 The Dunham Expansion . . . . . . . . . . . . . . . . . 3669.5.8 Rotational Barrier . . . . . . . . . . . . . . . . . . . . 366

9.6 Spectra of Diatomic Molecules . . . . . . . . . . . . . . . . . . 3679.6.1 Transition Matrix Elements . . . . . . . . . . . . . . . 3679.6.2 Vibrational-Rotational Transitions . . . . . . . . . . . 3699.6.3 The Structure of Electronic Transitions . . . . . . . . . 3729.6.4 Continuous Spectra . . . . . . . . . . . . . . . . . . . 377

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

10. Polyatomic Molecules

10.1 Electronic States of Polyatomic Molecules . . . . . . . . . . . . 38310.1.1 The H2O Molecule . . . . . . . . . . . . . . . . . . . 38310.1.2 Hybridization . . . . . . . . . . . . . . . . . . . . . . 38410.1.3 The CO2 Molecule . . . . . . . . . . . . . . . . . . . 38810.1.4 Walsh Diagrams . . . . . . . . . . . . . . . . . . . . . 389

10.2 Molecules with more than Three Atoms . . . . . . . . . . . . . . 39010.2.1 The NH3 Molecule . . . . . . . . . . . . . . . . . . . 39010.2.2 Formaldehyde and Other H2AB Molecules . . . . . . . 39210.2.3 Aromatic Molecules and π-Electron Systems . . . . . . 392

10.3 Rotation of Polyatomic Molecules . . . . . . . . . . . . . . . . . 39410.3.1 Rotation of Symmetric Top Molecules . . . . . . . . . 39710.3.2 Asymmetric Rotor Molecules . . . . . . . . . . . . . . 399

10.4 Vibrations of Polyatomic Molecules . . . . . . . . . . . . . . . . 39910.4.1 Normal Vibrations . . . . . . . . . . . . . . . . . . . . 39910.4.2 Quantitative Treatment . . . . . . . . . . . . . . . . . 39910.4.3 Couplings Between Vibrations and Rotations . . . . . . 402

Page 16: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

XVI Contents

10.5 Spectra of Polyatomic Molecules . . . . . . . . . . . . . . . . . 40310.5.1 Vibrational Transitions within the Same

Electronic State . . . . . . . . . . . . . . . . . . . . . 40410.5.2 Rotational Structure of Vibrational Bands . . . . . . . 40610.5.3 Electronic Transitions . . . . . . . . . . . . . . . . . . 407

10.6 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40810.6.1 Production of Clusters . . . . . . . . . . . . . . . . . . 41010.6.2 Physical Properties of Clusters . . . . . . . . . . . . . 410

10.7 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . 41210.7.1 First Order Reactions . . . . . . . . . . . . . . . . . . 41210.7.2 Second Order Reactions . . . . . . . . . . . . . . . . . 41310.7.3 Exothermic and Endothermic Reactions . . . . . . . . 41410.7.4 Determination of Absolute Reaction Rates . . . . . . . 415

10.8 Molecular Dynamics and Wave Packets . . . . . . . . . . . . . . 416Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

11. Experimental Techniques in Atomic and Molecular Physics

11.1 Basic Principles of Spectroscopic Techniques . . . . . . . . . . . 42211.2 Spectroscopic Instruments . . . . . . . . . . . . . . . . . . . . . 423

11.2.1 Spectrometers . . . . . . . . . . . . . . . . . . . . . . 42311.2.2 Interferometers . . . . . . . . . . . . . . . . . . . . . . 42911.2.3 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 433

11.3 Microwave Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 43711.4 Infrared Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 440

11.4.1 Infrared Spectrometers . . . . . . . . . . . . . . . . . . 44011.4.2 Fourier Transform Spectroscopy . . . . . . . . . . . . . 440

11.5 Laser Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 44411.5.1 Laser-Absorption Spectroscopy . . . . . . . . . . . . . 44411.5.2 Optoacoustic Spectroscopy . . . . . . . . . . . . . . . 44511.5.3 Optogalvanic Spectroscopy . . . . . . . . . . . . . . . 44711.5.4 Cavity-Ringdown Spectroscopy . . . . . . . . . . . . . 44811.5.5 Laser-Induced Fluorescence Spectroscopy . . . . . . . 45011.5.6 Ionization Spectroscopy . . . . . . . . . . . . . . . . . 45211.5.7 Laser Spectroscopy in Molecular Beams . . . . . . . . 45311.5.8 Nonlinear Laser Spectroscopy . . . . . . . . . . . . . . 45511.5.9 Saturation Spectroscopy . . . . . . . . . . . . . . . . . 45611.5.10 Doppler-Free Two-Photon Spectroscopy . . . . . . . . 459

11.6 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 46011.6.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . 46011.6.2 Coherent Anti-Stokes Raman Spectroscopy . . . . . . . 462

11.7 Spectroscopy with Synchrotron Radiation . . . . . . . . . . . . . 46311.8 Electron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 465

11.8.1 Experiments on Electron Scattering . . . . . . . . . . . 46511.8.2 Photoelectron Spectroscopy . . . . . . . . . . . . . . . 46711.8.3 ZEKE Spectroscopy . . . . . . . . . . . . . . . . . . . 469

Page 17: [Graduate Texts in Physics] Atoms, Molecules and Photons ||

Contents XVII

11.9 Measurements of Magnetic and Electric Momentsin Atoms and Molecules . . . . . . . . . . . . . . . . . . . . . . 47011.9.1 The Rabi-Method of Radio-Frequency Spectroscopy . . 47111.9.2 Stark-Spectroscopy . . . . . . . . . . . . . . . . . . . . 473

11.10 Investigations of Atomic and Molecular Collisions . . . . . . . . 47411.10.1 Elastic Scattering . . . . . . . . . . . . . . . . . . . . . 47511.10.2 Inelastic Scattering . . . . . . . . . . . . . . . . . . . . 47811.10.3 Reactive Scattering . . . . . . . . . . . . . . . . . . . . 479

11.11 Time-Resolved Measurements of Atoms and Molecules . . . . . 48011.11.1 Lifetime Measurements . . . . . . . . . . . . . . . . . 48011.11.2 Fast Relaxation Processes in Atoms and Molecules . . . 484

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

12. Modern Developments in Atomic and Molecular Physics

12.1 Optical Cooling and Trapping of Atoms . . . . . . . . . . . . . . 48712.1.1 Photon Recoil . . . . . . . . . . . . . . . . . . . . . . 48712.1.2 Optical Cooling of Atoms . . . . . . . . . . . . . . . . 48912.1.3 Optical Trapping of Atoms . . . . . . . . . . . . . . . . 49112.1.4 Bose–Einstein Condensation . . . . . . . . . . . . . . . 49312.1.5 Molecular Spectroscopy in a MOT . . . . . . . . . . . . 495

12.2 Time-resolved Spectroscopy in the Femtosecond Range . . . . . 49712.2.1 Time-resolved Molecular Vibrations . . . . . . . . . . . 49712.2.2 Femtosecond Transition State Dynamics . . . . . . . . 49812.2.3 Coherent Control . . . . . . . . . . . . . . . . . . . . . 499

12.3 Optical Metrology with New Techniques . . . . . . . . . . . . . 50112.3.1 Frequency Comb . . . . . . . . . . . . . . . . . . . . . 50112.3.2 Atomic Clocks with Trapped Ions . . . . . . . . . . . . 503

12.4 Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50412.5 New Trends in Quantum Optics . . . . . . . . . . . . . . . . . . 510

12.5.1 Which Way Experiments . . . . . . . . . . . . . . . . . 51012.5.2 The Einstein–Podolski–Rosen Paradox . . . . . . . . . 51212.5.3 Schrödinger’s Cat . . . . . . . . . . . . . . . . . . . . 51312.5.4 Entanglement and Quantum Bits . . . . . . . . . . . . . 51312.5.5 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . 515

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Chronological Table for the Development of Atomicand Molecular Physics . . . . . . . . . . . . . . . . . . . . . . . . . 519

Solutions to the Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581