Goodwin Lecture1

  • Upload
    treasa

  • View
    236

  • Download
    0

Embed Size (px)

Citation preview

  • 8/16/2019 Goodwin Lecture1

    1/67

      1

    Lecture 1Sampling of Signals

    by 

    Graham C. GoodwinUniversity of Newcastle

     Australia

    Lecture 1

    Presented at the “Zaborszky Distinguished Lecture Series”

    December 3rd, 4th and 5th, 2007 

  • 8/16/2019 Goodwin Lecture1

    2/67

      2

    Recall Basic Idea ofSamplingand Quantization

    Quantization

    Sampling

    t 1   t 3t 2   t 4t 

    0

    1l2l3l4l

    5l6l

  • 8/16/2019 Goodwin Lecture1

    3/67

      3

    In this lecture we will ignore quantizationissues and focus on the impact of differentsampling patterns for scalar and

    multidimensional signals

  • 8/16/2019 Goodwin Lecture1

    4/67

      4

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source

    . onclusions

  • 8/16/2019 Goodwin Lecture1

    5/67

      5

    Sampling: /ssume amplitude quantizationsufficientl4 fine to 5e negligi5le.

    Question:  Sa4 we are gi6en

    "nder what conditions can we reco6er

    from the samples7

    ( ) ; f t t Î ¡

    ( ) ;i f t i Z Î

  • 8/16/2019 Goodwin Lecture1

    6/67

     

     A Well Known Result (Shannon’sReconstruction heorem for

    !niform Sampling"onsider a scalar signal  f  (t ) consisting of

    frequenc4 components in the range . If

    this signal is sampled at period 8 then the

    signal can 5e perfectl4 reconstructed from the

    samples using0

    [ ]( )

    ( )

    sin2

    ( )

    2

     s

     sk 

    t k 

     y t y k 

    t k 

    w

    w

    ¥

    =- ¥

    éæ ö÷çê   - D÷ç   ÷çêè øë=æ ö÷ç   - D÷ç   ÷çè ø

    å

    ,2 2

     s sw wæ-ççè2

     s

     pwD <

  • 8/16/2019 Goodwin Lecture1

    7/67

      !

    Low pass filter recoversoriginal spectrum Hence

    or 

    ( ) sY    w

    2

     sw-

    2

     sw

     sw

    ( ) ( ) ( )

    ( ) 12 2

    0 otherwise

     s s

     s s s

    Y H Y 

     H 

    w w ww w

    w w

    =æ-ç= £ £ççè

    =( ) ( ) ( )

    ( ) [ ] ( )

    [ ] ( )

     s

     s

     s

     s

     y t h y t d 

    h y k t k d  

     y k h t k 

    s s s

    s d s s

    ¥

    - ¥¥¥

    - ¥=- ¥

    ¥

    =- ¥

    = -

    = - - D

    = - D

    òåò

    å

    Proof: Sampling produces folding

  • 8/16/2019 Goodwin Lecture1

    8/67

      "

     A Simple (#ut surprising"$%tension

    where

    [Recurrent Sampling]

    is a #eriodic se$uence o% integers& i'e'(

    Let

    )ote that the average sa*#+ing #eriod is

    e.g.

    a,erage 5

    k k  M D = D

    { }k  M  k N k  M M +   =

    1

     N 

     M K =

    T K = D K 

     N D =D

    1

    2

    3

    4

    9

    1

    9

    1

    D =

    D =

    D =

    D =

  • 8/16/2019 Goodwin Lecture1

    9/67

      -

    Non-uniform

    Uniform

    0 -.1 10 1- 20

    / / / ///

    0 5 10 15 20

    / / / //

  • 8/16/2019 Goodwin Lecture1

    10/67

      10

    Claim: 

    9ro6ided the signal is 5andlimited towhere 8 then the signal can 5e

    perfectl4 reconstructed from the periodic

    sampling pattern.

    where : a6erage sampling period

    Proof:

    ;e will defer the proof to later when wewill use it as an illustration of (eneralized

    Sampling )*pansion +(S),

  • 8/16/2019 Goodwin Lecture1

    11/67

      11

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source

    . onclusions

  • 8/16/2019 Goodwin Lecture1

    12/67

      12

    &ultidimensional SignalsDigital Photography

    Digital Video

     x1

     x2

     x1 x2

     x3 (time)

  • 8/16/2019 Goodwin Lecture1

    13/67

      13

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source

    . onclusions

  • 8/16/2019 Goodwin Lecture1

    14/67

      14

    =ow should we define sampling for multi>dimensional signals7

    "tilize idea of Sampling attice

     

    Sampling Lattice

     nonsingular matrix   D DT    Î ´¡ ¡

    ( )   { }:   D Lat T Tn n Z  = = Î

  • 8/16/2019 Goodwin Lecture1

    15/67

      15

    /lso8 need multi6aria5le frequency  domain

    concepts.

    These are captured y two ideasi. Reciprocal attice

    ii. "nit ell

  • 8/16/2019 Goodwin Lecture1

    16/67

      1

      !nit Cell  +?on>unique,

    i.  

    ii.  

    "eciprocal Lattice

    ( ){ }   ( ){ }1 1

    * 2 2 :T T D Lat T T n n Z  p p- -

    = = Î

    ( ) ( ){ }   ( ) ( ){ }1 1

    * *

    1 2

    1 2 1 2

    2 2

    ,

    T T 

     D

    UC T n UC T n

    n n Z n n

     p p- -

    + ! + =

    Î #

    ( )   ( ){ }1

    2 D

    T D

    n Z 

    UC T n R p  -

    Î

    + =$

    ( )*UC  

  • 8/16/2019 Goodwin Lecture1

    17/67

      1!

    One 'imensional

    $%ample

    Sampling Lattice

    0.20 10 20

    / / //

    D

    { }. :n n Z  = D Î

    .10

    /

  • 8/16/2019 Goodwin Lecture1

    18/67

      1"

    Reciprocal attice and

    !nit )ell

    Unit ell 

    1

    2w

     p0 110

    210

    310

  • 8/16/2019 Goodwin Lecture1

    19/67

      1-

    &ultidimensional

    $%ample

     x1

     x2

    1 2 3 4 54 3 2 11

    2

    3

    4

    5

    4

    3

    2

    1

    2 1

    0 2T 

    éê=êë

  • 8/16/2019 Goodwin Lecture1

    20/67

      20

    Reciprocal attice and !nit)ell for $%ample

    1!4 1!2 3!4 11!4

    1!2

    3!4

    1

    1!2

    1!4

    ( )1

    10

    21 1

    4 2

    T T -

    éê

    ê=êê-êë

    ( )( )1

    2   T UC T  p  -

    1

    2

    w

     p

    2

    2w p

  • 8/16/2019 Goodwin Lecture1

    21/67

      21

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source

    . onclusions

  • 8/16/2019 Goodwin Lecture1

    22/67

      22

    ;e will 5e interested here in the situation wherethe Sampling attice is not  a ?4quist attice forthe signal +i.e.8 the signal cannot 5e perfectl4reconstructed from the original pattern@,

    Strategy 

    e i++ generate other sa*#+es by %i+tering

    or shi%ting o#erations on the origina+ #attern'

  • 8/16/2019 Goodwin Lecture1

    23/67

      23

    onsider a 5andlimited signal  ./ssume the D>dimension $ourier transform has finite

    support8 S.

    dimensional lattice T 8 there alwa4se*ists a finite set 8 such that support

    ( ) ,   D f x x Î ¡

    { } *1

     P 

    iw   Î

    ( )( )   ( )( )*1

    " . P 

    i

    i

     f S UC w w=

    % = +$

    Heuristically: he idea o% “i+ing” the

    area o% interest in the %re$uency do*ain

  • 8/16/2019 Goodwin Lecture1

    24/67

      24

    One 'imensional

    $%ampleOur one dimensional e*ample continued.Sampling attice  { };k k Z  = D ÎUnit ell 

    12w  p0 1

    102

    103

    10

    ( )" f    w!andlimited spectrum

    Use

    1

    2

    0

    2

    10

    w

     pw

    =

    æç=- ççè

    ( )( )   ( ) ( )* * 2" f UC UC w wé ù é= +ê ú êë û ë$Support

    112

    112

    - 2w

     p

  • 8/16/2019 Goodwin Lecture1

    25/67

      25

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source. onclusions

  • 8/16/2019 Goodwin Lecture1

    26/67

  • 8/16/2019 Goodwin Lecture1

    27/67

      2!

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source. onclusions

  • 8/16/2019 Goodwin Lecture1

    28/67

      2"

    Define

    Let

    5e the solution +if it exists, of 

    for

    ( ) ( ) ( )

    ( )

    ( ) ( )

    1 1 2 1 1

    1 2

    1

    " " "

    "( )

    " "

    Q

     P Q P 

    h h h

    h H 

    h h

    w w w w w w

    w ww

    w w w w

    é + + +êê

    +ê=êêêê   + +ë

    '

    ( )( )

    ( )

    1 ,,

    ,Q

     x x

     x

    ww

    w

    éêê = êêêë

    '

    ( )*UC wÎ

    ( ) ( )

    1

    ,

    T  P 

     j x

     j x

    e H x

    e

    w

    w

    w w

    éêê = êêêë

    '

  • 8/16/2019 Goodwin Lecture1

    29/67

      2-

    )onditions for +erfect

    Reconstruction  can 5e reconstructed from

    if and onl4 if has full row ran& for all inthe "nit ell

    where

    ( ) H   w

    ( ) f x

    ( ) ( ) ( )1   D

    Q

    q q

    q   k Z 

     f x g Tk x Tk f =   Î

    = -å å

    ( ) ( ),T  j x

    q q

    UC 

     x x e d wf w= ò

    GS# Theorem:

    w

  • 8/16/2019 Goodwin Lecture1

    30/67

      30

    Proof:

    Multipl4 5oth sides 54 where +the

    Reciprocal attice,.

  • 8/16/2019 Goodwin Lecture1

    31/67

      31

    where we ha6e used the fact that

    Since is the output of  fx! passing through 8then

    =ence8 we finall4 ha6e

    ( )   ( ) ( )   ( )

    ( )

    ( )*11

    " "  T 

    i

     D

     P  j Tk 

    i q i

    iUC 

    Q

    q

    q   k Z 

     f x x Tk  f h e d w w

    w w w   f w w- +

    ==   Î

    é ùê ú

    = -ê úê úê úë û

    + +å å  òå

    ( )  1

    2 $or .T Di   T Z w p-

    = Îl l

    ( )q g x

    [ ] ( )q g Tk =

    ( ) ( ) ( )1   D

    Q

    q q

    q   k Z 

     f x g Tk x Tk f =   Î

    = -å å

    ( )"

    qh   w

  • 8/16/2019 Goodwin Lecture1

    32/67

      32

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source. onclusions

  • 8/16/2019 Goodwin Lecture1

    33/67

      33

    Special )ase, RecurrentSampling

    +where is implemented 54 a Cspatial shift ,

  • 8/16/2019 Goodwin Lecture1

    34/67

      34

    %ere  8 and

    Thus

  • 8/16/2019 Goodwin Lecture1

    35/67

      35

    Something to thin-

    a#out

  • 8/16/2019 Goodwin Lecture1

    36/67

      3

    Return to our one.dimensional e%ampleRecall that we had

    so that

    support

    Sa4 we use recurrent sampling with

    1

    2

    0

    2

    10

    w

     pw

    =

    =-

    1

    2

    0

    0.9 ; 10

     x

     x

    =

    = D D =

    ( )( )   ( ) ( )* * 2" f UC UC w wé ù é= / +ê ú êë û ë

  • 8/16/2019 Goodwin Lecture1

    37/67

      3!

    0 10 20

    / //

    0 - 1-

    / //

    0

    / //

    1 0 x =

    20.9 x  = D

    .1

    .1

    / /

    1- 20

    /

    - 10

  • 8/16/2019 Goodwin Lecture1

    38/67

      3"

    )ondition for +erfectReconstruction is

    nonsingular

    ( )( )

    1 1 1 2

    2 1 2 2

    0.9 2

    1 1

    1

     j x j x

     j x j x

     j

    e e

    e e

    e

    w w

    w w

     p-

    éê

    êëéê=êë

    =ence8 the original signal can 5e reco6eredfrom the sampling pattern gi6en in thepre6ious slide.

  • 8/16/2019 Goodwin Lecture1

    39/67

      3-

    Summar/  ;e ha6e seen that the well &nown

    Shannon reconstruction theorem can 5ee*tended in se6eral directionsE e.g.

    Multidimensional signals

    Sampling on a lattice

    Recurrent sampling

    (i6en specific frequenc4 domaindistri5utions8 these can 5e matched toappropriate sampling patterns.

  • 8/16/2019 Goodwin Lecture1

    40/67

      40

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals#. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source. onclusions

  • 8/16/2019 Goodwin Lecture1

    41/67

      41

     Application, 0ideo)ompression Source&ntroduction to 'ideo cameras

    Instead of tape8 digital cameras use 2D sensorarra4 +D or MOS,

    Image

    Processor

    Image

    Processor

    Memory

    Image

    Processor

    Image

    ProcessorImage

    Processor

    Image

    Processing   Display

    ( TV or LCD )Pipeline

    DVCDcontroller

  • 8/16/2019 Goodwin Lecture1

    42/67

      42

    Image Sensor 

    / 2D arra4 of sensors replaces the traditionaltape

    )ach sensor records a FpointF of thecontinuous image

  • 8/16/2019 Goodwin Lecture1

    43/67

      43

    1' )olours Sensor Arra/ 

    Data transfer from arra& is se'uential 

    and has a ma(imal rate of ")

    0 23456 78 9::;>>>?6;@5AB5>?C7l53@8

  • 8/16/2019 Goodwin Lecture1

    44/67

      44

    !niform (D sampling 

    a sequence of identical frames equall4 spaced intime

    )urrent echnolog/ 

  • 8/16/2019 Goodwin Lecture1

    45/67

      45

    The volume of ‘box’ epens on the capacity:

     pixel rate ! "frame rate# x "spatial resolution#

     x  

     0ideo Bandwidth

    depends onspatial

    resolutionof the frames

    depends onthe framerate

  • 8/16/2019 Goodwin Lecture1

    46/67

      4

    1'   $ata recoring on sensor:

    6 Sensor array density

    . %or s#atia+ reso+utionpixels

    frame  R 

     

     

    6 Sensor e/#osure ti*e

    . %or %ra*e rate

    frames

    sec. F  

     

     

    E?  $ata reaing from sensor:6 Data readout ti*e

      . %or #i/e+ ratepixels

    sec. Q 

     

     

    2ard )onstraints

  • 8/16/2019 Goodwin Lecture1

    47/67

      4!

    (enerall4 Q ## $% 

    ?eed0 $ $% & # % 

    s.t. $&% & ' Q

    Compromise:

    spatial resolution   $ $

    temporal resolution % & # % 

    %UT&&&

  • 8/16/2019 Goodwin Lecture1

    48/67

      4"

    volume determined by

    1 1Q R F  

     Actual )apacit/ ('ataReadout"

  • 8/16/2019 Goodwin Lecture1

    49/67

      4-

    O#ser3ation

    '74: 585@FG 7H :G;BC3l AB657 4C585B4 C78C58:@3:56 3@7I86 :95;l385 386 :95 3JB4?

     

    , x y 

  • 8/16/2019 Goodwin Lecture1

    50/67

      50

    uniform sampling

     ' compromise

    in frame rate

    uniform sampling

     ' compromise

    in spatial resolution

    uniform sampling

    ' no compromise

    he Spectrum of this

     0ideo )lip

  • 8/16/2019 Goodwin Lecture1

    51/67

      52

    frame type ( frame type %

    Recurrent 4on.!niformSampling

  • 8/16/2019 Goodwin Lecture1

    52/67

      53

     What 'oes it Bu/5

  • 8/16/2019 Goodwin Lecture1

    53/67

      54

    SchematicImplementationnon.uni%or* data %ro* the sensor 

    uni%or* high de%' ,ideo

    *compression at the source* 

  • 8/16/2019 Goodwin Lecture1

    54/67

      55

    Recurrent 4on.!niform

    Sampling/ special case of

    (eneralized Sampling )*pansion

  • 8/16/2019 Goodwin Lecture1

    55/67

      5

    Sampling +attern

    +

     ∆+=Ψ ∪∪

    +==   t #U  L$T 

     x% U  L$T U  L$T 

     M 

     M #

     L

    0)(

    0)()(

    1

    2

    2

    12

    2

    1

    { } s M  L

     s xU  L$T    +=Ψ ∪

    ++

    =)(

    1)(2

    1

    he resu+ting sa*#+ing #attern is gi,en by

  • 8/16/2019 Goodwin Lecture1

    56/67

      5!

    6re7uenc/ 'omain

    { }& T 

     M  L

    U UC S    ω +∆=   −++

    =∪ )2(

    1)(2

    1

    )here:

    ∆+<

    ∆+<

    ===

    t  M  x LU UC  t  xt 

     xT 

    )12(,)12(:)2( 1

    π 

    ω 

    π 

    ω ω 

    ω 

    ω π 

    is the unit ce++ o% the reci#roca+ +attice

    ∆+

    ∆+=−   2

    1

    :

    )12(0

    0)12()2(   Z nn

    t  M 

     x LU  L$T   T 

    π 

    π 

    π 

  • 8/16/2019 Goodwin Lecture1

    57/67

      5"

    Reciprocal attice

     x∆−

      π  

     x∆

    π  

    t  M 

     M 

    ∆⋅

    +

    +−

      π  

    )12(

    12

    1

    t  M 

     M 

    ∆⋅

    +

    +   π  

    )12(

    12

    1

    ωJ

    ω:

    t  M    ∆+   )12( 1

    π  

     x L   ∆+   )12(π  

    7nit ce++

  • 8/16/2019 Goodwin Lecture1

    58/67

      5-

     Appl/ the *S$ heorem

    )()(

    1)(2

    2

    1

     x H 

     M  L

    γ  ω    =

    Φ

    ΦΦ

    ++

    )here:  is uni$ue+y de%ined by  H 18 H 298:

    γ  is a set o% 29L;

  • 8/16/2019 Goodwin Lecture1

    59/67

      0

    Reconstruction Scheme

    KL   ΦL

    KE+L   ΦE+L

    KE(+')+L   ΦE(+')+L

    ∑ ,(JM:) Î(JM:)

    1%)2(&

    $re'uen 'uist

    ++

    =  & 

    & T 

     x j

     s&    e H ω 

    .

    he sub.sa*#+ed %re$uency o% each %i+ter > is

  • 8/16/2019 Goodwin Lecture1

    60/67

      1

    Reconstruction functions

    t

    t1)(2%sin

    ))1((

    x)1)(r (sin

    )12(),(π 

    π 

    π 

    π 

    ϕ 

        

      

    ∆+∆−−

       

       ∆−∆∆∆+=

     x&  x

     x x

    t  x Lt  x& 

    ))12((

    t)1)2&(r (sin

    x

    x1)(2&sin

    )12(),(t  L& t 

    t t 

    t  x M t  x&  ∆−−−

       

       ∆−∆ 

      

      

     ∆+

    ∆∆+=π 

    π 

    π 

    π 

    ϕ 

    for  r ? 2(3(8(2L;1

    for  r ? 29L;1:(8(29L;

  • 8/16/2019 Goodwin Lecture1

    61/67

      2

    'emo

    $ull resolution

    se'uence.econstructed 

    se'uence

    /emporal decimation

    pacial decimation

  • 8/16/2019 Goodwin Lecture1

    62/67

      3

    Outline1. One Dimensional Sampling

    2. Multidimensional Sampling

    3. Sampling and Reciprocal attices

    !. "ndersampled Signals

    #. $ilter %an&s

    '. (eneralized Sampling )*pansion +(S),

    -. Recurrent Sampling

    . /pplication0 ideo ompression at Source. onclusions

  • 8/16/2019 Goodwin Lecture1

    63/67

      4

    )onclusions ?onuniform sampling of scalar signals

    ?onuniform sampling of multidimensional

    signals

    (eneralized sampling e*pansion

    /pplication to 6ideo compression

    / remaining pro5lem is that of Goint design of

    sampling schemes and quantization strategiesto minimize error for a gi6en 5it rate

  • 8/16/2019 Goodwin Lecture1

    64/67

      5

    References *ne $imensional Sampling

     @' Aeuer and B'C' Boodin( ampling in Digital ignal 1rocessing and ontrol '

    irkhEuser( 1--' F'G'

  • 8/16/2019 Goodwin Lecture1

    65/67

     

    References

     .ilter %an/s I'C' H+dar and @'J' M##enhei*( Ai+terbank reconstruction o% band+i*ited signa+s

    %ro* nonuni%or* and genera+ized sa*#+es( /ransactions on ignal 1rocessing (

    Jo+'4"( )o'10( ##'2"4.2"!5( 2000' P'P' Jaidyanathan( +ultirate &stems and $ilter !an%s' Hng+eood C+i%%s( )G

    Prentice.>a++( 1--3' >' N+ceskei( A' >+aatsch and >'B' Aeichtinger( Ara*e.theoretic ana+ysis o%

    o,ersa*#+ed %i+ter banks( /ransactions on ignal 1rocessing ( Jo+'4( )o'12(

    ##'325.32"( 1--"' a++( 1--5'

  • 8/16/2019 Goodwin Lecture1

    66/67

      !

    References 0enerali1e Sampling 2xpansions- Recurrent Sampling

     @' Pa#ou+is( Benera+ized sa*#+ing e/#ansion( /ransaction on ircuits and

    &stems( Jo+'[email protected]( )o'11( ##'52.54( 1-!!' @' Aeuer( Mn the necessity o% Pa#ou+is resu+t %or *u+tidi*ensiona+ 9BSH:(

    ignal 1rocessing Letters( Jo+'11( )o'4( ##'420.422( 2004' K'A'Cheung( @ *u+tidi*ensiona+ e/tension o% Pa#ou+is genera+ized sa*#+ing

    e/#ansion ith a##+ication in *ini*u* density sa*#+ing( in @d,anced o#ics inShannon Sa*#+ing and =nter#o+ation heory( F'G'

  • 8/16/2019 Goodwin Lecture1

    67/67

    Lecture 1Sampling of Signals

    by 

    Graham C. GoodwinUniversity of Newcastle

     Australia

    Lecture 1

    Presented at the “Zaborszky Distinguished Lecture Series”

    December 3rd 4th and 5th 2007