44
Overview of GFSSP v605 Alok Majumdar, AndrΓ© LeClair, & Ric Moore Thermal Analysis Branch NASA/Marshall Space Flight Center July 2014

GFSSP Version 605 akm - nasa.gov

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GFSSP Version 605 akm - nasa.gov

Overview  of  GFSSP  v605

Alok  Majumdar,  AndrΓ©  LeClair,  &  Ric  Moore  Thermal  Analysis  Branch  

NASA/Marshall  Space  Flight  Center      

July  2014  

Page 2: GFSSP Version 605 akm - nasa.gov

Contents

β€’β€― Additional Capabilities β€’β€― VTASC Improvement β€’β€― New Example Problems β€’β€― Summary & Future Work β€’β€― Acknowledgement

GFSSP  Version  605   2  

Page 3: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   3  

AddiRonal  CapabiliRes  in  Version  605   β€’β€― GFSSP

–  Expansion of User-Defined Fluid Tables –  Utility Subroutines for Calculating Fluid Properties –  Efficiency Improvements in Indexing Subroutines –  Five New Example Problems –  Minor Bug Fixes

β€’β€― VTASC –  Expanded Tool Tips –  Show Text Description on Canvas –  Both Pressure Regulator and Flow Regulator in Same Model –  Choice of Inertia Formulation

Page 4: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605  

User-Defined Fluid Tables  

β€’β€― User-­‐defined  fluids  may  now  be  used  in  both  steady-­‐state  and  transient  models.  

β€’β€― SaturaRon  and  phase  change  of  user-­‐defined  fluids  can  be  added  by  providing  an  extra  table  of  saturaRon  properRes.  

β€’β€― URlity  programs  are  provided  in  the  GFSSP  installaRon  directory  to  convert  REFPROP  fluid  output  into  GFSSP  user-­‐defined  fluid  tables.  

4  

Page 5: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   5  

User-Defined Fluid Tables  

5  

Page 6: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   6  

User-Defined Fluid Tables  

6  

Page 7: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   7  

Fluid Property Subroutines  

β€’β€― User  subrouRnes  may  someRmes  require  fluid  properRes  at  pressures  or  temperatures  other  than  the  node  P/T.    For  example,  some  convecRon  correlaRons  use  properRes  evaluated  at  the  film  temperature.  

β€’β€― Four  new  uRlity  subrouRnes  return  fluid  properRes  as  funcRons  of  P/T,  P/H,  P/S,  or  Psat.  

β€’β€― The  subrouRnes  call  GASP/WASP,  RP-­‐1  tables,  and  User-­‐Defined  Fluid  Tables.    (GASPAK  is  not  supported  at  this  Rme.)  

7  

Page 8: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   8  

Fluid Property Subroutines   CALL PROPS_PT(I_NFLUID, Z_P, Z_T, Z_RHO, Z_H, + Z_CP, Z_CV, Z_S, Z_GAMMA, Z_MU + Z_K, I_KR, Z_XV) β€’β€― Input  

β€’β€― I_NFLUID:    Fluid  ID  code  (see  next  slide)  β€’β€― Z_P:    Pressure  β€’β€― Z_T:    Temperature  

β€’β€― Output  β€’β€― Z_RHO:    Density  β€’β€― Z_H:    Enthalpy  β€’β€― Z_CP,  Z_CV:    Specific  heats  β€’β€― Z_S:    Entropy  β€’β€― Z_GAMMA:    RaRo  of  specific  heats  β€’β€― Z_MU:    Viscosity  β€’β€― Z_K:    Thermal  conducRvity  β€’β€― I_KR:    Fluid  phase  code  (0  unknown;  1  saturated;  2  liquid;  3  gas)  β€’β€― Z_XV:    Quality  (vapor  mass  fracRon)  

 

8  

Page 9: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   9  

Fluid Property Subroutines  

9  

Property English  Units Pressure  (P) Psf Temperature  (T) Β°R Conduc:vity  (k) BTU/m-­‐s-­‐R Density  (ρ) lb/m3 Viscosity  (Β΅) lb/m-­‐s Specific  Heat  Ra:o  (Ξ³) Dimensionless Enthalpy  (H) BTU/lb Entropy  (S) BTU/lb-­‐R Specific  Heat  (Cp) BTU/lb-­‐R Specific  Heat  (Cv) BTU/lb-­‐R

ID  Number Fluid Pcrit  (psia) 1 GASP  He 33.0 2 GASP  CH4 671.1 3 GASP  Ne 384.9 4 GASP  N2 495.6 5 GASP  CO 507.4 6 GASP  O2 737.2 7 GASP  Ar 705.6 8 GASP  CO2 1070.9 9 GASP  F2 756.4 10 GASP  H2 187.5 11 WASP  H2O 3204.0 12 RP-­‐1  Tables   37 User  Fluid  1  Tables   38 User  Fluid  2  Tables   39 User  Fluid  3  Tables  

Page 10: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   10  

Fluid Property Subroutines   CALL PROPS_PH(I_NFLUID, Z_P, Z_T, Z_RHO, Z_H, Z_CP, Z_CV, + Z_S, Z_GAMMA, Z_MU, Z_K, I_KR, Z_XV, + Z_RHOL, Z_HL, Z_CPL, Z_CVL, Z_SL, Z_GAMMAL, Z_MUL, Z_KL, + Z_RHOV, Z_HV, Z_CPV, Z_CVV, Z_SV, Z_GAMMAV, Z_MUV, Z_KV) CALL PROPS_PS(I_NFLUID, Z_P, Z_T, Z_RHO, Z_H, Z_CP, Z_CV, + Z_S, Z_GAMMA, Z_MU, Z_K, I_KR, Z_XV, + Z_RHOL, Z_HL, Z_CPL, Z_CVL, Z_SL, Z_GAMMAL, Z_MUL, Z_KL, + Z_RHOV, Z_HV, Z_CPV, Z_CVV, Z_SV, Z_GAMMAV, Z_MUV, Z_KV) β€’β€― Input  

β€’β€― I_NFLUID:    Fluid  ID  code  β€’β€― Z_P:    Pressure  β€’β€― Z_H  or  Z_S:    Enthalpy  or  Entropy  

β€’β€― Output  β€’β€― Similar  to  PROPS_PT  β€’β€― If  the  fluid  is  saturated  (I_KR  =  1),  properRes  suffixed  in  β€œL”  or  β€œV”  are  the  

properRes  of  the  pure  liquid  or  vapor.    The  other  properRes  are  quality-­‐weighted  averages  of  the  two-­‐phase  mixture.  

β€’β€― PROPS_PS  is  for  GASP/WASP  fluids  only.  

 

10  

Page 11: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   11  

Fluid Property Subroutines   CALL PROPS_PSATX(I_NFLUID, Z_P, Z_T, Z_RHO, Z_H, Z_CP, Z_CV, + Z_S, Z_GAMMA, Z_MU, Z_K, I_KR, Z_XV, + Z_RHOL, Z_HL, Z_CPL, Z_CVL, Z_SL, Z_GAMMAL, Z_MUL, Z_KL, + Z_RHOV, Z_HV, Z_CPV, Z_CVV, Z_SV, Z_GAMMAV, Z_MUV, Z_KV)

β€’β€― Input  β€’β€― I_NFLUID:    Fluid  ID  code  β€’β€― Z_P:    SaturaRon  pressure  β€’β€― Z_XV:    Quality  

β€’β€― Output  β€’β€― Z_T:    SaturaRon  temperature  β€’β€― PROPS_PSATX  is  for  GASP/WASP  fluids  only.  β€’β€― If  the  input  saturaRon  pressure  is  greater  than  Pcrit,  an  error  message  

is  returned.  

 

11  

Page 12: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   12  

New Example Problems  

β€’β€― Ex26:    Fluid  Transient  in  Pipes  Due  to  Sudden  Opening  of  Valve  β€’β€― Models  Georgia  Tech  experimental  study  

β€’β€― Ex27:    Boiling  Water  Reactor  β€’β€― Demonstrates  use  of  User-­‐Defined  Fluid  Tables  with  Phase  Change  

β€’β€― Ex28:    No-­‐Vent  Tank  Fill  and  Chill  β€’β€― Models  K-­‐Site  Test  Facility  Data  

β€’β€― Ex29:    Self-­‐PressurizaRon  of  a  Cryogenic  Propellant  Tank  Due  to  Boil-­‐Off  β€’β€― Includes  MLI  User  SubrouRne  to  Model  MHTB  

β€’β€― Ex30:    Modeling  Solid  Propellant  BallisRc  β€’β€― Demonstrates  User  SubrouRne  to  Model  Mass  Source  

Page 13: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   13  GFSSP  Version  605  

Minor Bug Fixes  

β€’β€― Miropolskii  correlaRon  was  calculaRng  unrealisRcally  low  values  of  the  convecRon  coefficient  when  the  fluid  was  pure  liquid.    (Two-­‐phase  and  pure  vapor  flows  were  correct.)  

β€’β€― For  steady-­‐state  models  with  1st  Law  Energy  EquaRon,  printed  entropy  was  for  iniRal  guess  P/T,  not  soluRon  P/T.  

β€’β€― In  transient  models,  Fixed  Flow  Rate  branch  area  was  not  converted  from  in2  to  m2  

Page 14: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   14  

VTASC Improvements  Expanded  tool-­‐Rps  

14  

Page 15: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   15  

VTASC Improvements  Show  Text  DescripRon  on  Canvas  

15  

Page 16: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   16  

VTASC Improvements  Can  Have  Both  Pressure  and  Flow  Regulator  in  Same  Model  

16  

Page 17: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   17  GFSSP  Version  605  

VTASC Improvements  Choice  of  InerRa  FormulaRon  

β€’β€― DFLI  (DifferenRal  FormulaRon  for  Longitudinal  InerRa)  writes  the  inerRa  term  of  the  momentum  equaRon  as     π‘šβŸβ†“π‘–π‘—βŸπ‘‘(π‘šβŸ/𝜌𝐴 ).  

β€’β€― When  DFLI  is  unchecked,  GFSSP  reverts  to  the  original  formulaRon:    π‘šβŸβ†“π‘–π‘—βŸ(π‘’β†“π‘’π‘π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘šβŸβˆ’ π‘’β†“π‘–π‘—βŸ)  

β€’β€― DFLI  has  been  GFSSP’s  default  for  many  years.    It  could  only  be  disabled  by  user  subrouRne.  

β€’β€― If  a  pre-­‐v605  model  with  the  inerRa  term  acRvated  gives  different  results  when  run  with  v605,  verify  that  DFLI  is  checked.  

 

Page 18: GFSSP Version 605 akm - nasa.gov

For  More  InformaRon   β€’β€― The file SupplementaryDocumentationOfGFSSPVersion605.pdf is

located in the v605 installation directory. It documents: –  User-defined fluids –  Utility programs for creating user-defined fluid tables from

REFPROP –  New utility subroutines for getting fluid properties –  Revised Example 14 –  New Examples 26-30

18  GFSSP  Version  605  

Page 19: GFSSP Version 605 akm - nasa.gov

New Example Problems

β€’β€― Version 605 has five new example problems (Examples 26-30) and revised Example 14 –  Chilldown of a Cryogenic Pipeline (Revised Example 14) –  Fluid Transients in Pipes Due to Sudden Opening of Valve

(EXAMPLE 26) –  Boiling Water Reactor (Example 27) –  No-Vent Tank Chill & Fill Model (Example 28) –  Self-Pressurization of a Cryogenic Propellant Tank Due to Boil-off

(Example 29) –  Modeling Solid Propellant Ballistic with GFSSP (Example 30)

GFSSP  Version  605   19  

Page 20: GFSSP Version 605 akm - nasa.gov

Chilldown  of  a  Cryogenic  Pipeline  (Revised  Example  14)

GFSSP  Version  605   20  

β€’β€― This example models NBS Chilldown Test (Vacuum-jacketed 200 foot long copper pipe of 5/8 inch dia) with LH2

β€’β€― Illustrates two-phase flows with phase change

β€’β€― Calculates temperature history of fluid and solid nodes and compared with Test Data

Reference: Brennan, J. A., Brentari, E. G., Smith, R. V., and Steward, W. G., β€œCooldown of Cryogenic Transfer Lines, An Experimental Report,” National Bureau of Standards Report 9264, November 1966.

Page 21: GFSSP Version 605 akm - nasa.gov

GFSSP Model

GFSSP  Version  605   21  

β€’β€― 30 Pipe Branches each 80 inches long

β€’β€― 31 Fluid and Solid Nodes

β€’β€― Dewar Pressure and Temperatures are 74.97 psia and -411 Β°F

β€’β€― Time step = β€’β€― Heat Transfer

Coefficient was computed by Miropolsky Correlation

Page 22: GFSSP Version 605 akm - nasa.gov

Comparison with Test Data

GFSSP  Version  605   22  

Page 23: GFSSP Version 605 akm - nasa.gov

Flowrate & Pressure History

GFSSP  Version  605   23  

β€’β€― Initially flow oscillation occurs due to instabilities of two-phase flow

β€’β€― Flowrates gradually increases as pipes chilldown and vapor starts condensing

β€’β€― Pressure difference in the pipe diminishes as more and more liquid flows through the pipe

Page 24: GFSSP Version 605 akm - nasa.gov

Fluid  Transients  in  Pipes  Due  to  Sudden  Opening  of  Valve  (EXAMPLE  26)  

GFSSP  Version  605   24      

SchemaRc  of  the  Pipeline  System  with  ball-­‐valve  locaRon  (C-­‐D).    

 

Ball-Valve Opening History

Parameters: Ξ± = Lg/LT PR = pR/p0

Page 25: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   25      

GFSSP MODEL

β€’β€― Node  1:  Reservoir  pressure  =  29.4  to  102.9  psia  β€’β€― Node  12:  Volume  change  due  to  change  in  entrapped  air  

volume.  β€’β€― Air  pressure  at  the  end  of  node  12  is  calculated  using  AdiabaRc  

gas  expansion  relaRon  for  ideal  gas.    β€’β€― The  valve  opening  area  is  based  on  ball-­‐valve  opening  of  the  

original  problem.    β€’β€― Momentum  Source  due  to  pressurizaRon  of  water  column  due  

to  air  pressure.  

Pipe Length = 20 ft

Pipe Diameter = 1.025in

Page 26: GFSSP Version 605 akm - nasa.gov

GFSSP Version 605 26

β€’β€―Volume Change with time for pseudo node 12 due to air pressure:

β€’β€―Air Pressure Calculation: (Using Adiabatic Gas Relation):

Modeling Interaction between Water and Air Column

β€’β€―p, V etc indicates pressure and Volume at the current time step and p*, V* indicates pressure and volume at the previous time step. The volume and pressure changes are with respect to time.

β€’β€―Momentum Source in Node 12: -(pair-p12)A

)p(pΞ”p

Ξ”p/pTRmΞ”VΞ”V*1212

21212airairairw

βˆ’=

=βˆ’=

Ξ”V)/(V1VVVpVpp

1γ**** +⎟

⎟

⎠

⎞

⎜⎜

⎝

βŽ›

βŽ₯βŽ₯⎦

⎀

⎒⎒⎣

βŽ‘βˆ’βŽŸβŽŸ

⎠

⎞⎜⎜⎝

βŽ›+=

βˆ’

Page 27: GFSSP Version 605 akm - nasa.gov

Comparison of GFSSP and Experimental Data

GFSSP  Version  605   27  

PR = 4

PR = 7

Ξ±β‰ˆ 0.45 Ξ± β‰ˆ 0.2

PR = 2

PR = 5

Bandyopadhyay, A. and Majumdar, A., β€œNetwork Flow Simulation of Fluid Transients in Rocket Propulsion System” submitted to Journal of Propulsion and Power for publication

Page 28: GFSSP Version 605 akm - nasa.gov

Fast Fourier Transform (FFT) of the Pressure Oscillations

GFSSP  Version  605  28  

Ξ± = 0.45

PR = 4

PR = 7

β€’β€― FFT Analysis transforms the time domain pressure oscillations into the frequency domain

β€’β€― A Fortran Program, β€œFFT Multiple.for” has been developed based on Danielson and Lanczos algorithm is available in Example 26 Folder in GFSSP Installation Directory

β€’β€― The program reads β€œp_t.txt” which contains time in first column and pressures in subsequent columns

β€’β€― The output is stored in β€œp_f.xls”

Danielson, G. C. and Lanczos C., β€œSome improvements in practical Fourier analysis and their application to X-ray scattering from liquids”, Journal of

Franklin Institute, vol. 233, pp 365-380 and 435-452

Page 29: GFSSP Version 605 akm - nasa.gov

Boiling Water Reactor (Example 27)  

GFSSP  Version  605   29  

Page 30: GFSSP Version 605 akm - nasa.gov

Fluid Option in VTASC for User Specified Fluid

GFSSP  Version  605   30  

Page 31: GFSSP Version 605 akm - nasa.gov

Comparison  between  soluRons  with  WASP  and  Property  Table  generated  by  REFPROP

GFSSP  Version  605   31  

Variables WASP Property  Table %  Difference

Flowrate  (lbm/sec) 0.1125 0.1131 0.5333

P2  (psia) 29.745 29.747 0.00672

P5  (psia) 18.517 18.536 0.103

P10  (psia) 15.946 15.935 0.069

T2  (Β°F) 209.99 209.59 0.191

T5  (Β°F) 223.88 223.02 0.384

T10  (Β°F) 354.39 352.55 0.519

X2** 0.00 0.00 0.00

X5 0.3906 0.3909 0.077

X10 1.00 1.0 0.00

** x is the vapor mass fraction or quality

Page 32: GFSSP Version 605 akm - nasa.gov

Results

GFSSP  Version  605   32  

Page 33: GFSSP Version 605 akm - nasa.gov

No-­‐Vent  Tank  Chill  &  Fill  Model  (Example  28)

GFSSP  Version  605   33  

Β§β€―K-site Test Tank - The LH2 chilldown test was run on February 15, 1991

Tank Material – 2219 Aluminum Tank Volume = 175 ft3 (87 x 72.5 inch) Tank Weight = 329.25 lbs Tank Insulation – 34 layers of MLI Chilldown Method: β€’β€― 6 Cycles of Charge-Hold-Vent Process β€’β€― Injection rates were measured β€’β€― 714.35 lbs of LH2 was injected in 2.35 hrs β€’β€― Tank was filled to 94% β€’β€― Fluid and wall temperatures measured β€’β€― Estimated consumption of LH2 = 32 lbs

Page 34: GFSSP Version 605 akm - nasa.gov

GFSSP  Nine  Node  Tank  Model

GFSSP  Version  605   34  

β€’β€― No heat leak was assumed β€’β€― Initial Tank Pressure = 2 psia β€’β€― Initial Tank Temperature = -20 ΒΊ F

Table  3.4.1.  Internal  Model  Tank  Parameters  

Branch  Number   Branch  Length  (in)   Branch  Diameter  (in)  

Branch  Volume  (in3)  

12   11.063   38.59   4,118.72Ο€  

23   11.063   62.71   10,876.43Ο€  

34   11.063   74.61   15,395.96Ο€  

45   11.063   79.88   17,647.73Ο€  

56   11.063   79.88   17,647.73Ο€  

67   11.063   74.61   15,395.96Ο€  

78   11.063   62.71   10,876.43Ο€  

89   11.063   38.59   4,118.72Ο€  

               

Page 35: GFSSP Version 605 akm - nasa.gov

35  

GFSSP Model Results

0 2000 4000 6000 8000 10000

80

60

40

20

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

-0.00

TIME SECONDS

WinPlot v4.60 rc1

10:18:21AM 02/28/2012

P1 PSIA Node 1 [f131]*9

lb/sec

0 2000 4000 6000 8000 10000

700

600

500

400

300

200

100

0

TIME SECONDS

WinPlot v4.60 rc1

10:04:02AM 02/28/2012

[EM1]+[EM2]+[EM3]+[EM4]+[EM5]+[EM6]+[EM7]+[EM8]+[EM9]

Lbm

0 2000 4000 6000 8000 10000

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

TIME SECONDS

WinPlot v4.60 rc1

12:38:43PM 02/28/2012

F1112 LBM/SEC Restrict 1112

lb/sec

Btu/sec-ft**2-R

0 2000 4000 6000 8000 10000

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

TIME SECONDS

WinPlot v4.60 rc1

10:34:28AM 02/28/2012

XV1 - Node 1 XV2 - Node 2 XV3 - Node 3

XV4 - Node 4 XV5 - Node 5 XV6 - Node 6

XV7 - Node 7 XV8 - Node 8 XV9 - Node 9

lb/sec

Pressure & Inlet Flowrate

LH2 Mass in Tank

Vent Flowrate

Vapor Quality in Tank

Calculated Propellant Loss = 32.5 lbs Estimated Propellant Loss = 32 lbs

(From Test)

Page 36: GFSSP Version 605 akm - nasa.gov

Self-­‐Pressuriza:on  of  a  Cryogenic  Propellant  Tank  Due  to  Boil-­‐off  (Example  29)

GFSSP  Version  605   36  

MHTB Test Tank and Supporting Hardware Schematic

Thermodynamic Vent System in MHTB Tank

Page 37: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   37  

Evaporative Mass Transfer at Liquid-Vapor Interface

π‘„β†“π‘ˆπΌβŸ

π‘„β†“πΌπΏβŸ

π‘‡β†“π‘ˆβŸ π‘‡β†“πΌβŸ

π‘‡β†“πΏβŸ

π‘šβŸv

Ullage

Liquid

GFSSP Model

β€’β€― Ullage to Interface heat transfer, QUI π‘„β†“π‘ˆπΌβŸ= β„Žβ†“π‘ˆπΌβŸπ΄(π‘‡β†“π‘ˆβŸβˆ’ π‘‡β†“πΌβŸ),

β€’β€― The Interface to Liquid heat transfer, QIL π‘„β†“πΌπΏβŸ= β„Žβ†“πΌπΏβŸπ΄(π‘‡β†“πΌβŸβˆ’ π‘‡β†“πΏβŸ)

β€’β€― The evaporative mass transfer π‘šβŸ= π‘„β†“π‘ˆπΌβŸβˆ’ π‘„β†“πΌπΏβŸ/β„Žβ†“π‘“π‘”βŸβŸ

GFSSP Model & Evaporative Mass Transfer

Page 38: GFSSP Version 605 akm - nasa.gov

Heat  transfer  thru  MLI  blankets  

GFSSP  Version  605   38  

βŽ₯βŽ₯⎦

⎀

⎒⎒⎣

⎑ βˆ’+

βˆ’+

βˆ’βˆ’+βˆ’βˆ’+=

s

chg

s

chr

s

chavgavgs

NTTPC

NTTC

NTTNTETEC

q)()()(*)))(ln(*228.2)0.800(*60.7017.0( 52.052.067.467.463.2 Ξ΅

Hastings, L. J., Hedayat, A., and Brown, T. M., Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage, NASA/MSFC, NASA/TM-2004-213175, May 2004.

Modified Lockheed Equation

q= 𝜎(π‘‡β†“π‘Žπ‘šπ‘β†‘4βŸβˆ’ π‘‡β†“π‘œπ‘’π‘‘π‘’π‘Ÿβ†‘4 )/1/πœ€β†“π‘€πΏπΌβŸβŸ+ 1/πœ€β†“π‘ β„Žπ‘Ÿπ‘‘βŸβŸβˆ’1 

Radiative Heat Transfer

Page 39: GFSSP Version 605 akm - nasa.gov

Modeling of MLI Heat Transfer in GFSSP

GFSSP  Version  605   39  

Qrad= Q1 = Q2= Q3,

q= 𝜎(π‘‡β†“π‘Žπ‘šπ‘β†‘4βŸβˆ’ π‘‡β†“π‘œπ‘’π‘‘π‘’π‘Ÿβ†‘4 )/1/πœ€β†“π‘€πΏπΌβŸβŸ+ 1/πœ€β†“π‘ β„Žπ‘Ÿπ‘‘βŸβŸβˆ’1 

Q2(T1, T2) - Q3(T2, Tc) = 0 Q1(Th, T1) - Q2(T1, T2) = 0 π‘„β†“π‘Ÿπ‘Žπ‘‘βŸ(π‘‡β†“π‘Žπ‘šπ‘βŸ, π‘‡β†“π»βŸ)- 𝑄↓1 (π‘‡β†“π»βŸ, 𝑇↓1 )

The law of energy conservation

Page 40: GFSSP Version 605 akm - nasa.gov

ApplicaRon  Results  for  MHTB  Self  PressurizaRon  Model

GFSSP  Version  605   40  

MHTB Test  Data

MLI  DF=2.8 MLI  DF=1

Page 41: GFSSP Version 605 akm - nasa.gov

Modeling Solid Propellant Ballistic with GFSSP (Example 30)

GFSSP  Version  605   41  Chamber

Orifice

Nozzle Throat

Nozzle Exit

The propellant burning rate (in/sec) was expressed as: π‘ŸβŸ= π‘Žβ†“π΅π‘…βŸπ‘ƒβ†“πΆβ†‘π‘›β†“π΅π‘…βŸβŸ Where aBR = 0.0687 and nBR = 0.3 Propellant Density, 𝜌prop = 0.06 lbm/in3

Page 42: GFSSP Version 605 akm - nasa.gov

GFSSP  Version  605   42  

Results & Computational Details

Numerical Control Parameters: Very Small Time Step:

(DTAU = 0.0001 sec)

Stringent Convergence Criterion (CC = 1e-07)

Heavy Under-Relaxation on Density

(RELAXD = 0.05)

During Tail-Off, RELAXNR was set to 0.3 in User Subroutine

Page 43: GFSSP Version 605 akm - nasa.gov

Summary & Future Work

β€’β€― Version 605 is the final release of Version 6 β€’β€― Supplementary Documentation released with this version

describes all additional capabilities and example problems

β€’β€― There is a plan to merge the Version 604 User’s Manual with the Supplementary Documentation into an updated User’s Manual

β€’β€― All existing models should be migrated to Version 605 β€’β€― The planned Version 701 will include:

–  Psychrometric Properties –  Significant improvement in Computational Efficiency

GFSSP  Version  605   43  

Page 44: GFSSP Version 605 akm - nasa.gov

Acknowledgement

β€’β€― Code Testing –  Kyle Schafer /ER43-Summer Intern

β€’β€― Improvement in Computational Effieciency –  Mike Martin /ER22

β€’β€― Example Problems –  Alak Bandyopadhyay /Alabama A & M –  Juan Valenzuela /ER24 –  Ali Hedayat /ER24 –  Johnny Maroney/ ER43-ESSSA

GFSSP  Version  605   44