24
I TANDON SCHOOL OF ENGINEERING NEW YORK UNIVERSITY Department of Electrical and Computer Engineering GRADUATE STUDENT MANUAL 1 This manual describes curriculum requirements for the graduate degrees offered by the department. It contains material not included in the School Bulletin, as well as corrections and updated modifications to the material in the Bulletin. The following graduate programs are offered by the department: Doctor of Philosophy Electrical Engineering (PhD/EE) Master of Science Electrical Engineering (MS/EE) Computer Engineering (MS/CompE) The following programs have been discontinues or are being phased out. Students in these programs can still complete their degree requirement. This manual contains the curriculum requirement for MS/TN and MS/SE program. Students in the MS/EP and MS/WI programs should consult the graduate manual Dated Spring 2013 to find the curriculum requirements. Master of Science in Telecommunication Networks (MS/TN) Master of Science in Electrophysics (MS/EP) Master of Science in Systems Engineering (MS/SE) Master of Engineering in Interdisciplinary Studies: Wireless Innovation (ME/WI) All Graduate Certificate Programs Note: There have been some changes in the curriculum requirement for the PhD/EE, MS/EE and MS/CE programs from the requirement described in the previous graduate manual dated Feb. 2016. These changes are effective for all current and new students. However students have the option to follow the curriculum described on the NYU Poly’s Catalog at the time of their matriculation. Previous curriculum requirements can be found in the Graduate Student Manual published in earlier dates available at: http://www.poly.edu/academics/departments/electrical/graduate-resources. Last revised on May 2016.

Graduate Student Manual (Revised 05/24/2016)

Embed Size (px)

Citation preview

Page 1: Graduate Student Manual (Revised 05/24/2016)

I

TANDON SCHOOL OF ENGINEERING

NEW YORK UNIVERSITY

Department of Electrical and Computer Engineering

GRADUATE STUDENT MANUAL1

This manual describes curriculum requirements for the graduate degrees offered by the department. It contains material not included in the School Bulletin, as well as corrections and updated modifications to the material in the Bulletin. The following graduate programs are offered by the department:

Doctor of Philosophy

Electrical Engineering (PhD/EE)

Master of Science

§ Electrical Engineering (MS/EE)

§ Computer Engineering (MS/CompE)

The following programs have been discontinues or are being phased out. Students in these programs can still complete their degree requirement. This manual contains the curriculum requirement for MS/TN and MS/SE program. Students in the MS/EP and MS/WI programs should consult the graduate manual Dated Spring 2013 to find the curriculum requirements.

§ Master of Science in Telecommunication Networks (MS/TN)

§ Master of Science in Electrophysics (MS/EP)

§ Master of Science in Systems Engineering (MS/SE)

§ Master of Engineering in Interdisciplinary Studies: Wireless Innovation (ME/WI)

§ All Graduate Certificate Programs

Note:

There have been some changes in the curriculum requirement for the PhD/EE, MS/EE and MS/CE programs from the requirement described in the previous graduate manual dated Feb. 2016. These changes are effective for all current and new students. However students have the option to follow the curriculum described on the NYU Poly’s Catalog at the time of their matriculation. Previous curriculum requirements can be found in the Graduate Student Manual published in earlier dates available at: http://www.poly.edu/academics/departments/electrical/graduate-resources.

Last revised on May 2016.

Page 2: Graduate Student Manual (Revised 05/24/2016)

II

Table of Contents

I.   DOCTORAL  PROGRAM  ......................................................................................................  1  General  .............................................................................................................................................  1  Admission  to  Program  .......................................................................................................................  1  Thesis  Advisor  and  Academic  Advisor  ................................................................................................  1  Qualifying  Examination  .....................................................................................................................  1  Course  Requirements  ........................................................................................................................  3  Transfer  Credits  ................................................................................................................................  3  Guidance  Committee  ........................................................................................................................  4  Area  Examination  ..............................................................................................................................  4  Registration  for  Ph.D.  Dissertation  Credits  ........................................................................................  4  Submission  of  the  Thesis  and  Thesis  Defense  ....................................................................................  4  Seminar  Attendance  Requirement  ....................................................................................................  5  Publication  Requirement  ..................................................................................................................  5  

       Requirements  for  Students  Entered  Before  Fall  2014  ............................................................................  5  

II.   MASTER  DEGREE  REQUIREMENTS  ....................................................................................  6  1.   MASTER  OF  SCIENCE  ELECTRICAL  ENGINEERING  (MS/EE)  ...........................................................  6  Entrance  Requirements  ........................................................................................................................  6  Course  Requirements  ............................................................................................................................  6  

2.   MASTER  OF  SCIENCE  COMPUTER  ENGINEERING  (MS/CompE)  ....................................................  7  Entrance  Requirements  ........................................................................................................................  7  Course  Requirements  ............................................................................................................................  7  

3.   MASTER  OF  SCIENCE  TELECOMMUNICATION  NETWORKS  (MS/TN)  ............................................  8  4.   MASTER  OF  SCIENCE  SYSTEMS  ENGINEERING  (MS/SE)  .............................................................  10  

III.  FINANCIAL  AID  AND  SCHOLARSHIPS  .................................................................................  12  

IV.   ECE  GRADUATE  COURSE  LISTING  ..................................................................................  14  

V.   FACULTY  ROSTER  BY  AREAS  OF  SPECIALIZATION  IN  ELECTRICAL  AND  COMPUTER  ENGINEERING  (ECE)  ...............................................................................................................  17  

VI.   ADVISORS  AND  PROGRAM  DIRECTORS  .........................................................................  21  

Page 3: Graduate Student Manual (Revised 05/24/2016)

1

I. DOCTORAL PROGRAM

General Graduate students who have exhibited a high degree of scholastic proficiency and have given evidence of ability for conducting independent research may consider extending their goals toward the doctorate. The degree of Ph.D. is awarded after completing the program of study and research described below, and upon preparation and defense of a dissertation representing an original and significant contribution deemed worthy of publication in a recognized scientific or engineering journal.

Admission to Program Students entering the doctoral program with a Bachelor's degree must meet the entrance requirements for the Master's program in the appropriate area of concentration. Students entering at the Master's level for the Ph.D. in Electrical Engineering program are normally expected to have a Master's in Electrical Engineering. Generally, admission to these Ph.D. programs is conditional on a student achieving a 3.5 grade point average in prior BS and MS programs. GRE is required for all applicants.

Thesis Advisor and Academic Advisor Many factors enter into a student's choice of an advisor for his/her research. In addition to the scientific, intellectual and personality factors which influence the pairing of student and professor, financial aspects must also be considered. For most full-time students, the ideal situation is to find an advisor who has a mutually interesting topic, as well as funds available from research grants and contracts which can support the student as a Research Assistant. A prospective student is encouraged to contact faculty members in his/her research area regarding the possibility of advising before applying to the Ph.D. program. A student who joins the Ph.D. program without securing a thesis advisor will be assigned an academic advisor, who will guide the student in terms of course selection and research activities before the qualifying exam. A Ph.D. Student must get the commitment of a faculty member in the student's area of major research interest to be the student's thesis advisor before taking the qualifying exam.

Usually, the thesis advisor is a full-time faculty member in the Electrical and Computer Engineering Department and as such is considered chair of the student's Guidance Committee. If a student wishes to have someone outside the ECE department to serve as his/her advisor, the student should submit the CV of the person and a letter of commitment from the person to serve as the advisor to the Ph.D. EE Program Director for approval. A Ph.D. in the student’s proposed area of research is a nominal requirement.

Qualifying Examination A Ph.D. student must pass the Ph.D. qualifying examination before the deadline to continue in the Ph.D. program and register for Ph.D. Dissertation Credits (EL-GY 999x). The exam is an oral exam with content described below, but the student must have completed a certain course requirement before taking the oral exam. Results of the exam will be recorded in the student’s transcript as RE-GY 9990.

I. Requirements to be satisfied before taking the oral exam 1) A student must have registered at NYU-Poly for at least one semester and taken at least 3 graduate level

courses and the student’s cumulative GPA from formal courses (not including MS thesis, independent projects and readings) should be 3.5 or above.

Page 4: Graduate Student Manual (Revised 05/24/2016)

2

2) A student must have completed at least 2 core courses (See Section on Course Requirement), with GPA over the core courses being 3.5 or above, and each core course earning a grade of B or above.

3) A student must have completed a research project under the supervision of a project advisor. The advisor can be any faculty member associated with ECE department (An external researcher may serve in this role, subject to approval by the chair of the ECE Graduate Curriculum and Standards Committee (to be referred as the Graduate Committee subsequently). The project can be literature survey of a certain topic, reading and understanding of a certain set of papers, or implementation and evaluation of a few algorithms/ideas in existing literature or suggested by the advisor or the student. Novel contribution by the student worthy of publication is not required. The project advisor should ensure that the project topic is appropriate for evaluating the student’s potential for Ph.D. research. It is the student’s responsibility to identify and secure a project advisor.

4) A student should have also secured an ECE faculty member (or an external member approved by the Chair of the Graduate Committee) who agrees to be his/her Ph.D. advisor if the student passes the oral exam. The project advisor does not have to be the Ph.D. advisor. The prospective Ph.D. advisor is not obligated to provide financial support for the student.

II. Oral exam 5) The oral exam committee will include the prospective Ph.D. advisor, and three other faculty members chosen

by the student in consultation with the Ph.D. advisor. The committee should have at least three Poly ECE tenure or tenure track (T/TT) faculty (including advisor), the fourth one can be from NYUAD, NYUSH, faculty member from other NYU departments, or industry/research professor with Ph.D. in ECE. At most one member can attend remotely if the member is at NYUAD or NYUSH. The student is responsible to secure the committee members to attend the oral exam and identify a time at which all committee members can attend. The exam should be scheduled for 1.5 hour to allow sufficient time for questions and answers and final discussion among the committee members. Once the schedule is fixed, the advisor would announce the exam to the entire ECE faculty to welcome other faculty members to attend the exam.

6) A student must send in an official application for taking the oral exam to the Ph.D. EE program chair, at least two weeks before the target date of the oral exam. The application form can be downloaded from: http://engineering.nyu.edu/files/QualExamApplication_20140510.docx.

7) The student must submit a written project report to the exam committee at least one week before the exam date. The report should be written following the standard format of a conference paper, with 4-6 pages in double column, font size 11.

8) During the exam, the student should give a 30-minute project presentation, followed by questions from the committee members, which should cover both the topic areas of the project and fundamental knowledge in the student’s chosen research area. Each committee member (excluding the advisor) is expected to engage in about 15 minutes of questions and answers with the student, with a total of 45 minutes for questions and answers.

9) The committee will provide a written evaluation of the student’s potential for Ph.D. research (in terms of technical ability, and oral and written communications skill) to the department. The committee members can seek input from the prospective Ph.D. advisor when making such evaluation, but the advisor is excluded from participating in formulating the written evaluation.

10) The ECE department will make the final decision of pass or fail based on the exam committee’s report. 11) Result (Pass or fail) of the qualifying exam (RE9990) will be recorded in the student’s transcript.

III. Timelines and Repeat of Oral Exam

12) First Exam: For students who started the Ph.D. program with prior MS degrees related to electrical engineering, the first oral exam should be taken no later than one year (two years for part-time students) after starting in the Ph.D. program. For students who started the Ph.D. program without a prior MS degree, the first

Page 5: Graduate Student Manual (Revised 05/24/2016)

3

oral exam should be taken no later than two years (three years for part-time students) after starting in the Ph.D. program. If a student does not meet the requirement for taking the exam by this deadline, the student will be disqualified from the program.

13) Repeat oral exam and disqualification: Students who failed the first oral exam but otherwise successfully meet the requirement for taking the oral exam can repeat the exam at most once, which should be completed within one year after the first exam. Students who fail to pass the repeat exam will be disqualified from the program.

Course Requirements 1) Core Courses: A student, in consultation with and upon approval by the Ph.D. advisor, should choose at least 4

EL courses (12 credits) among courses with numbers EL-GY6xxx, EL-GY7xxx, EL-GY8xxx, as their core courses. Transferred courses cannot be used to satisfy the core course requirement. To graduate, each course must have a grade of B or above and the average grade of the four courses must be 3.5 or above. The student must have completed at least 2 such courses with the average grade of taken courses being 3.5 or above, before taking the oral qualifying exam. The remaining core courses must be completed before graduation.

2) EL courses: A student must choose at least 24 credits of EL courses, including the core courses. This requirement can be satisfied by the 30 credits transferred from a prior MS degree in electrical engineering or computer engineering.

3) Non-EL Courses: A student must choose at least 2 non-EL graduate-level courses (6 credits or more) that are in either Science or Engineering discipline. These courses should be chosen from areas that are distinct and yet consonant with the student’s research area. Please note the courses in management cannot be counted towards this requirement. Courses taken at other schools of NYU will be counted towards this requirement. Transferred courses taken at other accredited graduate programs are subject to approval by the Ph.D. EE program director. Please note that this requirement replaces the previous minor requirement for Ph.D. EE, which requires the student to take at least 3 courses in a chosen minor area.

4) Other courses: The degree requires a total of 75 credits with at least 21 Ph.D. dissertation credits taken at Poly. A student must take a minimum of 42 credits in formal courses (as distinct from “independent study” credits such as reading, project or thesis), with a minimum of 24 course credits in EL courses. The student has freedom in choosing courses, provided he or she satisfies the requirements specified in 1), 2) and 3). The student should consult with his/her Ph.D. advisor or academic advisor in devising a course plan as early as possible so that the course work covers sufficient depth for the student’s chosen area of research and related field, as well as sufficient breadth. Note that credits from CS5000-level courses cannot be counted towards Ph.D. EE degree.

5) GPA requirement: As with all the graduate programs at NYU-Poly, a student must maintain a GPA of 3.0 or above among all courses taken at Poly. A student with GPA below 3.0 has up to two semesters on probation. If at the end of the second semester on probation, the GPA is still below 3.0, the student will be disqualified from the program. The Ph.D. EE program further requires that a student must have a GPA of 3.5 or above among all formal courses (not including dissertation or other independent studies) taken at NYU Poly to graduate, in addition to the GPA requirement for the core courses as specified in Item 1).

6) Internships: Up to 6 credits of approved internships for Ph.D. (CP-GY 9941, CP-GY 9951, CP-GY 9961, CP-GY 9971, 1.5 credits each) can be applied towards the 75 credits Ph.D. degree requirement. These credits can be part of the 45 credits beyond the 30 credits of a prior MS degree, which may include up to 3 credits of approved internships for MS (CP-GY 9911, CP-GY 9921). For an internship to be approved for credits, the internship must provide training relevant to the student’s research area. All internship must be approved and supervised by the student’s Ph.D. advisor. The internship supervisor should submit a midterm and a final term evaluation report to the Ph.D. advisor. The student must submit a project report to the advisor upon completion of the internship for the evaluation and grading of the internship course.

Transfer Credits

Page 6: Graduate Student Manual (Revised 05/24/2016)

4

Ph.D. students are allowed to transfer up to 36 credits, of which 30 credits must be from a prior MS degree in ECE or a closely related field. This means that Ph.D. students admitted without a prior MS degree can transfer at most 6 credits. For the blanket transfer of 30 credits for a prior MS degree, the student must provide an official document. For individual course transfer, the student must provide an official transcript in a sealed envelop as well as catalog descriptions of the courses to be transferred, for evaluation and approval by the department graduate advisor. The official transcript and/or diploma submitted during the student's admission process can be used in place of new submission. Graduate courses taken at other schools of NYU or taken as an undergraduate student at NYU School of Engineering are exempt from this policy, but are subject to the general polity of the School of Engineering regarding such courses. This policy is effective for students entering in Spring 2015 and later.

Guidance Committee On passing the qualifying examinations, the student in consultation with the thesis advisor should identify additional members of the student’s guidance committee. The committee should be composed of at least three members with the thesis advisor usually acting as Chairman. In the case where the thesis advisor is not a tenure or tenure track (T/TT) faculty member of the Department, then a T/TT faculty member of the Department must be included on the Guidance Committee and serve as Committee Chair. In addition to the advisor, at least one other member of the Guidance Committee must be in the student's area of major research interest. This member may be from outside the Institute. The committee should include at least two ECE T/TT faculty (including the advisor, and the NYUAD and NYUSH T/TT faculty), and the additional member can be other faculty members or external member with research expertise in the area. The student must submit the names of the members of his or her Guidance Committee to the Office of Graduate Studies with a copy to the ECE Graduate Office within 6 months of passing the qualifying exam. The Guidance Committee conducts the area examination, thesis defense and approves the final thesis. Guidance Committee appointment form should be obtained from the office of Graduate Studies.

Area Examination In the area exam, the student reviews the prior research in the student’s chosen dissertation topic and presents preliminary research results and additional research plan. The area exam is conducted by the Guidance Committee, but may be open to other interested faculty and students. The Guidance Committee attends and evaluates the student's performance and determines whether the student demonstrates the depth of knowledge and understanding necessary to carry out research in the chosen area. Results of the exam will be recorded in the student’s transcript as EL-GY 9980.

The student must submit a written report that summarizes prior research and the future plan at least one week before the scheduled exam time. The report should following the Ph.D. dissertation template and be at least 25 pages long. The student must take and pass the area exam within 2 years after passing the Ph.D. qualifying exam. Students who fail to pass the exam by the deadline will be disqualified from the program.

Registration for Ph.D. Dissertation Credits After passing the qualifying exams, and with the agreement of the Thesis Advisor, the Ph.D. candidate may begin registration for dissertation credits EL-GY 999x. (The student's failure to abide by this rule may result in loss of credit for the dissertation registration.) A student must register at least 3 credits for EL-GY999x each semester. A minimum of 21 credits is required for the Ph.D. degree. The student must register for thesis continuously, every Fall and Spring semester, unless a Leave of Absence has been granted by the Office of Graduate Studies.

Submission of the Thesis and Thesis Defense

Page 7: Graduate Student Manual (Revised 05/24/2016)

5

Upon completion of the doctoral dissertation, the candidate undergoes an oral thesis defense. The defense is conducted by the Guidance Committee, but is open to all members of the faculty and other invited people. The student must submit a complete draft of the dissertation to the Guidance Committee members at least one week before the scheduled defense. The student should consult the Office of Graduate Studies regarding how to submit, reproduce and bind the final manuscript.

Seminar Attendance Requirement Ph.D. students are required to register for a 0-credit Research Seminar course (EL-GY 9900) for at least 4 semesters. Satisfactory grade is given only if the student attends more than 2/3 of the seminars offered in a semester. Part-time students who have difficulty attending the seminar because of work conflict may be exempted from this requirement upon approval of the Ph.D. EE program director. The student should submit the approval note when applying for graduation.

Publication Requirement To be granted the Ph.D. degree, a Ph.D. candidate must have at least one submitted journal paper on the thesis research subject. Documentation in the form of a letter of submission to a refereed journal, and acknowledgment of its receipt by the journal, will constitute the required evidence. If there is no accepted journal paper, the student should have at least one accepted conference paper that appeared in conference proceedings.

Requirements for Students Entered Before Fall 2014 Students who entered before Fall 2014 can either follow the requirements described above, or the requirement effective at the time of matriculation. The requirements posted in the NYU-Poly catalog as of Sept. 2013 differ from the new requirements in the following aspects. For a complete description, please consult the ECE Graduate Student Manual published in Spring 2013.

Course and Thesis Requirements: A minimum of 75 credits of academic work beyond the bachelor’s degree, including a minimum of 21 credits of NYU-Poly dissertation research, is required. A minimum of 42 credits in formal courses (as distinct from independent study credits such as reading, project or thesis) are required. A student entering with a MS from a reputable graduate program may transfer 30 credits. PhD students are required to take a minimum of 9 credits of courses in a minor area outside of electrical engineering. The minor must be taken in an area that is both distinct from and yet consonant with the student’s major study area. Students work with thesis advisers to develop their major study program. The major program should constitute a coherent, in-depth study of the most advanced knowledge in the student’s area of concentration.

Publication Requirement: To be granted the PhD degree, a PhD candidate must have at least one accepted or submitted journal paper on the thesis-research subject.

Transfer credits: For Ph.D. students entered before Spring 2015, the following policy as stated in the NYU-Poly catalog as of Sept. 2013 are applicable: Doctoral candidates may transfer a maximum of 48 credits, including a 30-credit blanket transfer from a prior MS degree in Electrical Engineering or a closely related field, and additional courses in Science and Engineering not included in the prior MS that are individually transferred. For the blanket 30-credit transfer, the prior MS need not be a 30-credit MS, so long as an MS degree (or equivalent) was granted, and a copy of the degree and detailed transcripts are presented. Additional courses individually transferred cannot include project, thesis, dissertation, guided studies or readings, or special topics credits. Applications for transfer credits must be submitted for consideration before the end of the first semester of matriculation. The student’s major academic department evaluates graduate transfer credits, but no courses with grades less than B will be considered.

Page 8: Graduate Student Manual (Revised 05/24/2016)

6

II. MASTER DEGREE REQUIREMENTS

For all MS degree program, a total of 30 credits are required for each degree. A grade point average (GPA) of 3.0 is required in all graduate courses taken at NYU-Poly except those used for the undergraduate degree.

1. MASTER OF SCIENCE ELECTRICAL ENGINEERING (MS/EE)

Entrance Requirements

Admission to the Master of Science in Electrical Engineering Program requires a Bachelor’s in Electrical and/or Computer Engineering from an accredited institution, with a GPA of 3.0/4.0 or higher. The Graduate Record Exam (GRE) is required for all applicants. Students who do not have a prior BS degree in Electrical and/or Computer Engineering but have strong background in their chosen focus areas of study and sufficient mathematics preparation may be considered for admission.

Course Requirements The course requirement described below has been substantially revised from the previous requirement. The changes are effective in Fall 2014 for both new students and students entered before Fall 2014. However, students who entered before Fall 2014 have the option to follow the curriculum described on the NYU Poly’s Catalog at the time of their matriculation.

To obtain the MS in Electrical Engineering degree, students must complete a total of 30 credits, with restrictions described below.

Core Courses: The core courses cover fundamental material and should be taken as early as possible. An advanced course subsequent to a core course may be taken in lieu of the core course, upon approval by the MSEE program advisor. All students must choose two out of the following core courses:

EL-GY 6113 Digital Signal Processing I EL-GY 6253 Linear Systems EL-GY 6303 Probability and Stochastic Processes EL-GY 6713 Electromagnetic Theory and Applications EL-GY 6403 Fundamentals of Analog Integrated circuit design (Note that this is a newly added course in the core-course list approved by ECE Faculty in April 2015.)

Concentration areas: Students are recommended to select courses to focus on one or two concentration areas, to obtain sufficient depth in the choose areas. To provide flexibility for course selection based on the student’s interests, a student does not need to officially declare a concentration, and no specific number of credits is required for each chosen centration. For an up-to-date list of concentration areas and courses for each area, please visit

http://www.poly.edu/academics/departments/electrical/grad-areas-courses

Thesis, project, reading: Students are encouraged to participate in research by registering for a master’s thesis (EL-GY997x, minimal 6 credits), an advanced project (EL-GY9953 or EL-GY9963, 3 credits each, EL-GY9941, 1.5 credits) or a reading course (EL-GY9933, 3 credits). Students must secure a faculty member’s commitment for advising such individual studies. Oral defense of the master’s thesis with at least three professors (at least 2 ECE professors) in attendance is required. For the project and reading courses, a project report and an oral presentation is required. The total credits for thesis, projects, readings, and internships (see below) should not exceed 9 credits within the 30 credits required for the MS degree.

Page 9: Graduate Student Manual (Revised 05/24/2016)

7

Internships: Up to 3 credits of approved internships (CP9911, CP9921, 1.5 credit each) can be applied towards the 30 credits MS degree requirement. For an internship to be approved for credits, the internship job must provide industry and/or research experience relevant to the degree program. All internship must be approved and supervised by an ECE faculty member. Students must secure a faculty member’s commitment for advising an internship. The internship supervisor should submit a midterm and a final term evaluation report to the advisor. The student must submit a project report to the advisor upon completion of the internship for the evaluation and grading of the internship course. The total credits for independent studies including MS thesis, projects, reading, and internship cannot exceed 9 credits within the 30 credits towards the MS degree.

Out-of-department courses and 5000-level EL courses: At least 24 credits should be EL-prefixed courses. The other 6 credits can be from any science, engineering or management departments. A 3-credit course taken at other science or engineering departments of NYU that is closely related to electrical engineering may be used to substitute an EL course upon approval by the MSEE program advisor. The total number of credits for 5000-level EL courses and non-EL courses cannot exceed 12 credits. (Note that CS-GY 6133 Computer Architecture I will be counted as EL credits for this purpose, but CP99x1 will be counted as non-EL courses). Credits from 5000-level courses from other departments cannot be counted towards MS/EE degree, except with approval by Program Director.

Note about CS-GY 6843 Computer Networking: We expect most students have covered this material in an undergraduate course. Therefore students can only take this course for credits towards MSEE degree in exceptional cases and only if approved by Professor Yong Liu.

Transfer Credits: No transfer credits are accepted towards the MS degree.

GPA requirements: An overall GPA of 3.0 or above in all graduate courses taken at NYU is required. In addition, an average of 3.0 is required among the two core courses.

2. MASTER OF SCIENCE COMPUTER ENGINEERING (MS/CompE)

Entrance Requirements

Admission to the MS program requires a bachelor’s degree in computer engineering, electrical engineering or computer science from an accredited institution. Students without such prior degrees must complete appropriate undergraduate courses to remove any deficiencies in preparation. Topics in which deficiencies must be removed include logic circuits design, state analysis and synthesis techniques, computer architecture, data structures and algorithms and C or C++ programming. The Graduate Record Exam (GRE) is required for all applicants.

Course Requirements

The course requirement described below has been revised from the previous requirement. The changes are effective in Fall 2015. However, students who entered before Fall 2015 have the option to follow the curriculum described on the NYU Poly’s Catalog at the time of their matriculation.

Core Courses (6 credits):

The core courses cover fundamental material and should be taken as early as possible. An advanced course subsequent to a core course may be taken in lieu of the core course, upon by the program advisor. All students must choose two out of the following core courses:

Page 10: Graduate Student Manual (Revised 05/24/2016)

8

• CS-GY 6133 Computer Architecture I • EL-GY 6463 Advanced Hardware Design • EL-GY 6473 Introduction to VLSI System Design • EL-GY 6513 Fundamentals of Solid-State Electronic Devices • EL-GY 6523 Nanoelectronic Devices

(Note that EL-GY 6463 and EL-GY 6523 are two newly added courses in the core-course list approved by ECE Faculty in April 2015. EL-GY 6513 is a newly added course approved by ECE Faculty in April 2016)

Electives (21 credits):

Other graduate ECE and CSE courses (courses with EL and CS prefixes) including those in the core course listing that are not used to satisfy the core requirement. At least 15 out of 30 credits should be graduate ECE credits (EL numbered courses). Up to two graduate courses can be taken from other science, engineering, or management departments at NYU. The total number of credits for 5000-level EL courses and non-EL/CS courses cannot exceed 12 credits. (Note that CP99x1 will be counted as non-EL courses). Furthermore, credits from 5000-level courses from other departments cannot be counted towards MS/EE degree.

Note about CS-GY 6843 Computer Networking: We expect most students have covered this material in an undergraduate course. Therefore students can only take this course in exceptional cases and only if approved by Professor Yong Liu.

Project requirement (3 credits):

One 3-credit advanced project in ECE/CSE (EL9953 or CS9963) is required. Certain courses with significant project component may be used to partially satisfy the project requirement, subject to approval by the program director.

MS Thesis Option (6 credits): A thesis in ECE/CSE (EL-GY997x/CS-GY997x) may be selected to replace the 3-credit Advanced Project and 3 credits in the Elective Requirement.

Internships: Up to 3 credits of approved internships (CP9911, CP9921, 1.5 credit each) can be applied towards the 30 credits MS degree requirement. For an internship to be approved for credits, the internship job must provide industry and/or research experience relevant to the Computer Engineering degree program. All internships must be approved and supervised by an ECE faculty member. Students must secure a faculty member’s commitment for advising an internship. The internship supervisor should submit a midterm and a final term evaluation report to the advisor. The student must submit a project report to the advisor upon completion of the internship for the evaluation and grading of the internship course. The total credits for independent studies including MS thesis, projects, reading, and internship cannot exceed 9 credits within the 30 credits towards the MS degree.

Transfer Credits: No transfer credits are accepted towards the MS degree.

GPA requirements: An overall GPA of 3.0 or above in all graduate courses taken at NYU is required. In addition, an average of 3.0 is required among the two core courses.

3. MASTER OF SCIENCE TELECOMMUNICATION NETWORKS (MS/TN)

This program is being phased out and will not admit new students starting in Spring 2014 semester. Students who are already in the program can still obtain the degree upon satisfactory completion of the course requirement of the program. Students who are relatively new in this program but have sufficient past courses and background to complete the MSEE programs are encouraged to apply for change of program to MS in Electrical Engineering.

Page 11: Graduate Student Manual (Revised 05/24/2016)

9

Course Requirements To satisfy the requirements for a master’s degree, students must complete a total of 30 credits as described below, with an overall average of 3.0. In addition, a 3.0 average is required in the courses described in GROUP1 and GROUP2 below. Students, who have satisfactorily completed equivalent courses, as determined by the MS/TN advisor, may be allowed to replace required courses in Group1 and 2 courses with other courses, starting with the remaining Group2 course. If a student has previously taken two or more equivalent courses from Group 1and 2, these additional courses can be replaced by advanced courses. Permission of the MS/TN advisor is required for all course substitutions.

GROUP 1: Required Courses 6 Credits

EL 6303 Probability and Stochastic Processes One course out of the following three:

CS-GY 6133 Computer Architecture I CS-GY 6233 Introduction to Operating Systems CS-GY 6033 Design and Analysis of Algorithm I

GROUP 2: Additional Required Courses 12 Credits

Students are required to take 4 out of the 6 courses listed below.

EL 5373 Internet Architecture and Protocols Lab EL 6383 High Speed Networks CS-GY 6823 Network Security EL 7353 Communication Networks I: Analysis, Modeling and Performance EL 7363 Communication Networks II: Design and Algorithm EL 7373 High Performance Switches and Routers (or a special topics course in the networking area subject to

approval by the program director)

In certain rare circumstances, and with approval of the program’s director, other computer science and electrical engineering courses may be used to fulfill this requirement.

GROUP 3: Project Requirement 3 Credits

Depending on whether your project adviser teaches in the Computer Science (CS) or Electrical and Computer Engineering (ECE) departments, you must take one of the following: EL 9953 Advanced Project I, Credits: 3.00 or CS-GY 6873 Project in Telecommunication Networks, Credits: 3.00 You must obtain a project adviser and create an approved project plan before registering, however. The project should be completed in 1 semester. After obtaining approval, you may substitute the required 3-credit project with a 6-credit MS thesis. The extra 3 thesis credits will count toward the program elective in Group 4.

GROUP 4: Program Elective Courses 9 Credits

You must take 3 courses not already counted toward Group 1 and Group 2 requirement from the partial list of electives below as well as the previous group 1 and group 2 course lists. Other courses not on this list can be taken with approval from the program director. Relevant management-department graduate courses can be taken with approval from the program director. No more than 1 MG courses can be counted toward this degree.

CS-GY 9053 Introduction to Java, Credits: 3.00 EL 6013 Digital Communications: 3.00 EL 6023 Wireless Communications, Credits: 3.00 EL 6063 Information Theory, Credits: 3.00 EL 6333 Detection and Estimation Theory, Credits: 3.00

Page 12: Graduate Student Manual (Revised 05/24/2016)

10

CS-GY 6043 Design and Analysis of Algorithms II, Credits: 3.00 CS-GY 6143 Computer Architecture II, Credits: 3.00 CS-GY 6243 Operating Systems II, Credits: 3.00 CS-GY 6063 Software Engineering I, Credits: 3.00 CS-GY 6083 Principles of Database Systems, Credits: 3.00 CS-GY 6843 Computer Networking, Credits: 3.00* * A student can only take CS-GY6843 if the student has not taken any computer networking course at undergraduate or graduate level. Permission is needed from MSTN program director. Internships: Up to 3 credits of approved internships (CP9911, CP9921, 1.5 credits each) can be used to satisfy the project requirement of the MSTN degree requirement. For an internship to be approved for credits, the internship job must provide industry and/or research experience relevant to the degree program. All internship must be approved and supervised by an ECE faculty member. Students must secure a faculty member’s commitment for advising an internship. The student must submit a project report to the advisor upon completion of the internship for the evaluation of the internship course. If a student only takes one internship (1.5 credits), the student can extend it to a full project by registering the 1.5-credit project course EL9941 under the same faculty advisor for the internship.

4. MASTER OF SCIENCE SYSTEMS ENGINEERING (MS/SE)

This program is being phased out and will not admit new students starting in Spring 2015 semester. Students who are already in the program can still obtain the degree upon satisfactory completion of the course requirement of the program. Students who are relatively new in this program but have sufficient past courses and background to complete the MSEE programs are encouraged to apply for change of program to MS in Electrical Engineering. The MS in Systems Engineering degree program focuses on analysis, operation, maintenance, and design of complex systems.

Entrance Requirements The entrance requirement for a Master of Science in Systems Engineering is a Bachelor’s degree in engineering or science from an accredited institution, with at least a B average in undergraduate technical courses. It is noted that for some tracks, students should have taken undergraduate courses in differential equations, probability, linear systems, feedback control and computer programming. Deficiencies in any of the subject matters should be addressed by taking the required courses for any particular track. The Graduate Record Exam (GRE) is required for all applicants.

Course Requirements To satisfy the requirements for an MS in Systems Engineering, students must complete three core courses and two tracks at least one of which must be a core track. A minimum of three courses should be taken in a track. One course in each track may be a core course. The remaining credits (up to 9 credits) can be chosen from any science, engineering and management courses. If a student elects to write a MS thesis (6 credits), then only two courses in a track are required. The total number of credits required is 30 and at least 15 credits should be from EL prefixed courses. A GPA of 3.0 or above is required in all graduate courses.

Core Courses: Three courses chosen from among the following: 9 Credits

EL-GY 5213 Introduction to Systems Engineering EL-GY 6213 System Modeling, Analysis and Design EL-GY 6233 Systems Optimization Methods EL-GY 6253 Linear Systems EL-GY 6303 Probability and Stochastic Processes MG 8203 Project Management

Page 13: Graduate Student Manual (Revised 05/24/2016)

11

For students entering Fall 13 or later, must choose at least one from EL-GY6253 and EL-GY6303.

Core Tracks: 6-18 Credits

Network Management (EL-GY 5373, 7353, 7363) Mobile Communications (EL-GY 6013, 6023, 6033) Systems and Automation (EL-GY 5223, 5253, 6253, 8223) Energy Systems (EL-GY 5613, 6623, 6633, 6653) Large Scale Systems Modeling and Control (EL-GY 6253, 7253, 8253, 92x3) Multimedia Applications (EL-GY 6113, 6123, 7133, CS-GY 6643)

Elective Tracks: 0-9 Credits

Computer Systems and Security (CS-GY 6813, 6823, 9043, EL-GY 6393) Software Engineering (CS-GY 6063, 6073, 6083, 6183) Operations Research and Management (MG 6303, 6463, 8203, FRE 6023) Financial Engineering (FRE 6023, 6083, 6103, 6411, 6291) Biological Systems (Selected courses with prefix BE, CH, CM, subject to advisor approval)

Free Electives: 0-9 Credits

Any courses in science, engineering or management Total: 30 Credits

Page 14: Graduate Student Manual (Revised 05/24/2016)

12

III. FINANCIAL AID AND SCHOLARSHIPS

Financial Support Available for Ph.D. Students

FELLOWSHIP Dean’s Fellowship: Offered to new applicants for Ph.D. programs in the School of Engineering with exceptional qualifications. The fellowship will cover 12 month stipend and full tuition and fee, with guaranteed funding for 4 years provided the student maintains high academic standards.

Ernst Weber Fellowship: Offered to new applicants for Ph.D. in Electrical Engineering programs with exceptional qualifications. The fellowship will cover 12 month stipend and full tuition and fee, with guaranteed funding for 4 years provided the student maintains high academic standards. Students receiving this fellowship are expected to work as Teaching Assistants in Year 2.

CATT Fellowships: please visit: http://www.catt.poly.edu/education/catt-fellowship

NYU WIRELESS fellowship:

For more information, please visit: NYU WIRELESS fellowship

GAANN Fellowship: please visit

http://nyuwireless.com/ThePulse/three-3-year-gaann-phd-grants-for-us-citizensperm-residents.php

AMPS Fellowship

Depending on the area of research, some ECE graduate students who are US citizens or have permanent residence may qualify for the AMPS Fellowship. http://gk12.poly.edu/amps-cbri/html/application/appInfo.html

IGERT Scholarship

Depending on the area of research, some ECE graduate students who are US citizens or have permanent residence may qualify for The IGERT scholarship in the Information Security and Privacy Interdisciplinary Research and Education (INSPIRE) program. Please visit http://crissp.poly.edu/?page_id=368

TEACHING ASSISTANTSHIP Students receiving this award are expected to perform teaching duties in addition to research work supervised by a faculty advisor. The applicant must be a full-time PhD candidate. The compensation for the teaching assistants includes a stipend in addition to Tuition Remission for up to 9 credits per semester. This award is given to new and current PhD students with excellent academic credentials.

RESEARCH ASSISTANTSHIP Students receiving this award are expected to perform research work supervised by a faculty advisor. The applicant must be a full-time PhD candidate. The compensation for the research assistants includes a stipend in addition to Tuition Remission for up to 9 credits per semester. This award is given to new and current PhD students with excellent academic credentials.

Page 15: Graduate Student Manual (Revised 05/24/2016)

13

TEACHERS AIDE The ECE department hires qualified graduate students as Teachers Aide for course related duties such as homework grading, assisting graduate and undergraduate lab sessions, and office hours. These positions are open only for current students who have excellent academic records and demonstrated good teaching skills. Openings for these positions vary from semester to semester. Interested students should contact the faculty in charge of the relevant courses directly.

Financial Support Available for MS Students

MERIT SCHOLARSHIP The Merit scholarships are offered to qualifying applicants to Master's degree, in the form of tuition discount. For more information, please visit

http://engineering.nyu.edu/graduate-school/current-students/tuition-financial-aid

GRADUATE STUDENT EMPLOYMENT AND TRAINING (GSET) GSET program engages full time graduate students in good standing to work in the academic or administrative field in the department. For more information, please consult:

http://engineering.nyu.edu/life/orientation/graduate/faq#GSET

Page 16: Graduate Student Manual (Revised 05/24/2016)

14

IV. ECE GRADUATE COURSE LISTING

Catalog listing of all ECE Graduate Courses can be found at:

http://bulletin.engineering.nyu.edu/

Some important Guidelines and Policies, including applying for graduation and taking classes at NYU, are provided at: http://engineering.nyu.edu/students/gc-forms

Course Number and Title Prerequisites Course Director Brooklyn Offering Schedule

EL-GY5023 Wireless Information Systems Laboratory I Graduate status or EE-UY3404 Prof. Michael Knox discontinued

EL-GY5033 Wireless Information Systems Laboratory II EL-GY5023 Prof. Michael Knox discontinued

EL-GY5213 Introduction to Systems Engineering Graduate Status Prof. Zhong-Ping Jiang online

EL-GY5223 Sensor Based Robotics Graduate status or EE-UY3054 or equivalent. Prof. Farshad Khorrami S

EL-GY5253 Applied Matrix Theory Graduate status, MA2012, MA2132, MA2112 and MA2122 Prof. Zhong-Ping Jiang F

EL-GY5373 Internet Architecture & Protocols Lab EE-UY136 Prof. Yong Liu F,S

EL-GY5463 Introduction to RF/Microwave Integrated Circuits EE-UY3604 Prof. Spencer Kuo S

EL-GY5533 / PH5533 Physics of Nanoelectronics PH2004 or instructor’s permission Prof. Edward Wolf (PH) F

EL-GY5613 Introduction to Electric Power Systems EE-UY2013 Prof. Francisco De Leon F

EL-GY5623 Finite Elements For Electrical Engineering Prof. Francisco De Leon As needed

EL-GY5663 / PH5663 Physics of Alternative Energy PH2004 Prof. Edward Wolf (PH) S

EL-GY5673 Electronic Power Supplies EE-UY3824 or equivalent Prof. Dariusz

Czarkowski F

EL-GY5733 RF and Microwave Systems Engineering EE-UY3604 Prof. Spencer Kuo F

EL-GY5753 Introduction to Plasma Engineering EE-UY3604 Prof. Spencer Kuo as needed

EL-GY6013 Digital Communications EE-UY3404 and EL-GY6303 (Recently revised) Prof. Elza Erkip F

EL-GY6023 Wireless Communications EL-GY6013 (Recently revised) Prof. I-Tai Lu S

EL-GY6063 Information Theory Graduate status and EL-GY6303 Prof. Elza Erkip As needed EL-GY6113 Digital Signal Processing I EE-UY3054 (Recently revised) Prof. Ivan Selesnick F,S

EL-GY6123 Image and Video Processing

EL-GY 6113 and EL-GY6303 preferred but not required (Recently revised, including material from previous EL 5123 and EL 6123)

Prof. Yao Wang S

EL-GY6183 Digital Signal Processing Laboratory

Graduate status, undergraduate with GPA>=3.0 and EE-UY3054. Prof. Ivan Selesnick F

EL-GY6213 System Modeling, analysis & Design EL-GY5213 Prof. Farshad Khorrami online

EL-GY6233 System Optimization Method Graduate status and EL-GY5253 or EL-GY6253 Prof. Zhong-Ping Jiang S

EL-GY6243 System Theory and Graduate status and EE-UY3064 Prof. Zhong-Ping Jiang F

Page 17: Graduate Student Manual (Revised 05/24/2016)

15

Feedback Control EL-GY6253 Linear Systems Graduate status and EE-UY3054 Prof. Zhong-Ping Jiang F,S EL-GY6303 Probability and Stochastic Processes Graduate status and MA3012 (Recently revised) Prof. Unnikrishna Pillai F,S

EL-GY6333 Detection and Estimation Theory EL-GY6303 (Recently revised) Prof. Unnikrishna Pillai S

EL-GY6383 High-Speed Networks Graduate status and EL-GY5373 Prof. Kang Xi S

EL-GY6403 Analog integrated circuits Graduate status, or undergraduate with GPA>=3.0 and EE-UY3124. Prof. Davood Shahrjerdi S

EL-GY6443 VLSI System and Architecture Design

EL-GY6473 (formerly EL-GY5473) or instructor’s permission

Prof. Ramesh Karri S

EL-GY6453 Advances in Reconfigurable Systems

EL-GY6463 (formerly EL-GY5493) Prof. Ramesh Karri as needed

and online

EL-GY6463 Advanced Hardware Design CS-UY 1124,2214 and EE-UY2004 Prof. Ramesh Karri F

EL-GY6473 Introduction to VLSI System Design CS-UY 2204 and EE-UY3114 Prof. Ramesh Karri F

EL-GY6483 Real Time Embedded Systems

Knowledge of C, Pascal or other programming language and a basic understanding of computer architecture

Prof. Ramesh Karri S

EL-GY6493 Digital VLSI System Testing CS-UY 2204 or equivalent Prof. Ramesh Karri as needed

EL-GY6513 Solid State Electronic Devices

Graduate status, or undergraduate with GPA>=3.0 and MA-UY 2034 and PH-UY 2023 Prof. Davood Shahrjerdi F

EL-GY 6523 Nanoelectronic devices EL-GY 6513 or has taken a undergraduate course in solid state device. Undergraduate students must have 3.0 cumulative GPA or higher.

Prof. Shaloo Rakheja S

EL-GY6583 Fiber Optic Communications PH4474 or EE-UY3604 Prof. Spencer Kuo S

EL-GY6603 Power Electronics Graduate status, EE-UY3054 and EE-UY3124 Prof. Zivan Zabar F, every two years

EL-GY6613 Electrical Transmission & Distribution Systems Graduate status Prof. Francisco De Leon as needed

EL-GY6623 Power Systems Economics and Planning Graduate status and EL-GY5613 Prof. Dariusz

Czarkowski as needed

EL-GY6633 Transients, Surges and Faults in Power Systems Graduate status and EL-GY5613 or equivalent Prof. Dariusz

Czarkowski F, every two years

EL-GY6653 Power System Stability Graduate status, EE-UY3064 and EL-GY5613 Prof. Francisco De Leon every two years

EL-GY6663 Distributed Generation Systems

Graduate status, EE-UY3064 and EL-GY5613 EE-UY3824 and EL-GY5613or equivalent; co-requisite: EL-GY6603

Prof. Zivan Zabar S

EL-GY6683 Electric Drives Graduate status and EE-UY3824 or equivalent Prof. Dariusz Czarkowski

Every two years

El 6713 Electromagnetic Theory and Applications Graduate status and EE-UY3604 Prof. Nirod Das F

EL-GY6723 Electromagnetic Radiation and Antennas

Graduate status and EL-GY6713 or EE-UY3604 with grade B or better Prof. Nirod Das S

EL-GY6813 / BE6203 Medical Imaging I EL-GY6113. EL-GY6123 desired Prof. Yao Wang F

EL-GY7133 Digital Signal Processing II EL-GY6113 Prof. Ivan Selesnick S

EL-GY7253 State Space Design For Linear Control Systems Graduate status and EL-GY6253 Prof. Zhong-Ping Jiang S

EL-GY7353 Network Modeling and Analysis EE-UY 1363 or EL-GY 5373 and EL-GY6303 Prof. Shivendra Panwar Every 3

semesters

Page 18: Graduate Student Manual (Revised 05/24/2016)

16

EL-GY7363 Network Design and Algorithms

EE-UY 1363 or EL-GY 5373 and knowledge of data structures (CS-GY6033) Prof. Yong Liu Every 3

semesters

EL-GY7373 High Performance Switches and Routers EE-UY 1363 or EL-GY 5373 Prof. Jonathan Chao Every 3

semesters

EL-GY8223 Applied Nonlinear Control

Graduate status, EE-UY3064 and EL-GY6253 or equivalent Prof. Zhong-Ping Jiang F, every two

years

EL-GY8233 Optimal Control Theory Graduate status, EL-GY6233 and EL-GY6253 Prof. Zhong-Ping Jiang as needed EL-GY8253 Large Scale Systems and Decentralized Control

Graduate status and EL-GY7253 or instructor’s permission Prof. Farshad Khorrami F, every two

years

EL-GY9013-9093 Selective Topics in Communications Specified when offered

EL-GY9113-9193 Selected Topics in Signal Processing Specified when offered

EL-GY9213-9293 Selected Topics in Control Engineering Specified when offered

EL-GY9313-9393 Selected Topics in Telecommunications and Networking Specified when offered

EL-GY9413-9493 Selected Topics in Computer Electronic Devices and Systems

Specified when offered

EL-GY9513-9593 Selected Topics in Electro-Optics, Quantum Electronics and Material Science

Specified when offered

EL-GY9613-9693 Selected Topics in Power Engineering Specified when offered

EL-GY9713-9793 Selected Topics in Electrodynamics, Wave Phenomena and Plasmas

Specified when offered

EL-GY9900 Seminar in Electrical and Computer Engineering

CP9911,9921,9941,9951 Internships, Students must secure advisor and approval, 1.5 credits each

EL-GY9933 Readings in Electrical Engineering Students must secure advisor and approval

EL-GY9941 Advanced Projects III Students must secure advisor and approval, 1.5 credits EL-GY9953 Advanced Projects I Students must secure advisor and approval EL-GY9963 Advanced Projects II Students must secure advisor and approval EL-GY997x MS Thesis in Electrical & Computer Engineering Students must secure advisor and approval

EL-GY999x PhD Dissertation in Electrical Engineering Dept.

Passing Qualifying Examination Must register continuously after the first semester registered, must register at least 3 credits/semester

Page 19: Graduate Student Manual (Revised 05/24/2016)

17

V. FACULTY ROSTER BY AREAS OF SPECIALIZATION IN ELECTRICAL AND COMPUTER ENGINEERING (ECE)

Communications and Networking

Jonathan Chao Professor, Ph.D

High-Speed Routers, Network Security

Elza Erkip Professor, Ph.D.

Wireless Communications, Communication and Information Theory

Michael Knox Industry Associate Professor, Ph.D.

Wireless Communications and Analog Circuits

Thanasis Korakis Research Assistant Professor, Ph.D.

Communication Networks

Yong Liu Associate Professor, Ph.D.

Communication Networks

Pei Liu Research Assistant Professor, Ph.D.

Communication Networks

I-Tai Lu Professor, Ph.D.

Wave Propagation, Underwater Acoustics, Wireless Communications

Shivendra S. Panwar Dept. Head, CATT Director, Professor, Ph.D.

Telecommunication Network Design and Modeling

S. Unnikrishna Pillai Professor, Ph.D.

Signal Processing, Spectrum Estimation, System Identification

Sundeep Rangan, Ph.D Associate Professor, Ph.D.

Wireless communications, Information Theory, Signal Processing

Theodore (Ted) S. Rappaport NYU WIRELESS Director, Professor, Ph.D

Radio Wave Propagation, Wireless Comm. System Design, Broadband Wireless Comm. Circuits, Radiology

Peter Voltz Associate Professor, Ph.D.

Communications, Signal Processing

Computer Engineering and VLSI

Jonathan Chao Professor, Ph.D

High-Speed Routers, Network Security

Siddharth Garg Assistant Professor, Ph.D.

Computer Architecture, Electronic Design Automation, Hardware Security

Page 20: Graduate Student Manual (Revised 05/24/2016)

18

Ramesh Karri Professor, Ph.D.

CAD, Trustworthy Hardware, Reliability, VLSI Testing

Michaeil Manitakos Research Assistant Professor, Ph.D. Assistant Professor at Abu Dhabi

Computer Architecture, Hardware Security

Shaloo Rakherja Assistant Professor, Ph.D

Nanoscale solid-state electronic devices, Beyond-CMOS nanoelectronic and nanophotonic systems

Davood Shahrjerdi Assistant Professor, Ph.D

Solid-state nanoelectronics, flexible electronics, integrated bioelectronics

Ozgur Sinanoglu Research Assistant Professor, Ph.D. Assistant Professor at Abu Dhabi

VLSI Test, Reliability & Trust, VLSI CAD

Yang Xu Research Assistant Professor, Ph.D.

Network Security, High-Speed Router Design, Network-on-Chip, Network Processors

Electromagnetics and Analog/RF/Biomedical Circuits

Jonathan Chao Professor, Ph.D. Nirod K. Das, Ph.D. Associate Professor, Ph.D. Spencer Szu-pin Kuo Professor, Ph.D.

High-Speed Routers, Network Security, Biomedical circuits MMIC, Antennas, Microwave Photonics Magnetohydrodynamics, Plasmas

Francisco de Leon Associate Professor, Ph.D.

Analysis of Power Systems, Electromagnetic Design & Modeling

I-Tai Lu Professor, Ph.D. Theodore (Ted) S. Rappaport NYU WIRELESS Director, Professor, Ph.D. Davood Shahrjerdi Assistant Professor, Ph.D

Wave Propagation, Underwater Acoustics, Wireless Communications Radio Wave Propagation, Wireless Comm. System Design, Broadband Wireless Comm. Circuits, Radiology Solid-state nanoelectronics, flexible electronics, integrated bioelectronics

Energy Systems and Power Electronics

Dariusz Czarkowski Associate Professor, Ph.D. Zhong-Ping Jiang Professor, Ph.D.

Power Electronics, Power Quality, Electric Power Systems Nonlinear Control Systems

Page 21: Graduate Student Manual (Revised 05/24/2016)

19

Farshad Khorrami Professor, Ph.D.

Control Systems and Robotics

Francisco de Leon Associate Professor, Ph.D.

Analysis of Power Systems, Electromagnetic Design & Modeling

Zivan Zabar Professor, Sc.D.

Electric Power Systems and Devices, Electromagnetic Propulsion

Quanyan Zhu Assistant Professor, Ph.D.

Control systems, smart systems

Signal Processing, Control and Robotics

Matthew S. Campisi, Industry Assistant Professor Zhong-Ping Jiang Professor, Ph.D.

Signal Processing and Communication, Biomedical Signal Processing Nonlinear Control Systems

Farshad Khorrami Professor, Ph.D.

Control Systems and Robotics

S. Unnikrishna Pillai Professor, Ph.D.

Signal Processing, Spectrum Estimation, System Identification

Sundeep Rangan, Ph.D Associate Professor, Ph.D.

Wireless communications, Information Theory, Signal Processing

Ivan W. Selesnick Professor, Ph.D.

Signal Processing, Wavelet-Based DSP

Peter Voltz Associate Professor, Ph.D.

Communications, Signal Processing

Yao Wang Professor, Ph.D.

Image and Video Processing, Pattern Recognition

Quanyan Zhu Assistant Professor, Ph.D.

Control systems, smart systems

Page 22: Graduate Student Manual (Revised 05/24/2016)

20

Page 23: Graduate Student Manual (Revised 05/24/2016)

21

VI. ADVISORS AND PROGRAM DIRECTORS

Graduate Program Coordinator & Advisor:

Prof. Xiaokang Chen [email protected] 2MTC 10.019 646-997-3056

Academic Advisors in Different Areas

MS Electrical Engineering

Prof. Dariusz Czarkowski (power engineering) [email protected] LC226 646-997-3256

Prof. Nirod Das (Electrophysics) [email protected] LC262 646-997-3192

Prof. Zhongping Jiang (Systems and Control) [email protected] LC214 646-997-3646

Prof. Yong Liu (Communication networking) [email protected] 2MTC 9.125 646-997-3959

Prof. I-Tai Lu (Wireless Communications) [email protected] 2MTC 9.114 646-997-3041

Prof. Yao Wang (Program Director) [email protected] 2MTC 9.122 646-997-3469

MS Computer Engineering:

Prof. Ramesh Karri (Program Director) [email protected] LC254 646-997-4011

Prof. Siddharth Garg [email protected] 2MTC 10.076 646-997-4011

Ph.D. Electrical Engineering

Prof. Yao Wang (Program Director) [email protected] 2MTC 9.122 646-997-3469

For general inquiry and course advising regarding all graduate programs in ECE, please contact Dr. X. K. Chen first. For specific academic questions pertaining to a particular program or area, please consult faculty advisors listed above.

Page 24: Graduate Student Manual (Revised 05/24/2016)

22