9
1 RE(DE)FINERY – for Green Chemicals, Fuels & Energy Quimica Verde Conference | CTBE 19 oct 2015 Erick Fernandes (Worldbank), Jan van Breugel (BBI/Corbion), Adrie Straathof (TUD) and Luuk van der Wielen (TUD/BEBasic) http://www.bebasic.org/downloads contents urgency: scale & scope priorities & options feedstocks – crude oil & biobased feasibility & ‘role’ of advanced biofuels (public-private) open innovation model -examples GHG balance & climate 33.4 bn T/yr 3.4 bn T/yr fossil, cement, steel land use change oceans 8.8 bn T/yr land 9.5 bn T/yr atmosphere 18.4 bn T/yr Projected sealevel rise and northernhemisphere summer heat events in a 2°C world and a 4°C world Increased sealevel rise from 70 cm to more than a meter Increased frequency of extreme and unprecedented heat events … and 75% of the poor in dev (agro) countries are hit first Atmospheric CO 2 is now higher than it’s been for 650,000 years and increasing rapidly This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct measurements, provides evidence that atmospheric CO 2 has increased since the Industrial Revolution. (Source: NOAA) CO2 level as of February 28, 2015 400.26 ppm Doubling in 50 yrs Doubling in 50 yrs ‘decades’ : process / agro / logistics are slow industries 0,1 1 10 100 1000 10000 0 5 10 15 20 25 agro & logistic systems commercial demo pilot new product, new application existing product, new application investment (mio euro’s) years Example: Brazilian ethanol learning curve: 4x cost reduction in 30 yrs /20 x volume increase vd Wall Bake et al. Biomass & Bioenergy 33, 644-658, 2009

GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

Embed Size (px)

Citation preview

Page 1: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

1

RE(DE)FINERY – for Green Chemicals, Fuels & Energy

Quimica Verde Conference | CTBE 19 oct 2015

Erick Fernandes (Worldbank), Jan van Breugel (BBI/Corbion), Adrie Straathof (TUD) and Luuk van der Wielen (TUD/BE‐Basic)

http://www.be‐basic.org/downloads

contents

• urgency: scale & scope

• priorities & options

• feedstocks – crude oil & biobased

• feasibility & ‘role’ of advanced biofuels

• (public-private) open innovation model -examples

GHG balance & climate

33.4 bn T/yr

3.4 bn T/yr

fossil, cem

ent, steel

land use

change

oceans8.8 bn T/yr

land9.5 bn T/yr

atmosphere18.4 bn T/yr

Projected sea‐level rise and northern‐hemisphere summer heat events in a 2°C world and a 4°C world

• Increased sea‐level rise from 70 cm to more than a meter

• Increased frequency of extreme and unprecedented heat events

• … and 75% of the poor in dev (agro) countries  are hit first

Atmospheric CO2 is now higher than it’s been for 650,000 years and increasing rapidly           

This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct measurements, provides evidence that atmospheric CO2 has increased since the Industrial Revolution. (Source: NOAA)

CO2 level as of February 28, 2015

400.26 ppm 

Doubling in 50 yrs

Doubling in 50 yrs

‘decades’ : process / agro / logistics are slow industries

0,1

1

10

100

1000

10000

0 5 10 15 20 25

agro & logistic systems

commercialdemo

pilot

new product, new application

existing product, new applicationinve

stm

ent

(mio

euro

’s)

years

Example: Brazilian ethanol learning curve:4x cost reduction in 30 yrs /20 x volume increase

vd Wall Bake et al. Biomass & Bioenergy 33, 644-658, 2009

Page 2: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

2

High rate of change

1. So we have a time window of a few decades !

2. Linked climate and economic impacts

3. 80% of GHG emissions already locked in existing capital stock

4. 2oC goal: less then 1/3 of proven fossil reserves can be consumed before 

2050 (significant capital loss)

5. 70‐95 bn US$ in global annual adaptation costs 

6. Impact investment ‐ required: $ 1…2 trillion in next decade (@10‐30% 

profit). 

7. Pension funds : US $ 20 trillion, NL (EUR) 1 trillion

• SCOPE / UNEP / UNESCO• 137 authors from 24 countries of 82

institutes, peer reviewed• BE-Basic 9 of 21 chapters• Launches: Sao Paulo (FAPESP), Nairobi

(UN), W’ton DC (Worldbank), Brussels (EU),

contents

• urgency: scale & scope

• priorities & options

• feedstocks – crude oil & biobased

• feasibility & ‘role’ of advanced biofuels

• (public-private) open innovation model -examples

drop-outs ?

mass yield: energy poor (O-rich) in materials*

C H

O

substitutes

fuels (energy dense) &polymers (PE,PP, PS, PVC)

natural gas

crude oil

biomass CH2O0.5

ethanol

sugars, lactic

CO2

drop-ins

mass composition biobased and fossil feedstocks and products

energy density increases

global production (MT/year) fuels 2000 (jet 300)cement 3000 (600 MT CO2)food 4000 (50% waste)glass 120plastics 280 (big 5: 200)steel 120 (200 MT CO2)

Biobased technology is/gets there“any” chemical can be produced from biobasedfeedstocks – by chemo / bio / thermo catalysis

but not all make sense

cost (benefit)emission (reduction)resource efficiency

yield is central parameter in both

12Werpy & Peterson, 2004

Page 3: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

3

“Drop-in Greenification” of Chemical Industry

BIOMASS

protein / sugar / lignocellulose

Iso-butanol ethanol methane SNG

Iso-butylene Ethylene

Gasification

B substitute A drop-in

FermentationAerobic

An-aerobic

othersuccinic acid

acetic-acid

Lactic acid

Funct. molecules

Preservatives, plastics

synthet. polymers

glue

plastics, thickeners

Paraxylene

PET-bottles

Propylene

fertilizer methanol

=80% chemical industry

Plastics, surfactants, detergents

Plastics, carpet

Biorefinery

Reforming

Fermentation and other processes

glycerol

From: Ton Runneboom Bio Based Chemicals March 22 2011, Rotterdam

Biopower

BioPVC

BioHydrocarbons

2020 2030

2nd gen. advanced biofuels (hydro carbon-like)

Synthetic biology: novel pathways, robustness,

rate and yield

1st gen. EtOHfrom sugar cane

2010

photosynthetic micro organisms

to excrete solar biofuels

Low cost photo bioreactor technology

C5 & C6 cofermentation ; biomassN –recycle HTE, -array bioreactors

Genomics & (Directed) evolution

CO2 + solar light

based (3rd gen) biofuels

Low-cost lignocellulosic pretreatmenttechnology for efficient fail-proof intermediate:

low cost sugar (C5/6) platform

1st gen. advanced liquid biofuels

(hydro carbon-like)

2nd gen lignocellulosic EtOHpilot and demonstration plants

2nd gen lignocellulosic EtOHcommercial plants

System

Process Engineering

Develop

Basic Hardware

Enabling Technology

Basic Science

deploy

discovery

discovery

demonstrate

Solution

(piloting)

Low-cost lignocellulosic, thermostable enzymes

Abengoa Bioenergy: “1.3 million gallon/year

capacity demo plant”.’09

“the advances made by Joule Unlimited to achieve direct,

continuous conversion of solar energy to renewable diesel at 15,000

gallons/acre/year ”2010

“Shell and Cosan Form $12bn Ethanol Joint Venture

Raizen 21/11/2011

Amyris: “is scheduled to be in full production of Amyris

renewable products by Q2 2012.

DSM-TUD-B-Basic: “all you can eat

yeast”.2011

Genencor / Novozymes / DSM: “commercial

hydrolytic enzymes”.’10

Sime Darby-Mitsui: “convert oil palm empty fruit bunches, or EFB, into bioethanol”.2010

GranBio 147 M$ = 464 mRM (160 ktpasugars > 82 mio m3 ethanol)

ChemTex + Novozymes + DSM

DuPont 235 M$ = 744 mRM (200 ktpa hydrolysate sugars > 100 mio m3 ethanol)

POET/DSM 250 M$ = 790 mRM (300 biomass > 160 ktpa sugars > 100 mio m3 ethanol)

Roadmap for tech innovations in the Chemical and Energy sectors : Energy | liquid biofuels

NRW and NL are #1 and # 2 in Europe

CO2/ha/yr

#1#1

#2#2

… in GHG emissions !

(so we have carbon to be recycled)

… this enables the largest industry cluster worldwideRegional priorities: chemical sector and transport w/o alternatives (aviation etc)

Aviation sector needs to green

0

5000

10000

15000

20000

25000

30000

35000

40000

201

420

16

201

820

20

202

220

24

202

620

28

203

020

32

203

420

36

203

820

40

204

220

44

204

620

48

205

0

biofuels 1G

biofuels 2G

biofuels tot

fossil

total bio+fossil

reference

reference

CO2 emissions (kton/year) in NL at 3% net growth of aviation fuels

consumption

proposed path

fossil fuels

biofuels (1G+2G)

Aviation: GHG-reduction via TOI and jet biofuels

improved technology, operations, infrastructure

aviationbiofuels

From “Visie Duurzame Luchtvaart”. SER Report Van der Wielen et al.June 2014. adopting NL to ATAG ambitions

Carbon neutral growth

50% GHG emission wrt ‘05

KLM 1% biofuels in ‘15

Page 4: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

4

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

fossil

Vandaag (1G)

Morgen (2G)

Biofuels (1G+2G)

Fuel-pool composition in (kton/year) at 3% net growth of

fuels consumption

2030 20502015

7 mio ton/yr2G: - 80% GHG

0.7 mio ton/yr

4 mio ton/yr

Introducing aviation biofuels (NL- numbers)

150 kton/yr1G: - 35% GHG

8 (16)

6 (12)

4 (8)

2 (4)

investment estimates [bn $]

doubling jet fuel towards 90% biojet

Carbon neutral growth

fossil

Brazilian roadmap to aviation biofuels (2013)

Implementing the Bioport concept

NL (bio)Fuelsmix 2050

Aviation 50%Marine 33%Road+rail 17%

International setting is critical for globally operating industries (transport & chemical)

contents

• urgency: scale & scope

• priorities & options

• feedstocks – crude oil & biobased

• feasibility & ‘role’ of advanced biofuels

• (public-private) open innovation model -examples

Platforms from biomass

Xylose

Plantation image from: biofuel.webgarden.com

Glucose

24

0.00

0.20

0.40

0.60

0.80

0.00 0.20 0.40 0.60 0.80

London Sugar price (euro/kg)

Brent oil price (euro/kg)0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Jan‐10 Jan‐11 Jan‐12 Jan‐13 Jan‐14

Price (euro/kg)

oil

sugar

Oil price vs. sugar price (Europe)

2010-2011

2012-2014

Page 5: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

5

palmitic acid

glycerolsugars

methane

butanol

propionic acid

ethanol

succinic acid

citric acid

lactic acid

p‐xylene

crude oil

syngas

0.25

adipic/acrylic

ethylene

propylene

jetfuel/diesel

1,4 BDO

0.5

1.0

0.3

1.1

0.4

0.34

CO2

biomass

ligninemethanol

Hcomb

105 J/kg

600

0

biomass yield

Cost contribution of feedstocks

$400/ton

$50..130*/ton

$660/ton

$6/ton

$1600/ton

$1200/ton

$400/ton

$800/ton

$402/ton

feedstocks products

Only established market: APEX ENDEX Woodpellets ~ $130*/ton 26

Chemicals price model so far

€/kgproduct = €/kgfeedstock kgfeedstock/kgproduct 1.5

Cheaper product when lessconversion steps from oil

Feedstock costs Rest

At 100% conversion 100% molar yield

0

0,5

1

1,5

2

2,5

3

3,5

4

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

Pre

dic

ted p

rice

($/k

g)

Literature price ($/kg)

27

Other fermentation products than ethanol

Price

Price

product

product sugar product

ethanolethanol ethanol

sugar

MassMass Factor

Mass FactorMass

Ratio 1Yield ratio

Best-case assumptions • 1-step conversion from sugars• Microorganism engineered to convert available sugars feed• Sugars are dominating cost factor• Multiplication by factor (ca. 1.5) for other costs

28

Competitiveness compared to ethanol fermentation

ethanol

1‐butanolisopropanol

adipic acid

ethylene

butanone

phenolpropylene glycol

acrylic acid

isobutanol

ethylene glycol

1,4‐BDO

propylene

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

Relative price (kg basis) 

Reported fermentation yield  of product on glucose (g/g)

ethanol

1‐butanolisopropanol

adipic acid

ethylene

butanone

phenolpropylene glycol

acrylic acid

isobutanol

ethylene glycol

1,4‐BDO

propylene

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

Relative price (kg basis) 

Stoichiometrically maximum yield  of product on glucose (g/g)

competitive

not competitive

29

Calculation results

1. Poor: naphtha products (ethene, propene, butenes, BTX)

2. OK: mono alcohols (1-propanol, 2-propanol, butanols, acetone)

3. Good: diols (ethylene glycol, 1,2-propylene glycol, 1,4-butanediol)

4. Very good: adipic acid, acrylic acid, methyl methacrylate

But is a 1-step conversion by fermentation (or chemocatalysis) achievable ? And how sensitive is outcome for sugars/lignin pricing ?

contents

• urgency: scale & scope

• priorities & options

• feedstocks – crude oil & biobased

• feasibility & ‘role’ of advanced biofuels

• (public-private) open innovation model -examples

Page 6: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

6

Biorefinery structure - biomass to integral value

• tune portfolio value renewable energy/fuels/chemicals

• counter-acting scale effects of logistics (5-10% for bagasse,

30% for palm oil biomass) and conversion costs

• energy/heat, water, and nutrient integration

• need for cross-industry sector collab’s (JVs, trade, co-op’s,…)

conversion to fuels fuel

conversion to chemicals

conversion to power/heat

pretreatment / hydrolysis

harvest / logistics

chemicals/materials

renewablepower/heat

nutrients/water

‘switch’

food/feed(I) Bioenergy Only: sugars to ethanol (100%) , power (heat)

(II) Chem’s : sugars to organic acids (25%) + ethanol (75%), lignin to power (+ less excess heat), CO2

(III) Chem’s & Materials : sugars to organic acids (25%) + ethanol (75%), lignin to power (+ less excess heat), CO2 to bioconstruction

150

900 910

1743

3 tons of raw biomass at gate(2/3 cellulosics + 1/3 lignin)

biomass biorefined to sugars and lignin

revenue in US$

CO2

heat

CO2 in mat’s

(II) (III)(I)

power

ethanolsugars

chem’s

biorenewables’ scenarios

pos. and neg. economic value

lignin

(IV) Chem’s & Materials & LignoFuels : as III, lignin to liquid biofuels

CO2 in mat’s

(IV)

Winning Team

2013 LST MSc

Design Competition

woodpellets + … power/heat + ethanol + biochemical + €€ (instead of –SDE)

2013: 5 fairly different designs

35

WoodChips4000ktpa

Ethanol

Ethene

EtOx

EC

PEC

50

100

50

100

100

920

CO

2

O2

CO

2

H2O

50

490

CO

2

60 50

H2O

i-Butene

Lacticacid

PLA

H2O H2O

240

100

100

Acrylicacid

400

Succinic acid

1,4 BDO 100

100

100

H2O

H2O

H2

CO

2

380

Methanol

686L914L

100700

CO

2

3HP100

GTBE

PEPP

1,2 PDO

1,3 PDO

225

Aceticacid

250

CO

Syngas

CO H230400

MEG

100

H2O

MCA

i-Butanol

PX

H2

DMC

THF

Biosene

250opt

CO

2

SHC

CO

2 opt

36

WoodChips4000ktpa

Ethanol

Ethene

EtOx

EC

PEC

i-Butene

Lacticacid

PLA Acrylicacid

Succinic acid

1,4 BDO

Methanol

3HP

GTBE

PEPP

1,2 PDO

1,3 PDO

Aceticacid

Syngas

MEG

MCA

i-Butanol

PX

DMC

THF

Biosene

SHC

Authors: Kim Meulenbroeks/Jan van Breugel

36

Page 7: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

7

wood chips at ‘mid price’ 

cost of /return on capital at market conform pricing included

Equal to woodBunker oil

0

100

200

300

400

500

0 200 400 600 800

€/t sugars

€/t lignin

4 Mt/a

1.5 Mt/a

London #5 Sugar Price(26/06/2015)

New York #11 Sugar Price(03/07/2015)

o

o – transfer price for lignin priced as wood at target NPV

Presentation based on public data

NPV>0

NPV<0

REDEFINERY to produce sugars and fuels

& Kerosine

Coal value

NPV= 0  at various scales

various scales

wood chips at ‘mid price’ 

cost of /return on capital at market conform pricing included

Equal to woodBunker oil

0

100

200

300

400

500

0 200 400 600 800

€/t sugars

€/t lignin

4 Mt/a

1.5 Mt/a

London #5 Sugar Price(26/06/2015)

New York #11 Sugar Price(03/07/2015)

o

o – transfer price for lignin priced as wood at target NPV

Presentation based on public data

NPV>0

NPV<0

REDEFINERY to produce sugars and fuels

& Kerosine

Coal value

NPV= 0  at various scales

various scales

contents

• urgency: scale & scope

• priorities & options

• feedstocks – crude oil & biobased

• feasibility & ‘role’ of advanced biofuels

• (public-private) open innovation model -examples

About us: www.BE-Basic.org/downloads RD & Innovation strategy

Focus: (1) start-ups , (2) training bio-engineers, (3) pilot facilities

DISCOVER DEVELOP DEMO DEPLOY

B-Basic &Ecogenomics2004-2009

front end

high risk

unbound

failure is an option

early spin-outs

new processes and products

new companies

new monitoring methods

new approaches(e.g. Smart Soilfor CO2 capture)

in via partners

DISCOVER DEVELOP DEMO DEPLOY

B-Basic &Ecogenomics2004-2009

B-Basic2004-2010

fuzzy

wild ideas

high risk

unbound

failure is an option

early spin-outs

new processes and products

new companies

new monitoring methods

new approaches(e.g. Smart Soilfor CO2 capture)

spin-spin-

unbound

pilot plant

demo plant

full plant

lab R&D

BE-Basic2010-2015

Page 8: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

8

Synthetic Biology in the real world?

glucose

xylose

arabinose

acetate

glycerol

furanics

commercial product based patent portfolio

Successful SME’s in BE-Basic (Q1 2013)

• TUD-spin-out discovered FDCA-technology for sustainable PET-

replacement (’09), developed in BE-Basic (’10-’11) for further

commercialisation in Purac (mar’13)

• WUR-starter pioneer in chemicals from

waste streams, closes series A investment

with Horizon3 and DGF* (5 apr 2013)

• TUD starter (oct’12) with BPF, TUD, VC

develops advanced biorenewables processes

… and more to come !

DḀB

The other 70% : FDCA for “BioPEF”

biomass

HM-furOH

• Top-12 value-added chemicals from biomass

• Platform chemical - market size 4-12 bn $/yr

• Replace terephthalate in 15 mio ton polymers

• Concept in B-Basic (TUD/TNO - ’09) – FDCA direct production from lignocellulosic HMF

• indust biocat (BIRD Eng /TUD-’09) – bioprocess (BIRD –’10) – invest round - piloting (BE-Basic-’11)

• 2013 - acquisition of BIRD Eng / FDCA by Purac kg-scale process

trends in biobased production

production [kT/yr]

concentration from reactor [kg/m3]

0,01

0,1

1

10

100

1000

10000

0,001 0,1 10 1000 100000

petrochemicals

bio-bulk

active ingredients

biopharma

Cooney, ‘84

0,01 1 10 100 1000

MAb, HSA

antibiotics, nutraceuticals

bioplastics(PLA, PHA, PDO, ...)

(2nd gen) biofuels

cost

pric

e ($

/lb)

Bioconstruction materials (self-healing, cement, bioconcrete,biogrout,

bioasphalt,, …)

In-situ concrete by carbonate fixation

Biogrout & bioconcrete: from soft soil to rock solid

100 micrometer (10-4 m)

Van Paassen Animations ©

Page 9: GHG balance & climate hemisphere in - UFRJ/EQ/QV - …quimicaverde.eq.ufrj.br/download/ebqv-2015-luuk-van-d… ·  · 2016-02-103 “Drop-in Greenification” of Chemical Industry

9

49

palmitic acid

glycerolsugars

methane

butanol

propionic acid

ethanol

succinic acid

citric acid

lactic acid

p-xylenecrude oil

syngas

0.25

adipic/acrylic

ethylene

propylene

jetfuel/diesel

1,4 BDO

0.5

1.0

0.3

1.1

0.4

0.3

CO2

biomass

ligninemethanol

feedstocks

Hcomb

105 J/kg

600

0

biomass yield

Combined (drop-in/substitute/-out) scenarios ?products

$400/ton

$50..130/ton

$660/ton

$6/ton biocon-struction

advanced fuels

connect 2 sectors w mega-volumes

conclusions

• biorenewables can play critical role in chemical &

materials industry, far ‘beyond bioethanol’ and

• in sustainable (people, planet, profit) development

• no premiums & subsidies: need to be integral part of

chemicals/ fuels/ food/ energy /logistics system

• fuels with priority for sectors w/o alternatives

• open innovation models can speed-up development

and implementation, in professional setting

ECO‐BIO conference 2016:

“Challenges in Building a Sustainable Biobased Economy”

Tentative date: 6‐9 March 2016

World Trade CentreRotterdam, The Netherlands

SAVE THE DATE!

Chair:

Bram BrouwerBioDetection SystemsVU University Amsterdam

Chair: 

Luuk van der WielenDelft University of TechnologyBE‐Basic Foundation

More information: info@be‐basic.org

B(E)-Basic Foundation

T +31 15 – 2782363

E [email protected]

W www.be-basic.org

or

[email protected]

Contact us