Git Sysml Part 1 Cae Models

Embed Size (px)

Citation preview

  • 8/4/2019 Git Sysml Part 1 Cae Models

    1/88

    GIT SysML Work UpdatePart 0: Overview

    Part 1: Representing Executable Physics-based CAE Models in SysML

    [email protected]

    [email protected]

    [email protected]

    GIT Product & System Lifecycle Management (PSLM) Center

    www.pslm.gatech.edu

    Presentation to

    OMG Systems EngineeringDomain-Specific Interest Group (SE DSIG)

    December 6, 2005

    Burlingame, CaliforniaCopyright 1992-2005 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved.

    Permission to re roduce and distribute without chan es for non-commercial ur oses includin internal cor orate usa e is hereby ranted rovided this notice and a ro er citation are included.

    v. 2005-12-28

  • 8/4/2019 Git Sysml Part 1 Cae Models

    2/88

    Copyright 20052

    Acknowledgements

    Sponsors: NASA, NIST

    http://eislab.gatech.edu/projects/

    GIT Team: Manas Bajaj, Injoong Kim, Raphael Kobi, Chris Paredis,

    Russell Peak, Diego Tamburini, Miyako Wilson

    Other Collaborators:

    Roger Burkhart (Deere), Alan Moore et al. (Artisan),Sandy Friedenthal (LMCO)

  • 8/4/2019 Git Sysml Part 1 Cae Models

    3/88

    Copyright 20053

    Resources

    GIT SysML resources Main web

    http://www.pslm.gatech.edu/topics/sysml/

    Presentations http://www.marc.gatech.edu/events/pde2005/presentations/

    See Presentations 1.1 and 1.2 (includes webcast video archive) http://eislab.gatech.edu/pubs/seminars-etc/2005-09-omg-se-dsig-peak/

    http://eislab.gatech.edu/pubs/seminars-etc/2005-12-omg-se-dsig-peak/

    See also videos showing SysML-driven CAE execution (via COB interfaces)

    http://eislab.gatech.edu/tmp/sysml/2005-12-06-burlingame/

    Related GIT techniques Composable objects

    http://eislab.gatech.edu/projects/nasa-ngcobs/

    Multi-representation architecture (MRA)for simulation templates and CAD-CAE interoperability http://eislab.gatech.edu/research/dai/

  • 8/4/2019 Git Sysml Part 1 Cae Models

    4/88

    Copyright 20054

    Part 0: Overview

    Presentation purpose = overview recent progress: Validation: executability of SysML parametrics

    Usage for SysML-driven CAE execution (math and FEA solvers)

    Usage for knowledge capture & usage:relations and intent in design & analysis

    Development: further examples

    Part 1: Representing Executable Physics-based

    CAE Models in SysML (Peak, Tamburini, et al.) See below

    Part 2: SysML-based Reference Models forFluid Power Components (Paredis, et al.)

    See GIT_SysML_Part_2_Fluid_Pwr_Ref_Models.ppt

  • 8/4/2019 Git Sysml Part 1 Cae Models

    5/88

    Copyright 20055

    SysML-based Examples by GIT

    Test Cases

    Introductory tutorials (A)

    Triangle

    Spring systems

    Simulation templatetutorials (A, B)

    Simulation building blocks

    Mechanical CAD & CAE: flap link

    Space systems: FireSat satellite

    Fluid power & system dynamics (C) -- see Part 2

    Electrical/mechanical CAD & CAE

    Model train (for Mechatronics pilot)

    Racing bike

    Tool Interfaces

    A. Math solvers:1. Mathematica

    B. Finite element analysis

    (FEA) solvers:1. Ansys

    C. Dynamics solvers:1. Modelica/Dymola

    = Primary Updates since 9/2005 OMG Meeting

    Note: The SysML notation used in these slides roughly corresponds to SysML draft v0.9 plus more recent updates (approximately R. Burkhart blocks inputs as contained

    in SysML spec v0.98 by SST) and experimental variations. We intend to update these examples with the final official notation when v1.0 that becomes available.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    6/88

    Copyright 20056

    Status of Our SysML Examples - p.1/22005-12-06

    1. About the SysML notation used in these slides1. It roughly corresponds to a ~9/2005 form of the blocks-based

    parametrics & structure approach developed by R. Burkhart et al.

    1. This approach was updated & provided to both SysML teams 11/2005

    2. The SST SysML v0.98 draft spec adopted this approach, whereasthe SP SysML v1.0a draft spec adopted a collaborations-based approach

    2. We recently received a SysML tool that corresponds to the v.0.98 spec.We hope to update these examples and solver interfaces accordingly

    in the near future.2. SST SysML v0.98 vs. our current examples:

    1. Block properties should be shown as small boxes flush with block boundaries vs. our currentoverlapping style

    2. Bindings between regular blocks and constraint blocks should show their role names (as bindingidentifiers) vs. our current elision

    3. Instances should be underlined vs. our current underlining omission

    (see also note below about instance causality)

    3. Other notes1. We hope to include the following notation in future versions (they are not required by the

    current specs, but we believe they will enhance parametric diagram usefulness):

    1. Include symbols and subscripts for properties per traditional engineering notation

    1. E.g., spring constant in spring 1: k1

    2. Include relation expressions in constraint blocks in terms of their bound properties

    (continued next page)

  • 8/4/2019 Git Sysml Part 1 Cae Models

    7/88

    Copyright 20057

    Status of Our SysML Examples - p.2/23. Other notes (continued)

    1. In these examples we tested the following notation or practices on an experimental basisto see if they might be useful:

    1. We distinguished parametric diagrams used for defininga block (par-d) vs. those used to capture instances(par-i) of that block. Similar suffixes may be useful for definitional vs. instance use of all SysML diagrams.

    2. We have a library of constraint blocks representing specific commonly used expressions (e.g., a=b+c,a**2=b**2+c**2, etc.) that can be utilized in composing other blocks. To represent specialized relations, wetried defining a generic algebraic constraint block in this library, which can be redefined wherever it is used.In future versions we will likely replace this generic algebraic relation with relations defined in the context of

    the blocks that use them.3. We implemented equality relations as usages of an explicit a=b constraint block. We will likely replace such

    cases with binding relations in the future.

    4. We used a black dot graphical symbol to denote true junctions where equality relations intersect (e.g., as ashorthand for a set of relations like a=b, a=c, a=d, and a=e). This approach is similar to that used withelectrical schematics and a Manhattan routing style. It enables cleaner and more compact diagram layout.

    5. We depict instance-level causality in the Triangular Prism example using a double-lined box to indicate theprimary desired result (and red italics to indicate other ancillary results).

    2. We did the following to enable our constraint manager, XaiTools, to process SysML parametrics(which provides subsequent solver execution using COTS math and FEA tools):

    1. Added stereotypes to denote composable object (COBs) constructs: git-schema, git-use-from, etc.

    2. Added stereotypes to denote the patterns defined in our multi-representation architecture (MRA) approachfor CAD-CAE interoperability: apm, cbam, abb, smm

    3. Handled reference properties (e.g., flap link material) via ad-hoc associations (this is due to a limitation inXaiToolswe hope to resolve in the near future).

  • 8/4/2019 Git Sysml Part 1 Cae Models

    8/88

    Copyright 20058

    Contents - Part 1

    PurposeCAD-CAE simulation template background

    MCAD-MCAE benchmark example: flap link

    Modularity & reusability

    Executable SysML parametrics (math, FEA)

    Summary

    Recommended prerequisites

    Triangle tutorial

    Spring systems tutorial

    Multi-representation architecture (MRA)for simulation templates and CAD-CAE interoperability

  • 8/4/2019 Git Sysml Part 1 Cae Models

    9/88

    Copyright 20059

    GIT SysML Involvement - Overall Purpose

    Collaborate within SE DSIG:composable object (COB) conceptsSysML

    (esp. SysML parametrics)

    Leverage COB-based simulation template workto demonstrate and verify SysML capabilities

    CAD-CAE interoperability

    Systems-of-systems (SoS) knowledge representations

    ...

    For further background and GIT SysML work-to-date:- See SE DSIG minutes/archives - Atlanta - 9/2005 - http://syseng.omg.org/

    - http://www.pslm.gatech.edu/topics/sysml/

  • 8/4/2019 Git Sysml Part 1 Cae Models

    10/88Copyright 2005

    10

    Contents - Part 1

    PurposeCAD-CAE simulation template background

    Leveraging test cases from existing work

    See http://eislab.gatech.edu/research/dai/

    MCAD-MCAE benchmark example: flap link

    Summary

    Recommended prerequisites (backup slides)

    Triangle tutorial

    Spring systems tutorial

    Multi-representation architecture (MRA)

    for simulation templates and CAD-CAE interoperability

  • 8/4/2019 Git Sysml Part 1 Cae Models

    11/88Copyright 2005

    11

    SysML-based Examples by GIT

    Test Cases

    Introductory tutorials (A)

    Triangle

    Spring systems

    Simulation templatetutorials (A, B)

    Simulation building blocks

    Mechanical CAD & CAE: flap link

    Space systems: FireSat satellite

    Fluid power & system dynamics (C) -- see Part 2

    Electrical/mechanical CAD & CAE

    Model train (for Mechatronics pilot)

    Racing bike

    Tool Interfaces

    A. Math solvers:1. Mathematica

    B. Finite element analysis(FEA) solvers:

    1. Ansys

    C. Dynamics solvers:1. Modelica/Dymola

    See slide entitled Status of Our SysML Examples regarding spec version used in these examples, and so on.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    12/8812Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Triangle

    dh

    Ab

    Triangle

    dh

    Ab

    COB Structure: Graphical FormsTutorial: Right Triangle

    Basic Constraint Schematic-S Notation

    c. Constraint Schematic-Sa. Shape Schematic-S

    222

    2

    1

    :

    21:

    hbdr

    bhAr

    b. Relations-S

    d. Subsystem-S(for reuse by other COBs)

    h

    b

    Ad

    base, br1

    r2

    bhA2

    1

    height, h

    222hbd

    area,A

    diagonal, d

    Aside: This is a usage view in AP210 terminology(vs. the above design views)

    s

    a b

    dc

    a

    b

    d

    c

    e

    r1

    [1.2]

    [1.1]

    f gcbe

    r2

    h

    wL [ j:1,n]

    wj

    s

    a b

    dc

    a

    b

    d

    c

    e

    r1

    [1.2]

    [1.1]

    f gcbe

    r2

    h

    wL [ j:1,n]

    wj

    variable a subvariable a.d

    subsystem s

    of cob type h

    equality relation

    e = f

    relation r1(a,b,s.c)

    subvariable s.b

    option 1.1:

    f = s.d

    option 1.2:

    f = g

    option category 1

    aggregate c.w

    element wj

    variable a subvariable a.d

    subsystem s

    of cob type h

    equality relation

    e = f

    relation r1(a,b,s.c)

    subvariable s.b

    option 1.1:

    f = s.d

    option 1.2:

    f = g

    option category 1

    aggregate c.w

    element wj

    COB = composable object

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    13/8813Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    COB Structure (cont.): Lexical FormTutorial: Right Triangle

    for reference: c. Constraint Schematic-S

    e. Lexical COB Structure (COS)COBtriangle SUBTYPE_OF geometric_shape;

    base, b : REAL;

    height, h : REAL;

    diagonal, d : REAL;

    area, A : REAL;

    RELATIONS

    r1 : " == 0.5 * * ";

    r2 : "**2 == **2 + **2";END_COB;

    base, br1

    r2

    bhA2

    1

    height, h

    222 hbd

    area,A

    diagonal, d

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    14/8814Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Right Triangle Implemented

    using SysML Blocks and Parametrics

    SysML Parametric Diagram

    Note: The outmost block should be depicted as a frame (of type par),

    as in conformant flap_link examples elsewhere in this presentation.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    15/8815Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    TriangularPrism

    Vh

    b

    l

    COBs as Building BlocksTutorial: Triangular Prism COB Structure

    c. Constraint Schematic-Sa. Shape Schematic-S

    b. Relations-S

    d. Subsystem-S(for reuse by other COBs)

    Triangle

    dh

    Ab

    Triangle

    dh

    Ab

    length, l volume, Vr1AlV

    cross-section

    AlVr :1

    e. Lexical COB Structure (COS)

    COBtriangular_prism SUBTYPE_OF geometric_shape;

    length, l : REAL;cross-section : triangle;

    volume, V : REAL;

    RELATIONS

    r1 : " == * ";

    END_COB;

    h

    b

    V l

    A

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    16/8816Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Triangular Prism Implemented

    using SysML Blocks and Parametrics

    SysML Parametric Diagram

    Note: The outmost block should be depicted as a frame (of type par),

    as in conformant flap_link examples elsewhere in this presentation.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    17/8817Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    3 in22 in

    3 in

    base, br1

    r2

    bhA2

    1

    height, h

    222hbd

    area,A

    diagonal, d3.60 in

    Example COB InstanceTutorial: Right Triangle

    Constraint Schematic-I Lexical COB Instance (COI)

    state 1.0 (unsolved):

    INSTANCE_OF triangle;

    base : 2.0;

    height : 3.0;

    area : ?;

    diagonal : ?;

    END_INSTANCE;

    state 1.1 (solved):

    INSTANCE_OF triangle;

    base : 2.0;

    height : 3.0;

    area : 3.0;

    diagonal : 3.60;

    END_INSTANCE;Basic Constraint Schematic-I Notation

    example 1, state 1.1

    example 1, state 2.1

    .

    .

    .

    state 2.1 (solved):

    INSTANCE_OF triangle;

    base : 2.0;

    height : 9.0;

    area : 9.0;

    diagonal : 9.22;

    END_INSTANCE;

    9 in2

    2 in

    9 in

    base, br1

    r2

    bhA 21

    height, h

    222 hbd

    area,A

    diagonal, d9.22 in

    200 lbs

    30e6 psiResult b = 30e6 psi

    (output or intermediate variable)

    Result c = 200 lbs

    (output of primary interest)

    X

    Relation r1 is suspended

    X r1

    100 lbs Input a = 100 lbs

    Equality relation is suspended

    a

    b

    c

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    18/8818Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Multi-Directional I/OTutorial: Right Triangle

    Constraint Schematic-I Lexical COB Instance (COI)

    state 2.1 (solved):

    INSTANCE_OF triangle;

    base : 2.0;

    height : 9.0;

    area : 9.0;

    diagonal : 9.22;

    END_INSTANCE;

    state 3.0 (unsolved):

    INSTANCE_OF triangle;

    base : 2.0;

    height : ?;

    area : 6.0;

    diagonal : ?;END_INSTANCE;

    state 3.1 (solved):

    INSTANCE_OF triangle;

    base : 2.0;

    height : 6.0;

    area : 6.0;

    diagonal : 6.32;

    END_INSTANCE;

    6 in22 in

    6 in

    base, br1

    r2

    bhA2

    1

    height, h

    222

    hbd

    area,A

    diagonal, d6.32 in

    example 1, state 2.1

    9 in22 in

    9 in

    base, br1

    r2

    bhA2

    1

    height, h

    222hbd

    area,A

    diagonal, d9.22 in

    example 1, state 3.1

    Concepts illustrated:- Non-causal COB structure (no predefined I/O direction)- Causality of COB instances and states

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    19/8819Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Example COB InstanceTutorial: Triangular Prism - State 1.1 (Solved) in XaiTools

  • 8/4/2019 Git Sysml Part 1 Cae Models

    20/8820Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Example COB InstanceTutorial: Triangular Prism

    Constraint Schematic-I Lexical COB Instance (COI)

    state 1.0 (unsolved):

    INSTANCE_OF triangular_prism;

    cross-section.base : 2.0;

    cross-section.height : 3.0;

    length : 5.0;

    volume : ?;

    END_INSTANCE;

    state 1.1 (solved):

    INSTANCE_OF triangular_prism;cross-section.base : 2.0;

    cross-section.height : 3.0;

    cross-section.area : 3.0;

    length : 5.0;

    volume : 15.0;

    END_INSTANCE;

    example 1, state 1.1 (solved)

    Triangle

    dh

    Ab

    Triangle

    dh

    Ab

    length, l volume, Vr1

    AlV

    cross-section

    3 in22 in

    3 in

    15 in35 in

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

    = 15

    = 3

    state 1.0 (unsolved) state 1.1 (solved)SysML Parametric Diagram-I

    Note: The current prototype exports instances with input values for solving. The model is then executed successfully in external solvers. However, the prototype interface

    for importing resulting solutions is not ready yet; thus, the solved state depicted here inside the SysML tool is an envisioned notation.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    21/8821Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Composable Objects (COBs)

    COB Services (constraint graph manager, including COTS solver access)

    XaiTools

    Ansys(FEA Solver)

    Native Tools Models

    Traditional

    COTS or in-housesolvers

    SysML-based COB Authoring

    COB export

    COB Solving & Browsing

    COB API

    SysML-COB Architecture - Prototype v0.1as of 2005-12-06

    ...

    ExchangeFile

    XaiToolsArtisan Studio

    Mathematica(Math Solver)

  • 8/4/2019 Git Sysml Part 1 Cae Models

    22/8822Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Engineering Web Services

    Client PCs

    XaiTools

    Rich Client

    Internet

    Apache Tomcat

    Mathematica

    Ansys, Patran,Abaqus, ...

    Inte

    rnet/Intranet

    XaiTools Ansys

    Solver ServerXaiTools Ansys

    Solver ServerXaiTools Math.

    Solver Server

    Servlet container

    XaiTools Solver

    Server

    FEA Solvers

    Math Solvers

    Soap Servers

    SO

    AP

    .

    .

    .

    Engineering Service BureauHost Machines

    WebServer

    HTTP/XMLWrapped Data

    Status:In prototype & production usage since 1999 (CORBA), 2002 (SOAP),including remote access from AZ, DC, WV, UK, Japan,

  • 8/4/2019 Git Sysml Part 1 Cae Models

    23/8823Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Composable Objects (COBs)

    COB Services (constraint graph manager, including COTS solver access)

    XaiTools

    Ansys(FEA Solver)

    Native Tools Models

    Traditional

    COTS or in-housesolvers

    Mathematica(Math Solver)

    SysML-based COB Authoring

    COB in/out

    COB Solving & Browsing

    COB API

    SysML-COB Architecture - Prototype v0.2Anticipated 2006-1Q

    ...

    ExchangeFile

    XaiToolsArtisan Studio

  • 8/4/2019 Git Sysml Part 1 Cae Models

    24/8824Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    Composable Objects (COBs)

    COB Services (graph mgt, conf. control, meta-solving, persistence, tool access, UI,)

    COB Management System

    (CMS)

    Tool Tool

    Tool

    Native Tools Models

    TraditionalCOTS and in-house

    end-user tools(authoring, viewing,

    solving,..)

    Tool

    Standards-basedtool wrappers

    COB-Enabled End-User Applications

    COB SDKUI Components

    SysMLUI Control

    COB API

    COTS SysML Tools

    COB API

    COBTree

    Other COB Apps.Domain-specificSimulation tools

    COB API

    CMS Management Client Tools

    COB Authoring

    COB API

    COB ConfigurationManagement

    COB API

    COB Browsing

    COB API

    Envisioned SysML-COB Architecturehttp://eislab.gatech.edu/projects/nasa-ngcobs/ - 2005-10

  • 8/4/2019 Git Sysml Part 1 Cae Models

    25/88Copyright 2005

    25

    Contents - Part 1

    PurposeCAD-CAE simulation template background

    Leveraging test cases from existing & new work

    See http://eislab.gatech.edu/research/dai/

    MCAD-MCAE benchmark example: flap link

    Summary

    Recommended prerequisites (see backup slides)

    Triangle tutorial

    Spring systems tutorial

    Multi-representation architecture (MRA)

    for simulation templates and CAD-CAE interoperability

    X Analysis Integration Techniques

  • 8/4/2019 Git Sysml Part 1 Cae Models

    26/8826Engineering Information Systems Lab eislab.gatech.edu 1993-2005 GTRC

    1 Solution Method Model

    ABB SMM

    2 Analysis Building Block

    4 Context-Based Analysis Model3

    SMMABB

    APM ABB

    CBAM

    APM

    Design Tools Solution Tools

    Printed Wiring Assembly (PWA)

    Solder Joint

    Component

    PWB

    Solder Joint

    Component

    PWB

    body3

    body2

    body1

    body4

    T0

    body3

    body2

    body1

    body4

    T0

    Printed Wiring Board (PWB)

    SolderJoint Component

    Printed Wiring Board (PWB)

    SolderJoint Component

    AnalyzableProduct Model

    i

    X-Analysis Integration Techniquesfor CAD-CAE Interoperability

    http://eislab.gatech.edu/research/

    a. Multi-Representation Architecture (MRA) b. Explicit Design-Analysis Associativity

    c. Analysis Module Creation Methodology

    ProductModel Selected Module

    Analysis Module Catalogs

    MCAD

    ECAD

    Analysis Procedures

    CommercialAnalysis Tools

    Ansys

    Abaqus

    Solder Joint Deformation Model

    Idealization/Defeaturization

    CommercialDesign Tools

    PWB

    Solder Joint

    Component

    APM CBAM ABB SMM

    Ubiquitous Analysis(Module Usage)

    Ubiquitization(Module Creation)

    CAE

    Physical Behavior Research,Know-How, Design Handbooks, ...

    Informal Associativity Diagram

    Constrained Object-based Analysis ModuleConstraint Schematic View

    Plane Strain Bodies System

    PWA Component Occurrence

    CL

    1

    m at er ia l ,E( , )geometry

    body

    plane strain body , i = 1...4PWB

    SolderJoint

    Epoxy

    Componentbase: Alumina

    core: FR4

    Solder Joint Plane Strain Model

    total height, h

    linear-elastic model

    APMABB

    3 APM 4 CBAM

    2 ABBc

    4body

    3body

    2body

    1h

    oT

    primary structuralmaterial

    ii

    i

    1 SMM

    Design Model Analysis Model

    ABB SMM

    soldersolder joint

    pwb

    component

    1.25

    deformation model

    total height

    detailed shape

    rectangle

    [1.2]

    [1.1]

    average

    [2.2]

    [2.1]

    cTc

    Ts

    inter-solder joint distanceapproximate maximum

    sj

    L s

    primary structural material

    total thickness

    linear-elastic model

    Plane Strain

    geometry model 3

    a

    stress-strainmodel 1

    stress-strainmodel 2

    stress-strainmodel 3

    Bodies System

    xy, extreme, 3

    T2

    L1

    T1

    T0

    L2

    h1

    h2

    T3Tsj

    hs

    hc

    L c

    xy, extreme, sjbilinear-elastoplastic model

    linear-elastic model

    primary structural material linear-elastic model

    component

    occurrence

    solder jointshear strainrange

    [1.2]

    [1.1]length 2 +

    3 APM 2 ABB 4 CBAM

    Fine-Grained Associativity

    Composable

    COB = composable object

  • 8/4/2019 Git Sysml Part 1 Cae Models

    27/88

  • 8/4/2019 Git Sysml Part 1 Cae Models

    28/88

    28

    Fitting Analysis Template Applied to Bike Frame BulkheadCOB-based CBAM constraint schematic - instance view

    0.4375 in

    0.5240 in

    0.0000 in

    2.440 in

    1.267 in

    0.307 in

    0.5 in

    0.310 in

    2.088 in

    1.770 in

    67000 psi

    65000 psi

    57000 psi

    52000 psi

    39000 psi

    0.067 in/in

    0.030 in/in

    5960 Ibs

    1

    10000000 psi

    9.17

    5.11

    9.77

    bulkhead fitting attach point

    LE7K18

    2G7T12U (Detent 0, Fairing Condition 1)

    L29 -300

    Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

    Bulkhead Fitting Joint

    Program

    Part

    Feature

    Channel FittingStatic Strength Analysis

    Template

    1 of 1Dataset

    strength model

    r1

    e

    b

    h

    tb

    te

    Pu

    Ftu

    E

    r2

    r0

    a

    FtuLT

    Fty

    FtyLT

    epuLT

    tw

    MSwall

    epu

    jm

    MSepb

    MSeps

    Channel FittingStatic Strength Analysis

    Fsu

    IAS FunctionRef DM 6-81766

    end pad

    base

    material

    wall

    analysis context

    mode: (ultimate static strength)

    condition:

    heuristic: overall fitting factor,Jm

    bolt

    fitting

    head radius, r1hole radius, ro

    width, b

    eccentricity, e

    thickness, te

    height, h

    radius, r2

    thickness, tb

    hole

    thickness, tw

    angled height, a

    max allowable ultimate stress,

    allowable ultimate long transverse stress,

    max allowable yield stress,

    max allowable long transverse stress,

    max allowable shear stress,

    plastic ultimate strain,

    plastic ultimate strain long transverse,

    young modulus of elasticity,

    load, Pu

    Ftu

    Fty

    FtyLTFsu

    epu

    epuLT

    E

    FtuLT

    product structure

    (channel fitting joint)

    e

    se

    tr

    Pf

    02p

    21

    e

    be

    ht

    PCf

    ),,(13 hbrfK

    18 associativity relations

    COB = composable object

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    29/88

    29

    diagonal brace lug jointj = top

    0.7500 in

    0.35 in

    0.7500 in

    1.6000 in

    2

    0.7433

    14.686 K

    2.40

    4.317 K

    8.633 K

    k = norm

    Max. torque brake setting

    detent 30, 2=3.5

    7050-T7452, MS 7-214

    67 Ksi

    L29 -300

    Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

    Diagonal Brace Lug Joint

    Program

    Part

    Feature

    Lug JointAxial Ultimate Strength Model

    Template

    j = top lugk = normal diameter (1 of 4)

    Dataset

    material

    deformation model

    max allowable ultimate stress, FtuL

    effective width, W

    analysis context

    objective

    mode (ultimate static strength)

    condition

    estimated axial ultimate strength

    Margin of Safety(> case)

    allowable

    actual

    MS

    normal diameter, Dnorm

    thickness, t

    edge margin, e

    Plug joint

    size,n

    lugs

    lugj hole

    diameters

    product structure (lug joint)

    r1

    n

    P jointlug

    L [ j:1,n ]

    Plug

    L [ k]Dk

    oversize diameter, DoverD

    PaxuW

    e

    t

    Ftuax

    Kaxu

    Lug Axial UltimateStrength Model

    DM 6630

    Lug Template Applied to an Airframe Analysis ProblemCOB-based CBAM constraint schematic - instance view

    Solution Tool

    Interaction

    Boundary Condition Objects

    (links to other analyses)

    CAD-CAE Associativity(idealization usage)

    Material Models

    Model-based Documentation

    Geometry

    P KW

    DDtFaxu axu tuax ( )1

    Requirements

    Legend:Annotations highlight model knowledge capture capabilities. Other notation is COB constraint schematics notation.

    R

    c

    b

    = f( c , b , R )W = f( R , D , )

    axial direction

    e

    D

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    30/88

    30

    Generalized MRA Patterns for Systems-of-Systems (SoS) M&STraditional Patterns

    (for CAD-CAE)Traditional CAD-CAE Purpose

    regarding Design-Analysis Integration (DAI)Generalized Patterns

    (for complex systems-of-systems)

    design tools

    (CAD)

    - Define systems (parts, assemblies, ) in necessary &

    sufficient descriptive terms (not behavioral)

    - Usually are COTS tools

    system description tools

    analyzable product models(APMs) - Represent design aspects of products and enable connectionswith design tools

    - Support idealizations usable in numerous analysis models

    - Have possibly many associated CBAMs that verify

    requirements

    augmented descriptive model

    (federated descriptive model +

    idealizations and other relations)

    context-based

    analysis models

    (CBAMs)

    - Contain linkages explicitly representing design-analysis

    associativity, indicating usage of APM idealizations

    - Create analysis models from ABBs and automatically connect

    them to APM attributes

    - Represent common analysis models as automated, predefinedtemplates

    - Support interaction of analysis models of varying complexity

    and solution method

    - Enable parametric design studies via multi-directional

    input/output (in some cases)

    context-based

    simulation model

    (system-specific

    simulation model)

    analysis building blocks

    (ABBs)

    (generic analytical concepts)

    - Represent analytical concepts as composable objects

    - Act as semantically rich 'pre-preprocessor' & 'post-

    postprocessor' models.

    - ABB instances create SMM instances based on solutionmethod considerations and receive results after automated

    solution tool execution

    simulation building block

    (generic analytical concepts)

    solution method models

    (SMMs)

    - Packages solution tool inputs, outputs, and control as

    integrated objects (often as a componentized wrapping of

    solution tool native files)

    - Automates solution tool access and results retrieval via tool

    agents and wrappers

    simulation method model

    solution tools

    (CAE)

    - Execute simulation models (often as vendor-specific native

    files)- Usually are COTS tools

    simulation tool

    (solver)

    version: 2005-12-06

  • 8/4/2019 Git Sysml Part 1 Cae Models

    31/88

    31

    Diversity Demonstrated in Test Cases[based on Peak and Wilson et al. 2001]

    Test Case Analysis Templates

    TargetCharacteristics

    Flap LinkCBAMs

    PWA/BCBAMs

    AerospaceCBAMs

    Electrical ChipPackage CBAMs

    Diversity Dimensions

    Product Domain airframe printed circuit board (PWA/B) airframe chip package

    CAD Tools CATIA (MCAD)Mentor Graphics (ECAD)

    XaiTools PWA/BCATIA (MCAD)

    XaiToolsChip Package (XCP)

    Discipline structural thermo-mechanical structural thermal

    Behaviordeformation(extension)

    deformation(torsion)

    deformation(warpage)

    lug & fittingultimate shear,bending shear

    temperature

    Fidelityextensional rod

    (1D, linear)plane stress body

    (2D, linear)torsional rod(1D, linear)

    thermal bending(1D, linear)

    plane strain body(2D, linear)

    1.5Dthermal body(3D, linear)

    Solution Method(and Tools)

    formula-based(Mathematica)

    FEA (Ansys,Patran, Abaqus),formula-based(Mathematica)

    formula-based(Mathematica)

    formula-based(Mathematica)

    FEA(Ansys, Cadas),formula-based(Mathematica)

    formula-based(Mathematica)

    FEA (Ansys),formula-based(Mathematica);

    custom cob-basedmesh algorithm

    Directionality multioneway

    (partially multi)multi multi

    oneway(partially multi)

    oneway(partially multi)

    oneway(partially multi)

    COB Usage Characteristics

    Product DesignInfo Usage

    detailed design(COI via CATIA interface)

    detailed design(STEP AP210 -Part 21

    via Mentor Graphics interface)

    detailed design(COI via

    CATIA interface)

    preliminary design(COI via

    XCP design tool)

    Automation fully automated fully automated fully automated fully automated

    [after Wilson, 2000] Patran and Abaqus links are work-in-progres

  • 8/4/2019 Git Sysml Part 1 Cae Models

    32/88

    32

    Test Case Statistics: Overall

    Test Cases COB Libraries Used # of Entities, Attributes, Relations

    Total

    Aggregate

    Total

    Oneway

    AggregateOperation

    AggregateInstance

    4 11 3

    108 68 30

    lib\geometry.cos 12 34 22

    3 9 1

    lib\apm.coslib\materials.cos

    lib\abbs.cos

    apm.cos

    lib\abbs.cos

    apm.cos

    abbs.cos lib\apm.cos 24 39 12 3

    lib\geometry.cos

    lib\apm.cos

    airplane\lib\abbs.cos

    fastener.cos 3 7

    materials.cos 1 38

    lib\geometry.coslib\apm.cos

    airplane\lib\materials.cos

    airplane\lib\fastener.cos

    airplane\lib\cbams.cos

    airplane\bikeframe\apm.cos

    lib pwb_board.cos 13 21 2 5

    lib\geometry.cos

    cp\lib\pwb_board.cos

    lib\abbs.cos

    cp\bga\apm.cos

    lib\geometry.cos

    cp\lib\pwb_board.cos

    lib\abbs.cos

    cp\qft\apm.cos344 753 25 376 8 12 59

    151 12 4 19

    76 1

    15

    218

    1 19412

    25

    53 177 6 103 3 22

    2 20

    4 23 20

    2 7 16

    1 11

    el

    ectricalchippackage(c

    Totals

    productspecific

    airplane

    apm.cos

    cbams.cos

    apm.cos

    apm.cos

    cbams.cos

    cbams.cos

    bga (ball grid array)

    qfp(quad flat pack)

    apm.cos

    bikeframe cbams.cos

    cbams.cos

    flaplink

    cbams.cos

    apm.cos

    lib

    77

    5 25 36

    19152 8 9

    53

    Relations

    5 21 23

    10

    2

    COB Libraries Used Entities

    Attributes

    pwa/b

    Structure (COS)

    geometry.cos

    abbs.cos

    apm.cos

    materials.cosgeneral(lib)

  • 8/4/2019 Git Sysml Part 1 Cae Models

    33/88

    33

    Test Case Statistics: Flap Link and Associated Building Blocks

    Supports reusability

    Supports complexity

    Total

    Aggregate

    Total

    Oneway

    AggregateOperation

    AggregateInstance

    4 11 3

    lib\geometry.cos 108 68 30

    12 34 22

    3 9 1

    lib\apm.cos

    lib\materials.cos

    lib\abbs.cos

    apm.cos

    .. .. .. .. .. .. .. .. ..

    344 753 25 376 8 12 59

    Attributes

    productspecific

    Structure (COS) Entities

    COB Libraries Used

    10

    36 2

    Relations

    flaplink

    11apm.cos 1

    cbams.cos 5 25

    general(lib)

    materials.cos

    Totals

    abbs.cos

    apm.cos

    geometry.cos

  • 8/4/2019 Git Sysml Part 1 Cae Models

    34/88

    34

    Example COB Reuse as Modular Simulation Building Blocks

    Structure (COS) Where used

    1D Linear Elastic Model (ABB) Extensional Rod ABB

    Torsional Rod ABB

    Margin of Safety ABB 1D Linkage Extensional Flaplink CBAM for stress

    1D Torsional Extensional Flaplink CBAM for stress

    1D Torsional Extensional Flaplink CBAM for twist

    2D Plane Stress flaplink CBAM for stress

    2D linkage extensional flaplink CBAM for deformation

    1D PWB Thermal Bending for warpage2D PWBThermal Bending for warpage

    1.5D Lug CBAM for stress

    Flaplink APM Linkage Extensional CBAM

    Linkage Plane Stress CBAM

    Linkage Torsional CBAM

    BikeFrame APM Lug Axial/Oblique; Ultimate/Shear CBAM

    Fitting Bending/Shear CBAM

    PWA/B APM Thermal Bending CBAM6 Layer Plain Strain CBAM

    N Layer Plain Strain CBAM

    EBGA ChipPackage APM EBGA Thermal Resistance CBAM

    PBGA ChipPackage APM PBGA Thermal Resistance CBAM

    Thermal Stress CBAM

    QFP ChipPackage APM Thermal Resistance CBMA

  • 8/4/2019 Git Sysml Part 1 Cae Models

    35/88

    Copyright 200535

    Contents - Part 1

    PurposeCAD-CAE simulation template background

    Leveraging test cases from existing work

    See http://eislab.gatech.edu/research/dai/

    MCAD-MCAE benchmark example: flap link

    Summary

    Recommended prerequisites (backup slides)

    Triangle tutorial

    Spring systems tutorial

    Multi-representation architecture (MRA)

    for simulation templates and CAD-CAE interoperability

  • 8/4/2019 Git Sysml Part 1 Cae Models

    36/88

    Copyright 200536

    SysML-based Examples by GIT

    Test Cases

    Introductory tutorials (A)

    Triangle

    Spring systems

    Simulation templatetutorials (A, B)

    Simulation building blocks

    Mechanical CAD & CAE: flap link

    Space systems: FireSat satellite

    Fluid power & system dynamics (C) -- see Part 2

    Electrical/mechanical CAD & CAE

    Model train (for Mechatronics pilot)

    Racing bike

    Tool Interfaces

    A. Math solvers:1. Mathematica

    B. Finite element analysis(FEA) solvers:

    1. Ansys

    C. Dynamics solvers:1. Modelica/Dymola

    See slide entitled Status of Our SysML Examples regarding spec version used in these examples, and so on.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    37/88

    37

    Flap Link Mechanical PartA simple design ... a benchmark problem.

    ts1

    B

    sleeve1

    B ts2

    ds2

    ds1

    sleeve2

    L

    shaft

    Leff

    s

    rib1 rib2

    red = idealized parameter

    Background

    This simple part provides the basis for a benchmark tutorial for CAD-CAE interoperability andsimulation template knowledge representation. This example exercises multiple capabilities relevant tosuch contexts (many of which are relevant to broader simulation and knowledge representationdomains), including:

    Diversity in design information source, behavior, fidelity, solution method, solution tool, ... Modular, reusable simulation building blocks and fine-grained inter-model associativity

    See the following for further information (including papers overviewing this example):http://eislab.gatech.edu/research/dai/(begin with [Wilson et al. 2001] under Suggested Starting Points)

    http://eislab.gatech.edu/research/dai/http://eislab.gatech.edu/research/dai/
  • 8/4/2019 Git Sysml Part 1 Cae Models

    38/88

  • 8/4/2019 Git Sysml Part 1 Cae Models

    39/88

    39

    Flap Linkage ExampleManufacturable Product Model (MPM) = Design Description

    Product Attribute

    Ri Product Relation

    ts1

    A

    Sleeve 1

    A ts2

    ds2

    ds1

    Sleeve 2

    L

    Shaft

    b

    h

    t

    b

    h

    t

    sleeve_2

    shaft

    rib_1

    material

    flap_link

    sleeve_1

    rib_2

    w

    t

    r

    x

    name

    R3

    R2

    t2f

    wf

    tw

    t1f

    cross_section

    w

    t

    r

    x

    R1

    COB flap_link SUBTYPE_OF part;part_number : STRING;inter_axis_length, L : REAL;sleeve1 : sleeve;sleeve2 : sleeve;shaft : tapered_beam;rib1 : rib;

    rib2 : rib;RELATIONSPRODUCT_RELATIONS

    pr2 : " == -";

    pr3 : " == ( -)/2";

    pr4 : " == ( -)/2";

    ...END_COB;

    Extended Constraint Graph

    COB Structure (COS)

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    40/88

    40

    ts1

    A

    Sleeve 1

    A ts

    2

    ds2

    ds1

    Sleeve 2

    L

    Shaft

    Leff

    s

    Flap Linkage ExampleAnalyzable Product Model (APM) = MPM Subset + Idealizations

    flap_link

    critical_section

    critical_simple

    t2f

    wf

    tw

    hw

    t1f

    area

    effective_length

    critical_detailed

    stress_strain_model linear_elastic

    E

    cte area

    wf

    tw

    hw

    tf

    sleeve_1

    b

    h

    t

    b

    h

    t

    sleeve_2

    shaft

    rib_1

    material

    rib_2

    w

    t

    r

    x

    name

    t2f

    wf

    tw

    t1f

    cross_section

    w

    t

    r

    x

    R3

    R2

    R1

    R8

    R9

    R10

    6R

    R7

    R12

    11R

    1R

    2

    3

    4

    5

    R

    R

    R

    R

    Product Attribute

    Idealized Attribute

    Ri Idealization Relation

    Ri Product Relation

    Extended Constraint Graph

    Partial COB Structure (COS)

    effective_length, Leff ==

    inter_axis_length -

    (sleeve1.hole.cross_section.radius +

    sleeve2.hole.cross_section.radius)

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

    Flap Link APM

  • 8/4/2019 Git Sysml Part 1 Cae Models

    41/88

    41

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

    Design Model

    Idealized Model

    Design-Idealization

    Relation

    flap_linkflap_link

    critical_section

    critical_simple

    t2f

    wf

    tw

    hw

    t1f

    area

    effective_length

    critical_detailed

    stress_strain_model linear_elastic

    E

    cte area

    wf

    tw

    hw

    tf

    critical_section

    critical_simple

    t2f

    wf

    tw

    hw

    t1f

    area

    effective_length

    critical_detailed

    stress_strain_model linear_elastic

    E

    cte area

    wf

    tw

    hw

    tf

    sleeve_1

    b

    h

    t

    b

    h

    t

    sleeve_2

    shaft

    rib_1

    material

    rib_2

    w

    t

    r

    x

    name

    t2f

    wf

    tw

    t1f

    cross_section

    w

    t

    r

    x

    sleeve_1

    b

    h

    t

    b

    h

    t

    sleeve_2

    shaft

    rib_1

    material

    rib_2

    w

    t

    r

    x

    name

    t2f

    wf

    tw

    t1f

    cross_section

    w

    t

    r

    x

    R3

    R2

    R1

    R3

    R2

    R3

    R2

    R1R1

    R8

    R9

    R10

    6R

    R7

    R12

    11R

    1R

    2

    3

    4

    5

    R

    R

    R

    R

    R8

    R9

    R10

    R8

    R9

    R10

    6R6R

    R7R7

    R12R12

    11R11R

    1R1R

    2

    3

    4

    5

    R

    R

    R

    R

    2

    3

    4

    5

    R

    R

    R

    R

    2

    3

    4

    5

    R

    R

    R

    R

    Product Attribute

    Idealized Attribute

    Ri Idealization Relation

    Ri Product Relation

    Product AttributeProduct Attribute

    Idealized AttributeIdealized Attribute

    Ri Idealization RelationRi Idealization Relation

    Ri Product RelationRi Product Relation

    Extended Constraint Graph

    Flap Link APM

    Implementation in CATIA v5

    Flap Link APM

  • 8/4/2019 Git Sysml Part 1 Cae Models

    42/88

    42

    Flap Link APMSysML Block Definition Diagram (bdd) - basic view

    flap_link

    material

    point

    part

    cross_section

    tapered_I_section

    filleted_tapered_I_section

    basic_I_section

    sleeve

    tapered_beam

    rib

    hole

    1

    1

    sleeve1

    1

    1

    sleeve2

    1

    1

    shaft

    1

    1critical_cross_section

    1

    1

    design

    1

    1basic

    1

    1tapered

    1

    1

    origin

    1

    1

    rib1

    1

    1

    rib2

    1

    1hole1

    ** git tool caveat:

    material link

    bdd flap_link bdd - basic view

    ts1

    B

    sleeve1

    B ts2

    ds2

    ds1

    sleeve2

    L

    shaft

    s

    rib1 rib2

    v. 2005-12-19

    Note [1]: The term part is used here as a regular block name in the traditional engineering sense of

    part-assembly (i.e., it is not used here in the UML/SysML meta-entity context of part/class).

    [1]

  • 8/4/2019 Git Sysml Part 1 Cae Models

    43/88

    43

    materials

    git-root-cobmaterial

    name : STRING

    yield_stress : REAL

    git-root-cobmaterial

    name : STRING

    yield_stress : REAL

    geometry

    point

    x : REAL

    y : REAL

    z : REAL

    point

    x : REAL

    y : REAL

    z : REAL

    apm

    git-root-cobpart

    description : STRING

    designer : STRING

    material : STRING

    sleeve

    width : REALwall_thickness : REAL

    outer_diameter : REAL

    inner_diameter : REAL

    tapered_beam

    length : REAL

    taper_angle : REAL

    cross_section

    tapered_I_section

    flange_base_thickness : REAL

    flange_taper_thickness : REAL

    flange_taper_angle : REAL

    web_thickness : REAL

    total_height : REAL

    flange_width : REAL

    area : REAL

    web_height : REAL

    flange_thickness : REAL

    filleted_tapered_I_section

    flange_fillet_radius : REAL

    web_thickness : REAL

    total_height : REAL

    flange_width : REAL

    flange_base_thickness : REAL

    flange_taper_thickness : REAL

    flange_taper_angle : REAL

    area : REAL

    web_height : REAL

    flange_thickness : REAL

    basic_I_section

    area : REAL

    total_height : REAL

    web_thickness : REAL

    flange_thickness : REAL

    flange_width : REAL

    web_height : REAL

    hole

    height : REAL

    volume : REAL

    rib

    base : REAL

    height : REAL

    thickness : REAL

    git-root-cobpart

    description : STRING

    designer : STRING

    material : STRING

    sleeve

    width : REALwall_thickness : REAL

    outer_diameter : REAL

    inner_diameter : REAL

    tapered_beam

    length : REAL

    taper_angle : REAL

    cross_section

    tapered_I_section

    flange_base_thickness : REAL

    flange_taper_thickness : REAL

    flange_taper_angle : REAL

    web_thickness : REAL

    total_height : REAL

    flange_width : REAL

    area : REAL

    web_height : REAL

    flange_thickness : REAL

    filleted_tapered_I_section

    flange_fillet_radius : REAL

    web_thickness : REAL

    total_height : REAL

    flange_width : REAL

    flange_base_thickness : REAL

    flange_taper_thickness : REAL

    flange_taper_angle : REAL

    area : REAL

    web_height : REAL

    flange_thickness : REAL

    basic_I_section

    area : REAL

    total_height : REAL

    web_thickness : REAL

    flange_thickness : REAL

    flange_width : REAL

    web_height : REAL

    hole

    height : REAL

    volume : REAL

    rib

    base : REAL

    height : REAL

    thickness : REAL

    git-root-cobflap_link

    part_number : STRING

    inter_axis_length : REALallowable_twist : REAL

    allowable_twist_factor : REAL

    allowable_inter_axis_length_change_factor : REAL

    allowable_inter_axis_length_change : REAL

    effective_length : REAL

    description : STRING

    designer : STRING

    material : STRING

    11

    sleeve111

    sleeve2

    11

    shaft

    1

    1

    hole1

    1

    1

    critical_cross_section

    1

    1

    design

    1

    1

    basic

    1

    1

    tapered

    1

    1

    origin

    11

    rib111

    rib2** git tool caveat: material link

    bdd flap_link bdd

    Flap Link APM: SysML Block Definition Diagram (bdd)Implementing COB Concepts in SysML

    v. 2005-12-19

    See slide entitled Status of Our SysML Examples regarding spec version used in these examples, and so on.

  • 8/4/2019 Git Sysml Part 1 Cae Models

    44/88

    44

    Flap Link APM: SysML Parametric Diagram (par)Implementing COB Concepts in SysML

    v. 2005-12-17

    Class flap_link

    sleeve1 : sleeve

    wall_thickness

    inner_diameter

    outer_diameter

    width

    hole1 : hole

    cross_section : circle

    radius

    diameterarea

    origin : pointy

    xz

    sleeve2 : sleeve

    outer_diameter

    inner_diameter

    wall_thickness

    width

    hole1 : hole

    cross_section : circle

    radius

    diameterarea

    origin : pointx

    y zpr2 : algebraic

    abc

    pr3 : algebraic

    a

    b

    c

    pr4 : algebraic

    a

    b

    c

    pr5 : algebraica

    b

    pir1 : algebraic

    ab

    c d

    pir2 : algebraic

    a

    b

    pir4 : algebraica

    b

    c

    rib1 : rib

    baseheight

    thickness

    part_number

    inter_axis_length

    allowable_twist

    allowable_twist_factor

    allowable_inter_axis_length_change_factor

    allowable_inter_axis_length_change

    effective_length

    description

    designer

    material

    origin : pointyx z

    pr1 :algebraic

    ab

    shaft : tapered_beam

    taper_angle

    lengthcritical_cross_section : cross_section

    design : filleted_tapered_I_section

    flange_fillet_radius

    flange_base_thickness

    flange_taper_thickness

    flange_taper_angle flange_width

    I_section.flange_thickness

    web_thickness

    I_section.web_height

    total_height

    area

    rib2 : rib

    base height

    thickness

    pir3 : algebraic

    a

    b

    c

    pr6 : algebraica

    b

    sleeve1 : sleeve

    wall_thickness

    inner_diameter

    outer_diameter

    width

    hole1 : hole

    cross_section : circle

    radius

    diameterarea

    origin : pointy

    xz

    wall_thickness

    inner_diameter

    outer_diameter

    width

    hole1 : hole

    cross_section : circle

    radius

    diameterareacross_section : circle

    radius

    diameterarea

    radius

    diameterarea

    origin : pointy

    xz

    y

    xz

    sleeve2 : sleeve

    outer_diameter

    inner_diameter

    wall_thickness

    width

    hole1 : hole

    cross_section : circle

    radius

    diameterarea

    origin : pointx

    y z

    outer_diameter

    inner_diameter

    wall_thickness

    width

    hole1 : hole

    cross_section : circle

    radius

    diameterareacross_section : circle

    radius

    diameterarea

    radius

    diameterarea

    origin : pointx

    y zx

    y zpr2 : algebraic

    abc

    abc

    pr3 : algebraic

    a

    b

    c a

    b

    c

    pr4 : algebraic

    a

    b

    ca

    b

    c

    pr5 : algebraica

    b

    a

    b

    pir1 : algebraic

    ab

    c d

    ab

    c d

    pir2 : algebraic

    a

    b

    a

    b

    pir4 : algebraica

    b

    ca

    b

    c

    rib1 : rib

    baseheight

    thickness

    baseheight

    thickness

    part_number

    inter_axis_length

    allowable_twist

    allowable_twist_factor

    allowable_inter_axis_length_change_factor

    allowable_inter_axis_length_change

    effective_length

    description

    designer

    material

    origin : pointyx zyx z

    pr1 :algebraic

    ab ab

    shaft : tapered_beam

    taper_angle

    lengthcritical_cross_section : cross_section

    design : filleted_tapered_I_section

    flange_fillet_radius

    flange_base_thickness

    flange_taper_thickness

    flange_taper_angle flange_width

    I_section.flange_thickness

    web_thickness

    I_section.web_height

    total_height

    area

    taper_angle

    lengthcritical_cross_section : cross_section

    design : filleted_tapered_I_section

    flange_fillet_radius

    flange_base_thickness

    flange_taper_thickness

    flange_taper_angle flange_width

    I_section.flange_thickness

    web_thickness

    I_section.web_height

    total_height

    area

    design : filleted_tapered_I_section

    flange_fillet_radius

    flange_base_thickness

    flange_taper_thickness

    flange_taper_angle flange_width

    I_section.flange_thickness

    web_thickness

    I_section.web_height

    total_height

    area

    flange_fillet_radius

    flange_base_thickness

    flange_taper_thickness

    flange_taper_angle flange_width

    I_section.flange_thickness

    web_thickness

    I_section.web_height

    total_height

    area

    rib2 : rib

    base height

    thickness

    base height

    thickness

    pir3 : algebraic

    a

    b

    ca

    b

    c

    pr6 : algebraica

    b

    a

    b

    material

    namenamegit-external-ref

    par-d

    v. 2005-12-19

    Class flap_link_XYZ-510

    part_number = "XYZ-510"

    part_number = "XYZ-510"

    par-i

  • 8/4/2019 Git Sysml Part 1 Cae Models

    45/88

    45

    Flap Link APM:SysML Parametric

    Diagram - Instance(inputs - unsolved state)sleeve1 : sleeve

    wall_thickness

    width = 2.0

    outer_diameter = 2.0

    inner_diameter = 1.0

    origin : point

    z

    y

    x

    hole1 : hole

    origin : point

    z

    x

    y cross_section : circle

    radius

    area

    diameter

    sleeve2 : sleeve

    wall_thickness

    width = 2.50

    outer_diameter = 2.70

    inner_diameter = 1.50

    hole1 : hole

    origin : pointy

    z

    x

    cross_section : circle

    radius diameter

    area

    origin : pointy

    z

    x

    rib1 : rib

    thickness

    base

    heightorigin : point

    z

    x

    y

    shaft : tapered_beam

    origin : pointy

    z

    x

    critical_cross_section : cross_section

    basic :basic_I_section

    design :filleted_tapered_I_section

    total_height

    flange_thickness

    flange_taper_angle = 10.0

    web_height

    flange_taper_thickness = 0.05

    flange_base_thickness = 0.25

    flange_width = 1.5

    area

    web_thickness = 0.25

    flange_fillet_radius = 0.13

    tapered :tapered_I_section

    taper_angle = 3.210243

    length

    origin : point

    x = 0.0

    y = 0.0

    z = 0.0

    p

    inter_axis_length = 6.250000

    allowable_twist

    allowable_twist_factor = 0.001

    allowable_inter_axis_length_change_factor = 0.001

    allowable_inter_axis_length_change

    effective_length

    description = "flap link type 5"

    designer = "J. Smith"

    material = "steel"

    rib2 : rib

    thickness

    height

    base

    origin : pointy

    x

    z

    sleeve1 : sleeve

    wall_thickness

    width = 2.0

    outer_diameter = 2.0

    inner_diameter = 1.0

    origin : point

    z

    y

    x

    hole1 : hole

    origin : point

    z

    x

    y cross_section : circle

    radius

    area

    diameter

    wall_thickness

    width = 2.0

    outer_diameter = 2.0

    inner_diameter = 1.0

    origin : point

    z

    y

    x

    z

    y

    x

    hole1 : hole

    origin : point

    z

    x

    y cross_section : circle

    radius

    area

    diameter

    origin : point

    z

    x

    y

    z

    x

    y cross_section : circle

    radius

    area

    diameterradius

    area

    diameter

    sleeve2 : sleeve

    wall_thickness

    width = 2.50

    outer_diameter = 2.70

    inner_diameter = 1.50

    hole1 : hole

    origin : pointy

    z

    x

    cross_section : circle

    radius diameter

    area

    origin : pointy

    z

    x

    wall_thickness

    width = 2.50

    outer_diameter = 2.70

    inner_diameter = 1.50

    hole1 : hole

    origin : pointy

    z

    x

    cross_section : circle

    radius diameter

    area

    origin : pointy

    z

    x

    y

    z

    x

    cross_section : circle

    radius diameter

    area

    radius diameter

    area

    origin : pointy

    z

    x

    y

    z

    x

    rib1 : rib

    thickness

    base

    heightorigin : point

    z

    x

    y

    thickness

    base

    heightorigin : point

    z

    x

    y

    z

    x

    y

    shaft : tapered_beam

    origin : pointy

    z

    x

    critical_cross_section : cross_section

    basic :basic_I_section

    design :filleted_tapered_I_section

    total_height

    flange_thickness

    flange_taper_angle = 10.0

    web_height

    flange_taper_thickness = 0.05

    flange_base_thickness = 0.25

    flange_width = 1.5

    area

    web_thickness = 0.25

    flange_fillet_radius = 0.13

    tapered :tapered_I_section

    taper_angle = 3.210243

    length

    origin : pointy

    z

    x

    y

    z

    x

    critical_cross_section : cross_section

    basic :basic_I_section

    design :filleted_tapered_I_section

    total_height

    flange_thickness

    flange_taper_angle = 10.0

    web_height

    flange_taper_thickness = 0.05

    flange_base_thickness = 0.25

    flange_width = 1.5

    area

    web_thickness = 0.25

    flange_fillet_radius = 0.13

    tapered :tapered_I_section

    basic :basic_I_section

    design :filleted_tapered_I_section

    total_height

    flange_thickness

    flange_taper_angle = 10.0

    web_height

    flange_taper_thickness = 0.05

    flange_base_thickness = 0.25

    flange_width = 1.5

    area

    web_thickness = 0.25

    flange_fillet_radius = 0.13total_height

    flange_thickness

    flange_taper_angle = 10.0

    web_height

    flange_taper_thickness = 0.05

    flange_base_thickness = 0.25

    flange_width = 1.5

    area

    web_thickness = 0.25

    flange_fillet_radius = 0.13

    tapered :tapered_I_section

    taper_angle = 3.210243

    length

    origin : point

    x = 0.0

    y = 0.0

    z = 0.0

    x = 0.0

    y = 0.0

    z = 0.0

    p

    inter_axis_length = 6.250000

    allowable_twist

    allowable_twist_factor = 0.001

    allowable_inter_axis_length_change_factor = 0.001

    allowable_inter_axis_length_change

    effective_length

    description = "flap link type 5"

    designer = "J. Smith"

    material = "steel"

    rib2 : rib

    thickness

    height

    base

    origin : pointy

    x

    z

    thickness

    height

    base

    origin : pointy

    x

    z

    y

    x

    z

    ts1

    B

    sleeve1

    B ts2

    ds2

    ds1

    sleeve2

    L

    shaft

    s

    rib1 rib2

    v. 2005-12-19

    Solving supported via

    math tool execution

  • 8/4/2019 Git Sysml Part 1 Cae Models

    46/88

  • 8/4/2019 Git Sysml Part 1 Cae Models

    47/88

    47

    COB-based Libraries of Analysis Building Blocks (ABBs)Material Model and Continuum ABBs - Constraint Schematic-S

    Material Model ABB

    Continuum ABBs

    modularre-usage

    E

    One D Linear

    Elastic Model

    T

    G

    e

    t

    material model

    polar moment of inertia,J

    radius, r

    undeformed length,Lo

    twist,

    theta start, 1

    theta end, 2

    r1

    12

    r3

    0L

    r

    J

    rTr

    torque, Tr

    x

    TT

    G, r, , ,J

    Lo

    y

    material model

    temperature, T

    reference temperature, To

    force, F

    area,A

    undeformed length,Lo

    total elongation,L

    length,L

    start,x1

    end,x2

    E

    One D LinearElastic Model

    (no shear)

    T

    e

    t

    r1

    12 xxL

    r2

    oLLL

    r4

    A

    F

    edb.r1

    oTTT

    r3

    L

    L

    x

    FF

    E, A,

    LLo

    T, ,

    yL

    Torsional Rod

    Extensional Rod

    temperature change,T

    cte,

    youngs modulus,E

    stress,

    shear modulus, G

    poissons ratio,

    shear stress, shear strain,

    thermal strain, t

    elastic strain, e

    strain,

    r2

    r1)1(2

    EG

    r3

    r4Tt

    Ee

    r5

    G

    te

    1D Linear Elastic Model

    Regarding classical COB notation and examples,

    see References/Backup Slides

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

    Libraries of Analysis Building Blocks (ABBs)

  • 8/4/2019 Git Sysml Part 1 Cae Models

    48/88

    48

    Class torsional_rod

    material_model :one_D_linear_elastic_model_isothermal

    shear_modulus

    shear_stress

    stress

    youngs_modulus

    strain

    shear_strain

    name

    theta_start

    theta_end

    twist

    torque

    radius

    polar_moment_of_inertia

    undeformed_length

    r1 : algebraica

    b

    c

    r2 : algebraic

    a

    b

    c

    d

    r3 : algebraic

    a

    b

    c

    d

    material_model :one_D_linear_elastic_model_isothermal

    shear_modulus

    shear_stress

    stress

    youngs_modulus

    strain

    shear_strain

    name

    shear_modulus

    shear_stress

    stress

    youngs_modulus

    strain

    shear_strain

    name

    theta_start

    theta_end

    twist

    torque

    radius

    polar_moment_of_inertia

    undeformed_length

    r1 : algebraica

    b

    c a

    b

    c

    r2 : algebraic

    a

    b

    c

    d

    a

    b

    c

    d

    r3 : algebraic

    a

    b

    c

    d

    a

    b

    c

    d

    par-d

    Libraries of Analysis Building Blocks (ABBs)Material Model & Continuum ABBs - SysML Parametric Diagrams

    modularre-usage

    Class extensional_rod

    material_model :one_D_linear_elastic_model_noShear

    elastic_straintemperature_change

    youngs_modulus

    cte

    name

    strainstress

    thermal_strain

    start

    end

    length

    total_elongation

    force

    area

    undeformed_length

    reference_temperature

    temperature

    r1 : algebraica

    b

    c

    r2 : algebraica

    b

    c

    r3 : algebraica

    b

    c

    r4 : algebraicab

    c

    r1edb : algebraicab

    c

    material_model :one_D_linear_elastic_model_noShear

    elastic_straintemperature_change

    youngs_modulus

    cte

    name

    strainstress

    thermal_strain

    elastic_straintemperature_change

    youngs_modulus

    cte

    name

    strainstress

    thermal_strain

    start

    end

    length

    total_elongation

    force

    area

    undeformed_length

    reference_temperature

    temperature

    r1 : algebraica

    b

    c a

    b

    c

    r2 : algebraica

    b

    c a

    b

    c

    r3 : algebraica

    b

    c a

    b

    c

    r4 : algebraicab

    c

    ab

    c

    r1edb : algebraicab

    c

    ab

    c

    par-d

    Class one_D_linear_elastic_model

    youngs_modulus

    poissons_ratio

    cte

    shear_modulus

    strain

    stress

    shear_stress

    shear_strain

    thermal_strain

    elastic_strain

    temperature_change

    name

    yield_stressr1 : algebraic

    a

    b

    c

    r3 : algebraica

    b

    c

    r4 : algebraicab

    c

    r5 : algebraica

    b

    c

    r2 : algebraic

    a

    b

    c

    youngs_modulus

    poissons_ratio

    cte

    shear_modulus

    strain

    stress

    shear_stress

    shear_strain

    thermal_strain

    elastic_strain

    temperature_change

    name

    yield_stressr1 : algebraic

    a

    b

    c

    a

    b

    c

    r3 : algebraica

    b

    c a

    b

    c

    r4 : algebraicab

    c

    ab

    c

    r5 : algebraica

    b

    c a

    b

    c

    r2 : algebraic

    a

    b

    c

    a

    b

    c

    par-d

    v. 2005-12-19

  • 8/4/2019 Git Sysml Part 1 Cae Models

    49/88

  • 8/4/2019 Git Sysml Part 1 Cae Models

    50/88

    50

    Flap Link Simulation Templates & Generic Building BlocksSysML Block Definition Diagram (bdd) - basic view

    cbamlink_analysis_model

    cbamlink_extensional_model

    cbamlink_torsional_model

    cbamlink_plane_stress_model

    abb

    link_plane_stress_abb

    abbmargin_of_safety_model

    abb

    extensional_rod_isothermal

    abbone_D_linear_elastic_model_isothermal

    abb

    torsional_rod

    condition apmflap_link

    abbone_D_linear_elastic_model

    abbone_D_linear_elastic_model_noShear

    1 1

    associated_condition

    1

    1

    stress_mos_model

    1

    1

    stress_mos_model

    1

    1l

    twist_mos_model

    1

    1

    sx_mos_model

    1

    1

    ux_mos_model

    1

    1

    deformation_model1

    1

    deformation_model1

    1

    deformation_model

    1

    1

    material_model

    1

    1

    material_model

    Generalization45

    git tool caveat

    bdd flap_link_cbams bdd - basic view

    T t i l E l Fl Li k A l i T l t

  • 8/4/2019 Git Sysml Part 1 Cae Models

    51/88

    51

    (1a) Analysis Template: Flap Link Extensional Model

    Tutorial Example: Flap Link Analysis TemplateCOB-based CBAM - Constraint Schematic (classical view)

    material

    effective length,Leff

    deformation model

    linear elastic model

    Lo

    Extensional Rod(isothermal)

    F

    L

    A

    L

    E

    x2

    x1

    youngs modulus,E

    cross section area,A

    al1

    al3

    al2

    linkage

    mode: shaft tension

    condition reaction

    allowable stress

    y

    x

    PP

    E, A

    LLeff

    ,

    Lts1

    A

    Sleeve 1

    A ts2

    ds2

    ds1

    Sleeve 2

    L

    Shaft

    Leff

    s

    stress mos model

    Margin of Safety(> case)

    allowable

    actual

    MS

    Solution Tool

    Interaction

    Boundary Condition Objects(links to other analyses)*

    CAD-CAE

    Associativity(idealization usage)

    Material ModelsGeometry

    Requirements &

    Objectives

    APMABB

    ABB

    CBAM

    SMM

    ClassicalCOBNotationPeak

    1993Tamburini1999Wilson2000

  • 8/4/2019 Git Sysml Part 1 Cae Models

    52/88

    52

    Analysis Template: Flap Link Extensional ModelCOB-based CBAM - SysML Parametric Diagram

    v. 2005-12-19

    apmflap_link

    shaft : tapered_beam

    critical_cross_section :cross_section

    basic : basic_I_section

    area

    part_numbereffective_length

    material

    shaft : tapered_beam

    critical_cross_section :cross_section

    basic : basic_I_section

    area

    critical_cross_section :cross_section

    basic : basic_I_section

    area

    basic : basic_I_section

    areaarea

    part_numbereffective_length

    material

    Class link_extensional_model

    partabb

    stress_mos_model : margin_of_safety_model

    allowable

    determined

    margin_of_safety

    associated_condition : condition

    description reaction

    partabbdeformation_model : extensional_rod_isothermal

    length

    total_elongationforce

    area

    undeformed_length

    material_model :one_D_linear_elastic_model_noShear

    youngs_modulus

    stressname

    al2 : a=b ab

    al3 : a=b ab

    al4 : a=b ab

    al5 : a=b ab

    al6 : a=b

    a

    b

    al7 : a=ba b

    link

    al1 : a=b ab

    partabb

    stress_mos_model : margin_of_safety_model

    allowable

    determined

    margin_of_safety

    allowable

    determined

    margin_of_safety

    associated_condition : condition

    description reactiondescription reaction

    partabbdeformation_model : extensional_rod_isothermal

    length

    total_elongationforce

    area

    undeformed_length

    material_model :one_D_linear_elastic_model_noShear

    youngs_modulus

    stressname

    length

    total_elongationforce

    area

    undeformed_length

    material_model :one_D_linear_elastic_model_noShear

    youngs_modulus

    stressname

    youngs_modulus

    stressname

    al2 : a=b ab ab

    al3 : a=b ab ab

    al4 : a=b ab ab

    al5 : a=b ab ab

    al6 : a=b

    a

    b

    a

    b

    al7 : a=ba ba b

    link

    al1 : a=b ab ab

    material

    stress_strain_model :material_levels

    linear_elastic :linear_elastic_model

    youngs_modulus

    name yield_stress

    stress_strain_model :material_levels

    linear_elastic :linear_elastic_model

    youngs_modulus

    linear_elastic :linear_elastic_model

    youngs_modulusyoungs_modulus

    name yield_stress

    par-d

    Solving supported via

    math tool execution

    Analysis Template Instance with Multi Directional I/O

  • 8/4/2019 Git Sysml Part 1 Cae Models

    53/88

    53

    material

    effective length,Leff

    deformation model

    linear elastic model

    Lo

    Extensional Rod

    (isothermal)

    F

    L

    A

    L

    E

    x2

    x1

    youngs modulus,E

    shaft

    critical_cross

    _section

    al1

    al3

    al2

    linkage

    mode: shaft tension

    condition reaction

    allowable stress

    stress mos model

    Margin of Safety

    (> case)

    allowable

    actual

    MS

    description

    area,Abasic

    example 1, state 1

    steel

    10000 lbs

    flaps mid position

    1.125 in2

    18000 psi

    30e6 psi

    1.025

    5.0 in

    8888psi

    1.43e-3 inFlap Link #3

    material

    effective length, Leff

    deformation model

    linear elastic model

    Lo

    Extensional Rod

    (isothermal)

    F

    L

    A

    L

    E

    x2

    x1

    youngs modulus,E

    shaft

    critical_cross

    _section

    al1

    al3

    al2

    linkage

    mode: shaft tension

    condition reaction

    allowable stress

    stress mos model

    Margin of Safety(> case)

    allowable

    actual

    MS

    description

    area,Abasic

    X

    3.00e-3 in

    1.125 in2

    5.0 inFlap Link #3

    0.0

    steel10000 lbs

    flaps mid position

    18000psi

    example 1, state 3

    30e6 psi18000 psi

    0.555 in2

    Analysis Template Instance with Multi-Directional I/OFlap Link Extensional Model - COB Constraint Schematics (classical view)

    Design Verification- Input: design details- Output:

    i) idealized design parametersii) physical response criteria

    Design Synthesis- Input: desired physical

    response criteria- Output:

    i) idealized designparameters(e.g., for sizing), or

    ii) detailed designparameters

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

    Flap Link Extensional Model

  • 8/4/2019 Git Sysml Part 1 Cae Models

    54/88

    54

    Flap Link Extensional ModelExample COB Instance in XaiTools(object-oriented spreadsheet)

    Detailed CAD datafrom CATIA

    Idealized analysis featuresin APM

    Explicit multi-directional associativitybetween design & analysis

    Modular generic analysis templates(ABBs)

    Library data formaterials

    example 1, state 1

  • 8/4/2019 Git Sysml Part 1 Cae Models

    55/88

    S

  • 8/4/2019 Git Sysml Part 1 Cae Models

    56/88

    56

    FEA-based Analysis Template: Link Plane Stress ModelCOB-based CBAM - Constraint Schematic (classical view)

    ts1

    rs1

    L

    rs2

    ts2tf

    ws2ws1

    wf

    twF

    LL

    x

    y

    LC

    Plane Stress Bodies

    Higher fidelity versionvs. Link Extensional Model

    name

    linear_elastic_model

    wf

    tw

    tf

    inter_axis_length

    sleeve_2

    shaft

    material

    linkage

    sleeve_1

    w

    t

    r

    E

    cross_section:basic

    w

    t

    r Lws1

    ts1

    rs2

    ws2

    ts2

    rs2

    wf

    tw

    tf

    E

    deformation model

    x,max

    ParameterizedFEA Model

    stress mos model

    Margin of Safety(> case)

    allowable

    actual

    MS

    ux mos model

    Margin of Safety(> case)

    allowable

    actual

    MS

    mode: tensionux,max

    Fcondition reaction

    allowable inter axis length change

    allowable stress

    ABBSMM SMM Template

    ClassicalCOBNotationPeak1993Tamburini1999Wilson2000

    FEA-based Analysis Template: Link Plane Stress Model

  • 8/4/2019 Git Sysml Part 1 Cae Models

    57/88

    57

    y pCOB-based CBAM - SysML Parametric Diagram (draft layout)

    link_plane_stress_model

    sx_mos_model :margin_of_safety_model

    determined

    margin_of_safety

    allowable

    ux_mos_model :margin_of_safety_model

    margin_of_safety

    determined

    allowable

    deformation_model : link_plane_stress_abb

    ts2

    tw

    lux

    rs2

    ex

    sx

    ws2

    ts1

    ws1

    force

    rs1

    tf

    wf

    nuxy al1 : a=bb a

    al2 : a=b ab

    al3 : a=b ab

    al5 : a=bb a

    al6 : a=bba

    al9 : a=b ab

    al11 : a=bb

    a

    al12 : a=bb a

    al13 : a=b ab

    al7 : a=b

    a

    b

    al8 : a=b ba

    al9 : a=b

    a

    b

    al8 : a=bb a

    al14 : a=b

    b

    a

    al7 : a=b*2.0b a

    al10 : a=b*2.0ba

    associated_condition :condition

    description

    reactionload

    link

    al6 : a=ba b

    sx_mos_model :margin_of_safety_model

    determined

    margin_of_safety

    allowabledetermined

    margin_of_safety

    allowable

    ux_mos_model :margin_of_safety_model

    margin_of_safety

    determined

    allowablemargin_of_safety

    determined

    allowable

    deformation_model : link_plane_stress_abb

    ts2

    tw

    lux

    rs2

    ex

    sx

    ws2

    ts1

    ws1

    force

    rs1

    tf

    wf

    nuxy

    ts2

    tw

    lux

    rs2

    ex

    sx

    ws2

    ts1

    ws1

    force

    rs1

    tf

    wf

    nuxy al1 : a=bb ab a

    al2 : a=b ab

    ab

    al3 : a=b ab ab

    al5 : a=bb ab a

    al6 : a=bba

    ba

    al9 : a=b ab

    ab

    al11 : a=bb

    ab

    a

    al12 : a=bb ab a

    al13 : a=b ab ab

    al7 : a=b

    a

    b

    a

    b

    al8 : a=b ba ba

    al9 : a=b

    a

    b

    a

    b

    al8 : a=bb ab a

    al14 : a=b

    b

    a

    b

    a

    al7 : a=b*2.0b ab a

    al10 : a=b*2.0ba

    ba

    associated_condition :condition

    description

    reactionload

    description

    reactionload

    link

    al6 : a=ba ba b

    flap_link

    part_number

    material

    sleeve1 : sleeve

    width

    wall_thickness

    outer_diameter

    sleeve2 : sleeve

    width

    wall_thickness

    outer_diameter

    shaft : tapered_beam

    critical_cross_section : cross_section

    basic : basic_I_section

    flange_thickness

    total_height

    flange_width

    web_thickness

    web_height

    allowable_inter_axis_length_change

    effective_length

    part_number

    material

    sleeve1 : sleeve

    width

    wall_thickness

    outer_diameter

    width

    wall_thickness

    outer_diameter

    sleeve2 : sleeve

    width

    wall_thickness

    outer_diameter

    width

    wall_thickness

    outer_diameter

    shaft : tapered_beam

    critical_cross_section : cross_section

    basic : basic_I_section

    flange_thickness

    total_height

    flange_width

    web_thickness

    web_height

    critical_cross_section : cross_section

    basic : basic_I_section

    flange_thickness

    total_height

    flange_width

    web_thickness

    web_height

    basic : basic_I_section

    flange_thickness

    total_height

    flange_width

    web_thickness

    web_height

    flange_thickness

    total_height

    flange_width

    web_thickness

    web_height

    allowable_inter_axis_length_change

    effective_length

    material

    name

    stress_strain_model : material_levels

    linear_elastic :linear_elastic_model

    poissons_ratio

    youngs_modulus

    yield_stress

    name

    stress_strain_model : material_levels

    linear_elastic :linear_elastic_model

    poissons_ratio

    youngs_modulus

    linear_elastic :linear_elastic_model

    poissons_ratio

    youngs_modulus

    poissons_ratio

    youngs_modulus

    yield_stress

    Solving supported

    via math tool and

    FEA tool execution

    Note: The outmost block should be depicted as a frame (of type par),

    as in conformant flap_link examples elsewhere in this presentation.

    SMM with Parameterized FEA Model

  • 8/4/2019 Git Sysml Part 1 Cae Models

    58/88

    58

    SMM with Parameterized FEA ModelFlap Link Plane Stress Model

    !EX,NIUX,L,WS1,WS2,RS1,RS2,TS1,TS2,TW,TF,WF,FORCE

    ...

    /prep7

    ! element type

    et,1,plane42

    ! material properties

    mp,ex,1,@EX@ ! elastic modulus

    mp,nuxy,1,@NIUX@ ! Poissons ratio

    ! geometric parameters

    L = @L@ ! length

    ts1 = @TS1@ ! thickness of sleeve1

    rs1 = @RS1@ ! radius of sleeve1 (rs1

  • 8/4/2019 Git Sysml Part 1 Cae Models

    59/88

    Anal sis Template Flap Link Torsional Model

  • 8/4/2019 Git Sysml Part 1 Cae Models

    60/88

    60

    Analysis Template: Flap Link Torsional ModelCOB-based CBAM - Constraint Schematic (classical view)

    material

    effective length,Leff

    deformation model

    linear elastic model

    Lo

    Torsional Rod

    G

    J

    r

    2

    1

    shear modulus, G

    cross section:effective ring polar moment of inertia,J

    al1

    al3

    al2a

    linkage

    mode: shaft torsion

    condit ion reaction

    ts1

    A

    Sleeve 1

    A ts2

    ds2

    ds1

    Sleeve 2

    L

    Shaft

    Leff

    s

    T

    outer radius, ro al2b

    stress mos model

    allowable stress

    twist mos model

    Margin of Safety(> case)

    allowable

    actual

    MS

    Margin of Safety(> case)

    allowable

    actual

    MS

    allowabletwist

    Diverse Mode (Behavior) vs. Link Extensional ModelClassicalCOBNotationPeak1993Tamburini1999Wilson2000

    Analysis Template: Flap Link Torsional Model

  • 8/4/2019 Git Sysml Part 1 Cae Models

    61/88

    61

    Analysis Template: Flap Link Torsional ModelCOB-based CBAM - SysML Parametric Diagram (draft layout)

    link_torsional_model

    stress_mos_model :margin_of_safety_model

    allowable

    margin_of_safety

    determined

    twist_mos_model :margin_of_safety_model

    margin_of_safety

    determined

    allowable

    deformation_model : torsional_rod

    reference_temperature

    theta_end

    theta_start

    twist

    polar_moment_of_inertia

    temperature

    torque

    radius

    undeformed_length

    material_model :

    one_D_linear_elastic_m-odel_isothermal

    shear_stressname

    shear_modulus

    al1 : a=b

    ab

    al1a : a=b/2.1

    a

    b

    al2 : a=b*0.9 ba

    al3 : a=b ba

    al4 : a=bba

    al5 : a=b a

    b

    al6 : a=b ba

    al7 : a=b

    a

    b

    al8 : a=b ba

    al9 : a=b

    a

    b

    associated_condition :condition

    reaction

    description

    load

    stress_mos_model :margin_of_safety_model

    allowable

    margin_of_safety

    determined

    allowable

    margin_of_safety

    determined

    twist_mos_model :margin_of_safety_model

    margin_of_safety

    determined

    allowablemargin_of_safety

    determined

    allowable

    deformation_model : torsional_rod

    reference_temperature

    theta_end

    theta_start

    twist

    polar_moment_of_inertia

    temperature

    torque

    radius

    undeformed_length

    material_model :

    one_D_linear_elastic_m-odel_isothermal

    shear_stressname

    shear_modulus

    reference_temperature

    theta_end

    theta_start

    twist

    polar_moment_of_inertia

    temperature

    torque

    radius

    undeformed_length

    material_model :

    one_D_linear_elastic_m-odel_isothermal

    shear_stressname

    shear_modulusshear_stressname

    shear_modulus

    al1 : a=b

    ab

    ab

    al1a : a=b/2.1

    a

    b

    a

    b

    al2 : a=b*0.9 ba

    ba

    al3 : a=b ba

    ba

    al4 : a=bba ba

    al5 : a=b a

    b

    a

    b

    al6 : a=b ba ba

    al7 : a=b

    a

    b

    a

    b

    al8 : a=b ba

    ba

    al9 : a=b

    a

    b

    a

    b

    associated_condition :condition

    reaction

    description

    load

    reaction

    description

    load

    flap_link

    shaft : tapered_beam

    critical_cross_section : cross_section

    basic : basic_I_section

    total_height

    area

    part_number

    material

    allowable_twist

    effective_length

    shaft : tapered_beam

    critical_cross_section : cross_section

    basic : basic_I_section

    total_height

    area

    critical_cross_section : cross_section

    basic : basic_I_section

    total_height

    area

    basic : basic_I_section

    total_height

    area

    total_height

    area

    part_number

    material

    allowable_twist

    effective_length

    material

    name

    yield_stress

    stress_strain_model : material_levels

    linear_elastic :linear_elastic_model

    shear_modulus

    name

    yield_stress

    stress_strain_model : material_levels

    linear_elastic :linear_elastic_model

    shear_modulus

    linear_elastic :linear_elastic_model

    shear_modulusshear_modulus

    Solving supported via

    math tool execution

    Note: The outmost block should be depicted as a frame (of type par),

    as in conformant flap_link examples elsewhere in this presentation.

    Modularity and Reusability inFl Li k B h k P bl

  • 8/4/2019 Git Sysml Part 1 Cae Models

    62/88

    62

    Flap Link Benchmark ProblemSysML Package Structure

    cobs

    git-schemaflap_link_cbams

    git-schemaflap_link_apm

    common

    git-schemaabbs

    git-schemaapm

    git-schemageometry

    git-schemamaterials

    git-schemaflap_link_cbams

    git-schemaflap_link_apm

    common

    git-schemaabbs

    git-schemaapm

    git-schemageometry

    git-schemamaterials

    git-schemaabbs

    git-schemaapm

    git-schemageometry

    git-schemamaterials

    git-use-from

    git-use-from

    git-use-from

  • 8/4/2019 Git Sysml Part 1 Cae Models

    63/88

    Copyright 200563

    Next Steps

    Update current examples and tool interfaces

    Conformance to SysML spec

    SysML v0.98 (SST) - ~2006-01

    SysML v1.0 - ~2006-1Q

    Draft recommended practices for SysML-based CAD/CAEand general parametrics usage

    Expand examples: other system levels, constructs,domains, CAD tools, CAE solvers, ...

  • 8/4/2019 Git Sysml Part 1 Cae Models

    64/88

    Copyright 200564

    Summary

    Completed several test cases on representing

    executable physics-based CAE models in SysML Tutorial & benchmark problems

    Triangles, analytical springs, flap link

    Includes interfaces to representative COTS solvers

    General math: Mathematica

    FEA: Ansys

    Leverages composable object (COB)and simulation template techniques

    Usage for knowledge capture & usage

    MRA for CAD-CAE and systems-of-systems (SoS)

    Diverse CAD/CAE tools, behaviors, fidelity, ...

    Modular, reusable simulation building blocksand fine-grained inter-model associativity

  • 8/4/2019 Git Sysml Part 1 Cae Models

    65/88

    Copyright 200565

  • 8/4/2019 Git Sysml Part 1 Cae Models

    66/88

    Reference & Backup Slides

  • 8/4/2019 Git Sysml Part 1 Cae Models

    67/88

    Copyright 200567

  • 8/4/2019 Git Sysml Part 1 Cae Models

    68/88

    Copyright 200568

    Contents - Part 1

    Purpose

    CAD-CAE simulation template background

    MCAD-MCAE benchmark example: flap link

    Modularity & reusability

    Executable SysML parametrics (math, FEA)

    Summary

    Recommended prerequisites

    Triangle tutorial Spring systems tutorial

    Multi-representation architecture (MRA)for simulation templates and CAD-CAE interoperability

    [plus see flap link example above and references]

    Frame of ReferenceCAD CAE Model Representation & Interoperability R&D

  • 8/4/2019 Git Sysml Part 1 Cae Models

    69/88

    69Engineering Information Systems Lab eislab.gatech.edu 1993-2001 GTRC

    Design Models Analysis ModelsDesign Models Analysis Models

    CAD-CAE Model Representation & Interoperability R&D~1992 - Present

    Resulting techniques to date:

    Architecture with new model abstractions (patterns)

    Enables modular, reusable building blocks

    Supports diversity: Product domains and physical behaviors

    CAD/E methods and tools

    Supports multiple levels of fidelity

    Other Model Abstractions (Patterns)

    Frame of Reference(cont.)CAD-CAE Model Representation & Interoperability R&D

  • 8/4/2019 Git Sysml Part 1 Cae Models

    70/88

    70Engineering Information Systems Lab eislab.gatech.edu 1993-2001 GTRC

    CAD-CAE Model Representation & Interoperability R&DKey Capabilities

    Represent design-analysis model associativityas tool-independent knowledge

    Provide methodology

    Capture analysis idealization knowledge Create highly automated analysis templates

    Support product design

    Design Models Analysis ModelsOther Model Abstractions (Patterns)

    Idealization & Associativity Relations

    Frame of Reference(cont.)CAD-CAE Model Representation & Interoperability R&D

  • 8/4/2019 Git Sysml Part 1 Cae Models

    71/88

    71Engineering Information Systems Lab eislab.gatech.edu 1993-2001 GTRC

    Product-Specific

    Product-Independent

    1 Solution Method Model

    ABB SMM

    2 Analysis Building Block

    4 Context-Based Analysis Model3

    SMMABB

    APM ABB

    CBAM

    APM

    Design Tools Solution Tools

    Printed Wiring Assembly (PWA)

    Solder Joint

    Component

    PWB

    Solder Joint

    Component

    PWB

    body3

    body2

    body1

    body4

    T0

    body3

    body2

    body1

    body4

    T0

    Printed Wiring Board (PWB)

    SolderJoint Component

    Printed Wiring Board (PWB)

    SolderJoint Component

    AnalyzableProduct Model

    i

    CAD-CAE Model Representation & Interoperability R&DMapping to a Conceptual Architecture

    Design Models Analysis ModelsOther Model Abstractions (Patterns)

    Idealization & Associativity Relations

    Multi-Representation Architecture (MRA)

    A Basic Solder Joint Deformation Template

  • 8/4/2019 Git Sysml Part 1 Cae Models

    72/88

    72Engineering Information Systems Lab eislab.gatech.edu 1993-2001 GTRC

    Plane Strain Bodies System

    PWA Component Occurrence

    CL

    1

    material ,E( , )geometry

    body

    plane strain body , i = 1...4PWB