47
Introduction Dynamics of the parabolic problem Numerical results Conclusions Global flow of the parabolic restricted three body problem E. Barrab´ es 1 J.M. Cors 2 L. Garcia 1 M. Oll´ e 2 1 Universitat de Girona 2 Universitat Polit` ecnica de Catalunya Ddays 2016 Barrab´ es, Cors, Garcia, Oll´ e (November 10, 2016) Parabolic problem 1 / 36

Global flow of the parabolic restricted three body problem · ow of the parabolic restricted three body problem E. Barrab es 1 J.M. Cors 2 L. Garcia1 M. Oll e2 1Universitat de Girona

  • Upload
    ngonga

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Global flow of the parabolic restricted three bodyproblem

E. Barrabes 1 J.M. Cors 2 L. Garcia1 M. Olle2

1Universitat de Girona

2Universitat Politecnica de Catalunya

Ddays 2016

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 1 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Outline

Introduction

Dynamics of the parabolic problem

Numerical results

Conclusions

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 2 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

N-Body Problem

N-body problem: N point masses mi, i = 1, . . . N moving under theirgravitational atractions

miqi =

n∑j=1j 6=i

Gmimj(qj − qi)

r3ij

2-body problem: integrable problem. The masses move in Keplerianorbits: elliptic, parabolic or hyperbolic, around their center of mass.

Restricted Three-Body problem: Two main bodies (primaries) moving ina keplerian orbit + massless particle moving under the gravitationalattraction of the primaries, without affecting them.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 3 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

N-Body Problems

Main tools of the dynamical systems

Hamiltonian formulation:

z = J · ∇H(z)

Invariant objects: equilibrium points, periodic and quasi-periodic orbits

Stability of the invariant objects

Invariant manifolds:

Wu(Γ) = z(t); z(t) −→t−∞

Γ

W s(Γ) = z(t); z(t) −→t+∞

Γ

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 4 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Galactic encounters: bridges and tails

10

NGC 2535/6 NGC 7752/3

astromania.deyave.com/ www.etsu.edu/physics/bsmith/research/sg/arp.html www.spiral-galaxies.com/Galaxies-Pegasus.html

NGC 3808

Bridges!

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 5 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Galactic encounters: bridges and tails

9

Tails!

Arp 173

• NGC 2992/3

http://www.astrooptik.com/Bildergalerie/PolluxGallery/NGC2623.htm www.etsu.edu/physics/bsmith/research/sg/arp.html

http://www.ess.sunysb.edu/fwalter/SMARTS/findingcharts.html

NGC 2623

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 5 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Motivations and Aims

Close approach of two galaxies: it causes significant modification of themass distribution or disc structure. One particle that initially stays in onegalaxy (or around one star), after the close encounter, it can jump to theother galaxy or escape.

To study the mechanisms that explain that a particle remains or notaround each galaxy, considering a very simple model: the planarparabolic restricted three-body problem.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 6 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Outline

Introduction

Dynamics of the parabolic problem

Numerical results

Conclusions

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 7 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

The Planar Parabolic Restricted Three-Body Problem

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 8 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Equations (I)

Parabolic problem:

d2Z

dt2= −(1− µ)

Z− Z1

|Z− Z1|3− µ Z− Z2

|Z− Z2|3,

Z2 = −Z1 = 12 (σ2 − 1, 2σ), and σ = tan(f/2)

Change to a synodic frame (primaries at fixed positions) + change of time:

z1 = (−1

2, 0), z2 = (

1

2, 0),

dt

ds=√

2 r3/2.

Compatification to extend the flow when the primaries are at infinity(t, s→ ±∞):

sin(θ) = tanh(s).

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 9 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Equations (II)

Global system

θ′ = cos θ,z′ = w,w′ = −A(θ)w +∇Ω(z)

where ′ =d

dsand

A(θ) =

(sin θ 4 cos θ−4 cos θ sin θ

),

Ω(z) = x2 + y2 + 21− µ√

(x− µ)2 + y2+ 2

µ√(x− µ+ 1)2 + y2

.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 10 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Upper and Lower boundary problems

Global system Boundary problems θ′ = cos θ,z′ = w,w′ = −A(θ)w +∇Ω(z)

−→θ=±π/2

z′ = w,w′ = ∓w +∇Ω(z)

dim 5 dim 4

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 11 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Main properties (I)

Jacobi function: semi gradient property (no periodic orbits)

C = 2Ω(z)− |w|2, dC

ds= 2 sin θ|w|2

Hill’s regions: 2Ω(z)− C ≥ 0 → C-criterium

−π/2 −→ θ −→ 0

-2

-1

0

1

2

-2 -1 0 1 2

y

x

-2

-1

0

1

2

-2 -1 0 1 2

y

x

-2

-1

0

1

2

-2 -1 0 1 2

y

x

π/2 ←− θ ←− 0

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 12 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Main properties (II)

Equilibrium points at the boundaries (as in the RTBP):

Collinear: L±i = (xi(µ), 0, 0, 0,±π/2), i = 1, 2, 3

Triangular: L±i = (µ− 12 ,±√

3/2, 0, 0,±π/2), i = 4, 5

Stability:

L+1,2,3 L+

4,5

dim(Wu) 1 2dim(W s) 4 3

L−1,2,3 L−4,5dim(Wu) 4 3dim(W s) 1 2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 13 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Main properties (II)

Equilibrium points at the boundaries: L±i , i = 1, ..., 5 for θ = ±π/2 andµ = 1/2

(xi, yi) C(L±i ) = CiL±1 (−1.198406145, 0) 6.91359245

L±2 (0, 0) 8

L±3 (1.198406145, 0) 6.91359245

L±4,5 (0,±√

3/2) 5.5

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 14 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Main properties (III)

Homothetic solutions and connections

θ = π/2

θ = −π/2

θ = 0

L+1

L+4

L+3

L−3L−

4

L−1

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 15 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Dynamics of the problem

In order to describe the dynamics of the parabolic problem, we will focus ontwo aspects:

the final evolutions in the synodical system when time tends to infinity,

the richness in the intermediate stages due to

existence of invariant manifolds associated with the homothetic solutions

heteroclinic connections that allow the existence of orbits with passagesclose to collinear and/or equilateral configurations.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 16 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Final evolutions

Proposition (Final evolutions)

Let γ(s) = (θ(s), z(s),w(s)), s ∈ [0,∞), be a solution ofthe global system. Then, either:

it is a collision orbit,

lims→∞ |z(s)| =∞ (escape orbit)

its ω-limit is an equilibrium point.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 17 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Final evolutions

DefinitionLet Z(t) be a solution of the parabolic problem. We say that

it is a capture orbit around the primary of mass mi, fori = 1 or 2, if lim supt→∞ |Z(t)− Zi(t)| ≤ K, for someconstant K;

it is an escape orbit if lim supt→∞ |Z(t)| =∞ andlim supt→∞ |Z(t)− Zi(t)| =∞ for i = 1 and 2.

Remark: the definition is given in the inertial frame: |Z− Zi| = r|z− zi|capture orbit → |z− zi| → 0 (collision orbit)

lim infs→∞ |z(s)| ≥ K → escape orbit

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 17 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

C-criterium

Proposition

Let q ∈ Int(D) with θ ≥ 0, and γ(s) = (θ(s), z(s),w(s)),s ∈ [0,∞), the solution of the global system through q. Then,

(i) if for some time s0 the value of the Jacobi functionC(γ(s0)) > C2 and z(s) is located in one of the boundedcomponents of the Hill’s region, then it is a collision orbit;

(ii) if for some time s0 the value of the Jacobi functionC(γ(s0)) > C3 and z(s) is located in the unboundedcomponent of the Hill’s region, then it is an escape orbit.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 18 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Connections in the the upper boundary problem

m1 m2∞

m1 ∞ m2

L+4

L+5

L+1 L+

3

L+2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 19 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Heteroclinic L+4 → L+

3

Invariant manifold Wu(L+4 ) (dim=2) and its intersections with

ΣC∗ = (z,w) | C(z,w) = C∗

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

C=6.0

C=6.5C=6.8

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 20 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Heteroclinic L+4 → L+

3

Invariant manifold Wu(L+4 ) (dim=2) and its intersections with

ΣC∗ = (z,w) | C(z,w) = C∗

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

C=6.9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

C=6.913

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 20 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Heteroclinic L+4 → L+

3

Invariant manifold Wu(L+4 ) (dim=2) and its intersections with

ΣC∗ = (z,w) | C(z,w) = C∗

-0.2

-0.1

0

0.1

1.1 1.15 1.2 1.25 1.3 1.35

y

x

-0.2

-0.1

0

0.1

1.1 1.15 1.2 1.25 1.3 1.35

y

x

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 20 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Outline

Introduction

Dynamics of the parabolic problem

Numerical results

Conclusions

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 21 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Explorations

Role of the invariant manifolds in the sets of connecting orbits betweenprimaries

Equal masses (µ = 0.5):Barrabes, Cors, Olle Dynamics of the parabolic restricted three-bodyproblem Communications in Nonlinear Science and Numerical Simulation,29: 400–415, 2015

Different masses (µ < 0.5):

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 22 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Connecting orbits with passages to collinear or triangularconfigurations

Connection of type mi − Lk −mj :

collision orbit with mi backwards in time

collision orbit with mj forwards in time

along its trajectory it has a close passage to Lk

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 23 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Connecting orbits: examples (µ = 0.5)

-0.5

-0.25

0

0.25

0.5

-0.25 0 0.25 0.5 0.75

y

x

-4

-2

0

2

4

-10 -6 -2 2 6 10

YX

m2

m0

m1

m2

m0

m1

m0

m2

m1

m2 − L2 −m2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 24 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Connecting orbits: examples (µ = 0.5)

-1

-0.5

0

0.5

-0.5 0 0.5 1

y

x

m2 − L3 − L2 −m2/m1

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 25 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Connecting orbits: examples (µ = 0.5)

-4

-2

0

2

4

-4 -2 0 2 4

m1

m0

m2

-3000

-1500

0

1500

3000

-3e+06 -1.5e+06 0 1.5e+06 3e+06

Y

X

m1

m2

m0

-30

-15

0

15

30

-200 -100 0 100 200

m1

m2

m0

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 25 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Symmetric connecting orbits (µ = 0.5)

Connection mi −mi: crosses the section θ = 0 such that y = x′ = 0

I.C. (x0, 0, 0, y′0)

Connection mi −mj : crosses the section θ = 0 such that x = y′ = 0

I.C. (0, y0, x′0, 0)

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 26 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Symmetric connecting orbits (µ = 0.5)

mi −mi

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’

x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

-4

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 27 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Symmetric connecting orbits (µ = 0.5)

mi −mj

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5

x’

y

capture m2capture m1C=C(L3)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-4

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 27 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Symmetric connecting orbits (µ = 0.5)

-3.33108

-3.33103

-3.33098

-3.33093

0.52952 0.5296 0.52968

x’

y

a

c-b

d-e

f

-2

-1

0

1

-2 -1 0 1 2

y

x

ab

cd e f

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 27 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Symmetric connecting orbits (µ = 0.5)

L−3 → L+

3

L−1 → L+

1

L−2 → L+

2

L−3 → L+

1

L−1 → L+

3

L−2 → L+

2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 28 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Evolution of sets of symmetric connecting orbits

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’

x

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’x

µ = 0.5 µ = 0.4

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 29 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Evolution of sets of symmetric connecting orbits

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’

x

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’x

µ = 0.3 µ = 0.2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 29 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Evolution of sets of symmetric connecting orbits

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’

x

-6

-4

-2

0

2

4

6

-4 -3 -2 -1 0 1 2 3 4

y’x

µ = 0.2 µ = 0.1

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 29 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Bridges and Tails?

We consider a bunch of initial conditions around m1 for θ = −π/4 and a valueC ≥ C2 = 8 (for µ = 1/2). For this value of C, we fix a radius, r (distance tom1) and move α ∈ [0, 2π]. Since, velocity module is given by position andJacobi function C, we move β ∈ [0, 2π] (velocity direction).

0

1

2

3

4

5

6

0 1 2 3 4 5 6

β

α

0

1

2

3

4

5

6

0 1 2 3 4 5 6

β

α

r = 0.2 r = 0.001

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 30 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Tails

0

1

2

3

4

5

6

0 1 2 3 4 5 6

β

α

-4

0

4

8

12

-4 0 4 8

m1

m2

yx

r = 0.2 θ = 1.2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 31 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Bridges

0

1

2

3

4

5

6

0 1 2 3 4 5 6

β

α

-4

-2

0

2

4

-4 -2 0 2 4

m1

m2

yx

r = 0.2 θ = 1.2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 32 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

A Movie

-2

-1

0

1

2

-2 -1 0 1 2

y

x

m1

m2

-2

-1

0

1

2

-2 -1 0 1 2

yx

m1 m2

θ = −π/8 θ = 0

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 33 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

A Movie

-2

-1

0

1

2

-2 -1 0 1 2

y

x

m1

m2

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

yx

m1

m2

θ = π/8 θ = π/8

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 33 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

A Movie

-8

-4

0

4

8

-8 -4 0 4 8

y

x

m1

m2

-8

-4

0

4

8

-8 -4 0 4 8

yx

m1

m2

θ = 1.2 θ = 1.2

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 33 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Outline

Introduction

Dynamics of the parabolic problem

Numerical results

Conclusions

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 34 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Conclusions

Using the invariant manifolds, the symmetries of the problem and theC-criterium it is possible to construct connecting orbits of different types.

The regions of the phase space where the test particles remain or notaround each galaxy are confined by the invariant manifolds of thecollinear equilibrium points.

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 35 / 36

Introduction Dynamics of the parabolic problem Numerical results Conclusions

Further work

How does the mass parameter of the parabolic problem affects Bridgesand tails?

Explorations varying the inclination (Spatial parabolic problem)

Hyperbolic problem (make sense)

Barrabes, Cors, Garcia, Olle (November 10, 2016) Parabolic problem 36 / 36