16
GNSS Atmospheric Seismology

GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

GNSS Atmospheric Seismology

Page 2: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Troposphere

Epicenter

FocusSeismic Wave

Fault plane

Fault scarp

Electromagneticanomaly

MODIS[TERRA,AQUA]

ASTER[TERRA] ENVISATGNSS Satellite

GNSS Recevier

Ionosonde

Ground stationTIPanomaly

RadonStation

SeismeterFM tuner

Corona probe

Page 3: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Shuanggen Jin • R. Jin • X. Liu

GNSS AtmosphericSeismologyTheory, Observations and Modeling

123

Page 4: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Shuanggen JinShanghai Astronomical ObservatoryChinese Academy of SciencesShanghai, China

R. JinShanghai Astronomical ObservatoryChinese Academy of SciencesShanghai, China

Nanjing University of Information Scienceand TechnologyNanjing, China

X. LiuShanghai Astronomical ObservatoryChinese Academy of SciencesShanghai, China

ISBN 978-981-10-3176-2 ISBN 978-981-10-3178-6 (eBook)https://doi.org/10.1007/978-981-10-3178-6

© Springer Nature Singapore Pte Ltd. 2019, corrected publication 2019This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, expressed or implied, with respect to the material containedherein or for any errors or omissions that may have been made. The publisher remains neutral with regardto jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,Singapore

Page 5: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Preface

The earthquake is a very complex and broad topic, which is related to various scalesmotions of the Earth’s surface mass and interior as well as the microscopic pro-cesses, such as the generation of electric charge and chemical reactions. Also,earthquakes often occur and result in civilian casualties and huge damages as wellas secondary disasters, such as tsunami and landslide. Therefore, monitoring andunderstanding of earthquakes are still a major objective for many countries. Theworldwide seismometers could estimate rapidly the location, the magnitude, and thefocal mechanism of earthquakes, but the detailed rupture and pre-seismic anomaliesare still not clear due to the lack of dense near-field observations and limitedobservations. Global Navigation Satellite Systems (GNSS), InterferometricSynthetic Aperture (InSAR), seismometer, and gravity measurements could provideunique insights on the size and rupture of the earthquake. However, understandingand prediction of earthquakes are still challenging or difficultly confirmed fromtraditional technique observations. Nowadays, seismic atmospheric disturbanceobservations may help us to get a more comprehensive and profound knowledge onthe Earth’s atmospheric response to the earthquake, volcano, tsunami, and solidEarth/ionosphere coupling, e.g., ionospheric or electromagnetic observations.

GNSS is a powerful tool not only for the crust deformation but also the seismicatmospheric–ionospheric variations, especially for regions with dense GNSS con-tinuous operating stations. The neutral atmospheric parameters and ionosphericTotal Electron Content (TEC) can be precisely estimated from ground-based GNSSand spaceborne GNSS Radio Occultation, which can be used to investigate theseismic atmospheric–ionospheric disturbances and may provide insights on theearthquake. Recently, several significant seismic ionospheric disturbances wereobserved from continuous GPS measurements with acoustic waves, Rayleigh wave,and gravity waves, e.g., the 2011 Mw = 9.1 Japan earthquake. The seismic iono-spheric disturbances are probably driven by the ground-coupled airwaves fromground vertical motion of seismic waves propagating. Some mechanism onatmospheric/ionospheric anomalies and coupling processes between the atmosphereand solid Earth were also discussed. Furthermore, some pre-seismic atmosphericand ionospheric anomalies with several hours to several days before the main shock

v

Page 6: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

onset were also observed in the temperature, TEC, and NmF2 time series.Therefore, GNSS may provide us a new perspective to monitor and understand theearthquake with seismic atmospheric–ionospheric disturbances.

However, the detailed pattern, evolution, and mechanism of the seismic iono-spheric disturbance are not clear together with earthquake sources. The relationshipbetween the earthquake and the atmospheric–ionospheric variation is not under-stood comprehensively up to now. The earthquake threshold and pre-seismicionospheric disturbances following earthquakes with different magnitudes, focalmechanism, depth, and external conditions are still challenging as well as themechanism of solid Earth/ocean–atmosphere–ionosphere coupling, which needs tobe improved for more cases and be verified with more GNSS measurements. Thisbook presents GNSS atmospheric seismology with some recent progresses.

GNSS Atmospheric Seismology: Methods, Observations and Modelling, has beenwritten as a monograph and textbook that guides the reader through the theory andpractice of seismic atmospheric disturbances sounding as well as possible applica-tions. This book includes Chap. 1: Introduction, Chap. 2: Atmospheric Changes andObservations, Chap. 3: GNSS Tropospheric Sounding, Chap. 4: GNSS IonosphericSounding, Chap. 5: Detection Methods for Ionospheric Disturbances, Chap. 6:Seismic Lower Atmospheric Anomalies, Chap. 7: Pre-seismic IonosphericAnomalies, Chap. 8: Co-/Post-seismic Ionospheric Disturbances, Chap. 9: Two-Mode Seismo-ionospheric Disturbances, Chap. 10: Seismo-ionospheric RayleighWaves, Chap. 11: Epicenter from Ionospheric Disturbances, Chap. 12: TsunamiIonospheric Disturbances, Chap. 13: Volcano Atmospheric Disturbances, Chap. 14:Volcanic Plumes Detection from GNSS SNR, and Chap. 15: Summary andProspective. Chapters 1–4, 6–10 and 12–15 were contributed from Prof. ShuanggenJin, Chaps. 5 and 11 and part of Chaps. 8 and 10 were contributed from R. Jin,Chaps. 12 and 13 were contributed from X. Liu, Chap. 14 was contributed fromQinyun Zhang, and part of Chap. 10 was contribute from Yuhan Liu as well as partof Chaps. 6 and 7 from Munawar Shah.

This book presents the theory, methods, results, and modeling of GNSS atmo-spheric seismology for scientists and users who have basic background and expe-riences in GNSS and seismology. Furthermore, it is also useful for the increasingnumber of next generation multi-GNSS scientists, engineers, and users’ communityas well as hazards mitigation and reduction. We would like to thank AssistantEditor’s help and Springer-Verlag for their cordial collaboration and help during theprocess of publishing this book.

Shanghai/Nanjing, China Shuanggen JinShanghai, China R. JinShanghai, China X. Liu

vi Preface

Page 7: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Contents

Part I Background and Observations

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Seismo-Atmospheric Anomalies . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Seismo-Ionospheric Disturbances . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Pre-seismic Ionospheric Anomalies . . . . . . . . . . . . . . . 71.3.2 Co-/Post-seismic Ionospheric Anomalies . . . . . . . . . . . 8

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Atmospheric Changes and Observations . . . . . . . . . . . . . . . . . . . . . 152.1 Atmospheric Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Atmospheric Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Neutral Atmospheric Changes . . . . . . . . . . . . . . . . . . . 172.2.2 Ionospheric Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Observation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.1 Radiosonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.2 Ionosonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3 Ionospheric Scatter Radar . . . . . . . . . . . . . . . . . . . . . . 202.3.4 Faraday Rotation Detection . . . . . . . . . . . . . . . . . . . . . 202.3.5 MODIS and OLR Observations . . . . . . . . . . . . . . . . . . 212.3.6 Electromagnetic Observations . . . . . . . . . . . . . . . . . . . 212.3.7 GNSS Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Solar and Geomagnetic Observations . . . . . . . . . . . . . . . . . . . . 262.5 Seismological Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 GNSS Tropospheric Sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.1 Atmospheric Refractivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2 GNSS Tropospheric Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii

Page 8: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

3.3 Ground-GNSS Tropospheric Monitoring . . . . . . . . . . . . . . . . . 333.3.1 2-D Tropospheric Monitoring . . . . . . . . . . . . . . . . . . . 333.3.2 3-D Tropospheric Tomography . . . . . . . . . . . . . . . . . . 34

3.4 Space-Borne GNSS Radio Occultation . . . . . . . . . . . . . . . . . . . 373.4.1 Refraction Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.4.2 Calculation of Total Refraction Angle . . . . . . . . . . . . . 383.4.3 Abel Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.4.4 Inversion of Atmospheric Parameters . . . . . . . . . . . . . . 41

3.5 Other GNSS RO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 GNSS Ionospheric Sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.1 Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2 Ionospheric Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.3 Ground-GNSS TEC Estimation . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 GNSS Observation Equations . . . . . . . . . . . . . . . . . . . 514.3.2 GNSS Ionospheric Observations . . . . . . . . . . . . . . . . . 514.3.3 Cycle Slip Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 534.3.4 2-D Ionospheric Estimation . . . . . . . . . . . . . . . . . . . . . 554.3.5 3-D GNSS Ionospheric Tomography . . . . . . . . . . . . . . 63

4.4 Space-Borne GNSS Ionospheric Monitoring . . . . . . . . . . . . . . . 654.4.1 Ionosphere Inversion Based on Doppler . . . . . . . . . . . . 674.4.2 Ionosphere Inversion Based on TEC . . . . . . . . . . . . . . 684.4.3 Recursive Inversion of TEC . . . . . . . . . . . . . . . . . . . . 704.4.4 Amplitude Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Detection Methods for Ionospheric Disturbances . . . . . . . . . . . . . . 755.1 Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Statistical Probability Method . . . . . . . . . . . . . . . . . . . 765.1.2 Polynomial Fitting Method . . . . . . . . . . . . . . . . . . . . . 775.1.3 Moving Average Method . . . . . . . . . . . . . . . . . . . . . . 785.1.4 Butterworth Filtering Method . . . . . . . . . . . . . . . . . . . 79

5.2 Test of Ionospheric Anomaly Detection . . . . . . . . . . . . . . . . . . 815.3 Determination of Seismic Correlation . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Determination of Pre-seismic Correlation . . . . . . . . . . . 845.3.2 Determination of Co-seismic Correlation . . . . . . . . . . . 85

5.4 Case Analysis and Validation . . . . . . . . . . . . . . . . . . . . . . . . . 875.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii Contents

Page 9: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Part II Seismic Atmospheric Disturbances

6 Seismic Lower Atmospheric Anomalies . . . . . . . . . . . . . . . . . . . . . . 936.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936.2 MODIS, OLR, and GPS Observations . . . . . . . . . . . . . . . . . . . 94

6.2.1 Surface Temperature and Radiation . . . . . . . . . . . . . . . 946.2.2 ZTD from GNSS Observations . . . . . . . . . . . . . . . . . . 94

6.3 Seismic Thermal Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . 956.3.1 MODIS LST Anomalies . . . . . . . . . . . . . . . . . . . . . . . 966.3.2 OLR and AIRS Anomalies . . . . . . . . . . . . . . . . . . . . . 98

6.4 Seismo-tropospheric Anomalies . . . . . . . . . . . . . . . . . . . . . . . . 1006.4.1 2018 Wenchuan Earthquake . . . . . . . . . . . . . . . . . . . . 1006.4.2 2010 Chile Earthquake . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Pre-seismic Ionospheric Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 1097.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097.2 Immediate Pre-seismic Ionospheric Anomalies . . . . . . . . . . . . . 111

7.2.1 Observation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.2.2 Data Preprocessing and Anomalies Detection . . . . . . . . 1127.2.3 Pre-seismic Ionospheric Anomalies . . . . . . . . . . . . . . . 1137.2.4 Pre-seismic Ionospheric Anomaly Amplitudes . . . . . . . 1147.2.5 Pre-seismic Ionospheric Anomaly Time . . . . . . . . . . . . 117

7.3 Statistics Analysis of Pre-seismic Ionospheric Anomalies . . . . . 1187.3.1 TEC Time Series and Earthquakes . . . . . . . . . . . . . . . 1187.3.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187.3.3 Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207.3.4 Global Large Earthquakes Statistical Analysis . . . . . . . 120

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Co-/Post-seismic Ionospheric Disturbances . . . . . . . . . . . . . . . . . . . 1298.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298.2 GPS Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318.3 Co-/Post-seismic Ionospheric Disturbances . . . . . . . . . . . . . . . . 132

8.3.1 TEC Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338.3.2 TEC Disturbance Amplitudes . . . . . . . . . . . . . . . . . . . 1348.3.3 TEC Disturbances Speed . . . . . . . . . . . . . . . . . . . . . . 1398.3.4 TEC Disturbances Spectrogram . . . . . . . . . . . . . . . . . . 1418.3.5 TEC Disturbances Directivity . . . . . . . . . . . . . . . . . . . 143

8.4 Effects and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Contents ix

Page 10: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

9 Two-Mode Seismo-ionospheric Disturbances . . . . . . . . . . . . . . . . . . 1499.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1499.2 Methods and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509.3 Two-Mode Seismo-ionospheric Disturbances . . . . . . . . . . . . . . 151

9.3.1 Co-seismic Disturbances . . . . . . . . . . . . . . . . . . . . . . . 1519.3.2 Two-Mode Disturbances . . . . . . . . . . . . . . . . . . . . . . . 1559.3.3 Waveform and Spectral Analysis . . . . . . . . . . . . . . . . . 158

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1619.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10 Seismo-ionospheric Rayleigh Waves . . . . . . . . . . . . . . . . . . . . . . . . 16710.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16710.2 Observations and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.2.1 2018 Alaska Earthquake . . . . . . . . . . . . . . . . . . . . . . . 16910.2.2 2012 Haida Gwaii Earthquake . . . . . . . . . . . . . . . . . . . 16910.2.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.3 Rayleigh Waves of the Alaska Earthquake . . . . . . . . . . . . . . . . 17210.3.1 Co-seismic Ionospheric Disturbances . . . . . . . . . . . . . . 17210.3.2 Ground Vertical Motion . . . . . . . . . . . . . . . . . . . . . . . 17410.3.3 Correlation Between Vertical Motion and CIDs . . . . . . 175

10.4 Rayleigh Waves of the Haida Gwaii Earthquake . . . . . . . . . . . . 17810.4.1 Co-seismic Ionospheric Disturbances . . . . . . . . . . . . . . 17810.4.2 Observation Geometry and CID Amplitudes . . . . . . . . 18010.4.3 Main Sources of the Rayleigh Wave . . . . . . . . . . . . . . 182

10.5 Modeling of the Rayleigh Wave–Acoustic Wave . . . . . . . . . . . 18610.5.1 Disturbance Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 18610.5.2 Coupling of Rayleigh Waves and Ionosphere . . . . . . . . 188

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

11 Epicenter from Ionospheric Disturbances . . . . . . . . . . . . . . . . . . . . 19511.1 Earthquake Epicenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19511.2 Hypothesis of Epicenter Estimation . . . . . . . . . . . . . . . . . . . . . 19611.3 Method of Epicenter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 19711.4 Epicenter Estimation and Validation . . . . . . . . . . . . . . . . . . . . . 202

11.4.1 Disturbance Modes at Different Elevation Angles . . . . . 20211.4.2 Epicenter Estimation Results . . . . . . . . . . . . . . . . . . . . 203

11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

12 Tsunami Ionospheric Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 21112.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21112.2 Tsunamis Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

x Contents

Page 11: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

12.3 Tsunami Ionospheric Disturbances . . . . . . . . . . . . . . . . . . . . . . 21312.3.1 2011 Tohoku Tsunami in Japan . . . . . . . . . . . . . . . . . 21312.3.2 2012 Haida Gwaii Tsunami in Canada . . . . . . . . . . . . 22412.3.3 2010 Maule Tsunami in Chile . . . . . . . . . . . . . . . . . . . 22612.3.4 2014 Iquique Tsunami in Chile . . . . . . . . . . . . . . . . . . 228

12.4 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23212.5 Coupling and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

12.5.1 Neutral Particle and Ion Coupling Process . . . . . . . . . . 23612.5.2 Coupling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

12.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Part III Volcano Atmospheric Disturbances

13 Volcano Atmospheric Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 24713.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24713.2 Observation Methods and Theory . . . . . . . . . . . . . . . . . . . . . . 248

13.2.1 Ionospheric Disturbance Estimation . . . . . . . . . . . . . . . 24813.2.2 Theoretical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 24913.2.3 Source Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25013.2.4 Volcanic Ionospheric Coupling . . . . . . . . . . . . . . . . . . 251

13.3 Atmospheric Disturbances and Characteristics . . . . . . . . . . . . . 25213.3.1 Volcano and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25213.3.2 Temperature Anomalies . . . . . . . . . . . . . . . . . . . . . . . 25213.3.3 SO2 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

13.4 Volcanic Ionospheric Disturbances . . . . . . . . . . . . . . . . . . . . . . 25513.4.1 Co-volcanic Ionospheric Anomalies . . . . . . . . . . . . . . . 25513.4.2 Amplitude and Frequency . . . . . . . . . . . . . . . . . . . . . . 259

13.5 Coupling Modeling and Discussions . . . . . . . . . . . . . . . . . . . . 26213.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

14 Volcanic Plumes Detection from GNSS SNR . . . . . . . . . . . . . . . . . . 26914.1 Volcanic Plumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26914.2 Theory and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

14.2.1 GPS SNR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27014.2.2 Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

14.3 GPS SNR Anomalies Following Volcanoes . . . . . . . . . . . . . . . 27214.3.1 Mt. Aso Volcano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27214.3.2 Mt. Etna Volcano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27714.3.3 Mt. Okmok Volcano . . . . . . . . . . . . . . . . . . . . . . . . . . 280

14.4 Characteristics of Volcanic Plumes . . . . . . . . . . . . . . . . . . . . . 28414.4.1 Propagation Velocity of Volcanic Plumes . . . . . . . . . . 28414.4.2 Relationship of SNR Anomaly and Volcano

Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Contents xi

Page 12: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

14.4.3 Relationship of SNR Anomaly and Change Interval . . . 28714.4.4 Relationship with Volcano Distance . . . . . . . . . . . . . . 290

14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Part IV Summary

15 Summary and Prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29515.1 Current Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29515.2 Seismo-Atmospheric Disturbances . . . . . . . . . . . . . . . . . . . . . . 29615.3 Tsunami-Generated Gravity Wave Coupling . . . . . . . . . . . . . . . 30115.4 Volcanic Atmospheric Disturbances . . . . . . . . . . . . . . . . . . . . . 30315.5 Prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Correction to: Volcanic Plumes Detection from GNSS SNR . . . . . . . . . . C1

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

xii Contents

Page 13: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Abbreviations

ABL Atmospheric Boundary LayerAGW Acoustic Gravity WaveART Algebraic Reconstruction TechniqueASTER Advanced Spaceborne Thermal Emission and Reflection

RadiometerAVHRR Advanced Very High Resolution RadiometerAVO Alaska Volcano ObservatoryBDS BeiDou Navigation Satellite SystemBPR Bottom Pressure RecordsC/A Coarse/AcquisitionCAS Chinese Academy of SciencesCDMA Code Division Multiple AccessCEA China Earthquake AdministrationCHAMP Challenging Mini-satellite PayloadCID Co-seismic Ionospheric DisturbancesCIT Computerized Ionospheric TomographyCMONOC Crustal Movement Observation Network of ChinaCMT Centroid Moment TensorCODE Center for Orbit Determination in EuropeCOSMIC Constellation Observing System for Meteorology, Ionosphere,

and ClimateCYGNSS CYclon GNSSDART Deep-ocean Assessment and Reporting of TsunamisDCB Differential Code BiasesDD Double DifferenceDEMETER Detection of Electro-Magnetic Emissions Transmitted from

Earthquake RegionsDGPS Differential GPSDOT Department of TransportationDOY Day of Year

xiii

Page 14: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

Dst Disturbance storm timeECMWF European Centre for Medium-Range Weather ForecastsEIA Equatorial Ionization AnomalyEISCAT European Incoherent Scatter Scientific AssociationENVISAT ENVIronmental SATelliteESA European Space AgencyEST Equivalent Slab ThicknessEU European UnionFDMA Frequency Division Multiple AccessFDSN International Federation of Digital Seismograph NetworksFDTD Finite Difference Time DomainFFT Fast Fourier TransformGAGAN GPS-Aided Geo Augmented NavigationGalileo Galileo Navigation Satellite SystemGAMIT GPS analysis software by Massachusetts Institute of TechnologyGBAS Ground-Based Augmentation SystemsGDOP Geometric Dilution of PrecisionGEO Geostationary Earth OrbitGEONET GPS Earth Observation Network in JapanGFZ GeoForschungsZentrum PotsdamGIM Global Ionospheric MapGIPSY-OASIS GNSS-Inferred Positioning System and Orbit AnalysisGLONASS GLOnass NAvigation Satellite System of RussiaGMF Global Mapping FunctionGNSS Global Navigation Satellite SystemsGNSS-R GNSS-ReflectometryGO Geometric OpticsGOCE Gravity Field and Steady-State Ocean Circulation ExplorerGPS Global Positioning SystemGPS/MET GPS/MeteorologyGRACE Gravity Recovery and Climate ExperimentGSI Geographical Survey Institute in JapanGSN Global Seismographic NetworkGTS Global Telecommunication SystemHFI Hardy Function InterpolationIAG International Association of GeodesyIERS International Earth Rotation and Reference System ServiceIGS International GNSS ServiceIGW Internal Gravity WaveInSAR Interferometric Synthetic Aperture RadarIPP Ionosphere Pierce PointIRI International Reference IonosphericIRIS Incorporated Research Institutions for SeismologyIRNSS India’s Regional Navigation Satellite SystemsISR Ionospheric Scatter Radar

xiv Abbreviations

Page 15: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

ITRF IERS Terrestrial Reference FrameJMA Japan Meteorological AgencyJPL Jet Propulsion LaboratoryLAAS Local Area Augmentation SystemLC Linear CombinationLEO Low Earth Orbit (satellite)LiDAR Light Detection And RangingLOS Line of SightLS Least Squares (adjustment)LST Land surface temperatureLT Local TimeMART Multiplicative Algebraic Reconstruction TechniqueMDA Maximum Disturbance AzimuthMDD Maximum Disturbance DistanceMDP Maximum Disturbance PointMEO Medium Earth OrbitmHz milli-HertzMIT Massachusetts Institute of TechnologyMODIS MODerate-resolution Imaging SpectroradiometerMSS Mean of the Square SlopesNASA National Aeronautics and Space AdministrationNCAR National Center for Atmospheric ResearchNGDC US National Geophysical Data CenterNMF Niell Mapping FunctionNOAA National Oceanic and Atmospheric AdministrationNWP Numerical Weather PredictionOBSIP Ocean Bottom Seismograph Instrument PoolOLR Outgoing Long-wave RadiationOMI Aura/Ozone Monitoring InstrumentPASSCAL Portable Array Seismic Studies of the Continental LithospherePBO Plate Boundary ObservatoryPNT Positioning, Navigation and TimingPOD Precise Orbit DeterminationPPP Precise Point PositioningPRN Pseudo-Random NoisePWV Precipitable Water VaporQOA Quasi-Optimum AlgorithmQZSS Quasi-Zenith Satellite SystemRINEX Receiver Independent ExchangeRMS Root Mean SquareRO Radio OccultationRTK Real-Time KinematicSAC-C Satellite de Aplicaciones Cientificas-CSD Single DifferenceSHAO Shanghai Astronomical Observatory

Abbreviations xv

Page 16: GNSS Atmospheric Seismology978-981-10-3178-6/1.pdfSeismology Theory, Observations and Modeling 123. Shuanggen Jin Shanghai Astronomical Observatory Chinese Academy of Sciences Shanghai,

SID Seismic Ionospheric DisturbanceSIP Sub-ionospheric Pierce PointsSLM Single Layer ModelSNR Signal-to-Noise RatioSPIDR Space Physics Interactive Data ResourceSTD Slant Tropospheric DelaySTEC Slant Total Electron ContentSVD Singular Value DecompositionTEC Total Electron ContentTECU Total Electron Content UnitTID Traveling Ionospheric DisturbancesTIE-GCM Thermosphere–Ionosphere–Electrodynamics General Circulation

ModelUHF Ultra High FrequencyUNAVCO University NAVSTAR ConsortiumUSGS US Geological SurveyUT Universal TimeUTC Coordinated Universal TimeVEI Volcanic Explosivity IndexVHF Very High FrequencyVMF Vienna Mapping FunctionsWGS World Geodetic SystemWVR Water Vapor RadiometryZHD Zenith Hydrostatic DelayZTD Zenith Tropospheric DelayZWD Zenith Wet Delay

xvi Abbreviations