Girder-Slab System Design Guide v2.0.pdf

Embed Size (px)

Citation preview

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    1/20

    THE GIRDER-SLAB® SYSTEM

    The Combined Advantages of

    Structural Steel & Flat Plate Concrete

    2013

    DESIGN

    GUIDEV2.0

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    2/201

    Developed by Girder-Slab Technologies LLC, the Girder-Slab® 

    System is a steel and precast hybrid, the first to use precast slabs

    with an integral steel girder to form a composite monolithic

    structural slab assembly.

    This innovative technology uses proven materials long available

    within the construction industry. The Girder-Slab System is ideal

    for mid to high-rise residential construction. This lightweight

    assembly develops composite action enabling it to carry 

    significant loads.

    A special steel beam is used as an interior girder supporting the

    precast slab on its bottom flange. The web and top flange are

    concealed within the plane of the slab. The flat structural slab

    permits minimum and variable floor-to-floor heights.

    The Girder-Slab System is fire rated for use in high-rise buildings

    when constructed in accordance with Underwriters Laboratories

    Inc. Floor-Ceiling Design (USA) UL K912 and (Canada) ULC J500.

    The Girder-Slab System in combination with a structural steel

    frame offers a complete steel and concrete superstructure.

    Unlike cast-in-place concrete structures, the Girder-Slab Systemuses off site prefabricated components that are quickly erected on

    site.

    The Girder-Slab System consists of an interior girder (known as

    an open-web dissymmetric beam or D-Beam®), and prestressed

    hollow-core slabs, connected by cementitious grout.

    Applications include floor and roof slabs, which are supported

    by a steel frame that resists all gravity and lateral loads. WF

    beams are typically used at spandrel, shaft and other conditions.

     The system integrates easily with all other lateral resisting

    systems such as concrete or masonry shear walls.

     The Girder-Slab System and the open web D-Beam® technology

    are the result of more than ten years of research and developme

    In order to develop a rational analysis that would maximize the

    use of this technology, extensive laboratory testing and analysi

     was undertaken. This included both small-scale specimens and

    full-scale assemblies in order to simulate actual bays. Eachassembly was load tested in excess of 100 psf, well above requ

    residential live loads. The D-Beam Girder performed without fa

     The DB-8 is used for 8” assemblies, while the DB-9 is used for

     topped or 10” untopped assemblies. Depending on project spec

     bay sizes of 20' x 28' are very efficient.

     As a result of extensive testing it was determined that the

    transformed section is as illustrated below:

    D-BEAM

    GIRDER

    COLUMN

    PRECAST SLAB

    GROUTGIRDER SLAB

    COMPOSITE STEEL AND PRECAST SYSTEM

     ® 

     

    Transformed Section

    Neutral Axis

    Slab

    Grout

    Steel

    ®

    Full Size Test Assembly

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    3/20

    Girder-Slab® System Application

     The Girder-Slab System in combination with a structural steel

    frame offers a complete steel and concrete superstructure. It is

    ideal for use in mid to high-rise residential structures such as

    hotels, student housing, apartments and condominiums.

    8” precast slabs generally span as long as 28'-0". Longer plank

    spans are possible, and the system can also be used with 10”

    precast slabs.

     The Girder-Slab System is fire rated for use in all residential

     buildings when constructed in accordance with Underwriters

    Laboratories Inc. Floor-Ceiling Design (USA) UL K912 and

    (Canada) ULC J500.

     The Girder-Slab System greatly improves construction operatio

    and the ability to meet critical deadlines.

    Ironworkers erect both the structural

    steel and precast hollow core slabs.

    Hollow core slabs accommodate various architectural designs.

    Perimeter spandrel beams are not required.

    D-Beams

    ®

     spanning the length of the buildingbetween one interior column line.

    D-Beams

    ®

     spanning the width of the buildingbetween multiple interior column lines.

    Girder-Slab® System Technology

    This unique design technology is the first ever to use precast

    slabs with an integral steel girder to form a monolithic structural

    slab assembly. The Girder-Slab System consists of an interior

    girder (known as an open-web dissymmetric beam or D-Beam)

    supporting precast prestressed hollow core slabs on its bottom

    flange. With standard cement grout, the Girder-Slab System

    develops composite action enabling it to support significant live

    loads. Grouting is easily achieved after slabs are set in place.

    The Girder-Slab System has advantages over cast-in-place

    concrete superstructures. It is low cost, lightweight and

    offers rapid construction and assembly.

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    4/20

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    5/20

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    6/20

    Designation Weight Avg. Area   d Thickness t 

     w 

    Depth

    Size a b  Top Bar  w x t 

    lb/ft  in2 in in in in in x in

     Web Included Web Parent Beam

    DB 8 x 37

    DB 8 x 38DB 8 x 39

    DB 8 x 35

    36.7

    37.239.2

    34.7

    10.8

    10.911.5

    10.2

    8

    8

    8

    8

    3/8

    3/83/8

    5/16

     W 12 x 53

     W 10 x 54 W 12 x 58

     W 10 x 49

    2

    37/8

    13/4

    4

    5

    31/8

    51/4

    3 3 x 1

    3 x 1

    3 x 13 x 1

    DB 8 x 40 39.8 11.7 8 5/16  W 10 x 49 3 31/2 3 x 11/2

    DB 8 x 41 40.2 11.8 8 7/16 W 10 x 60 33/4 31/4 3 x 1

    DB 8 x 42 41.8 12.3 8 3/8 W 12 x 53 1 51/2 3 x 11/2

    DB 8 x 43 42.3 12.4 8 3/8  W 10 x 54 27/8 35/8 3 x 11/2

    DB 8 x 45 44.3 13.0 8 3/8 W 12 x 58 3/4 53/4 3 x 11/2

    DB 8 x 46 45.3 13.3 8 7/16 W 10 x 60 23/4 33/4 3 x 11/2

    *

    SHEAR MAY GOVERN

    8” D-Beam® Dimensions & Sample Calculation

    5

     

    Loads  

    Noncomposite Dead Load (Slab + Grout + Beam) =   5 9.1 psf   

    Composite Dead Load (e.g. topping) = 0 psf  

    Partition Load = 15 psf Grout 

    Basic Floor Live Load = 40 psf   

    Consider Live Load Redution (IBC 2012) = Yes

    Live Load Reduction = 27.8% Shear 

    Reduced Live Load = 28.9 psf  

    Moments

    Noncomposite Dead Load Moment = 67.05 kip‐ft

    Composite Dead Load Moment = 0.00 kip‐ft

    Partition Load Moment = 17.01 kip‐ft

    Live Load Moment = 32.77 kip‐ft

    Total Moment

     = 116.83 kip

    ‐ft (D

     

    Shears 

    Noncomposite Dead Load Shear = 14.90 kips 

    Composite Dead Load Shear = 0.00 kips 

    Partition Load Shear = 3.78 kips

    Live Load Shear = 7.28 kips

    Total Shear = 25.96 kips

    Deflections (negative values indicate downward deflection) 

    (optional) D‐Beam® Camber = 0.75 in 

    Noncomposite Dead Load Deflection =   ‐1.03 in 

    Net Dead Load Deflection incl. Camber =   ‐0.28 in Noncomp. 

    Composite Dead Load Deflection = 0.00 in Comp. 

    Partition Load Deflection =   ‐0.11 in Partition

    Live Load Deflection =   ‐0.22 in   (=L/1001)

    Total (Net)

     Deflection

     due

     to

     all

     loads

     =

      ‐0.61 in   (=L/357)

     

    D‐Beam®

    Standard D‐Beam® = DB 8x45

    Parent Beam Yield Stress (Fy) =   50 ksi LL 

    Top Bar Yield Stress (Fy) =   50 ksi

    Span Information  

    D‐Beam® Span = 18 ft D  

    Composite Section Effective Width = 5 ft 

    Precast Slab Span = 28 ft

    Precast Slab   both  

    Nominal Slab Thickness = 8 in. 

    Precast Slab Weight = 56 psf  

    Grout   0 in  

    Unit Weight of  Grout = 140   lb/ft3

     

    Compressive Strength of  Grout = 4000 psi

     

    D-Beam® Calculator Reference Tool Version 2.0Example Problem: 8 Inch D-Beam with 8 Inch Hollow Core

    Available at

    www.Girder-Slab.com

    Design Checks - Composite

    Design Checks - Noncomposite

    D‐Beam® Top Fiber Stress   OK

    f top DB =   29.3 ksi

    0.60Fy =   30.0 ksi

    D‐Beam® Bottom Fiber Stress   OK

    f bot DB =   19.8 ksi

    0.60Fy =   30.0 ksi

     

    LL Deflection   Allowable LL = L/   360   OK

      LL =   ‐0.22 in

      L/360 =   ‐0.60 in

     D

    ‐Beam®

     Top

     Fiber

     Stress

     ‐Check

     1   OK

      f top DB =   35.9 ksi

      0.90Fy =   45.0 ksi

      D‐Beam® Top Fiber Stress ‐ Check 2   OK

      f top DB =   15.5 ksi

      0.60Fy =   30.0 ksi

    D‐Beam® Bottom Fiber Stress ‐ Check 1   OK

      f bot DB =   32.0 ksi

      0.90Fy =   45.0 ksi

    D‐Beam® Bottom Fiber Stress ‐ Check 2   OK

    f bot DB =   28.7 ksi

    0.66Fy =   33.0 ksi

    Precast Slab Top Fiber Stress   OK

     f top slab =   1121 psi

      0.45f'c,slab =   2250 psi

      Grout Top Fiber Stress   OK

      f top grout =   1003 psi

      0.45f'c,grout =   1800 psi

      Shear Stress in the Web   OK

      f v,web =   12.0 ksi

    0.40Fy =   20.0 ksi

     

    Design Checks ‐ Composite

     

    *

    *

    *

    *

    *

    Design Checks - Composite

    Design Checks - Noncomposite

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    7/20

    The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for each mater 

    To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but modified width.

    For the material properties given:

     7.2 inches of concrete slab = 1 inch of steel

    8 inches of grout = 1 inch of steel

    Note: Graphical representation only.

    The online D-Beam Calculator Reference Tool v2.0 is intended for use

    only with assemblies identical to S1 and S3 in Girder-Slab Design Guide v2.0.

    D-Beam® ProfileC top slab

    C top D-Beam

    I g

    C bot D-Beam

    in

    in

    in

    4

    in

    I cr in4

    I eff  in4

    S bot D-Beam in3

    S top slab in3

    S top D-Beam in3

    Load Resisted byEach Cross Secon

    3.22

    ---

    4.78

    131---

    ---

    40.7

    ---

    27.4

    NoncompositeDead Load

    5.20

    3.43

    2.80

    357254

    306

    48.8

    74.0

    90.6

    CompositeDead Load, Paron Load,

    Live Load

    Noncomposite(D-Beam® Alone)

    Full Composite

     

    Noncomposite Section

    Neutral Axis

    Steel

     

    Full Composite Gross SectionNeutral Axis

    Slab

    Grout

    Steel

     

    Full Composite Cracked SectionNeutral Axis

    Slab

    Grout

    Steel

     

    Section Properties From Sample Calculati

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    8/20

    Designation Weight Avg. Area   d Thickness t 

     w 

    Depth

    Size a b  Top Bar  w x t 

    lb/ft  in2 in in in in in x in

     Web Included Web Parent Beam

    DB 9 x 45

    DB 9 x 46DB 9 x 48

    DB 9 x 41

    44.2

    45.8

    47.2

    40.7

    13.0

    13.513.9

    12.0

    93/4

    95/8

    913/16

    95/8

    7/16

    3/87/16

    3/8

     W 14 x 68

     W 14 x 61 W 14 x 74

     W 14 x 61

    31/2

    23/8

    31/2

    33/8

    51/4

    53/4

    55/16

    51/4 3 x 1

    3 x 1

    3 x 11/2

    3 x 1

    DB 9 x 49 49.3 14.5 93/4 7/16  W 14 x 68 21/2 53/4 3 x 11/2

    52.3 15.4 913/16 7/16 W 14 x 74 21/2 513/16 3 x 11/2

    Standard Wide Flange  Two Equal Castellated Tees  Two D-Beam® Girders

    Flat Bar 

    DB 9 x 52

     

    Loads  

    Noncomposite Dead Load (Slab + Grout + Beam) =   5 9.6 psf   

    Composite Dead Load (e.g. topping) = 25 psf  

    Partition Load = 15 psf Grout 

    Basic Floor Live Load = 40 psf   

    Consider Live Load Redution (IBC 2012) = Yes

    Live Load Reduction = 27.8% Shear 

    Reduced Live Load = 28.9 psf  

    Moments

    Noncomposite Dead Load Moment = 67.53 kip‐ft

    Composite Dead Load Moment = 28.35 kip‐ft

    Partition Load Moment = 17.01 kip‐ft

    Live Load Moment = 32.77 kip‐ft

    Total Moment

     = 145.66 kip

    ‐ft (D

     

    Shears 

    Noncomposite Dead Load Shear = 15.01 kips 

    Composite Dead Load Shear = 6.30 kips 

    Partition Load Shear = 3.78 kips

    Live Load Shear = 7.28 kips

    Total Shear = 32.37 kips

    Deflections (negative values indicate downward deflection) 

    (optional) D‐Beam® Camber = 0.50 in 

    Noncomposite Dead Load Deflection =   ‐0.61 in 

    Net Dead Load Deflection incl. Camber =   ‐0.11 in Noncomp. 

    Composite Dead Load Deflection =   ‐0.14 in Comp. 

    Partition Load Deflection =   ‐0.09 in Partition

    Live Load Deflection =   ‐0.17 in   (=L/1294)

    Total (Net)

     Deflection

     due

     to

     all

     loads

     =

      ‐0.50 in   (=L/428)

     7

    D-Beam® Calculator Reference Tool Version 2.0Example Problem: 9 Inch D-Beam with 8 Inch Hollow Core Plus a 2 Inch Concrete Topping

    Available at

    www.Girder-Slab.com

    Design Checks - Composite

     

    D‐Beam®

    Standard D‐Beam® = DB 9x52

    Parent Beam Yield Stress (Fy) =   50 ksi LL 

    Top Bar Yield Stress (Fy) =   50 ksi

    Span Information  

    D‐Beam® Span = 18 ft D  

    Composite Section Effective Width = 5 ft 

    Precast Slab Span = 28 ft

    Precast Slab   both  

    Nominal Slab Thickness = 8 in. 

    Precast Slab Weight = 56 psf  

    Grout   0 in  

    Unit Weight of  Grout = 140   lb/ft3

     

    Compressive Strength of  Grout = 4000 psi

     

    Design Checks - Noncomposite

    Design Checks - Composite

    D‐Beam® Top Fiber Stress   OK

    f top DB =   23.1 ksi

    0.60Fy =   30.0 ksi

    D‐Beam® Bottom Fiber Stress   OK

    f bot DB =   12.5 ksi

    0.60Fy =   30.0 ksi

     

    LL Deflection   Allowable LL = L/   360   OK

      LL =   ‐0.17 in

      L/360 =   ‐0.60 in

     D

    ‐Beam®

     Top

     Fiber

     Stress

     ‐Check

     1   OK

      f top DB =   35.6 ksi

      0.90Fy =   45.0 ksi

      D‐Beam® Top Fiber Stress ‐ Check 2   OK

      f top DB =   23.3 ksi

      0.60Fy =   30.0 ksi

    D‐Beam® Bottom Fiber Stress ‐ Check 1   OK

      f bot DB =   26.5 ksi

      0.90Fy =   45.0 ksi

    D‐Beam® Bottom Fiber Stress ‐ Check 2   OK

    f bot DB =   26.2 ksi

    0.66Fy =   33.0 ksi

    Precast Slab Top Fiber Stress   OK

     f top slab =   1359 psi

      0.45f'c,slab =   2250 psi

      Grout Top Fiber Stress   OK

      f top grout =   1215 psi

      0.45f'c,grout =   1800 psi

      Shear Stress in the Web   OK

      f v,web =   12.7 ksi

    0.40Fy =   20.0 ksi

     

    Design Checks ‐ Composite

     

    9” D-Beam® Dimensions & Sample Calculation

    Design Checks - Composite

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    9/20

    The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for each mater 

    To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but modified width.

    For the material properties given:

     7.2 inches of concrete slab = 1 inch of steel

    8 inches of grout = 1 inch of steel

    Note: Graphical representation only.

    The online D-Beam Calculator Reference Tool v2.0 is intended for use

    only with assemblies identical to S1 and S3 in Girder-Slab Design Guide v2.0.

    D-Beam® Profilein

    in

    in

    4

    in

    in4

    in4

    in3

    in3

    in3

    Load Resisted byEach Cross Secon

    3.44

    ---

    6.37

    224---

    ---

    65.1

    ---

    35.1

    NoncompositeDead Load

    5.20

    3.61

    4.61

    443347

    395

    66.6

    95.9

    75.1

    CompositeDead Load, Paron Load,

    Live Load

    Noncomposite(D-Beam® Alone)

    Full Composite

    C bot D-Beam

    C top slab

    C top D-Beam

    I g

    I cr

    I eff 

    S bot D-Beam

    S top slab

    S top D-Beam

     

    Noncomposite Section

    Neutral Axis

    Steel

     

    Full Composite Gross SectionNeutral Axis

    Slab

    Grout

    Steel

     

    Full Composite Cracked SectionNeutral Axis

    Slab

    Grout

    Steel

     

    Section Properties From Sample Calculati

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    10/20

    GIRDER SLAB

    COMPOSITE STEEL AND PRECAST SYSTEM

     ® 

     

    American Institute of Steel Construction

    Special Achievement Award

    “For the development and production of the Girder-Slab® Systemand its positive impact on the steel construction industry.”

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    11/20

    Photo Courtesy of Supreme Ste

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    12/20

    1. The open web Dissymmetric Beam shall be fabricated from

    (ASTM A992/A572 Grade 50) standard steel wide flange

    sections with flat bar at top-flange and shall meet AISC

    standards (except for depth, tolerance ± 1/8"), unpainted

    unless specified. The open web Dissymmetric Beam can be

    specified to include camber. Cambering can be built in

    during assembly of the girder.

    2. If the structural engineer of record determines that shoring

    of the pre-composite assembly is needed, leave in place until

    grout attains required strength.

    3. Precast prestressed concrete hollow core slab units (min.

    5,000 PSI) shall be in 4 or 8 foot widths and shall meet PCI

    standards and tolerances, 2" min. bearing unless specified

    otherwise.

    4. Reinforcing steel (ASTM A615 Grade 60) shall be placed

     through the Dissymmetric Beam web openings and into

    slab cores.

    5. Cementitious grout (min. 4,000 PSI) shall be placed

    monolithically around and through the Dissymmetric Beam

     web openings and into slab cores. When concrete topping is

    used, attain specified strength of grout prior to placement.

    6. The Girder-Slab System shall be constructed in accordance

     with Underwriters Laboratories Inc., Floor-Ceiling Assembly

    Design No. K912 in order to meet fire classification

    standards and ratings set forth by BOCA and ICC codes.

    7. The Girder-Slab System and D-Beam Girders shall be

    provided by steel fabricators authorized by Girder-Slab

     Technologies LLC of NJ in conformance with its

    Design-Guide & Distribution requirements.

    Steel Fabricator/Distributor contact information:

    1-888-478-1100 or www.girder-slab.com.

    8. The supplier of the Girder-Slab System shall provide

     to the Project Owner (or its representative) a Girder-Slab

    Compliance Certificate for each project upon completion

    of system assembly and construction.

    9. Comply with all applicable provisions of the following

    standards and codes:

      • Girder-Slab Technologies LLC Design-Guide

      • American Institute of Steel

    Construction (AISC)

      • American Welding Society (AWS)

      • Precast Concrete Institute (PCI)

      • American Concrete Institute (ACI)

      • American Society of Testing and

    Materials (ASTM)  • Underwriters Laboratories Inc. (UL)

    - Fire Resistance

    Directory UL K912 ULC J500

      • Building Officials and Code Administrators

    International Inc. (BOCA) - National Building Code

      • International Code Council Inc. (ICC) - Internationa

    Building Code

      • Other applicable codes and standards

    11

    Specifying the Girder-Slab® System Technology

     The Girder-Slab System Design Guide v2.0 and technology is available for use by industry professionals.

     Application and use of this information requires design by a registered professional structural engineer.

    Structural Engineers are asked to add the following Girder-Slab®

     System Specification Guide to the General Notes section of their

    construction documents. The Specification Guide and the following Typical System Structural and Architectural Details are avail

    in both CAD and PDF formats on the Design Team Resources page of the Girder-Slab website. www.girder-slab.com

     The Girder-Slab® System and D-Beam® Girder are available from your customary steel fabricators. Fabrication, construction, and

    assembly shall be in conformance with the Girder-Slab® System Design Guide v2.0 specifications and details.

    Girder-Slab® System Specification Guide

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    13/20

    S1 S2

    CAD DETAILS ARE AVAILABLE ONLINE

    S4

     TYPICAL SECTION @ REINFORCED CORE TYPICAL SECTION @ NON-REINFORCED CORE

     TYPICAL SECTION: REINFORCED CORE

    WITH 2” CONCRETE TOPPING

     TYPICAL SECTION: 8” GIRDER-SLAB SYSTE

    ALTERNATE SLAB BEARING

     TYPICAL SECTION: 8” GIRDER-SLAB SYSTEM

    BEARING ON WF SPANDREL 

     TYPICAL SECTION: 8” GIRDER-SLAB SYSTEM

    WITHOUT WF SPANDREL BEAM

    GROUT TO ATTAIN

    4000 PSI PRIOR

     TO TOPPING

    OPEN TOP

     FLANGE @ 24”o/c

     FOR INSPECTION

    PRECAST SLAB

    12”

    MIN.

     DB8

         8     ”

    #4 X 2’-0”

      @ 24” o/c MAX

    2” MIN.

    BRG. TYP.

    PRECAST SLAB

         8     ”

    2” MIN.

    BRG. TYP.

     DB8

     DB9 SIMILAR 

    12”

    MIN.

         8     ”

         4     ”

         M     I     N .

    #4 X 24”

     DB8 2” MIN.

    BRG.

     NOTE:

     DB9 TOP FLANGE WILL

    BE ABOVE THE SLAB.

      C.I.P. CONCRETE TOPPING

         8     ”

         2     ”

    12”

    MIN.

    #4 X 2’-0”

      @ 24” o/c MAX

    2” MIN.

    BRG. TYP.

     DB9

    PRECAST

    SLAB

    (DETAILS S4, S5, S6, S7, S8, S9, S10 & S14 ARE SIMILAR FOR DB9)

    SLAB NOT SHOWN

    FOR CLARITY 

    PRECAST SLAB

     BOTTOM OF DB

    WF

     ENG. NOTE:

     REVIEW UNBRACED

     LENGTH OF BEAM

     ENG. NOTE:

     CHECK WEB FOR 

     SHEAR REINF.

         8     ”

         8     ”

    SPECIAL PRECAST /SLAB (TYP.) WELDED

     TO DB8

    DB8 WELD PLATES + ANCHORS

    ASECTIONREFER TO DETAILS

    S1 OR S2 FOR 

    INFORMATION NOT SHOWN

    A

     ENG. NOTE:

     TO BE USED WHEN

     NO SPANDREL BEAM

     AND SLAB DIAPHRAGM

     SPAN > 30’-0”.

    BOTTOM OFDB8

    SPECIAL PLANK ACTING

    AS DIAPHRAGM CHORD

    S5 S6

    S3

    Typical System Structural Deta

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    14/2013

    S7 S8

    S9 S10

    S11 S12

     TYPICAL SECTION: 8” PRECAST SLAB

    UPSET LONGITUDINAL SPANDREL BEAM

     TYPICAL SECTION: 8” PRECAST SLAB

    END BEARING ON WF SPANDREL BEAM

     TYPICAL SECTION: 8” PRECAST SLAB

    END BEARING ON WF INTERIOR BEAM

     TYPICAL SECTION: 8” PRECAST SLAB

    AT ELEVATOR DOOR SILL 

     TYPICAL SECTION: 8” PRECAST SLAB

    LONGITUDINAL BEARING ON WF SPANDREL BEAM

    PRECAST SLAB SUPPORT DETAIL 

    WELD PLATE+ ANCHORS

    WF

     NOTE:

     STABILIZE BEAMS AND

     SLABS UNTIL ALL GROUTING

     AND WELDING IS COMPLETE.

    WELD PLATE + ANCHOR 

    STIFFENER PLATE

    GROUT SOLID

         8     ”

    1/2”

         8     ”

    PRECAST SLAB  REBAR 

    WELD PLATE + ANCHOR

    NOTE:

     STABILIZE BEAMS AND

     SLABS UNTIL ALL GROUTING

     AND WELDING IS COMPLETE.

      GROUT SOLID

    CONT. ANGLE

    REBAR 

     WELD PLATE

    WF

     WALL CONSTR.

    PRECAST SLABFILL CORE @

    ANCHOR PLATES

         8

         ”

    WELD PLATE + ANCHORS

    WF

    8” PRECAST

    PLANK  HSS

    3/8” THICK WELD PLATE

    + ANCHORS

    L4X3X3/8 (LLH)

    Typical System Structural Details

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    15/20

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    16/20

    A1

    A3

    REVIEW WEBSITE FAQ. CAD DETAILS ARE AVAILABLE.

    CHECK WEBSITE CASE STUDIES FOR PROJECT SPECIFIC DESIGN EXAMPLES

    15

    DB8

    D-BEAM®PRECAST CONCRETE

    SLAB

    GROUT

    METAL STUD PARTITION

    GYPSUM BOARD &

    OPTIONAL 

         8     ”

     TYPICAL SECTION: GIRDER-SLAB SYSTEM

    WITH RATED DRYWALL SOFFIT ENCLOSURE

    ®

      (1) LAYER 

      GYPSUM

      BOARD

      (REFER TO

    U.L. K912)

     THE PARTITION AND RATED PROTECTION DETAILS ARE PROVIDED FOR ILLUSTRATION PURPOSES

    ONLY AND NOT INTENDED FOR ACTUAL USE. GIRDER-SLAB TECHNOLOGIES, LLC IS NOT

    RESPONSIBLE FOR DESIGN, MEANS, OR METHODS ASSOCIATED WITH THIS DETAIL.

     TYPICAL SECTION: GIRDER-SLAB SYSTEM

    WITH RATED DRYWALL SOFFIT ENCLOSURE

    ®

     THE PARTITION AND RATED PROTECTION DETAILS ARE PROVIDED FOR ILLUSTRATION PURPOSES

    ONLY AND NOT INTENDED FOR ACTUAL USE. GIRDER-SLAB TECHNOLOGIES, LLC IS NOT

    RESPONSIBLE FOR DESIGN, MEANS, OR METHODS ASSOCIATED WITH THIS DETAIL.

    METAL STUD PARTITION

    GYPSUM BOARD &

    OPTIONAL 

    OPTIONAL 

    CROWN

    MOLDING

         8     ”

    GROUT

    SPRAY 

    FIREPROOFING(REFER TO

    U.L. K912)

    PRECAST CONCRETE

    SLABDB8D-BEAM®

     TYPICAL SECTION: GIRDER-SLAB SYSTEM

    WITH DRYWALL SOFFIT / PARTITION ENCLOSURE

    ®

    (OPTIONAL DRYWALL PARTITION) 

    DETAILS ARE SIMILAR FOR DB9 WITH 2” CONCRETE TOPPING

     THE PARTITION AND RATED PROTECTION DETAILS ARE PROVIDED FOR ILLUSTRATION PURPOSES

    ONLY AND NOT INTENDED FOR ACTUAL USE. GIRDER-SLAB TECHNOLOGIES, LLC IS NOT

    RESPONSIBLE FOR DESIGN, MEANS, OR METHODS ASSOCIATED WITH THIS DETAIL.

    (OPTIONAL DRYWALL PARTITION)

     

    DETAILS ARE SIMILAR FOR DB9 WITH 2” CONCRETE TOPPING

    (OPTIONAL DRYWALL PARTITION)

     

    DETAILS ARE SIMILAR FOR DB9 WITH 2” CONCRETE TOPPING

    DB8D-BEAM®

    PRECAST CONCRETESLAB

    GROUT     8     ”

    PIPING &MECHANICAL CHASE

    11 1/4”

    MIN.

    PRECAST CONCRETE

    SLABDB8

    D-BEAM®

    GROUT     8     ”

    STRUCTURAL,

    PIPING, &

    MECHANICAL CHASE

    11 1/4”

    MIN.

     TYPICAL SECTION: GIRDER-SLAB SYSTEM

    WITH DRYWALL CHASE PARTITION ENCLOSUR

    ®

    (OPTIONAL DRYWALL PARTITION) 

    DETAILS ARE SIMILAR FOR DB9 WITH 2” CONCRETE TOPPING

     THE PARTITION AND RATED PROTECTION DETAILS ARE PROVIDED FOR ILLUSTRATION PURPOSES

    ONLY AND NOT INTENDED FOR ACTUAL USE. GIRDER-SLAB TECHNOLOGIES, LLC IS NOT

    RESPONSIBLE FOR DESIGN, MEANS, OR METHODS ASSOCIATED WITH THIS DETAIL.

    Typical System Architectural Details

    A2

    A4

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    17/20

    1. Steel Beam —  Composite dissymmetric steel beamfabricated from structural steel members in accordance

     with the Specification for the Design, Fabrication and Erec-

     tion of Structural Steel for Buildings, published by the

     American Institute of Steel Construction. The steel beam,

     with an open web, has a 34.7 lb./ft. min. weight. The beam

    consists of the bottom flange and partial web of a min.

     W10(x)49 with a bar welded to the web that serves as

     the top flange. Top bar min. dimensions of 1"x3", a min.

    overall beam depth of 8" and a min. average cross-sectionare of 10.2 in2.

    2. Concrete Topping —  (Optional for unrestrainedrating) — 3,000 PSI compressive strength, 150 (+ or -)

    3 PCF unit weight. Normal weight concrete. Min. 1-1/8"

     thickness required for 3 hr. Restrained Assembly Rating.

    3. Precast Concrete Units* —  Carbonate, siliceousor lightweight aggregate. Min. 8" thick by 4' or 8' wide

    units with cross section similar to that shown for Design

    No. J952. Openings may be provided through the units for

    piping, ducts or similar services and should be suitably

    enclosed with constructions having at least equal

    resistance, acceptable to authorities having jurisdiction.

    Units have a min. 1-1/2" bearing on the bottom flange

    of Item 1.

    4. Grout —  Sand-cement grout (3,500 PSI min.compressive strength). Min. average thickness of 9/16"

    above top bar. Hollow cores in precast concrete units

    grouted 6" min. from beam web.

    5. Runner Channel —  Fabricated from 25 MSG galv.steel, min. 1/2" deep, with 1" legs, fastened to steel beam

     with XZF powder actuated pins spaced 12" OC.

    6. Gypsum Board* —  1/2" or 5/8" thick gypsum board fastened to runner channels with 1" long, 0.150"

    diameter steel screws spaced 16" OC.

    7. Corner Bead —  Fabricated from min. 28 MSG galv.steel to form an angle with 1-1/4" legs. Legs perforated

     with 1/4" diameter holes approximately 1" OC. Attached

     to runner channel through gypsum board with 1" long,

    0.150" diameter steel screws spaced 16" OC.

    8. Joint Compound —  (Not shown) 1/32" thick on bottom and sides of wallboard from corner beads and

    feathered out. Paper tape embedded in joint compound

    over joints with edges of compound feathered out.

    9. Spray-Applied Fire Resistive Material* —   As an alternate to Item 5 through 8, the bottom flange

    of the steel beam may be protected with a spray applied

    fire resistive material. Applied in one coat to a final

    untamped thickness of 3/8" to steel surfaces which are

    free of dirt, oil or scale. Min. average untamped density

    of 13 PCF with min. ind. untamped density of 11 PCF for

     Types II and D-C/F. Min. average and min. ind. untamped

    densities of 22 and 19 PCF, respectively, for Type HP. for

     Type I, min. average density of 15 PCF with min. ind.

     value of 12 PCF.ISOLATEK INTERNATIONAL — Type D-C/F, HP, I or II,

     Type EBS or Type X Adhesive/Sealer optional.

    *Bearing the UL Classification Mark.

    Summarized from UL #K912. Please refer to the

    current online Certifications Directory.

    Fire Resistance InformationFire Resistance Rating — ANSI/UL 263

    Design No. K912

    April 19, 2001

    Restrained Assembly Ratings — 3 Hr.

    Unrestrained Assembly Ratings — 2 Hr.

    Unrestrained Beam Ratings — 2 Hr.

    For Applications in Canada, see ULC J500.

    Check current UL Directory for modifications or updates.

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    18/20

    Precast Hollow Core Slab OpeningsPrepared in the Factory

    D-Beam Bottom Flange with Fire ResistiveMaterial

    D-Beams in Fabrication

    Connection Fit-Up

    Views of Tree Connection, Seated Connection& Temporary Tie Beam

    17

    Precast Hollow Core SlabsAvailable in 4’ and 8’ Widths

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    19/20

    Homewood Suites by Hilton - Philadelphia, PA

    Aqua on the Ocean - Long Beach, NY

    North Quad University of Michigan - Ann Arbor, MI

  • 8/20/2019 Girder-Slab System Design Guide v2.0.pdf

    20/20

    A Revolutionary Steel-Based Framing System

    That Offers Low Floor-To-Floor Height

    And Unobstructed Ceilings.

    856.424.7880 Tel • 856.424.6880 Fax • 888.478.1100 Toll Free • www.girder-slab.com

    COPYRIGHT 2002-2013 GIRDER-SLAB TECHNOLOGIES, LLC

    GIRDER - SLAB TECHNOLOGIES, LLC

    COMPOSITE STEEL AND PRECAST SYSTEM

    GIRDER SLAB ® 

    COMPOSITE STEEL AND PRECAST SYSTEM

    For more examples of completed and under construction projects consult the web site at www girder slab com

    330 Cooper Street

    Rutgers UniversityCamden, NJ

    “Structural engineers often are judged by the“pounds per square foot” of steel on the project.Averaging 1.5 psf for basic floor framing onthis project is extremely low, as is 7.4 psf overall.But even with such good structural efficiency,structural steel would not even have beenconsidered were it not for the low floor-to-floor

    heights achievable with the Girder-Slab System.”“Structural Steel: Flat Plate Construction”Modern Steel Construction  February 2012

    Janis Vacca, P.E., andClifford Schwinger, P.E.The Harman Group