22
Index a A tensor 16 aberration 448 absorbance 98 ff, 186 absorption 51, 107 – AEO 82 – anhydrous oxides 111 – EPR 19 – TEM 453 – UV-Vis-NIR 59 f absorption coefficient – EXAFS 304 – IR spectroscopy 57, 67, 99 – XAS 301 acceptors 55 accuracy 309, 454 acetaldehyde production 548, 554 acetone 600, 624, 828 acetonitrile 155 – base catalysis 834 – surface basicity 166 – titanium silicalite-1 742 – vanadium phosphate catalysts 507 acid–base properties – CuMgAl 321 – IR spectra 167 – metal oxides 617 – mixed metal oxides 415 f – NMR 195 – POMs 567, 578 – surface 227 – thermal analysis 392 – vanadium pentoxides 431 – vanadium phosphates 507 – zeolites 311 acid-catalyzed reactions 677 acid probes 586 acid sites – IR spectra 139, 156 845 Metal Oxide Catalysis. Edited by S. David Jackson and Justin S. J. Hargreaves Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31815-5 – superacidic metal oxides 675, 682 – thermal analysis 404 acid zeolites 310 ff acidic oxides 406 acidic systems 496 acidity – IR spectra 147 – POMs 572 – surface properties 227 – thermal analysis 402 f acoustic modes 124 acrylic acid oxidation 281 f acrylic fibre ammoxidation 771 acrylonitrile–butadiene–styrene (ABS) 771 acrylonitrile synthesis 771–818 actinide elements 540 activation – base catalysis 829 – IR spectra 134, 156 – thermal analysis 399, 405 – vanadium phosphate catalysts 500 active centers 69 active sites – ammoxidation 776 – EXAFS 314 – thermal analysis 392 – titanium silicalite-1 720, 740 f – uranium oxides 551 – vanadium phosphate catalysts 529 activity – base catalysis 820 – chromium oxides 597 – IR spectroscopy 107 – photocatalytic 762 – POMs 564 – superacidic metal oxides 673 – uranium oxides 545 – vanadia catalysts 605

Get PDF (100K) - Wiley Online Library

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Index

aA tensor 16aberration 448absorbance 98 ff, 186absorption 51, 107– AEO 82– anhydrous oxides 111– EPR 19– TEM 453– UV-Vis-NIR 59 fabsorption coeffi cient– EXAFS 304– IR spectroscopy 57, 67, 99– XAS 301acceptors 55accuracy 309, 454acetaldehyde production 548, 554acetone 600, 624, 828acetonitrile 155– base catalysis 834– surface basicity 166– titanium silicalite-1 742– vanadium phosphate catalysts 507acid–base properties– CuMgAl 321– IR spectra 167– metal oxides 617– mixed metal oxides 415 f– NMR 195– POMs 567, 578– surface 227– thermal analysis 392– vanadium pentoxides 431– vanadium phosphates 507– zeolites 311acid-catalyzed reactions 677acid probes 586acid sites– IR spectra 139, 156

845

Metal Oxide Catalysis. Edited by S. David Jackson and Justin S. J. HargreavesCopyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 978-3-527-31815-5

– superacidic metal oxides 675, 682– thermal analysis 404acid zeolites 310 ffacidic oxides 406acidic systems 496acidity– IR spectra 147– POMs 572– surface properties 227– thermal analysis 402 facoustic modes 124acrylic acid oxidation 281 facrylic fi bre ammoxidation 771acrylonitrile–butadiene–styrene (ABS) 771acrylonitrile synthesis 771–818actinide elements 540activation– base catalysis 829– IR spectra 134, 156– thermal analysis 399, 405– vanadium phosphate catalysts 500active centers 69active sites– ammoxidation 776– EXAFS 314– thermal analysis 392– titanium silicalite-1 720, 740 f– uranium oxides 551– vanadium phosphate catalysts 529activity– base catalysis 820– chromium oxides 597– IR spectroscopy 107– photocatalytic 762– POMs 564– superacidic metal oxides 673– uranium oxides 545– vanadia catalysts 605

846 Index

– vanadium oxides 210– vanadium phosphate catalysts 504addenda atoms 561, 569, 581adiponitrile (ADN) 803adsorbate–adsorbate interactions 398adsorbed probe molecules 133 fadsorption 394– base catalysis 823– Lewis/Brønsted sites 146– metal oxide catalysts 645– microcalorimetry 393– photocatalysis 760– superacidic metal oxides 681– titanium silicalite-1 705, 740 fadsorption–desorption heats 401 faerobic partial oxidation 642aggregation 477alcohols– dehydration 618– methoxide solutions 623– oxidation 570, 727– surface basicity 166– titanium silicalite-1 708– TS-1 catalyzed 316, 724– vanadium phosphate catalysts 510aldehydes 316, 724aldol condensation 554, 830aliphatic nitriles 154aliphatic oximes 733alkali-exchanged zeolites 428alkali halides 101alkaline earth oxides (AEO)– base catalysis 826 f, 830– IR spectra 61, 153– PL spectra 81 f– powder EPR 33– promoted vanadium phosphates 523alkaline earth salts 423– destruction 547– hydroxylation 707 ff– NMR 195– oxidation 499– oxygenation 641alkane–alkene conversion 605alkanes– olefi ns 178– oxidative 416– vanadium oxides 210– vanadium/chromium oxides 595–612alkenes– epoxidation 570, 576– metathesis 650– TS-1 catalyzed 316alkenyl mechanism 524

alkoxide mechanism 527alkyl acid anhydride 693alkyl amines 147alkyl chains 480alkyl radicals 47alkylaromatic ammoxidation 791alkylaromatic side-chain alkylation 819alkylation 618alkylbenzene ammoxidation 791allyl alcohol oxidation 725allyl chloride epoxidation 726alumina supports– surface structure 228, 231– vanadium catalysts 214, 177–196– vanadium oxide 211, 433, 602aluminas 121– bulk structure 347 f– CP-MAS NMR 230– differential heats 406– electronic structures 347, 351– hydroxyl groups 141– IR spectroscopy 115, 159, 311– Lewis acid sites 159 f– metal oxide catalysts 614– MQMAS 202– NMR 195– SATRAS 203– surface oxo-anions 136– surfaces 356, 359 f– thermal analysis 408– XPS 260aluminosilicates 425aluminum containing systems 204, 208 f,

780aluminum hydroxides 209, 341 f, 347aluminum layers 355aluminum oxides 221 f, 348aluminum supports 177–196, 221 faluminum zeolites 124, 300amide ammoxidation 793amines 316, 733, 793ammonia– adsorption 408, 418 f– POMs 567, 586– surface basicity 166, 402ammonium salts 565ammoxidation– hydrocarbons/mixed oxides 771–818– propane 281– titanium silicalite-1 730 famorphous material 110 f, 129 f, 505amorphous silica/aluminas 228, 425amorphous structures 200amphoteric oxides 406

Index 847

amplitude reduction factor (AFAC) 302amplitudes 446analcime 478anatase 118Anderson structures 562angular momentum 2, 7, 53, 197anharmonic oscillator 77anhydrides 693anhydrous oxides 111 faniline oxidation 733anion–cation distance 65anion doping 760anisotropic fi ne term 14anthracene 13anthrahydroquinone autoxidation (AO) 736antiferromagnetic AF2 state 372antimonate catalysts 786antimony 549antiphases 446 fantisymmetrized wavefunctions 326aperture 446applications– base catalysis 840– EXAFS 309 f– IR spectroscopy 96 f– metal oxide catalysts 641– oxide systems 32 f– partial oxidation reactions 568– POMs 566 ff– superacidic metal oxides 698– surface chemistry 96 f– UV-Vis-NIR spectroscopy 51–94– vanadium oxide 256 faqueous routes 509aqueous solutions 628aquocomplexes 132aragonite 123argon probe molecule 147, 678 ffaromatic acids ammoxidation 793aromatic compounds hydroxylation 712aromatic nitriles synthesis 792aromatic oximes 733aromatics Friedel–Crafts acylation 692 fatomic displacements 99atomic layer deposition (ALD) 409, 431atomic layers 455atomic number effect 453atomistic models 34attenuated multiple total internal refl ection

technique (ATR) 103Auger electron process 249, 265, 305augmented-wave pseudopotentials 341Aurivillius phases 456aziridine synthesis 827

bbackground function 306backscattering 301Baeyer–Villiger oxidation 570band gaps 68, 756band structures 51 f, 344, 377, 762band theory 332 f, 613base-catalyzed Claisen–Schmidt

condensation 652base indicators 666base metal oxide catalysis 819–844base properties 617, 822baseline correction 307basic oxide crystal structures 454 fbasic oxides 406basic principles– electronic structure methods 336 f– EPR 2 f– EXAFS 299 f– heterogeneous photocatalysis 756 f– XAS 300 f– XPS 244 fbasic probe molecules 160, 586basic strength method 152basic zeolites 837basicity 402 fbayerite 116, 341, 348beam damage 256Becke–Lee–Yang–Parr (BLYP) approach

331, 346Beer–Lambert law 99Bellamy–Hallam–Williams relation 150bending magnets 304bending mode 120benzaldehyde production 544, 552benzene– ammoxidation 805– hydroxylation 716– oxidation 544 ff, 570– XPS 263benzoate-like intermediates 551benzoic anhydride 694benzoylation 692benzylic derivative oxidation 571Bi–Mo mixtures 553bifunctional catalysis 567bimolecular intermediates 682binary mixed metal oxides 415 fbinary oxides 135 fbinary systems 418binary vanadium oxides 269binding energy 59– alumina 336– base catalysis 824 f

848 Index

– vanadium oxides 257– VPO XPS 270– XAS 300– XPS 244, 248 ff, 285binominal expansion 12biodiesel production 643bismuth molybdate 417, 775bismuth oxide-based solid solutions 455,

460 fbismuth promoted vanadium phosphate

catalysts 523bismuth uranates 551Bloch function 336boehmite, Al-NMR 222, 229, 347 ffBohr frequency condition 4Boltzmann factor 234Boltzmann law 98Boltzmann–Maxwell law 5bond lengths/angles 97bonding 340– metal oxide catalysts 614, 631– oxidation reactions 487 ffborated superacidic metal oxides 674borated surface oxo-anions 136boria 409, 420boron trifl uoride 166bottom-up preparation 619boundary conditions 354, 616Bragg angles 305Bragg refl ections 446, 450branched alkane hydroxylation 709Bravais cell 108, 112, 122bridging 139bright-fi eld image 511broadening 262bromothymol blue 821Brønsted acid sites– IR spectra 139 f– oxidation reactions 495– silica-aluminas 145– solid-state NMR 229 f– superacidic metal oxides 666, 683, 689– thermal analysis 392, 398, 404– vanadium phosphate catalysts 507– zeolites 427Brønsted acidity– metal oxides 146 f, 153 f– POMs 567, 578– protonic zeolites 153 fBrønsted basic–OH surface groups 652brucite-type layers 130, 133buckling 372building blocks 57, 619bulk catalyst structure 229

bulk energy 335bulk excitons 82bulk heteropolyacids 422 fbulk oxide catalysts 404 fbulk phases 519bulk properties 196, 614bulk structures 200, 323, 347 fbulk termination 357bulk-type catalysis 564bulk V-P-O ammoxidation 791Burstein–Moss effect 69butadiene ammoxidation 798butane–butene fractions 568butane conversion 643, 690butane dehydrogenation 210, 260 f, 266 f,

598butane desorption 609butane isomerization 682, 685 fbutane oxidation 269 f, 499, 507, 511, 524butane reaction profi le 690butanol oxidation 729, 742butanone 42butene 263butylamine 233

cC2 hydrocarbons ammoxidation 807C4/C5 olefi ns epoxidation 719C4 hydrocarbons ammoxidation 797C–H bond– activation 221– breaking 492– hydroxylation 708 ff– POMs 575– vanadium phosphate catalysts 499, 507– XPS 255calcination– aluminas 115– base catalysis 834– ceramic acids 695– metal oxide catalysts 627, 638– spikelet echo spectra 219– superacidic metal oxides 668 ff– uranium oxides 556– vanadium phosphate catalysts 515calcite 123calibration– electronic structures 340– TEM 453– volumetric-calorimetric line 395– XPS 252, 256 fcalorimetric methods 391–442capillary pressure 623carbon–carbon bonds 265, 403

Index 849

carbon deposition 598carbon dioxide 166, 402, 624carbon disulfi de 166carbon formation 264carbon monoxide– chemisorption 384– IR spectra 161 f– oxidation 547, 552– redox properties 403– surface acidity 147– surface basicity 166carbon monoxide adsorption 419carbon-supported heteropolyacid catalysts

423carbonates 133 ff, 629carbonyl compounds ammoximation 730carboxylic acids 511carcinogenic properties 649case studies– surface adsorbed NO2 30 f– vanadia catalysts 429 f– XPS 256 fcatalyst precursors see precursorscatalysts– anatase 121– base catalysis 825 f– IR spectra 52, 61, 132– metal oxide 613–664– NMR 195– oxidation reactions 487–498– partial oxidation 561–594– powder EPR 33– solid-state NMR 195–242– spin number 24– thermal behavior 393 f– uranium oxides 543– vanadium phosphate 499–538– XAS 299–322catalytic activity– MoO3/ZrO2 695– superacidic metal oxides 665–704– vanadium oxides 210– WO3/SnO2/Al2O3 696 fcatalytic ammoxidation 771–818catalytic cracking 195catechol hydroxylation 734cation exchanged zeolites 165 fcation ordering 455 fcationic centers 161 fcationic radicals 759CATOFIN process 596cavities 24 ff, 158 ffCdSe/ZnS quantum dots 477ceramic acid 695

ceria 384, 632 fceria-based catalysts 420ceria–lanthana coprecipitated mixed oxides

415ceria–zirconia solid solutions 415cerium-promoted vanadium phosphate

catalysts 519 ffcharacter tables 107characterization see propertiescharge carrier lifetimes 761charge-coupled devices (CCD) 470charge density difference 373charge localization 378charge migration 756charge separation 458charge transfer transitions 54 f, 87, 573charge trapping 761charging contributions 252chemical feedstocks 260chemical properties– metal oxide catalysts 616, 620– POMs 566– UV-Vis-NIR spectroscopy 51chemical shift– CRAMPS 209– NMR 197, 203– vanadium oxides 212– XPS 250chemical vapor deposition (CVD) 409chemisorption 604chlorinated compound removal 755chloroaniline 821chlorocarbon adsorption 649chloroform 166chloro-substituted xylene 794chromia–alumina catalyst 596chromium oxides– alkane dehydrogenation 595–612– combustion methods 639– TEM 472chromium promoted vanadium phosphate

catalysts 519, 523Claisen–Schmidt condensation 652clay catalysts 424 fcleaning method 256close-packed structures 465clusters– DFT calculations 34, 278– heteropolyoxometallate catalysts 561– photocatalysis 763– POMs 587– TEM 477– uranium oxides 542– vanadium phosphate catalysts 503

850 Index

coal convertion 546coating 463cobalt metal ions 413cobalt promoted vanadium phosphate

catalysts 519, 522coherent electron waves 448coke 265, 598–608color centers 36combination modes 99combined rotation/multiple pulse

spectroscopy (CRAMPS) 209 fcombustion methods 544, 638complex interactions 165 fcomplex precipitates 132Compton scattering 306concerted mechanism 529condensation 128, 622 fconduction band 344– heterogeneous photocatalysis 756– UV-Vis-NIR spectroscopy 57– XPS 255confi nement effects 153conjugated polyenes 182consecutive alkenyl/alkoxide mechanism

524 ffcontamination 247continuous-fl ow microwave reactor 632convergent beam electron diffraction

(CBED) 452conversion data 52, 552coordinates 325coordination number 70, 302coordination sites 65, 820copper addenda elements 572copper-exchanged ETS-10 catalysts 428copper metal ions 28, 413copper oxides 74coprecipitation 415, 627 ffcore levels– electronic structures 341– XAS 300– XPS 248, 259, 277core polarization 245, 249core–shell nanoparticles 637core–shell quantum dots 464core–shell structures 476corners 562, 615correlation methods 327 fcorundum sesquioxides 142corundum structure 347Coulomb interactions 244, 370, 480Coulomb operator 324counter-cations 422, 572counter ions 561

covalent bonding 615coverage profi les 396, 399cracking 195, 435critical points 624, 633cross-polarization (CP) NMR 206crotonaldehyde production 554crystal defects see defectscrystal fi eld 18, 53crystal growth 475crystal structures– aluminas 362– divalent elements 113– metal oxide catalysts 615– NMR 200– TEM 443– ternary oxides 123– uranium oxides 541– UV-Vis-NIR spectroscopy 62– vanadium oxides 211– XPS 249crystalline aluminosilicates 310, 425crystalline anhydrous oxides 111 fcrystalline complex 121 fcrystalline nanoparticles 488crystalline phases 318crystalline solids 108 fcrystallites 614crystallization 511, 706crystallographic cell vector 354Cs-corrected HRTEM 449Cs2Cux reduction 572 fCu–Cu scattering 313cubic close packing (ccp) structures 443cubic fl uorite structure 541cubic phases 467cubic unit cell 356CuO (tenorite) 115cyano-pyridine synthesis 795cycle time 596cyclic amines 147cyclization 727cycloalkane isomerization 686cyclohexanol oxidation 729cyclohexanol/hexane ammoxidation 800 ffcyclohexanone ammoxidation 730 ff, 800cyclohexene epoxidation 576cylindrical internal refl ection technique

(CIR) 104

dd bands 53, 72 f, 370 fD tensor 17Dawson structure 561dead time 453

Index 851

dealumination 425Debye–Waller factor 302decay curves 79decomposition– base catalysis 824, 831– IR spectra 133– metal oxides 645defects 598– metal oxide catalysts 614 ff– oxides 465 f– transition metal oxides 375 f– UV-Vis-NIR spectroscopy 51defocus 448deformation modes 151degeneracy 8, 197deglitching 307dehydrated state 178 fdehydration 578, 672dehydrogenation– base catalysis 825 f– NMR 195, 209– vanadia catalysts 604– vanadium/chromium oxides 595–612– XPS 260 ffdelocalization 344, 584density functional theory (DFT)– electronic structures 323, 328 f, 371– oxidation reactions 494– vanadia catalysts 180– XPS 255, 278density of states (DOS)– aluminas 364– electronic structures 342 f– NiO 374– TiO2 surface 378– vanadyl pyrophosphate 278desorption 394– thermal analysis 393– uranium oxides 548– vanadium phosphate catalysts 526destructive adsorption 649deuteroxyls 169diaspore structures 130dielectric properties 25, 59, 102difference electronic charge density map

381differential charging 253differential heats 394 ff, 406differential pumping 246differential scanning calorimetry (DSC) 392differential thermal analysis (DTA) 392, 586differential thermogravimetry (DTG) 392,

586diffraction techniques 443–486

diffuse refl ectance Fourier transform (DRIFT) 105, 133, 647

diffuse refl ectance spectroscopy (DRS) 59 f, 104 f, 134

– oxidation reactions 490– polycrystalline AEO 63diffusivity 156 fdihydrofuran 526diluted self-supporting disks 101dimeric compounds 262dimeric condensed tetrahedral anions 127dimethyl amine probe molecules 155dimethylcyclopentane hydroxylation 710dinitrosyl species 46diphenols 316diphenylpropionitrile 155dipolar coupling 197, 206dipole interaction 32, 209dipole operators 16direct dehydrogenation 260 fdirect hydrogen peroxide synthesis 737direct methanol fuel cell (DMFC) 646direct propane oxidation 281 fdislocations 617disordered planes 507dispersed metal oxide catalysts 487,

613–664dispersion 69, 334displacement 367disproportionation 682distortions 25, 462divalent element oxides 112 fdomains 466donors 55doping 408 f, 525, 760double bonds 135 f, 195double resonance (DR) NMR 206 fdouble rotation (DOR) 202doublets 12drying 620, 623, 673dyes adsorption 760dynamic angle spinning (DAS) 202

eedge X-ray absorption fi ne structure

(EXAFS) 299 fedges 562, 615effective potentials 329Eigen functions 8, 308elastic scattering 306elastic strain 479electrochemistry 585electron backdonation 162electron delocalization 584

852 Index

electron diffraction 450 felectron–electron interactions 18, 78, 323,

370electron energy loss spectra (EELS) 371electron–hole pairs 82, 756, 761electron paramagnetic resonance (EPR)

1–50, 596electron populations 370electron–proton interactions 34electron radiation 446electron–solid interactions 445 felectron spectroscopy–chemical analysis

(ESCA) 249electron spin resonance (ESR) 584electron trapping 35electron wavelength 445 felectron Zeeman interaction 2 felectronegativity– metal oxide catalysts 616– oxidation reactions 487– promoted vanadium phosphate catalysts

521– UV-Vis-NIR spectroscopy 56electronic perturbation 157electronic structures 324 f– heterogeneous photocatalysis 756– oxidation reactions 490electronic transitions 52 felectrostatic stability 355 femission IR spectroscopy (IRES) 105emission technique 51, 82, 87, 105 femittance 105energy dispersive X-ray spectroscopy (EDX)

445, 452 fenergy gap 56energy levels 4, 197energy state transitions 51enthalpy diagram 398environmental infl uences 367 fepoxidation– olefi ns 717– POMs 576– titanium silicalite-1 316, 705equilibrium constants 400, 665Erythrosin B 760escape depth 253esterifi cation 618ethanol– critical point parameters 624– dimerization 839– oxidation 546, 549, 729ethene oxidation 413ethers 147ethylbenzene dehydrogenation 555

ethylcyclopropane hydroxylation 711ethylene polymerization 488Ewald sphere 450excess energy 306exchange-correlation potential 329exchange energy 324 fexchange splitting 373excitation– AEO 82– IR spectroscopy 51, 98– photocatalysis 760– PL spectroscopy 80– XPS 249, 274excitonic surface states 59 ffexfoliation 480, 511exhaust gas removal 548exothermic phenomenon 393experimental techniques– EPR powder spectra 24 f– EXAFS 303 f– IR methods 97 f– thermal analysis 393 fextended X-ray absorption fi ne structure

(EXAFS) 490external cationic sites 165 fextra-framework aluminum (EFAL) 425

fF centers 615factor group analysis 125FAU 158, 307faujasite (USY) 310, 425FDU-12 470feed composition, ammoxidation 777feedstocks 260, 502–514FER 154, 158Fermi contact term 31, 40Fermi energy 345Fermi level 252, 290Fermi–Dirac statistics 344ferric oxides see iron oxidesfi eld gradients 199fl ame processes 638fl ow adsorption microcalorimetry 399, 426fl uid catalytic cracking (FCC) 310fl uid solutions 10 fffl uidized-bed reactor 774 fffl uorescence– EXAFS 306– PL spectroscopy 77– TEM 453– UV-Vis-NIR spectroscopy 60– vanadia catalysts 179, 601fl uorite structure 461, 540, 554

Index 853

Fock operator 324formaldehyde oxidation 553Fourier fi ltering 307Fourier transform 208, 337framework silicates 128Franck–Condon principle 76 ffree energies 350free fatty acids (FFA) 643freedom degrees 107, 327Freon 116 624frequencies 4, 27, 100Friedel–Crafts acylation 692 fF-test values 308FTIR spectra see IR spectrafuel oil oxidation, uranium oxides 543full width at half maximum (FWHM) 248,

256 f, 273fumaric acids 499functionality 554, 776functionalization agents 566fundamental transitions 99furan production 266 f, 526, 555

gg factor 3g tensor 14gallium-containing catalysts 220gallium oxides– electronic structures 351– IR spectra 118, 135, 157 ff– NMR 225– polymorphs 142– TEM 635– thermal analysis 407 ffgaps 354gas fl ow thermal analysis 399 fgas-phase synthesis 513gas–solid interfaces 45gas–solid transformations 619gas/vapor manipulation 134Gaussian image plane 448Gaussian lineshape 24Gaussian smearing 381Gaussian target function 337gels 671geminal silanols 142generalized gradient approximation (GGA)

330, 341, 359germania 160gibbsite structures 222, 341, 347

see also aluminasgoethite structures 130gold-based catalysts 554gradient-corrected DFT technique 335

grain boundaries 446, 616graphitic paracrystals 599green catalytic processes 588group approximation 110group II oxides 33gyromagnetic ratio 197

hH-FER zeolite 156H-method calculations 681Hamiltonians 1 ff, 197Hammett indicators 667–704, 820harmonic rejection 304harmonics 99Hartmann–Hahn condition 206Hartree–Fock (HF) approximation 323 ffheat diagram 398heat fl ow calorimetry 392 fheat treatment 620Heck reaction 840helium system 304hemihydrate precursors 508hemispherical analyzer (HSA) 245Henry constants 100, 714heterocyclic amines 147heterogeneous photocatalysis 42heterogroups, alkylaromatic 795heterolytic hydroxylation 715heteropolyacids (HPA) 422 f, 583, 791heteropolycompounds 416heteropolyoxometallate catalysts 561–594hexagonal close packing (hcp) 443hexagonal layered structure 541hexane ammoxidation 802Hf sulfated metal oxides 669hierarchical structures 562high Tc superconducting oxides 446, 463 ffhigh-order Laue zone (HOLZ) diffraction

450high-pressure setup 245 fhigh-resolution transmission electron

microscopy (HRTEM) 443 fhigh-surface-area oxides 487highly dispersed metal oxide catalysts

613–664highly dispersed oxide materials 51highly dispersed supported oxo-species 69 fhighly dispersed transition metal ions 85 fhighly siliceous zeolites 128hindered basic probes 154hindered nitriles 165hindered rotations/translations 110Hohenberg–Kohn theorem 328hole trapping 43

854 Index

HOMO–LUMO structures 280homolytic hydroxylation 715host oxides 456hybrid functionals 376hybridization ratio 32hybridized orbitals 366hybrids 331hydrated compounds 132 fhydrazine 477hydrocarbons– catalytic ammoxidation 771–818– cracking 618– IR spectra 133– oxidative dehydrogenation 267 f– POMs 576– surface acidity 147hydrocarbon oxidation– EXAFS 315– selective 429– uranium oxides 544– vanadium phosphate catalysts 499hydrochloric acid 509hydrodesulfurization/denitrogenation 218hydrogen 82, 147– abstraction 526– bonding 147, 398, 405, 615– formation 260– reduction 182 f, 597hydrogen peroxide 569, 575 f, 588– hydroxylation 713– oxidation 575 ff– processing 705, 737– use problems 736hydrogen silicates 136hydrogenation 195, 829hydrolysis 620hydroquinone hydroxylation 734hydrotalcites 132, 420 f, 835hydrothermal processes 524, 633, 706hydroxide coprecipitation products 628hydroxides 132, 620 fhydroxy chloride paratacamite 130hydroxy silicoaluminum compounds 424hydroxyl coverage 406hydroxyl groups 61, 139 ff, 392, 377hydroxyl radicals 759hydroxylamines 316, 731hydroxylation 707 ffhyperfi ne parameters 7 f, 34, 39HYSCORE techniques 14

iilmenites 122image contrast 445 f, 472

image wave function 448imine ammoxidation 793impregnation 409, 826impurities 81, 133 f, 467incident electron wave 448incommensurate superstructures 460 findicators 820indium oxide 411, 635indium promoted vanadium phosphate

catalysts 523inelastic scattering 95, 579infrared refl ection absorption spectroscopy

(IRRAS) 103infrared spectroscopic methods 95–176inorganic dye adsorption 760inorganic radicals 38 finorganic solids 107 finsulating oxides– AEO 81 f– electronic structures 345– UV-Vis-NIR spectroscopy 61– XPS 258integral heat 394 ff, 406intensity– Raman spectroscopy 186– TEM 448– XPS 247interband transitions 58intercalating compounds 511intercept 58interfaces 617interlayer coupling 480intermediates– epoxide solvolysis/rearrangement 726– propane ammoxidation 789 f, 793 ff– superacidic metal oxides 682, 687– titanium silicalite-1 743 f– uranium oxides 551– vanadium phosphate catalysts 507internal cationic sites 165 finternal vibrations 110interstitials 467, 616intersystem crossing (ISC) 79intravalence 56ion coordinations 113ion implantation 761ion–scattering spectroscopy 276ionization potential 56, 829IR spectra– gaseous CO2, CO, NO, CH4 108– MgO monocrystal 103– POMs 581 f– superacidic metal oxides 672iron addenda elements 572

Index 855

iron containing zeolite catalysts 313iron doped vanadium phosphate catalysts

519, 522iron hydroxides 670iron oxides 142, 308, 635– heterogeneous photocatalysis 757– nanoclusters 314– TEM 477iron sulfated metal oxides 669isobutyronitrile (IBN) 155 fisoelectric point 87isolated molecular species 107 fisolated surfaces 357isomerization 83, 682, 685 ffisopolyanions 561 ffisosteric heat 394isothermal measurements 401isotherms 396isotopic substitution 40isotopically labeled molecules 168 fisotropic hyperfi ne coupling 9 fisotropic spectra analysis 10 f

jJahn–Teller effect 53, 73

kK-edge absorption 300, 318k-point 335, 342, 355K–V–O catalysts 216Keggin-type– heteropolyoxometallates 561– heteropoly compounds 422– heteropolyacids 562– heteropolysalts 129– POMs 569, 585ketones 147, 316, 570, 708kinetic energy 244, 250, 300Kirchoff law 105KIT-6 471, 474Knoevenagel condensation 821, 840Kohn–Sham orbitals 329 ff, 338, 345Kubelka–Munk (KM) equation 60, 104

lL-edge 262, 300L-method calculations 681labeled molecules 168 fLambert–Beer law 248Langmuir adsorption 680lanthanides 225, 462Laporte (orbital) selection rule 54, 75lattice distortion 462lattice oxygen

– ammoxidation 776– DR UV-Vis spectra 71– POMs 568– thermal analysis 433– vanadium phosphate catalysts 526– VPO XPS 279lattice parameters 57, 362, 460lattice vacancies 542lattice vectors 332, 354lattice vibrations 110, 123layer silicates 128, 424 flayered defects 465 flayered double hydroxides (LDH) 132 f,

420, 834layered structures 541layers 60, 355 f, 455, 508Lewis acid sites– aluminas/SAs 159 f– base catalysis 820– CP-MAS NMR 233– superacidic metal oxides 682– thermal analysis 392, 405– vanadium phosphate catalysts 507– zeolites 427Lewis acid–base, metal oxide catalysts 613Lewis acidity– aluminas 364– highly covalent oxides 161 f– ionic oxides 160 f– metal oxide catalysts 617– protonic zeolites 161 f– thermal analysis 416Lewis-to-Brønsted acidity ratio (L/B ratio)

508ligand fi eld theory 613ligand to metal charge-transfer transition

(LMCT) 55, 69 fligands 70Lindqvist structure 561line broadening 200, 208, 310linear alkane hydroxylation 708linear olefi n epoxidation 718linewidths 24, 200linkages 70liquid–solid interface 25, 45liquid–solid transformations 619liquid superacids 667liquid–vapor interface 623lithium niobate structures 122local density approximation (LDA) 330,

341 ff, 346localized electron populations 370longitudinal optical mode 99, 102Lorentzian lineshape 24

856 Index

low-dimensional oxide crystals 476 flow energy electron diffraction (LEED) 353low energy ion scattering spectroscopy

(LEISS) 489low temperature coprecipitation 628lower valence band (LVB) 344lowest unoccupied molecular orbital

(LUMO) 279Lowry–Brønsted acidity defi nition 146LPG dehydrogenation process 596 fluminescence center 81Lummus/Houdry CATOFIN process 596 f

mMadelung potential 65, 82, 617magic acids 666magic angle spinning (MAS) 200 fmagnesia 408– active sites 645– differential heats 406– DOS plots 342– DR UV-Vis-NIR 61 ff, 81 ff– IR spectra 102, 112, 131– metal oxide catalysts 614– Miller planes 354– powder EPR 34– surface calculations 359 f– TEM 625, 832magnesium supports 231magnesium vanadates 434magnetic fi eld 200magnetic moment 3, 197magnetization transfer 206magnetogyric ratio 7maleic anhydride conversion– metal oxide catalysts 643– selective oxidation/VPO 268 f– vanadium phosphate catalysts 499, 513, 524manganese polymorphs 119Mars–van Krevelen mechanism 196, 317,

375mass –thickness contrast 445, 470matrix isolation 42Maxwell–Boltzmann law 5MCM-41 materials 314, 472mean free path 302mechanical mixing 690mechanochemical activation 516, 526mesoporous materials 428mesoporous silica 470 f, 764mesoporous silica-aluminas 145 fmetal–alkyl bonds 600metal antimonates 786metal catalysts 309

metal-centered transitions 53 fmetal–cupferron decomposition 635metal hydroxides 129 fmetal ion doped zeolites 29metal ion implantation 761metal oxide catalysts 613–664– oxidation reactions 487–498– solid-state NMR 195–242metal oxide– base catalysis 819–844– supports 221 f– XPS 255metal–oxygen bonds 111, 132 f, 561metal–oxygen–metal bonding 443metal phosphates 791metal-to-insulator transition 460metal-to-ligand charge-transfer transition

(MLCT) 55methacrolein oxidation 568methacrylic acid oxidation 568methane 33, 553methanol– adsorption/decomposition 645– base catalysis 834– critical point parameters 624– oxidation 493, 729– titanium silicalite-1 729, 742– transesterifi cation 644– uranium oxides 553methyl-1-propanol oxidation 729methylamine 155MFI 154, 158, 310micelles 636Michael addition 821microcalorimetry 586microemulsion-mediated hydrothermal

(MMH) method 634 fmicroheterogeneity 19microporous silica-aluminas 145 fmicroporous zeolites 468 fmicrotwin defects 466microwave-assisted coprecipitation 631microwave power 24, 29Mie theory 59Miller index 369Miller plane 354mirage effect 106, 121, 304mixed metal oxide catalysts 690mixed metal oxides 266 fmixed metallic insulating behavior 252mixed oxides 121 f, 771–818modifi ed oxides 408 fmodulation amplitudes 24molar integral heat 394

Index 857

molecular confi gurations 211molecular oxygen oxidation 570molecular probes 147, 166molecular structure 487–498molecular vibrational modes 107 fMøller–Plesset perturbation methods 326molybdate 137molybdate catalysts 775molybdated superacidic metal oxides 674molybdenum addenda atoms 561, 572molybdenum oxide catalysts 218, 379molybdenum promoted vanadium

phosphate catalysts 519molybdenum trioxide 335, 379, 674molybdenum–uranium oxide catalyst 553momentum vector 57monatomic non-absorbing gases 105monoclinic fl uorite structure 541monolayer oxides 137, 488monolayer surface coverage 490 fmonomeric compounds 262monomolecular intermediate 682mono-oxygen donors 707monosulfate structure 688Monte Carlo (QMC) simulations 330, 359mordenite 426, 588, 680Morse potential 76Mott–Hubbard compounds 255Mott–Hubbard model 371MoV-based mixed metal oxides 281 fMo-V-Nb-Te-O system 780 ffMo–V–Te mixed-metal oxide catalysts 416MOx redox active systems 496Mulliken analysis 339Mulliken charges 255multicomponent analysis 318multicomponent catalysts 775 ffmulticomponent molybdate 791multi-electron calculations 262multi-electron wavefunction 325multifrequency measurements 27 fmultimetal molybdates (MMM) 775multiple adsorption sites 159multiple product option 780multiple quantum magic angle spinning

(MQMAS) 202 fmultiple scattering 301 f, 312, 451multiplet splitting 249, 256multiwavelength excitation 177, 185mutual exclusion rule 110

nN–H stretching 825nanobelts/rods/wires 477 f

nanocrystallites 563, 626nanomaterials 69, 614, 619nanoparticles– metal oxide catalysts 614 f, 619, 625 ff– powder EPR 33– X-ray spectroscopy 476 fnaphtha steam reforming 557near-edge X-ray absorption fi ne structure

(NEXAFS) 301negative differential resistance (NDR)

574nephelauxetic support series 75neutron diffraction 353, 582Newton’s laws 350NH3 adsorption 405NH3 probes 507Ni/Co/Fe/Mg molybdates catalysts 775nickel ions 413nickel oxides 372nickel–uranium oxide catalysts 555NiMo/ASA catalyst 206niobium oxides 413nitrile–butadiene–rubber (NBR) 771nitriles 147, 771nitroaniline 821nitrochlorobenzene indicators 666nitrocompounds oxidation 732nitrogen dioxide 30 f, 38nitrogen monoxide 165 f, 403nitrogen probe molecule 684nitromethane 166nitrotoluene indicators 666nitrous oxide 624nitroxide radical 27NMR techniques– oxidation catalysts 195–242– POMs 579, 580 f– vanadia catalysts 601normal modes 123 ffNOx reduction 555nuclear magneton 8nuclear spins 198nuclear Zeeman interaction 6nucleophilic reactions 280, 622

oO–H bonds 130, 139, 348, 526occupancy 344octanol oxidation 729olefi ns 178 f– diffusion 742– epoxidation 717– isomerization 618– metathesis 488

858 Index

– oxidation 549, 554, 717– polymerization 153oligocations 424operando spectroscopy 96, 169optic axis 448optical properties 51, 56 f, 109orbitals 55, 244, 301, 324, 526ordered mesoporous silicas 470organic dyes adsorption 760organic phosphates 233organic solvents 510organometallic derivatives 566organoperoxy radicals 42orthotoluonitrile 165oscillations 302outer shell electronic transitions 52overlayer-type contamination 247overoxidation 521overtone modes 99, 151oxalates 629oxidation– hydrocarbons 773– IR spectra 164– NMR 195–245, 218– superacidic metal oxides 672– supported metal oxide catalysts 487–498– titanium silicalite-1 740 foxidation catalysts 299–322oxidation states– cationic centers 161 f– chromium 597– heteropolyoxometallate catalysts 561– uranium oxides 540– vanadium phosphate catalysts 500 foxidative dehydrogenation 260–269, 416oxide catalysts 613–664– cracking 196– IR spectra 52, 132– solid-state NMR 195 f– thermal analysis 404 f– XAS 299–322– X-ray spectroscopy 472 foxide materials 476 f, 755–770oxide nanotubes 479 foxide supports 225 foxides/zeotype-systems 85 foximes oxidation 316, 733oxoaluminum structure 62oxoanions 561–594oxo-salts 122 foxyfunctionalization 571oxygen– binding energies 253, 275– defect structures 377

– lattices 351– liberation 376– mobility 416– PL spectroscopy 82– removal 604– superstructures 459 f– vacancies 376 f, 383, 456, 466– vibrational modes 112– X-ray absorption 309, 312oxygen-rebound mechanism 711oxygenation 641, 727

ppalladium catalysts 414parabolic energy valley dependence 57paraffi n isomerization 668paramagnetic centers 1paratacamite 116partial oxidation 403, 561–594partial pressure 368partially fi lled d bands 370 fparticipating catalytic active site number

494partition coeffi cients 740patterns 11 f, 20, 452Pauli’s exclusion principle 57pentane isomerization 682pentanol oxidation 729Perdew–Burke–Ernzerhof (PBE) approach

57, 330, 341, 346Perdew–Wang (PW91) approach 331,

346periodic electronic structures 323–390periodic quantum chemistry 332 fperovskites 122, 167, 455–467peroxo intermediates 571peroxyacyl radicals 42perturbation methods 328petroleum fractions 543phase contrast 445phase diagrams 370, 540phase shifts 302, 307, 446 fphenol– hydroxylation 712, 734– oxidation 544, 570– TS-1 catalyzed 316phenylethylamine (PEA) 417phonon absorption/emission 66phosphine/-oxides 147, 233phosphorescence 77 fphosphorus enrichment 277phosphorus-modifi ed aluminas 224phosphorus-to-vanadium ratio (P/V) 276,

504

Index 859

photoacoustic spectrometry (PAS) 106 f, 582 f

photocatalysts 68, 225, 755–770photocatalytic processes– AEO 83– oxides 755–770– powder EPR 42– superacidic metal oxides 698photocurrent 244photoelectrochemical cell 768photoelectron process 302, 305photoelectron spectroscopy (PES) 243–298photoemission cross-sections 276photoionization cross-sections 287photoirradiation 42photoluminescence spectroscopy 60, 76 f,

80 fphotonic sponges 763photons 57, 244, 300photothermal beam defl ection spectroscopy

(PBDS) 106 fphysical mixtures 690physical photocatalytic activity enhancement

763physical properties 26 f, 392– metal oxide catalysts 613–620– POMs 566physical transformations 619physisorption 398, 406phytosterol esters synthesis 839picoline ammoxidation 795pillared clays (PILC) 424 fpitchblende 539Planck constant 98, 339, 445, 451plane wave basis set 338point defects 33, 467 f, 616point symmetry 36poisoning 260, 600polarization 100, 245polyatomic chemical species 97 fpolymeric tetrahedral oxo-ions 128polyoxometallates (POMs) 561–594pore structure 156, 310, 564porous materials 468 f, 472 fpotassium hexaniobate 480potassium modifi ed uranium oxides 556potential-assisted photocatalysis 766powder spectra (EPR) 19 f, 24 ffpowder X-ray diffraction 551precipitation 132, 627 fprecursors– Al-NMR 222– base catalysis 831– IR spectra 51, 129 f, 132

– metal oxide catalysts 617, 634– spin-echo mapping 205– uranium oxides 550, 556– vanadium phosphate catalysts 500–515– XPS 265pre-edges 309, 317preparation– EXAFS 314– photocatalysts 763– superacidic metal oxides 665–704– thermal analysis 415– uranium oxides 543– vanadia coverage 186– vanadium phosphate catalysts 500, 513pressure 396primary structures 563probing/probe molecules 160, 401 ffprocess integration 739product distribution 686 fpromoted catalysts 519 f, 525, 689 fpropane– ammoxidation 777 f– chemisorption 495– conversion 547, 691– dehydrogenation 213, 598– oxidation 281 fpropanol oxidation 729, 742propene oxidation 718, 774 ff, 777propene oxide synthesis (HPPO) 735, 739properties– highly dispersed metal oxide catalysts

613–664– MoVTeNb XPS 282– oxide catalysts 81 f– sulfated superacidic metal oxides 671– superacidic metal oxides 675

see also chemical, physical propertiespropylene ammoxidation 549propylene oxidation 318proton affi nity 402protonic acidity 435protonic zeolites– Brønsted acidity 153 f– IR spectra 158– Lewis acidity 161– surface hydroxyl groups 144 fpseudobohemite 116pseudoliquid bulk type catalysis 564pseudopotentials 340 fpulsed fl ow calorimetry 399purifi cation steps 777PW91 approach 360pyridine– POMs 586

860 Index

– adsorption 84, 427– CP-MAS NMR 233– IR spectra 135, 153– surface basicity 166, 402– vanadium phosphate catalysts 507pyrolysis 640pyrophosphate groups 277pyrrole 166

qQ–size effect 68quadrupolar broadening 225quadrupolar interaction 14, 199quadrupolar phase adjusted spinning

sideband (QPASS) 226quadrupolar vanadium isotopes 212quadrupole moment 198quantifi cations 24 f, 186 f, 247 fquantum chemistry calculations 323quantum dots 476quantum effi ciency 79 fquantum mechanics 3, 197quantum mechanics/molecular mechanics

(QM/MM) 323quaternary metal oxides 415 fquencher molecules 80

rRacah parameter 53radicals 12, 29, 38 f, 376radio frequencies 202Raman spectroscopy 95, 177–196– butane dehydrogenation 606– coke 599– CrOx/alumina catalyst 597– polyatomic chemical species 97 f– skeletal 111– vanadia catalysts 489, 601rapid reduction 574rare earth oxides 836Rayleigh theory 100reactive intermediates 743real space 451reciprocal space 332, 451recombination 47, 756, 761recrystallization 463recycle processes 779redox properties 45– heterogeneous photocatalysis 756– metal oxide 613, 619 f, 227– oxidation reactions 495, 491– POMs 567, 578, 585– thermal analysis 392, 403 f– vanadium phosphate catalysts 516

– heterogeneous photocatalysis 756– vanadia catalysts 178 f– vanadium phosphate catalysts 530reduced states 183 freducing agents 508, 707reduction 554 f, 585, 604refi nery-based C4 stream 650refl ectance– divalent elements 112– IR spectroscopy 59, 98, 101– Raman spectroscopy 186refl ection techniques 101 frefractive index 60, 102regeneration 596, 609, 745relativistic correction 445relaxation 5 f, 245, 251, 360, 366reoxidation 185, 260resolution 354, 448 fresonance absorption 21resonance enhancement 184, 189resonance line width 6resonance Raman spectroscopy 177–196resonant frequency 198restricted Hartree–Fock (RHF) 326, 346reststrahlen effect 102rhombic symmetry 21rock salt structure 63, 102, 143 f, 356rocking mode 120rosary pattern 472rotation effects 25 f, 107, 201rutile 118, 342 757, 786

sS-compound oxidation 734salt-free production 734sample preparation 100, 134, 309sample tumbling effects 25 fsatellite transition magic angle spinning

(SATRAS) 200 f, 256 fsaturation effects 29SBA-15 472, 650scaling factor 203scanning electron microscopy (SEM) 445,

512scanning tunneling microscopy (STM) 462scattering 59– POMs 579– TEM 448, 451– XAS 302Scheelite-type structure 775Scherzer equation 449Schiff base amines 571Schottky pairs 616Schrödinger equation 244

Index 861

Schuster–Kubelka–Munk (SKM) model 59second generation TiO2 photocatalysts 68secondary structures 563segregation 276, 617selected area electron diffraction (SAED)

450selection rules 98, 103selective n-butane dehydrogenation 260 fselective oxidation– EXAFS 315 f– maleic anhydride/VPO 268 f– uranium oxides 548– XPS 267 fselectivity– toluene oxidation 552– uranium oxides 556– vanadium phosphate catalysts 504, 519selectivity–activity relationships 487–498self-absorption 187self-interstitials 467semiconductors– electronic structures 345– photocatalysis 756, 760– transition metal oxide surfaces 381– UV absorption bands 66 fsensitivity– IR spectra 134– oxidation catalysts 198– photocatalysis 760– VPO 276sensors 698sesquioxides 121, 142 f, 836Shannon’s tabulation 355shear planes 318shells 452shifting 182shrinkage 474, 623Si–(OH)–Al bridges 144Si–O–Si bridges 119, 160, 228side-chain alkylation 819signal-to-noise ratio 60, 134, 245silanol groups 141, 144silica– hydroxyl groups 141– optical absorption 62– polymorphs 119– supports 227, 433, 553– thermal analysis 408– X-ray spectroscopy 470 fsilica-aluminas (SAs)– CP-MAS NMR 206, 229 f– Lewis acid sites 159 f– supports 206, 231– surface Brønsted acid sites 150

– surface hydroxyl groups 145 f– thermal analysis 418silica-titania/zirconia 417silicalites 316, 428silicates 136, 424 fsilicon 206, 757silicon sulfated metal oxides 669silver catalysts 413, 519single crystals 19, 26single-site active centers 69singlet state 77singularities 21site chains 383site symmetry 24skeletal IR spectra 111 f, 129 fskeletal isomerization 685slab models 353, 357 fSlater determinants 326smectites 424smoothing function 344Sn sulfated metal oxides 669SnO2

– heterogeneous photocatalysis 757– support 231– thermal analysis 407SO2 adsorption 405SO4/ZrO2 preparation 672soft pseudopotentials 340SOHIO process 774 ffsol–gel precursors 634sol–gel processing 415, 620, 672solid acids 679solid solutions 121 fsolid–gas interface 393, 404solid–liquid interface 400solid-state Hamiltonian 14solid-state NMR 195–242solid-state TEM 443solid superacids 667 fsolids energy band transitions 56solvents 622 f, 741solvolysis/rearrangement 726solvothermal techniques 633sonochemical coprecipitation 630space group 454, 471space vector 332spacings 450spectral properties 13, 19, 51spectroscopic detection 97 f, 139–159spherical aberration 448spikelet-echo technique 208spin density 41, 384spin-echo mapping 204 f, 216spin Hamiltonian 1 ff, 44 ff

862 Index

spin–lattice relaxation 6spin–orbit coupling 79spin quantum number 197spin states 78, 325, 371spin–spin coupling Hamiltonian 18, 199spin–spin relaxation 6, 208spinel model 352spinel-type structure oxides 115 f, 121,

142 fspinning 209, 223splitting 372– EPR 10, 23, 27– IR spectroscopy 53, 110, 144– POMs 581– XPS 249spontaneous ionization 33spray pyrolysis 640sructural defects 616stabilization 504, 633stacking faults 465, 617stacking sequence 349, 355, 469stannia gel 669state multiplicity 99static calorimetry–volumetry coupling 394 fsteady-state kinetics 493steam cracker-based C4 stream 650steam reforming 556 fStefan’s law 105Stern–Volmer equation 80stoichiometric range 276, 540Stokes shift 78strengths 147 fstretching– IR spectra 111, 123, 139, 161– POMs 581– vanadia catalysts 181structure–activity relationships 190, 195,

487–498structure calculations 323–390structural characterization 69 ff, 221structural transformations 517structures– Al2O3-supported vanadia catalysts 178 f– boehmite 349– bulk oxides 209 f– heteropolyoxometallate catalysts 561 f– hydrotalcites 835– hydroxyl groups 140– M1 XPS 281– metal oxide catalysts 614– oxide crystals 454 f– sulfated zirconia 687– surface defects 35– surface properties 227

– Ti–OOH species 742– Ti–zeolites 707– uranium oxides 540 f– USb3O10 550styrene–acrylonitrile (SAN) 771styrene dehydrogenation 607subshell photoionization 287substituted alkanes 709substituted alkylbenzenes 791substituted aromatic nitriles 793substituted benzenes 717substituted olefi ns 726sulfated metal oxide catalysts 669 ffsulfated oxides 143 fsulfated silicas 671sulfated titanias 408sulfated zirconias 234, 408, 673, 685 ffsulfates 133, 137sulfation 670sulfi des/sulfoxides 316sulfur dioxide 166, 408, 432, 516sulfurous compound removal 755superacidic metal oxides 665–704superbase 824 ff, 837 ffsupercells 336, 372superconducting oxides 455superhyperfi ne interactions 35superoxide radicals 759superoxo species 528superstructures 121, 455 fsupported boria catalysts 409supported catalysts 252supported heteropolyacids 422 f, 791supported metal oxide catalysts 408 f,

487–498supported transition metal oxides 54 f, 496supported vanadium oxide catalysts 210 f– oxidation reactions 487–498– Raman spectroscopy 177–196supports 195 ff, 210, 221 fSuprasil 81surface acid–base properties 404surface acid sites 495surface acidity– IR spectra 147– NMR 196, 229 f– thermal analysis 402 fsurface active sites 392surface adsorption 30 f, 323surface anion vacancies 35surface area 564, 617surface basicity 166surface calculations 359 fsurface catalysis 564

Index 863

surface chemistry 96 f, 133 fsurface coverage 490 fsurface defects 33 fsurface density 180surface electromagnetic wave spectroscopy

(SEWS) 104surface element–oxygen bonds 134 fsurface energy 355, 368surface equilibration 401surface hydroxyl groups 142 ffsurface M–O–M bridges 134 ffsurface OH groups 142surface oxo-anions 136 fsurface paramagnetic centers 1surface profi le imaging 462 fsurface properties– metal oxides 227 f, 614– NMR 196– oxides 402 ffsurface reactivity 81, 492 fsurface relaxation 112surface-sensitive techniques 244 fsurface states 61surface structure 206 f, 227 f, 353 fsurface tension 479surface-to-volume ratio 478surfactants 641symmetrical hydrogen bonding 150symmetry 157, 301symmetry point group 124, 136synchrotron 245synergistic interactions 433, 575synthesis, metal oxide catalysts 613–664,

706 f

tTanabe–Sugano diagrams 53tapered element oscillating microbalance

(TEOM) 604tartaric acids 499tellurium cations capping 587tellurium dioxide, XPS 287temperature dependence 392 ff– adsorption–desorption heats 401 f– powder EPR 26 ff– reduced states 183temperature programmed desorption (TPD)

399– base catalysis 823– superacidic metal oxides 675 ff– uranium oxides 548– vanadium phosphate catalysts 526temperature programmed oxidation (TPO)

399, 619

temperature programmed reduction (TPR)– chromia 596– metal oxide catalysts 619– superacidic metal oxides 678– vanadium phosphate catalysts 526temperature programmed surface reaction

(TPSR) 489 fftemplates 473, 640temporal analysis of products (TAP) 503,

548tensors 14 ffterminal planes 464terminating layer 253ternary phases 121 fternary systems 418tertiary structures 563tetraethylorthosilicate (TEOS) 523tetravalent oxides 118 f, 143 fthermal analysis 391–442, 579thermal decomposition 46, 638thermal desorption 399– POMs 581– XPS 255thermal treatment 550, 567 fthermodynamic equilibrium constant 665thermogravimetric analysis (TGA) 391,

417, 579, 586thermokinetic parameters 398thermolysis 586thioethers oxidation 734thiols 166Ti-MCM 73Ti–OOH species 741 ftime constants 398tin oxides 410titania– (110) surface 366– DOS plots 342– heterogeneous photocatalysis 757– metal oxide catalysts 614, 625, 634– nanotubular material 479– photocatalysis 757, 763– polymorphs 118, 143– supported vanadium oxide 433– surface calculations 359 f– surface oxo-anions 136– thermal analysis 408see also rutiletitanium dioxide 42titanium oxide incorporation 764titanium promoted vanadium phosphate

catalysts 521titanium silicalite-1 315, 705–754titanium sulfated metal oxides 669

864 Index

titanium(IV) oxide 755 f, 763 fftitanosilicate ETS-10 428TNU complex zeolites 468tolerance factor 460toluene 310, 544, 552, 692top-down preparation 619total electron yield (TEY) 247total oxidation 547toxic properties 649transesterifi cation 644, 839transfer of population in double resonance

(TRAPDOR) 207transient radical intermediates 42transition aluminas 221 f, 351, 404transition metal ions (TMI) 45 f, 53, 69 f, 85 ftransition metal oxides 613– oxidation reactions 496– partially fi lled d bands 370 f– periodic electronic structures 323, 351transition metal substituted

polyoxometallates (TMSP) 568transition metal zeolites 312 fftransitions– energy bands 56 f– EPR 9– TEM 452– XAS 301– XPS 248translations 107transmission electron aberration-corrected

microscope (TEAM) 450transmission electron microscopy (TEM)

443–486transmission/absorption IR technique

100 f, 133transmittance 60, 98, 304transverse optical mode 99, 102trapping 761triacetin transesterifi cation 644trialkyl-substituted phenols 571triethylamine 402triglycerides 643trigonal-planar oxo-anions 123trilayer units 363trimer structural model 689trimethylamine 155, 402trimethylborate 166triplet confi gurations 12, 78, 371trivalent element oxides 115 ftungstate 137tungstated aluminas 697tungstated oxides 143 ftungstated stannia 696tungstated superacidic metal oxides 674

tungsten addenda atoms 561tungstic heteropolyacids 422turnover frequency 493, 605twin defects 466 ftwisting modes 132two-spin Hamiltonian 9

uultra-high vacuum (UHV) system 36, 245,

260ultra-soft pseudopotentials 340ultra-stable (USY) zeolites 310, 425undulators 304uniaxial symmetry 20unit cell 332, 451, 563unrestricted Hartree–Fock (UHF) 326unsaturated alcohols epoxidation 724upper valence band (UVB) 342uranium oxides heterogeneous catalysis

539–560UV absorption bands 61 f, 66 fUV irradiation 43UV photoemission spectroscopy (UPS) 376UV-visible radiation 756UV-visible spectroscopy 583UV-vis-NIR spectroscopy 51–94

vV–Mg–O catalysts 216V–Mo–Nb–Te oxide catalysts 779V–Mo–O catalyst ammoxidation 804V–O–M bonds 487 ffV–O–S bonds 178V–O-support bond 494V–O–V bonds 267V–P–Ti compound 214V–Sb–O-based catalysts 789 fvacancies– electronic structures 352, 376– metal oxide catalysts 614 ff– TEM 452, 466– transition metal oxide surfaces 376– uranium oxides 542vacuum system 304vacuum treatment 72valence band 372– heterogeneous photocatalysis 756– UV-Vis-NIR spectroscopy 57– VPO 273valence charges 255, 259, 286valence electrons 244, 613valence states 340– EPR 45– heteropolyoxometallates 561

Index 865

– vanadia catalysts 178– XPS 248 ffvan der Waals interaction 405vanadates 137, 184, 216 fvanadia catalysts 429 f, 488–498, 601vanadia coverage 186vanadium 86– cation capping 587– heteropoly catalysts 578– impregnation 227– TiO2 supported 791vanadium oxides– alkane dehydrogenation 595–612– oxidation reactions 487 ff– oxidative dehydrogenation 266 f– PL spectroscopy 86– Raman spectroscopy 177–196– solid-state NMR 210 f– XPS 255vanadium pentoxides 430vanadium phosphate catalysts 499–538vanadium phosphorus oxides (VPO)

499–538– selective dehydrogenation 268– solid-state NMR 216 f– spin-echo mapping 204– thermal analysis 416vanadyl groups 87, 259vanadyl phosphates 500, 508Vanderbilt potentials 340vapor condensation methods 639vegetable oils 643vibrational spectroscopies 76, 95–126visible light sensitization 760VO2 P2O7, HREM 500VOx/Al2O3 catalysts 230V2O5–Al2O3 catalysts 202, 489VxOy/alumina 260 fvolatile organic compounds (VOCs) 547volumetric-calorimetric adsorption 394VPA route 509

wwagging modes 132water– addition 516, 547– adsorption 132 f, 139 f, 376– critical point 624– oil micro-emulsions 636– solvent 742– splitting 755– vapor adsorption 64wavefunctions 16, 332wavelengths 52, 445

wavenumber 56, 98, 134, 521Weiss temperature 204wet chemical transformations 619wigglers 304WO3 photocatalysis 757WO3/ZrO2 preparation 674work function 244wurtzite hexagonal-phases 477

xX-band frequency 4X-ray absorption fi ne structure spectroscopy

(XAFS) 601X-ray absorption near-edge structure

(XANES) 301, 308 f, 490X-ray absorption spectroscopy (XAS) 247,

299–322X-ray diffraction (XRD) 332, 353, 503, 512X-ray fl uorescence process 305X-ray photoelectron spectroscopy (XPS)

248 f– chromia 596– monolayer surface coverage 489– superacidic metal oxides 672– surface sensitive technique 243 ff– vanadia catalysts 601X-ray transitions 248 fxylene ammoxidation 794

yYBa2Cu3O7–8 463, 467YBaCo2O5+x 459YSrCo2O5 448

zZAF calibration 453Zeeman interaction 2 ffZeeman shift 197Zeeman states 207zeolite acid catalysis 154zeolites 29, 47, 62, 85 f– adsorption microcalorimetry 402– ammoxidation 810– analcime 478– base catalysis 837– cation exchanged 165 f– crystallites 469– EXAFS 310 ff– H-FER 300– IR spectra 121, 124, 143, 165– photocatalysis 763– POMs 588– surface Brønsted acid sites 150– thermal analysis 425 f

866 Index

– titanium silicalite-1 707 ff– X-ray spectroscopy 468 f– ZSM-5 310 ff, 425zero fi eld interactions 18, 27zero point of charge (PZC) 87zero valent state 47Ziegler–Natta catalysts 47zinc blende structure 333zinc oxides 635zinc promoted vanadium phosphate catalysts

519zirconia– IR spectra 143, 160

– metal oxide catalysts 614– NMR 208, 234– polymorphs 118– precipitation methods 629– sulfated 669 ff– superacidic metal oxides 669– superbases 837– surface oxo-anions 139– thermal analysis 408zirconium promoted vanadium phosphate

catalysts 519, 522ZnO 115, 334, 477ZnS photocatalysis 757