22
Dongbu Corporation Dongbu Corporation University of Sheffield University of Sheffield GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK APPLICATIONS Dr. Gi Beom KIM, Prof. P. WALDRON, Prof. K. Pilakoutas Presented by Gi Beom KIM July, 2007 July, 2007

GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK

APPLICATIONS

Dr. Gi Beom KIM, Prof. P. WALDRON, Prof. K. Pilakoutas

Presented by Gi Beom KIM

July, 2007July, 2007

Page 2: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

New systems incorporating GFRP reinforced GFRC

Interaction between FRP and GFRC– Bond (GFRC and FRP)

– GFRC tensile characteristics

– Deflections

– Shear capacity

Maximise span / length of unreinforced thin GFRC element

Design guidelines for FRP / GFRC thin structural elements

Outline

Page 3: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Introduction

Thin concrete permanent formwork and other structural elements

Minimum cover for durability; For aggressive environments, minimum 100mm thickness

GFRC is lightweight, high strength and has excellent resistance to corrosion

FRP reinforcement can be used to structurally reinforce GFRC to enable the development of much larger spans

Page 4: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

GFRP reinforced GFRC of thin panels

BondTension stiffening

DeflectionsShear capacity

Main design issues

Page 5: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Standard pull-out tests

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

Slip (mm)

Bon

d S

tress

(MP

a)

1. Loaded end2. Free end3. Net extension

1LVDTs

LVDTs 2 LVDTs 4

Pull-out Force = F

Mounting Rig

Rubber

Splitting pull-out tests

Pull-out Force = F

LVDTs 2

Mounting Rig

3LVDTs

1LVDTsRubber

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-3 -2 -1 0 1 2 3 4 5 6 7 8

Crack Width (mm) Slip (mm)

Bon

d S

tress

(MP

a)

1. Loaded end

2. Free end

3. Net extension

4. Crack

GFRC cubic block specimens(200 x 200 x 200 mm)

GFRC prismatic elements(30 or 40 x 200 x 100 mm ))

Bond behaviour in GFRC

Page 6: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Summary of test results

Specimen type Strength (MPa) Bond strength, t (MPa)

Normalised bond strength, t‘ (MPa)

GFRC 66 14.2 9.9GFRC 54 11.0 8.5

Plain concrete 32 8.5 8.5

GFRP reinforced GFRC similar to steel RCPull-out resistance of FRP is greater in GFRC (by 16%)

Bond behaviour in GFRC

MATERIALS- W/C = 0.35, S/C = 1.0 - fc = 54 and 66 MPa - fct = 6 and 7MPa (by Brazilian Test ) - ft_steel = 500 MPa, ft_GFRP = 900 MPa - EGFRP = 41 GPa, Esteel = 205 GPa

Page 7: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

* Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”PhD Thesis, University of Sheffield, Department of Civil and Structural Engineering, Sheffield, UK, 2006.

Thin GFRC section (t = 10 mm) was chosen after an optimisation exercise* was undertaken to identify the sections that minimise weight for a particular span

Optimised Section

Page 8: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Test specimens

(I) L15G3

(II) L30G3 (III) L30G2

Structural Testing

Page 9: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

To evaluate the GFRC tensile characteristics

GFRC tensile characteristics

Reinforced with 3% (by weight) of chopped glass fibreLength of panel = 1500 mmFour point loads test

GFRC panel (L15G3)

Page 10: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Softening model with trilineargives the best results !!

εtu = 0.05

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8Midspan deflection (mm)

Load

(kN

)

Experiment (L15G3)a) Elastic - plasticb) Elastic - hardeningc1) Elastic - softening (Linear)c2) Elastic - softening (Trilinear)

Optimised Section

Page 11: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Deflections of FRP GFRC

Reinforced with 2 and 3% (by weight) of chopped glass fibreSingle 8mm square rebarLength of panel = 3000 mmFour point loads test

Two GFRC panels (L30G2, L30G3)

Page 12: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Both panels achieved remarkable deformations up to about 110mm before shear failureExcessive deformation is normally the governing design criterion for thin permanent formwork, especially for long spansAcceptance deflection limits for this type are limited to L / 250

Deflections of FRP GFRC

Page 13: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Test Results: Flexural capacity

ACI440 equations are appropriate for thin GFRC reinforced with FRP

Bond dependent coefficient

0

2

4

6

8

10

12

14

0 20 40 60 80 100Central Deflection (mm)

Load

(kN

)

L30G3 - Exp.

L30G3 - ACI440

L30G2 - Exp.

L30G2 - ACI440

gcra

crgd

a

crecr II

MM

IMM

I ≤⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛=

33

, 1β

⎥⎦

⎤⎢⎣

⎡+= 1

s

fbd E

Eαβ

Deflections of FRP GFRC

Page 14: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Shear capacity

Reinforced with 2 and 3% (by weight) of chopped glass fibreSingle 8mm square rebarLength of panel = 3000 mmFour point loads test

Two GFRC panels (L30G2, L30G3)

Both panels failed due to the shear

Page 15: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Test Results: Shear capacity

RILEM recommendation shown to offer the least conservative estimate of shear resistance

RILEM TC162-TDF

0

2

4

6

8

10

12

14

0 20 40 60 80 100Central Deflection (mm)

Load

(kN

)

wdfdcdc VVVV ++=

( )[ ] dbfkV wcpckcd ⋅+= σρ 15.010012.0 3/11

dbkkV wfdlffd τ7.0=

αα sin)cot1(9.0 += ywdsw

wd dfs

AV

Shear capacity

Page 16: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Design thin FRP GFRC

‘Type W1’ = 10mm‘Type W2’ = 20mm‘Type W3’ = 20mm

Ld=200 (typical of buildings)Ld=500 (typical of bridges)

Type W

8 mm square GFRP rebar w t

For the cracked section, the crack widths and deflections are calculated by using the ACI 440 equationsShear capacity is calculated by using the RILEM TC162.

Page 17: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Analysis of thin FRP GFRC

For slabs up to 200mm thick (Building)For slabs up to 200mm thick (Building)

For slabs up to 500mm thick (Bridge)For slabs up to 500mm thick (Bridge)

2.23m

3.85m

1.33m

Ww

(kg/m) I (mm4)

yb

(mm) yt (mm)

ft

(MPa)

Msag

(kN-m)

Mhog

(kN-m)

Ld=200

(mm)

Ld=500

(mm)

6 1.06 1.70 1461 870

10 1.76 2.83 1886 1124 Type

W1 16.73 11952871 67.9 42.1

14 2.47 3.98 2232 1329

6 1.23 2.00 1578 940

10 2.05 3.34 2037 1214 Type

W2 24.06 14010167 68.2 41.8

14 2.88 4.69 2410 1436

6 1.31 2.55 1629 970

10 2.19 4.26 2103 1253 Type

W3 30.32 15916310 72.7 37.3

14 3.07 5.98 2488 1482

Flexure Shear Deflection

(<L/250)

Crack

width

(<0.5)GFRP square

rebar (mm)

ft

(MPa)Mult

(kN-m)

Ld=200

(mm)

Pult,

(kN)

Ld=200

(mm) Ld=200 (mm)

Ld=200

(mm)

6 5.44 3315 2700

10 6.03 3491 3200 8

14 6.58 3645

6.92 3496

3500

2600

6 6.03 3492 2900

10 6.52 3630 3200 10

14 6.97 3754

7.66 3871

3700

4400

6 6.54 3634 3200

10 6.94 3746 3400 12

14 7.32 3846

8.36 4221

3600

5400

Type W1 ( tw =10mm, tt = 10mm)

Beyond 2.6m, it could have problems with deflection and or cracking, as shown Table.

Page 18: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

For slabs up to 200mm thick (Building)For slabs up to 200mm thick (Building)

For slabs up to 500mm thick (Bridge)For slabs up to 500mm thick (Bridge)

2.41m

1.43m

2.66m

Ww

(kg/m) I (mm4)

yb

(mm) yt (mm)

ft

(MPa)

Msag

(kN-m)

Mhog

(kN-m)

Ld=200

(mm)

Ld=500

(mm)

6 1.06 1.70 1461 870

10 1.76 2.83 1886 1124 Type

W1 16.73 11952871 67.9 42.1

14 2.47 3.98 2232 1329

6 1.23 2.00 1578 940

10 2.05 3.34 2037 1214 Type

W2 24.06 14010167 68.2 41.8

14 2.88 4.69 2410 1436

6 1.31 2.55 1629 970

10 2.19 4.26 2103 1253 Type

W3 30.32 15916310 72.7 37.3

14 3.07 5.98 2488 1482

Type W2 ( tw =20mm, tt = 10mm)

Flexure Shear Deflection

(<L/250)

Crack

width

(<0.5)GFRP square

rebar (mm)

ft

(MPa)Mult

(kN-m)

Ld=500

(mm)

Pult,

(kN)

Ld=500

(mm) Ld=500 (mm)

Ld=500

(mm)

6 7.11 2258 1800

10 8.07 2405 2000 8

14 8.96 2534

8.19 1468

2200

2100

6 7.87 2375 1900

10 8.69 2496 2100 10

14 9.44 2601

9.13 1637

2200

3500

6 8.54 2474 2100

10 9.23 2572 2200 12

14 9.87 2660

10.02 1795

2300

4200

Beyond 1.8m, it will have problems with deflection and possible cracking, as shown Table.

Page 19: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

For slabs up to 200mm thick (Building)For slabs up to 200mm thick (Building)

For slabs up to 500mm thick (Bridge)For slabs up to 500mm thick (Bridge)

2.49m

1.48m

2.93m

Ww

(kg/m) I (mm4)

yb

(mm) yt (mm)

ft

(MPa)

Msag

(kN-m)

Mhog

(kN-m)

Ld=200

(mm)

Ld=500

(mm)

6 1.06 1.70 1461 870

10 1.76 2.83 1886 1124 Type

W1 16.73 11952871 67.9 42.1

14 2.47 3.98 2232 1329

6 1.23 2.00 1578 940

10 2.05 3.34 2037 1214 Type

W2 24.06 14010167 68.2 41.8

14 2.88 4.69 2410 1436

6 1.31 2.55 1629 970

10 2.19 4.26 2103 1253 Type

W3 30.32 15916310 72.7 37.3

14 3.07 5.98 2488 1482

Type W3 ( tw =20mm, tt = 20mm)

Flexure Shear Deflection

(<L/250)

Crack

width

(<0.5)GFRP square

rebar (mm)

ft

(MPa)Mult

(kN-m)

Ld=500

(mm)

Pult,

(kN)

Ld=500

(mm) Ld=500 (mm)

Ld=500

(mm)

6 8.44 2460 1900

10 9.75 2644 2100 8

14 10.96 2803

9.17 1644

2300

2100

6 9.33 2586 2000

10 10.45 2737 2200 10

14 11.48 2869

10.27 1841

2300

3500

6 10.12 2693 2200

10 11.08 2818 2300 12

14 11.97 2929

11.30 2026

2400

4200

Beyond 1.9m, it will have problems with deflection and possible cracking, as shown Table.

Page 20: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

For slabs up to 200mm thick (Building)For slabs up to 200mm thick (Building)

For slabs up to 500mm thick (Bridge)For slabs up to 500mm thick (Bridge)

4.8m

3.1m

3.8m

EBR

EBR

7.0m

7.8m

EBR 10.0m

Hogging Moment !!

W1

W2

W3

Page 21: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

• For design purposes for FRP RC GFRC- Modified ACI 440 equation can be used for deflections and crack widths- Modified RILEM TC162 equations can be used for shear

• For building slabs up to 200mm thick, W shape - Without reinforcement SS up to 2.23m; Reinforced up to 3.85m, - With intermediate support and EBR, a total span of 10m is possible.

• A 3.29m by 0.5m panel weights less that 55kg and can be put in place by two men

• For bridge slabs up to 500mm thick, - Without reinforcement SS up to 1.43m; Reinforced up to 2.66m, - With intermediate support and EBR, a total span of 7.8m is possible.

Conclusions

Page 22: GFRP REINFORCED GFRC FOR THIN PERMANENT FORMWORK …ci.group.shef.ac.uk/CI_content/FRP/FRPRCS8-Kim.pdf · * Kim, G. B., “Development of thin FRP GFRC permanent formwork systems”

Dongbu CorporationDongbu Corporation University of SheffieldUniversity of Sheffield

Thank you for your attention !!Thank you for your attention !!