140
Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb geochronology and Sm-Nd and Lu-Hf isotopes Katherine E. Howard Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide October 2011

Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

  • Upload
    vothuy

  • View
    221

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb

geochronology and Sm-Nd and Lu-Hf isotopes

Katherine E. Howard

Geology and GeophysicsSchool of Earth and Environmental Sciences

The University of Adelaide

October 2011

Page 2: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-i-

Table of Contents

Abstract v

Declarati on vii

Journal Arti cles viii

Conference Abstracts ix

Statement of Authorship x

Acknowledgements xiii

Chapter 1 - Introducti on, Geotectonics in the Gawler Craton

Project Overview 3Thesis Outline 7

Chapter 2 – Detrital zircon ages: Improving interpretati on via Nd and Hf isotopic data

Introducti on 15Geological setti ng 16

West of the Kalinjala Shear Zone 16East of the Kalinjala Shear Zone 16

Analyti cal Methods 16U–Pb zircon dati ng 16Whole–rock Sm–Nd isotopic analyses 18Zircon Hf isotopic analyses 18

Results 19LA–ICP–MS U–Pb detrital zircon data from the Corny Point Paragneiss 19LA–ICP–MS U–Pb zircon data from Gawler Craton samples 19Sm–Nd isotopic results 21Zircon Hf isotopic results 21

Discussion 21Corny Point Paragneiss – depositi onal age constraints 21Correlati on of detrital zircon ages with a potenti al source region 21Correlati on of isotopic data with a potenti al source region 22Other potenti al source regions for the Corny Point Paragneiss Protoliths 24Limitati ons of provenance as a palaeogeographic tool 26

Conclusion 28References 28Supplementary Material 30

Chapter 3 – U–Pb, Lu–Hf and Sm–Nd isotopic constraints on provenance and depositi onal ti m-ing of metasedimentary rocks in the western Gawler Craton: Implicati ons for Proterozoic recon-structi on models

Introducti on 53Geological background 55Samples and analyti cal methods 56

Whole rock geochemistry 56

Page 3: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-ii-

U–Pb zircon and monazite dati ng 57Zircon Hf isotopic analyses 57Whole rock Sm–Nd isotopic analyses 58

Results 58Major and trace element geochemistry of metasedimentary rocks 58Sm–Nd systemati cs 60U–Pb zircon geochonology 60Zircon Hf isotopic results 61U–Pb monazite geochronology 61

Discussion 61Depositi onal age constraints 61Source characteristi cs of the Fowler Domain metasedimentary rocks 62Correlati ons with other basin systems within the southern Australia Proterzoic 64Provenance implicati ons for reconstructi on models of Proterozoic Australia 69

Conclusions 70References 70Supplementary Material 73

Chapter 4 – Provenance of late Paleoproterozoic cover sequences in the central Gawler Cra-ton: exploring strati graphic correlati ons in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data

Introducti on 89Geological background 90Analyti cal methods 94

Whole–rock geochemistry 94U–Pb zircon dati ng 94Whole rock Sm–Nd isotopic analyses 96Zircon Hf isotopic analyses 96

Results 96Geochemistry 96U–Pb zircon geochronology 97Whole–rock Sm–Nd analyses 102Zircon Hf isotopic results 102

Discussion 104Depositi onal ti ming and source characteristi cs 104Provenance correlati ons and tectonic implicati ons 106

Conclusions 111References 112Supplementary Material 115

Chapter 5 – U–Pb zircon, zircon Hf and whole–rock Sm–Nd isotopic constraints on the evolu-ti on of Paleoproterozoic rocks in the northern Gawler Craton

Introducti on 137Geological Setti ng 137

Geology of the northern Gawler Craton 139Analyti cal methods 140Results 142

U–Pb zircon geochronology 142

Page 4: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-iii-

U–Pb monazite geochronology 146Interpretati on of protoliths 146Geochemistry 146Lu–Hf isotopic data for zircon grains 150Whole rock Sm–Nd isotopic data 150

Discussion 150Geochronology & isotopic compositi ons of orthogneisses in the nthn Gawler Craton 150Similariti es to Aileron Region of North Australian Craton 153Implicati ons for provenance of metasedimentary rocks in the Gawler Craton 156Implicati ons for provenance of modern day sediments from the Gawler Craton 158

Conclusions 158References 158Supplementary Material 161

Chapter 6 – Laurenti a and Australia share a widespread 1.45 Ga event within the Rodinian superconti nent

Introducti on 173The 1.45 Ga record in Australia 174Proposed conti nental confi gurati on at 1.45 Ga 178Conclusions 181References 181Supplementary Material 183

Chapter 7 – Conclusions 197

Implicati ons for reconstructi on models including Proterozoic Australia 199

Page 5: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 6: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-v-

Abstract

The southern Australian Mesoarchean to early Mesoproterozoic Gawler Craton holds a pivotal place in the architecture of Proterozoic Australia. Although in recent years a growing body of work has signifi cantly improved our understanding of the tectonic evoluti on of the Gawler Craton, the lack of outcrop across large areas is an impediment to determining the tectonic framework. This study uses geochemical, geochronological (U-Pb zircon and monazite) and isotopic (Whole rock Sm-Nd and zircon Lu-Hf) data on samples mostly obtained from drill holes in regions of limited to non-existent outcrop to bett er delineate the tectonic setti ng of Proterozoic metasedimentary and igneous units in the western, central and northern Gawler Craton and the orogenic events which have aff ected them.

It is common practi ce in sedimentary provenance studies to use similariti es in the detrital zircon age histograms from sedimentary systems to identi fy potenti al source regions, and therefore to make interpretati ons about paleogeographic setti ngs. However, this method is limiti ng as the ti ming of zircon growth events is not a unique criterion of specifi c terrains. Nevertheless, these limitati ons can be overcome by employing additi onal isotopic data sets such as Sm - Nd and Lu - Hf that provide informati on on the crustal evoluti on of the source region. As an example, the age spectra of detrital zircons in Paleoproterozoic metasedimentary rocks in the eastern Gawler Craton in southern Australia are virtually identi cal to the dominant zircon growth ti melines in adjacent older domains of the Gawler Craton, suggesti ng that it was the source region. However, the combinati on of bulk rock Nd and Hf zircon data suggest that the Gawler Craton is not a viable source region for the metasedimentary packages, despite the striking similarity between detrital zircon ages and zircon crystallisati on events within the craton.

The western Gawler Craton occupies a key positi on in a number of Paleoproterozoic reconstructi on models of Australia. Zircon and monazite U-Pb data obtained from drill holes in the Fowler Domain show that sedimentati on occurred over the interval 1760 – 1700 Ma, closely followed by upper amphibolite to granulite-grade metamorphism and deformati on in the interval 1690 – 1670 Ma. The ti ming of tectonism is synchronous with the Kimban Orogeny, which shaped the tectonic architecture in the eastern Gawler Craton. Detrital zircon ages indicate that sediment source regions for the metasedimentary rocks from the Fowler Domain are similar to other Paleoproterozoic basin systems in the northern and eastern Gawler Craton, suggesti ng the former existence of a large 1760 – 1700 Ma depositi onal system across what is now the South Australian Craton. Rather than a source dominated by Archean to early Paleoproterozoic rocks of the Gawler Craton, the source characteristi cs (age and isotopic compositi on) of the Paleoproterozoic basin system favour the North Australian Craton as a source. This suggests that the Gawler Craton and the North Australian Craton may have been part of a single lithospheric domain at around 1750-1700 Ma.

Data obtained from outcropping sedimentary sequences in the central craton indicate that the Gawler Craton shares basin formati on ti me lines with the adjacent Curnamona Province, suggesti ng that they comprise a single lithospheric domain at the ti me of depositi on. Detrital U-Pb zircon ages from the 1715 Ma Labyrinth Formati on show similariti es with 1760 – 1700 Ma basin systems in the western and northern Gawler Craton as well as the Curnamona Province, however, the Labyrinth Formati on contains an isotopically evolved component consistent with input from the underlying Archean rocks in the central Gawler Craton. The overlying 1650 Ma Tarcoola Formati on is isotopically more juvenile, and cannot simply be derived from erosion of the underlying sequences. Both the ti ming of basin development and the juvenile nature of the Tarcoola Formati on is similar to units in the Curnamona Province as well as in northeastern Australia. This may suggest the presence of a large scale ca 1650 Ma juvenile basin system across eastern Proterozoic Australia.

U-Pb geochronology of orthogneisses intersected in drill holes in the unexposed northern Gawler Craton constrain the ti ming of magmati sm to ca 1780 – 1750 Ma. These graniti c rocks form basement to sedimentary successions that were deposited between ca 1740-1720 Ma, which have minimum depositi onal ages constrained by regional medium to high-grade metamorphism at ca 1730-1700 Ma, coincident with the Kimban Orogeny. The ti ming of magmati sm and subsequent sedimentati on and metamorphism is similar to that in the Arunta region of the southern North Australian Craton. This supports provenance links from metasedimentary units from the Fowler Domain of the western Gawler Craton with the Arunta region, and strengthens the paleogeographic connecti on between these two regions at ca 1780-1700 Ma.

Monazite geochronology from three drill holes in the northern Gawler Craton has revealed ca 1450 Ma ti ming for magmati sm and high grade metamorphism. Elsewhere in the Gawler Craton this age corresponds to reacti vati on and cooling of crustal shear zones, as well as regional resetti ng of Rb-Sr isotopic systems. The sparse record of drill holes in the western Gawler Craton also intersect a pegmati te of this age as well as graniti c rocks, suggesti ng the ca 1450 Ma thermal record may be more widespread than appreciated. Across Proterozoic Australia there is a diff use but widespread record of ca 1450 Ma events that encompass graniti c magmati sm, regional cooling, isotopic resetti ng and basin development. The spati al scale of this record suggests it formed part of a larger system at that ti me which would have connected with eastern Proterozoic Australia. The most plausible paleogeographic connecti on is with southern and western Laurenti a, which contains an extensive province characterised by felsic magmati sm, localised deformati on and regional cooling and isotopic resetti ng. In this case the ca 1450 Ma record in Australia provides an important paleogeographic constraint for Mesoproterozoic conti nental confi gurati ons.

Page 7: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 8: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-vii-

Declarati on

This work contains no material which has been accepted for the award of any other degree or di-ploma in any university or other terti ary insti tuti on to Katherine E. Howard and, to the best of my knowledge and belief, contains no material previously published or writt en by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed under Publicati ons) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of ti me.

Katherine E. Howard

Page 9: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-viii-

Journal Arti cles

Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Cutt s, K.A., Belousova, E.A., 2011. U-Pb zir-con, zircon Hf and whole-rock Sm-Nd isotopic constraints on the evoluti on of Paleoproterozoic rocks in the northern Gawler Craton. Australian Journal of Earth Sciences 58, 615-638.

Howard, K.E., Hand, M., Barovich, K.M., Belousova, E.A., 2011. Provenance of late Paleoprotero-zoic cover sequences in the central Gawler Craton: exploring strati graphic correlati ons in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data. Australian Journal of Earth Sciences, 58, 475-500.

Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Belousova, E.A., 2011. U-Pb, Lu-Hf and depo-siti onal ti ming of metasedimentary rocks in the western Gawler Craton: Implicati ons for Protero-zoic reconstructi on models. Precambrian Research 184, 43-62.

Shufeldt, O.P., Karlstrom, K.E., Gehrels, G.E., Howard, K.E., 2010. Archean detrital zircons in the Proterozoic Vishnu Schist of the Grand Canyon, Arizona: Implicati ons for crustal architecture and Nuna superconti nent reconstructi ons. Geology 38, 1099-1102.

Reid, A., Flint, R., Maas, R., Howard, K.E., Belousova, E.A., 2009. Geochronological and isotopic constraints on Palaeoproterozoic skarn base metal mineralisati on in the central Gawler Craton, South Australia. Ore Geology Reviews 36, 350-362.

Howard, K.E., Hand, M., Barovich, K., Reid, A., Wade, B.P., Belousova, E.A., 2009. Detrital zircon ages: Improving interpretati on via Nd and Hf isotopic data. Chemical Geology 262, 277-292.

Howard, K.E., Reid, A.J., Hand, M., Barovich, K., Belousova, E.A., 2007. Does the Kalinjala Shear Zone represent a palaeosuture zone? Implicati ons for distributi on of styles of Mesoproterozoic mineralisati on in the Gawler Craton. MESA Journal 43, 16-20.

Page 10: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-ix-

Conference Abstracts

Howard, K.E., Hand, M., Barovich, K., Lambeck, A., Belousova, E. A., 2010. Provenance of late Palaeoproterozoic cover sequences in the central eastern Gawler Craton: Exploring strati graphic correlati ons with Curnamona and Mt Isa using detrital zircon, zircon Hf and Nd isotopic data. In: Quinn, C.D. & Daczko, N.R. (eds.) Abstracts of the Specialist Group in Tectonics and Structural Ge-ology Conference, Port Macquarie. Geological Society of Australia Abstracts 97, 36.

Howard, K.E., Hand, M., Barovich, K., Belousova, E. A., 2010. Provenance of metasedimentary rocks in the western Gawler Craton: Geochemical, zircon U-Pb, Lu-Hf and whole rock Sm-Nd iso-topic constraints. In: Quinn, C.D. & Daczko, N.R. (eds.) Abstracts of the Specialist Group in Tecton-ics and Structural Geology Conference, Port Macquarie. Geological Society of Australia Abstracts 97, 35

Howard, K.E., Hand, M., Barovich, K., Payne, J.L., Belousova, E.A., 2010. U-Pb zircon, zircon Hf and whole rock Sm-Nd isotopic constraints on the evoluti on of Palaeoproterozoic rocks in the northern Gawler Craton. In: Quinn, C.D. & Daczko, N.R. (eds.) Abstracts of the Specialist Group in Tectonics and Structural Geology Conference, Port Macquarie. Geological Society of Australia Abstracts 97, 37.

Howard, K.E., Hand, M., Barovich, K., Szpunar, M., Payne, J. L., 2009. Nd isotopic constraints on the provenance of cover sequences in the southern Australian Proterozoic. 2009 Joint Assembly, The Meeti ng of the Americas, Toronto, Canada.

Howard, K.E., Hand M., Barovich, K., Belousova, E.A., Wade, B.P., 2008. U-Pb, Nd and Hf isotopic constraints on basin development and deformati on in the Western Gawler Craton. Australian Earth Sciences Conventi on, Perth, 2008. Geological Society of Australia and the Australian Insti -tute of Geoscienti sts, volume 19.

Howard, K.E., Hand, M., Barovich, K., Reid, A., Belousova, E.A., 2007. Limitati ons of the age-only approach to zircon provenance studies: The applicati on of whole-rock Nd and zircon Hf isotopic data. In A.S. Collins (editor), SGTSG 2007 Deformati on in the Desert. Geological Society of Aus-tralia, Alice Springs.

Page 11: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-x-

Statement of Authorship

Much of the research presented in this thesis has been published in scienti fi c journals. Biblio-graphic details are listed at the beginning of each chapter. The contributi on of each author is described below.

HOWARD, K.E. (Candidate)Chapters 2-5: Project design, fi eldwork/sampling, sample preparati on, data collecti on, data pro-cessing, data interpretati on, manuscript design and compositi on, generati on of fi gures and tables.I certi fy that the above statement is accurate.

Signed Date

HAND, M. & BAROVICH, K. (Supervisors)Chapters 2-5: Project design, fi eldwork, guidance with data interpretati on, manuscript review.I certi fy that the above statement is accurate, and I give permission for the relevant manuscripts to be included in this thesis.

Signed Date

Signed Date

BELOUSOVA, E.A., (External Supervisor)Chapters 2-5: Assistance with multi collector ICP-MS and data interpretati on, manuscript review.I certi fy that the above statement is accurate, and I give permission for the relevant manuscripts to be included in this thesis.

Signed Date

Page 12: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-xi-

REID, A. & WADE, B.P.Chapter 2: Assistance with sample preparati on, data interpretati on, manuscript review.I certi fy that the above statement is accurate, and I give permission for the relevant manuscripts to be included in this thesis.

Signed Date

Signed Date

PAYNE, J.L.Chapters 3 & 5: Assistance with sample preparati on, data interpretati on, manuscript review.I certi fy that the above statement is accurate, and I give permission for the relevant manuscripts to be included in this thesis.

Signed Date

CUTTS, K.A.Chapter 5: Assistance with sample preparati on, data interpretati on, manuscript review.I certi fy that the above statement is accurate, and I give permission for the relevant manuscripts to be included in this thesis.

Signed Date

Page 13: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 14: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-xiii-

Acknowledgements

Firstly, I would like to thank my amazing supervisors Marti n Hand, Karin Barovich and Elena Belousova for all the help and guidance they have given me over the years. Elena has been a fantasti c help with the multi -collector and interpreti ng the Hf data. Karin has been an inspirati onal role model, and being a realist, has always managed to keep the project from expanding out of control. I am greatly indebted to Marty, who has been an excellent primary supervisor and has always managed to bring out the best in me.

A big thanks also goes to Justi n Payne for reading through all my draft s, giving me a pat on the back when I needed it, and also being a good friend.

The staff at Adelaide Microscopy, especially Angus Netti ng and Ben Wade, have off ered invaluable technical assistance with the LA-ICP-MS and SEM faciliti es. It should also be noted that without the well stocked biscuit barrel and Milo ti n at Adelaide Microscopy, the quality of the data presented in this thesis could not have been achieved. I’d also like to acknowledge GEMOC for allowing me access to their multi -collector faciliti es and in parti cular Norm Pearson, Elena Belousova and Justi n Payne for providing technical assistance. Thanks also go to David Bruce from the University of Adelaide, for all his help with the Nd data acquisiti on.

I’d also like to acknowledge the assistance given by the team at the Geological Survey, especially former staff member Sue Daly, for sharing ideas and resources with me. I’d also like to thank the team at the Core Library for all their assistance. Special thanks goes to Anthony Reid for being an unoffi cial supervisor from ti me to ti me, for reading through draft s and for cheering me on as I got closer to the end.

I would also like to thank Geoff Fraser, William Griffi n, Russell Korsch, Roland Maas, Oliver Nebel, Jonathan Patchett , Roberta Rudnick, Catherine Spaggiari, and two anonymous reviewers for their constructi ve and helpful reviews which have greatly improved the various chapters of this thesis.

Thanks go to all the University of Adelaide friends I’ve made along the way, including Kathryn, Diana, Ailsa, Spuz, Rachel, Yee, Tom, Ben, Udeni, Kate, Dave, Graham, Forbes, Russell, Jade, Frank, Alec and Deborah. I’d also like to acknowledge the support from the Honours crew of 2011.

This thesis would not have been possible without the love and support of my friends and family. In parti cular, Mum, Dad, Erin, Simon, Siân and Chris. You guys are amazing. This thesis is dedicated to you!

Lastly, a special thanks to Vinnie. You have kept me sane throughout this whole process. You’ve been everything from a house-wife to a journal editor when I needed it of you. Thank you.

Page 15: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 16: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 1

Page 17: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 18: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-3-

Introducti on

Project Overview

The Gawler Craton forms a crystalline basement which occupies approximately 440,000 km2 beneath central South Australia. It consists of a Meso- to Neo- Archean basement, which is intruded and overlain by younger Paleoproterozoic and Mesoproterozoic igneous and sedimentary rocks (Daly et al. 1998, Hand et al. 2007). It is positi oned within the South Australian Craton, which along with the North and West Australian Cratons, form Proterozoic Australia (Figure 1). It is considered highly prospecti ve for mineral explorati on as it hosts Olympic Dam, a world class Iron-Oxide-Copper-Gold-Uranium deposit, and a number of smaller although sti ll signifi cant deposits. In recent years, extensive work has been undertaken to improve our understanding of the tectonic evoluti on of the Gawler Craton (e.g. Fanning et al. 2007, Hand et al. 2007, Fraser et al. 2010).

The oldest rocks in the Gawler Craton are the recently discovered Mesoarchean 3150 Ma gneissic granites outcropping in the south-eastern Gawler Craton (Fraser et al. 2010). The late Archean Gawler Craton consists of metasedimentary, metavolcanics and granite-greenstone units located in two separate domains that are thought to be equivalent on the basis of geochemical, isotopic and geochronological data (Swain et al. 2005a, Hand et al. 2007). The Mulgathing Complex is located in the central Gawler Craton and consists of the Christi e Gneiss, the Kenella Paragneiss, the Harris Greenstone Belt, the Devil’s Playground Volcanics and the ca 2500 Ma Glenloth Granite. The Sleaford Complex is located in the south of the craton and consists of the metasedimentary Carnot Gneiss and Wangary Paragneiss, the Hall Bay Volcanics and the intrusive Dutt on Suite. Metamorphism associated with the Sleaford Orogeny took place between 2480 and 2420 Ma and ranges in grade between greenschist and granulite

facies (Daly et al. 1998, McFarlane 2006). There was also a period of granite emplacement at ca 2440 Ma (Daly et al. 1998).

Aft er a period of apparent tectonic stability from ca 2400 to 2000 Ma, the precursor to the granodioriti c Miltalie Gneiss intruded at ca 2000 Ma in the eastern Gawler Craton (Fanning et al. 2007). Sequences of the Darke Peak Group (formerly included in the Hutchison Group) are interleaved with 1866 ± 10 Ma felsic volcanic rocks (Rankin et al. 1988, Daly et al. 1998, Fanning et al. 2007, Szpunar et al. 2011) and overly the ca 2000 Ma Miltalie Gneiss. The emplacement of the voluminous Donington Suite at 1850 Ma was synchronous with the Cornian Orogeny (Reid et al. 2008) and was followed by a period of widespread sedimentati on and volcanism (Daly et al. 1998, Hand et al. 2007). This includes the 1791 ± 4 Ma Myola Volcanics (Fanning et al. 1988), 1774 ± 16 Ma volcanics and associated sedimentary rocks of the Peake and Denison Inlier (Fanning et al. 2007) and the 1767 ± 17 Ma Price Metasediments (Oliver & Fanning 1997). More widespread depositi on conti nued between 1760 and 1700 Ma. The Wallaroo Group was deposited between ca 1760 and 1740 Ma (Fanning et al. 2007). Similarly the Cleve Group (formerly included in the Hutchison Group) was deposited between 1780 – 1730 Ma (Szpunar et al. 2011). Toward the north of the craton, protoliths to metasedimentary rocks were deposited at ca 1750 Ma in the Mt Woods Domain (Chalmers 2007, Jagodzinski et al. 2007) and at ca 1740–1720 Ma in the northern Gawler Craton (Payne et al. 2006). A short widespread pulse of magmati sm at 1730 Ma (Hopper 2001, Fanning et al. 2007, Hand et al. 2007) was followed by the 1730–1690 Ma Kimban Orogeny (Hand et al. 2007, Payne et al. 2008, Dutch et al. 2010). This was an extensive craton-wide event which coincided with the terminati on of widespread depositi on (Hand et al. 2007, Payne et al. 2009). Metamorphism

Page 19: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-4-

Chapter 1 Introducti on

Figure 1. Simplifi ed solid geology of the Gawler Craton (aft er Payne et al., 2006). Inset: simplifi ed map of Proterozoic Australia (aft er Myers et al. 1996; Wade et al. 2006), CP = Curnamona Province, GC = Gawler Craton.

Blue Range beds

Spilsby Suite (ca 1500 Ma)

Munjeela Granite (ca 1580 Ma)

Hiltaba Suite (1590-1575 Ma)

Gawler Range Volcanics (1590 Ma)

St Peter Suite and Nuyts Volcanics (1640-1620 Ma)

Middlecamp, Moody & Tunkillia (ca 1730, 1700 & 1690-1670 Ma)

Undifferentiated Fowler Domain

Undifferentiated Nawa Domain

Price, Moonta, Wallaroo, McGregor & Myola (ca 1780-1740 Ma)

Undifferentiated Coober Pedy and Mt Woods Domains

Undifferentiated Peake and Denison Inliers (ca 1800-1720 & 1550 Ma)

Donington Suite (ca 1850 Ma)

Former Hutchison Group: (ca 1865 Ma Darke & Peake, 1780 - 1720 Ma Cleve)

Undifferentiated Miltalie Ortho-, Para-Gneiss (ca 2000 Ma)

Archean Mulgathing and Sleaford Complexes

Arc

hean

P

aleo

prot

eroz

oic

M

esop

rote

rozo

ic

Gawler Craton

200 km

N

1000 km

North Australian Craton

WestAustralian

Craton GC

South Australian Craton

CP

28°00’

30°00’

32°00’

34°00’

138°00’

135°00’

132°00’

Page 20: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-5-

Chapter 1 Introducti on

associated with the Kimban Orogeny appears to have been principally of a moderate geothermal gradient. The associated deformati on, although widespread, is notable for the formati on of crustal scale shear zones such as the Kalinjala Shear Zone in the eastern Gawler Craton (Hand et al. 2007), the Tallacootra Shear Zone in the western Gawler Craton (Swain et al. 2005b), and probably the Karari Shear Zone in the central northern part of the shear zone. The Kimban Orogeny was associated with syn- to post- deformati onal felsic magmati sm over the interval ca 1690-1670 Ma (Payne et al. 2010).

Following the Kimban Orogeny, the 1.66 Ga Ooldean Event was associated with ultra-high temperature metamorphic conditi ons of around 950°C and 10kbars (Teasdale 1997, Hand et al. 2007) which reworked the immediately preceding metamorphism in the western Gawler Craton. At the same ti me, in the central Gawler Craton, depositi on of the Tarcoola Formati on at 1656 ± 8 Ma suggests a period of extension (Daly et al. 1998) and accompanied UHT metamorphism elsewhere in the craton.

Events in the Gawler Craton during the late Paleoproterozoic and Early Mesoproterozoic are dominated by igneous processes. The 1630-1610 Ma St Peter Suite and the associated Nuyts Volcanics, consisti ng of both mafi c and felsic intrusives, are thought to be related to subducti on processes (Fanning et al. 2007, Swain et al. 2008). This event was followed by widespread, mainly felsic magmati sm of the ca 1598-1575 Ma Hiltaba Suite and the associated ca 1590 Ma Gawler Range Volcanics (Daly et al. 1998, Budd 2006). The Hiltaba magmati sm was coincident with high T and UHT metamorphism and in the central northern Gawler Craton (Cutt s et al. 2011, Forbes et al. 2011). This deformati on and metamorphism was part of a widespread tectonothermal event that resulted in regional, medium to high grade metamorphism in

the easternmost Gawler Craton (Szpunar et al. 2007), and throughout the southern and eastern Curnamona Province (e.g. Rutherford et al. 2007). In the central northern Gawler Craton, high-grade metamorphic conditi ons persisted to around 1550-1530 Ma (Jagodzinski et al. 2010, Cutt s et al. 2011, Forbes et al. In Press).

At ca 1450 Ma the Karari, Tallacootra and Coorabie Shear Zones in the western Gawler Craton are thought to have undergone reacti vati on at greenschist or low-grade amphibolite conditi ons (Swain et al. 2005b, Fraser & Lyons 2006, Thomas et al. 2008). Subsequent to ca 1450 Ma, the northern and southwestern margins of the craton were thermally reworked during the Grenvillian-aged tectonism that was centred in the Musgrave Province but also conti nued into southwestern Australia (Daly et al. 1998). The eastern margin of the Gawler Craton was reworked during the Cambrian-Ordovician Delamerian Orogeny.

Although recent work has increased our understanding of geological history of the Gawler Craton, its tectonic evoluti on is sti ll not well understood. This is because Neoproterozoic and Phanerozoic sedimentary rocks and Cenozoic sediments cover much of the Gawler Craton. In parti cular, areas around the margins of the Gawler Craton, including the Nawa Domain in the northern Gawler Craton, and the Fowler Domain in the western Gawler Craton, have almost no outcrop and hence very litt le is known about them. Fortunately, basement-intersecti ng drill core from regional drilling programs has been preserved in these areas. While these drill holes pierce only very small areas of deeply buried basement, they off er a unique opportunity to gather criti cal tectonic informati on.

At the moment there is also a lack of understanding surrounding how the diff erent components of the Gawler Craton came

Page 21: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-6-

Chapter 1 Introducti on

together during the Proterozoic. There are also various diff erent models describing the ti ming and confi gurati on for the assembly of Proterozoic Australia (Myers et al. 1996, Daly et al. 1998, Dawson et al. 2002, Bett s & Giles 2006, Wade et al. 2006, Bett s et al. 2008, Payne et al. 2009), and the role of the Gawler Craton. These models are based on similariti es between the diff erent cratonic blocks of Proterozoic Australia, and thus are limited by our understanding of the individual cratonic blocks involved. On a much larger scale, Australia is oft en positi oned in varying arrangements adjacent to Laurenti a in larger conti nental scale reconstructi on models (Dalziel 1991, Hoff man 1991, Moores 1991, Brookfi eld 1993, Powell et al. 1993, Li et al. 1995, Blewett et al. 1998, Karlstrom et al. 1999, Burrett & Berry 2000, Goodge et al. 2002, Ross & Villeneuve 2003, Goodge et al. 2008).

One way to bett er constrain these reconstructi on models, on cratonic, conti nental and super-conti nental scales, is to investi gate the provenance of sedimentary successions in order to identi fy likely source regions which can in turn be considered in a paleogeographic context. To investi gate the provenance of sedimentary units this study uti lised a number of complimentary methods. Whole rock Sm-Nd isotopic analyses are used to determine the isotopic evoluti on of the average source region. Geochemistry is used to provide constraints about the compositi ons of the source region as well as informati on about the sedimentary processes involved. U-Pb zircon dati ng of detrital zircon provides a record of the zircon forming ti melines in the source region, and also provides maximum depositi onal age constraints which when combined with metamorphic zircon and monazite ages can constrain the depositi onal interval. As some zircon forming ti me lines can be common across many parts of the world, zircon ages are non-unique to the source region. However, with the use of Hf isotopic analyses from zircon grains, another

dimension is added to detrital zircon data allowing disti ncti ons to be made between similarly aged zircon populati ons.

Provenance studies are more eff ecti ve at constraining reconstructi on models if (meta)sedimentary rocks with similar depositi onal ages are analysed from a range of locati ons. In the Gawler Craton widespread sedimentati on occurred between ca 1790 – 1700 Ma (Daly et al. 1998, Hand et al. 2007, Szpunar et al. 2011). While across the Gawler Craton, Curnamona Province, Georgetown Inlier and Mount Isa Province, sedimentati on is known to have occurred at ca 1650 Ma (Daly et al. 1998, Page et al. 2005a, Page et al. 2005b, Lambeck et al. 2009, Lambeck et al. 2010). Targeti ng (meta)sedimentary rocks which were deposited at these ti mes for provenance studies off ers paleogeographic constraints that place the Gawler Craton into a wider context.

Another way to help constrain paleogeographic reconstructi on models is to match ti melines of magmati sm and metamorphism between conti nental blocks. As new geochronology is obtained from uncharacterised areas around the margin of the Gawler Craton, the potenti al exists to correlate the ti ming of magmati sm and metamorphism with other cratons from Proterozoic Australia as well as other crustal blocks around the world. For example, new magmati sm dated at 1780-1750 Ma from the northern Gawler Craton (this study) is identi cal to the ti ming of magmati sm from the Aileron Province in the North Australian Craton. Similarly, 1450 Ma magmati c and metamorphic ages collected from drill core in the northern Gawler Craton (this study) match with the Granite-Rhyolite Province of southern Laurenti a.

The aims of this project are:

1. To investi gate the provenance of (meta)sedimentary sequences of the Gawler Craton, and integrate the informati on with

Page 22: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-7-

Chapter 1 Introducti on

existi ng data in order to bett er understand the potenti al paleogeographic setti ng of the Gawler Craton

2. To constrain the ti melines of metamorphism and magmati sm in the western and northern Gawler Craton, and to match these events with other crustal blocks both within and external to Proterozoic Australia.

Both of these aims will help to constrain paleogeographic reconstructi on models which seek to explain the development of Proterozoic Australia within a wider context.

Thesis Outline

Chapter 2 shows that paleogeographic constraints based on provenance interpretati ons using age-only criteria should be treated with cauti on. The method commonly applied is to match the detrital zircon age spectra with the ages of zircon growth events in potenti al source regions. However, the ti ming of rock forming events in potenti al source regions is a non-unique criterion since equivalent age events can occur in unrelated tectonic systems. Chapter 2 presents a case study from the Gawler Craton. Detrital zircon ages from ca 1850 Ma metasedimentary rocks in the eastern Gawler Craton, correspond closely to the ages of zircon forming events within the older parts of the immediately adjacent (~50 km) craton, presenti ng a strong case that the sequences were derived from erosion of the Gawler Craton. However, bulk rock Nd and zircon Hf isotopic compositi ons within the metasedimentary units disprove derivati on solely from the proto Gawler Craton. This chapter has been published as “Detrital zircon ages: Improving interpretati on via Nd and Hf isotopic data” Howard, K.E., Hand, M., Barovich, K.M., Reid, A., Wade, B.P. and Belousova, E.A., 2009, Chemical Geology 262, 277-292.

Chapter 3 investi gates the provenance and depositi onal ti ming of metasedimentary

sequences in the poorly outcropping Fowler Domain of the western Gawler Craton. This study uti lises detrital zircon U-Pb and Lu-Hf isotopic data, bulk rock Sm-Nd isotopic and geochemical data to characterise the provenance of the metasedimentary rocks. Metamorphic monazite U-Pb age data has also been used to constrain the depositi onal interval of sedimentary protoliths within the Fowler Domain. The data allow the Fowler Domain to be assessed in the context of other metasedimentary-bearing domains in the southern Australian Proterozoic. This chapter has been published as “U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositi onal ti ming of metasedimentary rocks in the western Gawler Craton: Implicati ons for Proterozoic reconstructi on models” Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L. and Belousova, E.A., 2011, Precambrian Research 184, 43-62.

Chapter 4 investi gates the provenance and depositi onal ti ming of (meta)sedimentary sequences from the central Gawler Craton. Detrital zircon U-Pb and Lu-Hf isotopic data, bulk rock Sm-Nd isotopic and geochemical data are used to constrain the provenance of the sequences. These three sequences had previously been constrained to >1715 Ma, ca 1715 Ma and ca 1650. Recent provenance studies on ca 1760 - 1700 Ma cover sequences from the northern and western Gawler Craton and the Curnamona Province favour a North Australian Craton source region, implying a paleogeographic connecti on at the ti me of depositi on (Payne et al. 2006, Barovich & Hand 2008, Howard et al. 2011). Investi gati ng the provenance of similarly aged sequences can build upon existi ng datasets to bett er constrain proposed paleogeographic connecti ons for the amalgamati on of Proterozoic Australia. In additi on, the ti ming of depositi on of the youngest formati on (ca 1650 Ma) is identi cal to the ti ming of sedimentary depositi on of mineralised lithologies in the Curnamona

Page 23: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-8-

Chapter 1 Introducti on

Province and the Mt Isa and Georgetown Inlier of the North Australian Craton. Hence provenance informati on from 1650 Ma sedimentary sequence has the potenti al to add younger constraints to paleogeographic reconstructi ons, as well as provide a framework for mineral explorati on. This chapter has been published as “Provenance of late Paleoproterozoic cover sequences in the central Gawler Craton: exploring strati graphic correlati ons in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data” Howard, K.E., Hand, M., Barovich, K.M. and Belousova, E.A., 2011, Australian Journal of Earth Sciences 58, 475-500.

Chapter 5 investi gates the ages and characteristi cs of orthogneisses from drill core in the northern Gawler Craton. The northern Gawler Craton occupies a pivotal place in the architecture of Proterozoic Australia, forming the region that links the Meso-Neoarchean core of the Gawler Craton to the comparati vely juvenile Mesoproterozoic Musgrave Province. Due to an almost complete lack of outcrop and thick Neoproterozoic to Cenozoic cover, litt le is known about the basement rocks from the northern Gawler Craton. Compounding this problem is the scarcity of basement-intersecti ng drill holes in the area. Chapter 5 investi gates the ti ming, geochemistry and isotopic character of magmati c rocks in this region. The data allow correlati ons to be made between magmati c rocks of the northern Gawler Craton and other magmati c events from Proterozoic Australia. This chapter is published as “U-Pb zircon, zircon Hf and whole-rock Sm-Nd isotopic constraints on the evoluti on of Paleoproterozoic rocks in the northern Gawler Craton” Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Cutt s, K.A., and Belousova, E.A., 2011, Australian Journal of Earth Sciences 58, 615-638.

Chapter 6 presents new geochronology from drill core which reveals the existence of ca 1450 Ma magmati sm and high-grade

metamorphism in the northern Gawler Craton. This event has not previously been recognised in the Gawler Craton, however, it matches with the ti ming of cooling, resetti ng and shear zone reacti vati on across the Gawler Craton. It also matches with the ti ming of felsic magmati sm, Rb-Sr resetti ng and Ar-Ar cooling ages from regions across Proterozoic Australia including the Paterson Orogen, the Arunta Province, the Musgrave Province, the Mount Isa Province, the Georgetown Inlier, and beneath the Eucla Basin. Chapter 6 compiles the evidence for a widespread ca 1450 Ma tectonothermal event in Proterozoic Australia. The ti ming of this event matches with the ti ming of voluminous A-type magmati sm and regional deformati on associated with the Granite- Rhyolite Province in south western Laurenti a, and has been used as a basis for a conti nental reconstructi on involving Australia, Laurenti a, Cathaysia (South China) and Antarcti ca.

Chapter 7 concludes the thesis, provides a summary of the key fi ndings from the previous chapters, and includes discussion of some large scale implicati ons for reconstructi on models.

ReferencesBAROVICH K. & HAND M. 2008. Tectonic setti ng and provenance of the

Paleoproterozoic Willyama Supergroup, Curnamona Prov-ince, Australia: Geochemical and Nd isotopic constraints on contrasti ng source terrain components. Precambrian Research 166, 318-337.

BETTS P. G. & GILES D. 2006. The 1800-1100 Ma tectonic evoluti on of Australia. Precambrian Research 144, 92-125.

BETTS P. G., GILES D. & SCHAEFER B. F. 2008. Comparing 1800-1600 Ma accreti onary and basin processes in Australia and Laurenti a: Possible geographic connecti ons in Columbia. Precambrian Research 166, 81-92.

BLEWETT R. S., BLACK L. P., SUN S. S., KNUTSON J., HUTTON L. J. & BAIN J. H. C. 1998. U-Pb zircon and Sm-Nd geochronology of the Mesoproterozoic of North Queensland: implicati ons for a Rodinian connecti on with the Belt Supergroup of North America. Precambrian Research 89, 101-127.

BROOKFIELD M. E. 1993. Neoproterozoic Laurenti a-Australia fi t. Geology 21, 683-686.

BUDD A. R. 2006. The Tarcoola Goldfi eld of the Central Gawler Gold

Page 24: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-9-

Chapter 1 Introducti on

Province, and the Hiltaba Associati on Granites, Gawler Cra-ton, South Australia. PhD thesis, Australian Nati onal Univer-sity (Unpublished).

BURRETT C. & BERRY R. 2000. Proterozoic Australia-Western United States (AUSWUS) fi t between Laurenti a and Australia. Geol-ogy 28, 103-106.

CHALMERS N. C. 2007. Mount Woods Domain: Proterozoic metasedi-ments and intrusives. South Australia. Department of Pri-mary Industries and Resources. Report Book 2007/20.

CUTTS K., HAND M. & KELSEY D. E. 2011. Evidence for early Mesoprotero-zoic (ca. 1590Ma) ultrahigh-temperature metamorphism in southern Australia. Lithos 124, 1-16.

DALY S. J., FANNING C. M. & FAIRCLOUGH M. C. 1998. Tectonic evoluti on and explorati on potenti al of the Gawler Craton, South Aus-tralia. AGSO Journal of Australian Geology and Geophysics 17, 145-168.

DALZIEL I. W. D. 1991. Pacifi c margins of Laurenti a and East Antarcti ca-Australia as a conjugate rift pair: evidence and implicati ons for an Eocambrian superconti nent. Geology 19, 598-601.

DAWSON G. C., KRAPEZ B., FLETCHER I. R., MCNAUGHTON N. J. & RASMUS-SEN B. 2002. Did late Palaeoproterozoic assembly of proto-Australia involve collision between the Pilbara, Yilgarn and Gawler cratons? Geochronological evidence from the Mount Barren Group in the Albany-Fraser Orogen of West-ern Australia. Precambrian Research 118, 195-220.

DUTCH R. A., HAND M. & KELSEY D. E. 2010. Unravelling the tectono-thermal evoluti on of reworked Archean granulite facies metapelites using in situ geochronology: an example from the Gawler Craton, Australia. Journal of Metamorphic Geol-ogy 28, 293-316.

FANNING C. M., FLINT R. B., PARKER A. J., LUDWIG K. R. & BLISSETT A. H. 1988. Refi ned Proterozoic evoluti on of the Gawler Craton, South Australia, through U-Pb zircon geochronology. Pre-cambrian Research. The Early to Middle Proterozoic of Aus-tralia 40-41, 363-386.

FANNING C. M., REID A. J. & TEALE G. S. 2007. A Geochronological frame-work for the Gawler Craton, South Australia. South Austra-lia. Geological Survey. Bulleti n 55.

FORBES C. J., GILES D., HAND M., BETTS P. G., SUZUKI K., CHALMERS N. & DUTCH R. 2011. Using P-T paths to interpret the tectono-thermal setti ng of prograde metamorphism: An example from the northeastern Gawler Craton, South Australia. Pre-cambrian Research 185, 65-85.

FORBES C. J., GILES D., JOURDAN F., SATO K., OMORI S. & BUNCH M. In Press. Cooling and Exhumati on history of the northeastern Gawler Craton, South Australia. Precambrian Research.

FRASER G., MCAVANEY S., NEUMANN N., SZPUNAR M. & REID A. 2010. Dis-covery of early Mesoarchean crust in the eastern Gawler Craton, South Australia. Precambrian Research 179, 1-21.

FRASER G. L. & LYONS P. 2006. Timing of Mesoproterozoic tectonic acti vi-ty in the northwestern Gawler Craton constrained by Ar-40/

Ar-39 geochronology. Precambrian Research 151, 160-184.

GOODGE J. W., MYROW P., WILLIAMS I. S. & BOWRING S. A. 2002. Age and provenance of the Beardmore Group, Antarcti ca: Con-straints on Rodinia superconti nent breakup. Journal of Ge-ology 110, 393-406.

GOODGE J. W., VERVOORT J. D., FANNING C. M., BRECKE D. M., FARMER G. L., WILLIAMS I. S., MYROW P. M. & DEPAOLO D. J. 2008. A posi-ti ve test of East Antarcti ca-Laurenti a juxtapositi on within the Rodinia superconti nent. Science 321, 235-240.

HAND M., REID A. & JAGODZINSKI E. 2007. Tectonic framework and evo-luti on of the Gawler craton, southern Australia. Economic Geology 102, 1377-1395.

HOFFMAN P. F. 1991. Did the breakout of Laurenti a turn Gondwanaland inside-out? Science 252, 1409-1412.

HOPPER D. J. 2001. Crustal evoluti on of Palaeo- to Mesoproterozoic rocks in the Peake and Denison Ranges, South Australia. Unpublished Ph.D. thesis, Brisbane, Australia, University of Queensland.

HOWARD K. E., HAND M., BAROVICH K. M., PAYNE J. L. & BELOUSOVA E. A. 2011. U-Pb, Lu-Hf and Sm-Nd isotopic constraints on prov-enance and depositi onal ti ming of metasedimentary rocks in the western Gawler Craton: Implicati ons for Proterozoic reconstructi on models. Precambrian Research 184, 43-62.

JAGODZINSKI E., DUTCH R., DAVIES M. & FLINTOFF M. 2010. Digging up the dirt on the GOMA line. htt p://www.pir.sa.gov.au/__data/assets/pdf_fi le/0004/132754/Liz_Jagodzinski.pdf. SAREIC 2010 Technical Forum, Adelaide.

JAGODZINSKI E. A., REID A. J., CHALMERS N. C., SWAIN G., FREW R. A. & FOUDOULIS C. 2007. Compilati on of SHRIMP U-Pb geochro-nological data for the Gawler Craton, South Australia, 2007. South Australia. Department of Primary Industries and Re-sources Report Book, 2007/21.

KARLSTROM K. E., HARLAN S. S., WILLIAMS M. L., MCLELLAND J., GEISSMAN J. W. & ÅHÄLL K. I. 1999. Refi ning Rodinia: Geologic evidence for the Australia-Western U.S. Connecti on in the Protero-zoic. GSA Today 9, 2-7.

LAMBECK A., PARSONS A., BAROVICH K., HAND M., WITHNALL I. W., HUSTON D., NEUMANN N. & CARSON C. 2009. Sm-Nd isotopic fi nger-printi ng defi ning a ~1650 Ma reference boundary in Mt Isa and Georgetown: Implicati ons for Zn-Pb explorati on. Dig-ging Deeper 7 Brisbane.

LAMBECK A., HUSTON D., NEUMANN N., BAROVICH K. & HAND M. 2010. Reconstructi on of the Australian-Laurenti a link at 1650 Ma: Constraints from Sm-Nd data from the Georgetown, Mount Isa, Curnamona, Yavapai and Mazatzal provinces SGTSG 2010 Port Macquarie (unpubl.).

LI Z. X., ZANG L. & POWELL C. M. 1995. South China in Rodinia: part of the missing link between Australia-East Antarcti ca and Lau-renti a? Geology 23, 407-410.

MCFARLANE C. R. M. 2006. Palaeoproterozoic evoluti on of the Challeng-er Au Deposit, South Australia, from monazite geochronol-

Page 25: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-10-

Chapter 1 Introducti on

ogy. Journal of Metamorphic Geology 24, 75-87.

MOORES E. M. 1991. Southwest US-East Antarcti c (SWEAT) connecti on: a hypothesis. Geology 19, 425-428.

MYERS J. S., SHAW R. D. & TYLER I. M. 1996. Tectonic evoluti on of Pro-terozoic Australia. Tectonics 15, 1431-1446.

OLIVER R. L. & FANNING C. M. 1997. Australia and Antarcti ca; precise correlati on of Palaeoproterozoic terrains. In: C.A R. ed., The Antarcti c region; geological evoluti on and processes; pro-ceedings of the VII internati onal symposium on Antarcti c earth sciences., Vol. 7, pp 163-172, Terra Antarcti ca Publica-ti on, Siena, Italy.

PAGE R. W., CONOR C. H. H., STEVENS B. P. J., GIBSON G. M., PREISS W. V. & SOUTHGATE P. N. 2005a. Correlati on of Olary and Broken Hill Domains, Curnamona Province: possible relati onship to Mount Isa and other North Australian Pb-Zn-Ag-bearing succesions Economic Geology 100, 663-676.

PAGE R. W., STEVENS B. P. J. & GIBSON G. M. 2005b. Geochronology of the sequence hosti ng the Broken Hill Pb-Zn-Ag orebody, Australia. Economic Geology 100, 633-651.

PAYNE J. L., BAROVICH K. M. & HAND M. 2006. Provenance of metasedi-mentary rocks in the northern Gawler Craton, Australia: Im-plicati ons for palaeoproterozoic reconstructi ons. Precam-brian Research 148, 275-291.

PAYNE J. L., HAND M., BAROVICH K. M. & WADE B. P. 2008. Temporal con-straints on the ti ming of high-grade metamorphism in the northern Gawler Craton: implicati ons for assembly of the Australian Proterozoic. Australian Journal of Earth Sciences 55, 623-640.

PAYNE J. L., HAND M., BAROVICH K. M., REID A. & EVANS D. A. D. 2009. Correlati ons and reconstructi on models for the 2500-1500 Ma evoluti on of the Mawson Conti nent. Geological Society Special Publicati on: 319-355.

PAYNE J. L., FERRIS G., BAROVICH K. M. & HAND M. 2010. Pitf alls of clas-sifying ancient magmati c suites with tectonic discriminati on diagrams: An example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precambrian Research 177, 227-240.

POWELL C. M., LI Z. X., MCELHINNY M. W., MEERT J. G. & PARK J. K. 1993. Paleomagneti c constraints on ti ming of the Neoproterozoic breakup of Rodinia and the Cambrian formati on of Gond-wana. Geology 21, 889-892.

RANKIN L. R., FLINT R. B. & FANNING C. M. 1988. The Bosanquet Forma-ti on of the Gawler Craton. South Australia Geological Sur-vey. Quarterly Geological Notes 105, 12-18.

REID A., HAND M., JAGODZINSKI E., KELSEY D. & PEARSON N. 2008. Paleo-proterozoic orogenesis in the southeastern Gawler Craton, South Australia. Australian Journal of Earth Sciences 55, 449-471.

ROSS G. M. & VILLENEUVE M. 2003. Provenance of the Mesoprotero-zoic (1.45 Ga) Belt basin (western North America): Another piece in the pre-Rodinia paleogeographic puzzle. Bulleti n of

the Geological Society of America 115, 1191-1217.

RUTHERFORD L., HAND M. & BAROVICH K. 2007. Timing of Proterozoic metamorphism in the southern Curnamona Province: Im-plicati ons for tectonic models and conti nental reconstruc-ti ons. Australian Journal of Earth Sciences 54, 65-81.

SWAIN G., WOODHOUSE A., HAND M., BAROVICH K., SCHWARZ M. & FAN-NING C. M. 2005a. Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U-Pb zircon, geochemical and Sm-Nd isotopic implicati ons. Precambrian Research 141, 106-136.

SWAIN G., BAROVICH K., HAND M., FERRIS G. & SCHWARZ M. 2008. Petro-genesis of the St Peter Suite, southern Australia: Arc mag-mati sm and Proterozoic crustal growth of the South Austra-lian Craton. Precambrian Research 166, 283-296.

SWAIN G. M., HAND M., TEASDALE J., RUTHERFORD L. & CLARK C. 2005b. Age constraints on terrane-scale shear zones in the Gawler Craton, southern Australia. Precambrian Research 139, 164-180.

SZPUNAR M., HAND M., BAROVICH K. & JAGODZINSKI E. 2007. Age and provenance of the Palaeoproterozoic Hutchison Group, southern Gawler Craton, South Australia. SGTSG 2007 - De-formati on in the Desert, Alice Springs. Geological Society of Australia.

SZPUNAR M., HAND M., BAROVICH K., JAGODZINSKI E. & BELOUSOVA E. 2011. Isotopic and geochemical constraints on the Paleo-proterozoic Hutchison Group, southern Australia: Implica-ti ons for Paleoproterozoic conti nental reconstructi ons. Pre-cambrian Research 187, 99-126.

TEASDALE J. 1997. Methods for understanding poorly exposed terranes: The interpreti ve geology and tectonothermal evoluti on of the western Gawler Craton. Geology and Geophysics, Uni-versity of Adelaide, Adelaide (unpubl.).

THOMAS J. L., DIREEN N. G. & HAND M. 2008. Blind orogen: Integrated appraisal of multi ple episodes of Mesoproterozoic defor-mati on and reworking in the Fowler Domain, western Gawl-er Craton, Australia. Precambrian Research 166, 263-282.

WADE B. P., BAROVICH K. M., HAND M., SCRIMGEOUR I. R. & CLOSE D. F. 2006. Evidence for early Mesoproterozoic arc magmati sm in the Musgrave Block, central Australia: Implicati ons for Proterozoic crustal growth and tectonic reconstructi ons of Australia. Journal of Geology 114, 43-63.

Page 26: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 27: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 28: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 2

This chapter is published as:

Howard, K.E., Hand, M., Barovich, K.M., Reid, A., Wade, B.P., Belousova, E.A., 2009. Detrital zir-con ages: Improving interpretati on via Nd and Hf isotopic data. Chemical Geology, 262, 277-292.

Page 29: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 30: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-15-

Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data

Katherine E. Howard a,⁎, Martin Hand a, Karin M. Barovich a, Anthony Reid b,Benjamin P. Wade a, Elena A. Belousova c

a Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australiab Geological Survey, Department of Primary Industries and Resources, Adelaide, SA, 5000, Australiac ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia

a b s t r a c ta r t i c l e i n f o

Article history:Received 13 August 2008Received in revised form 28 January 2009Accepted 29 January 2009

Editor: R.L. Rudnick

Keywords:ProvenanceProterozoicNd isotopesHf isotopesDetrital zirconGawler Craton

The bulk of sedimentary provenance studies use similarities in the detrital zircon age patterns or “barcodes”in sedimentary systems and potential source regions to make interpretations about palaeogeographicsettings. While this “age-only” approach is generally considered to be effective, it is limiting because thetiming of zircon growth events may not be unique to specific terrains and important rock forming events maybe associated with little zircon growth.To a significant extent these limitations can be overcome by employing additional isotopic data sets such asSm–Nd and Lu–Hf that provide information on the crustal evolution of the source region, and allowcomparisons with sedimentary packages. As an example, the age spectra of detrital zircons inPalaeoproterozoic metasedimentary rocks in the eastern Gawler Craton in southern Australia are virtuallyidentical to the dominant zircon growth timelines in adjacent older domains of the Gawler Craton,presenting a prima facie case that it was the source region. However, whole rock Nd isotopic data indicatethat the pre-existing proto Gawler Craton was isotopically too crustally evolved (εNd (1850 Ma)−10) to havesupplied the bulk of the sediment to the relativelymore juvenilemetasedimentary units (εNd (1850 Ma)−1 to−5).In addition, zircon Hf isotopic compositions from ca 2000 Ma detrital zircons in the metasedimentary rocks(εHf (2000 Ma)+2 to +5) are significantly more juvenile than 2000 Ma rocks in the adjacent Gawler Craton(εHf (2000 Ma)−2 to−5). The combination of bulk rockNd andHf zircon data suggest that theGawler Craton is nota viable source region for the metasedimentary packages, despite the striking similarity between detrital zirconages and zircon crystallisation events within the craton.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A key requirement of any palaeogeographical model is that itsatisfies available geological constraints. Such constraints may includecorrelations based on the ages of events in the connecting orogenicbelts, palaeomagnetic constraints and overlap of sedimentary geo-chemical and temporal provenance patterns. The event chronology inorogenic belts can be used as piercing points between riftedcontinental fragments with similarities in events and styles as abasis for correlation (e.g. Burrett and Berry, 2000; Karlstrom et al.,2001; Foden et al., 2006). Palaeomagnetic data can provide con-straints on the locations of continental landmasses, with similarities inpolar wander paths suggesting continental regions had a commonmotion and therefore a connection for reconstruction models (e.g.Idnurm and Giddings, 1995; Karlstrom et al., 1999; Burrett and Berry,2000; Wingate et al., 2002). The provenance of sedimentary rocks(and their metamorphosed equivalents) can provide palaeogeo-graphic constraints if they can be plausibly connected with their

potential source regions (e.g. Cawood et al., 2003; Collins et al., 2003;Darby and Gehrels, 2006; Cawood et al., 2007). In some instancesthese ages and compositions appear to be sufficiently unique toprovide a restrictive constraint linking once proximal regions (e.g.Collins et al., 2003; Fitzsimons and Hulscher, 2005; Payne et al., 2006).

The use of detrital zircons in provenance studies has become aprimary tool in understanding tectonic amalgamation and palaeogeo-graphic reconstructions (e.g. Collins et al., 2003; Fitzsimons andHulscher, 2005; Payne et al., 2006; Cawood et al., 2007). The methodcommonly applied is to match the detrital zircon age spectra with theages of zircon growth events in potential source regions. This “age-only” approach, although elementary, has been shown to offersignificant constraints on palaeogeographic and tectonic models(Dickinson and Gehrels, 2003; Friend et al., 2003; Gillis et al., 2005;Samson et al., 2005; Talavera-Mendoza et al., 2005; Carter et al., 2006;Darby and Gehrels, 2006; Gleason et al., 2007; Kirkland et al., 2007).However, there are several significant limitations with the age-onlyapproach which are discussed in Moecher and Samson (2006):(1) source regions are not all equally fertile for zircon production, withsome source terranes not represented by zircon growth at all;(2) magmatic or thermotectonic events may not be represented by

⁎ Corresponding author. Tel.: +61 8 8303 4971; fax: +61 8 8303 6222.E-mail address: [email protected] (K.E. Howard).

0009-2541/$ – see front matter © 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.chemgeo.2009.01.029

Page 31: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-16-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

zircon growth; (3) tectonometamorphic events may not be recorded,or may produce zircon rims of insufficient volume to analyse with thechosen method. Furthermore a number of sampling problems arehighlighted by Andersen (2005) which include biases in apparentzircon age populations due to insufficient numbers of analysed grains.Additional limitations include: (1) Source regions may not be easilyidentified, due to a paucity of outcrop or erosion of the source rocks,making “barcode” matching difficult; (2) The timing of rock formingevents in potential source regions is a non-unique criterion sinceequivalent age events can occur in unrelated tectonic systems. Whilesome limitations can not be easily overcome (such as the lack ofoutcropping source regions), many other limitations can be addressedwith additional analytical methods.

In recent years it has been increasingly recognised that additionalinformation is needed to inform the interpretation of detrital zirconage data (e.g. Veevers et al., 2005; Augustsson et al., 2006; Veeverset al., 2006; Yang et al., 2006; Banks et al., 2007). In particular Sm–Ndwhole rock and Lu–Hf zircon isotopic data can place importantadditional constraints (Andersen, 2005; Veevers et al., 2005;Augustsson et al., 2006; Veevers et al., 2006; Yang et al., 2006;Banks et al., 2007). Whole rock Nd isotopic data can reveal the relativeinput of juvenile material derived from the mantle compared withcrustally evolved material recycled from the crust (Barovich andFoden, 2000; McLennan et al., 2003; Patchett, 2003), and incombination with geochemistry, can be useful in identifying sourceregions dominated by mafic lithologies. This then provides anotherconstraint which must be matched between sedimentary rocks andpotential source regions.

Hf isotope data can be applied in a similar way to whole rock Ndisotope compositions (Amelin et al., 2000; Patchett, 2003; Schereret al., 2007). However, Hf zircon isotopic compositions determine thecontributions of juvenile and crustally evolved material withinindividual zircon grains. Hf isotopic data combined with U–Pb datingenables a distinction to be made between zircon grains that haveformed at the same time but with different ratios of crustal andmantle contributions (Amelin et al., 2000; Patchett, 2003; Schereret al., 2007), and therefore may identify different source regions. Inrecognition of this, detrital zircon studies are increasingly using Hfisotopic data to better constrain potential source regions (Veeverset al., 2005; Augustsson et al., 2006; Veevers et al., 2006; Yang et al.,2006).

In this study we demonstrate that palaeogeographic constraintsbased on provenance interpretations using age-only criteria should betreated with caution. Detrital zircon ages from ca 1850 Ma metase-dimentary rocks in the eastern Gawler Craton, South Australia,correspond closely to the ages of major rock forming events withinthe older parts of the immediately adjacent (∼50 km) craton,presenting a strong prima facie case that the sequences were derivedfrom erosion of the Gawler Craton. However, bulk rock Nd and zirconHf isotopic compositions within the metasedimentary units disprovederivation solely from the proto Gawler Craton. Within the Australiancontext, the only plausible source region based on the Hf isotopiccompositions of the detrital zircons is the Pine Creek Orogen, some3000 km away in the North Australian Craton. This case study showsthat Nd and Hf isotope compositional information is as critical as theages of detrital zircons in the interpretation of provenance data.

2. Geological setting

The Gawler Craton in the South Australian Craton (Fig. 1) wasformed during two main periods of tectonic activity. Late Archaean(2560–2500Ma) to Palaeoproterozoic (ca 2000–1850Ma) units makeup the basement, which are intruded and overlain by late Palaeopro-terozoic (1750–1600 Ma) to early Mesoproterozoic (1600–1550 Ma)rocks (Daly et al., 1998; Swain et al., 2005; Hand et al., 2007). In theeastern Gawler Craton, the crustal scale Kalinjala Shear Zone, divides

Archaean and late Palaeoproterozoic rocks to the west fromdominantly mid-Palaeoproterozoic rocks to the east (Fig. 1).

2.1. West of the Kalinjala Shear Zone

To the west of the Kalinjala Shear Zone, the pre-1850 Ma south-eastern Gawler Craton is made up of late Archaean metasedimentaryand volcanic units that were intruded by comparatively juvenilegranites between 2520 and 2500 Ma referred to as the Sleaford andMulgathing Complexes (Daly et al., 1998). These granites include theCoulta Granodiorite (Daly et al., 1998), which is interpreted torepresent remnants of a rifted late Archaean arc (Swain et al., 2005)through which komatiites were erupted at 2510 Ma. The LateArchaean rocks underwent greenschist to granulite-grade meta-morphism between 2480 and 2420 Ma during the SleafordianOrogeny, which was also associated with the emplacement of2440 Ma, mostly crustally derived, granites (Daly et al., 1998).

Following a period of apparent tectonic quiescence between 2400and 2000 Ma, renewed tectonic activity was marked by the emplace-ment of the protoliths to the Miltalie Gneiss at 2000 Ma (Fanning et al.,2007), which outcrops sporadically over a distance of ca 250 km alongthe eastern Eyre Peninsula. These 2000Ma igneous rocks and associatedmetasedimentary units underwent high-grade metamorphism anddeformation sometime in the interval 2000–1850 Ma (Hand et al.,2007).

The Miltalie Gneiss is unconformably overlain by the WarrowQuartzite (the basal unit to the metasedimentary Hutchison Group).The minimum depositional age for the Hutchison Group is consideredto be 1845±9 Ma which is the U–Pb age of the volcanic BosanquetFormation interpreted to occur toward the top of the Hutchison Group(Rankin et al., 1990; Fanning, 1997; Daly et al., 1998; Fanning et al.,2007).

2.2. East of the Kalinjala Shear Zone

To the east of the Kalinjala Shear Zone the geology is dominated bythe 1850 Ma Donington Suite (Hoek and Schaefer, 1998; Ferris et al.,2002; Reid et al., 2008) which forms a batholithic-scale feature at least500 km by 70 km in current extent (Fairclough and Daly, 1995; Reidet al., 2008). The eastern outcroppingmargin of the Donington Suite isdefined by younger cover sequences ranging in age from ca 1760Ma torecent (Daly et al., 1998), and the full eastward extent of theDonington Suite is unknown. The Donington Suite ranges frommonzonitic to granitic in composition and has been intruded bynumerous syn-magmatic mafic dykes (Hoek and Schaefer,1998; Ferriset al., 2002; Reid et al., 2008).

Country rocks to the Donington Suite are rarely preserved.However, there is a region containing a metasedimentary packagethat provides access to the crust intruded by the Donington Suite. Onsouthwestern Yorke Peninsula, the Corny Point Paragneiss is ametasedimentary package ranging from psammitic to pelitic incomposition that preserves intrusive relationships with the Doning-ton Suite constraining its minimum depositional age to ca. 1850 Ma(Zang, 2002; Reid et al., 2008). Although separated by the KalinjalaShear Zone, the Corny Point Paragneiss has apparently similarminimum depositional age constraints to the Warrow Quartzite,which forms the base of the regionally extensive 2000–1850 MaHutchison Group (Fig. 1). The Corny Point Paragneiss and its detritalzircon and isotopic data are the focus of this study.

3. Analytical methods

3.1. U–Pb zircon dating

Analytical techniques for U–Pb isotopic dating of zircons followthose of Payne et al. (2006) andWade et al. (2008a). Zircons obtained

Page 32: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-17-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

Fig.1.Map

oftheinterpretedcrystalline

basemen

tgeo

logy

oftheGaw

lerCraton

,Sou

thAus

tralia,sho

wingsamplelocation

sfortheCo

rnyPo

intP

arag

neiss,theCo

ulta

Grano

dioritean

dtheMiltalie

Gne

iss(Faircloug

han

dDaly,19

95).Maininset

show

sade

taile

dmap

ofCo

rnyPo

int,Yo

rkePe

nins

ulaan

dsamplelocation

swithintheCo

rnyPo

intPa

ragn

eiss

(Richa

rdson,

1978

).Sm

allins

etsh

owstheGaw

lerCraton

inrelation

toothe

rPa

laeo

proteroz

oicterrains

ofAus

tralia.

N

OTE

: T

his f

igur

e is

incl

uded

on

page

17

o

f the

prin

t cop

y of

the

thes

is h

eld

in

the

Uni

vers

ity o

f Ade

laid

e Li

brar

y.

Page 33: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-18-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

from samples of the Corny Point Paragneiss, as well as the CoultaGranodiorite, the Miltalie Gneiss and a collection of Miltalie Gneissderived stream sediments from the pre-1850 Ma rocks in the easternGawler Craton to the west of the Kalinjala Shear Zone were datedby U-Pb methods. Rocks were jaw crushed and sieved, collecting the79–300 μm portion. Zircon separates were obtained via panning,Frantz (at 0.6 nT), and heavy liquid methods before being hand pickedand mounted into epoxy resin blocks. Zircon grains were CL imagedusing a Phillips XL-20 SEM with attached Gatan Cathode Lumines-cence. U–Pb isotopic analyses were obtained using a New Wave213 nm Nd-YAG laser with attachment on spectroscope in a Heablation atmosphere, coupled to an Agilent 7500cs ICP-MS at theUniversity of Adelaide. The laser pit diameter was 40 μm, with a typicaltotal depth of 40–50 μm. U–Pb fractionation was corrected using theGEMOC GJ-1 zircon (TIMS normalisation data 207Pb/206Pb=608.3 Ma,206Pb/238U=600.7 Ma and 207Pb/235U=602.2 Ma, (Jackson et al.,2004)). Accuracy was checked with an in-house Sri Lankan zirconstandard (BJWP-1, ca 720 Ma). Over the duration of this study thereported average normalised ages for GJ-1 are 608.9±17.3 Ma, 600.7±9.2Ma, 602.4±7.7Ma for the 207Pb/206Pb, 206Pb/238Uand 207Pb/235U,respectively (2σ, n=127). The 207Pb/206Pb grain ages were used, andspot errors are reported at 1 sigma. A number of zircon grains wereexcluded from analysis due to metamictisation and small size. Detritalcores larger than 40 μm in size were targeted, as well as some largemetamorphic rims. In the data interpretation, a b10% discordancythresholdwas used for all grains analysed. Probability density plots havebeen constructed using Isoplot version 3.0 (Ludwig, 2003).

3.2. Whole-rock Sm–Nd isotopic analyses

Analytical techniques and analysis for whole rock Sm–Nd isotopicdata follow those of Wade et al. (2005) and Payne et al. (2006) andwere done at the University of Adelaide. Samples were spiked with a150Nd–147Sm solution. HF was added to the sample in Teflon ‘bombs’and evaporated. The samples were then oven-heated at 190°C for5 days in HF in sealed Teflon bombs. The HFwas then evaporated, withHNO3 added shortly before samples were completely dry. 6 MHCl wasadded and samples were heated for 2 days at 160°C. REE wereseparated in Biorad Polyprep columns, and were further separated inHDEHP-impregnated Teflon-powder columns to isolate Sm and Nd.Nd was run on a Finnigan MAT 262 Thermal Ionisation Mass Spec-trometer (TIMS) and Sm was run on a MAT 261 TIMS. The La Jolla andJNdi-1 standards give long term running averages of 0.511834±0.000018 (2σ, n=96) and 0.512092±0.000016 (2σ, n=164)respectively. Epsilon values were calculated relative to a chondritepresent day 143Nd/144Nd value of 0.512638 and 147Sm/144Nd value of0.1966 (Goldstein et al., 1984). Crustal residence ages relative to thedepleted mantle (TDM) assume present day 143Nd/144Nd value of0.513114 and a 147Sm/144Nd DM value of 0.222 (Michard et al., 1985).

3.3. Zircon Hf isotopic analyses

Analyticalmethods for zirconHf isotopedeterminationaredescribedin detail in Griffin et al. (2006a) and are summarised below. Analyseswere carried out in situ with a New Wave/Merchantek UP-213 laser-ablation microprobe, attached to a Nu Plasma multi-collector ICP-MS,at Macquarie University, Sydney. The NewWave/Merchantek LUV lasersystemdelivers a beamof 213nmUV light froma frequency-quadrupledNd:YAG laser. Most analyses were obtained using a beam diameterof 55 μm and a 5 Hz repetition rate resulting in typical Hf signals of1–5×10−11 A. Typical ablation times were 80–120 s, resulting in pits40–50 μm deep.

For this work we analysed masses 172, 175, 176, 177, 178, 179 and180 simultaneously in Faraday cups; all analyses were carried out instatic-collection mode. Data were normalized to 179Hf/177Hf=0.7325,using an exponential correction for mass bias. Initial setup of the

instrument is done using a 1 ppm solution of JMC475 Hf whichtypically yields a total Hf beam of 10–14×10−11 A.

Interference of 176Lu on 176Hf is corrected bymeasuring the intensityof the interference-free 175Lu isotope and using 176Lu/175Lu=0.02669(Patchett, 1983) to calculate 176Lu/177Hf. Similarly, the interference of176Yb on 176Hf has been corrected by measuring the interference-free172Yb isotope and using 176Yb/172Yb to calculate 176Yb/177Hf. Theappropriate value of 176Yb/172Yb was determined by spiking theJMC475 Hf standard with Yb, and finding the value of 176Yb/172Yb(0.5865) required to yield the value of 176Hf/177Hf obtained on the pureHf solution (Griffin et al., 2004). The accuracy of the Yb and Lucorrections has been demonstrated by repeated analysis of standardzirconswith a range in 176Yb/177Hf and 176Lu/177Hf (Griffin et al., 2004).

Before and during the analysis of unknowns the Mud Tank zircons(Griffin et al., 2004)were analysed to check instrument performance andstability (Table 1). TheMud Tank standard analysed during this study hasan average corrected 176Hf/177Hf value of 0.282515±0.000026 (2σ,n=11). This is similar to the long term running average of 0.282523±0.000043 (2σ, n=2190) (Griffin et al., 2006b). Additionally over themonth inwhichanalyseswere collected, the91500 zircon standard,witha reported 176Lu/177Hf value of 0.000317±0.000054 (2σ; Griffin et al.,2006b), had an average corrected 176Hf/177Hf value of 0.282302±0.000021 (2σ, n=6). This is well within error of the long term runningaverage of 0.282307±0.000058 (2σ, n=632; Griffin et al., 2006b).

The measured 176Lu/177Hf ratios of the zircons have been used tocalculate initial 176Hf/177Hf ratios. These age corrections are verysmall, and the typical uncertainty on a single analysis of 176Lu/177Hf(+1%) contributes an uncertainty of b0.05 εHf unit.

There are currently several proposed values for the 176Lu decayconstant which range between 1.983×10−11 and 1.865×10−11 (Bli-chert-Toft and Albarede, 1997; Scherer et al., 2001; Bizzarro et al., 2003;Soderlund et al., 2004). The decay constants of Blichert-Toft andAlbarede (1997) and Bizzarro et al. (2003) have been calculated frommeteorite samples, while the decay constants of Scherer et al. (2001)and Soderlund et al. (2004) have been calculated from terrestrialsamples. For the calculation of εHf, we have adopted a decay constant for176Lu of 1.865×10−11 y−1 (Scherer et al., 2001).

Chondritic values of 176Hf/177Hf=0.0332 and 176Lu/177Hf=0.282772(Blichert-Toft and Albarede, 1997) have been used. These values arereported relative to 176Hf/177Hf=0.282163 for the JMC475 standard.

Depletedmantlemodel ages (TDM), also knownas single stagemodelages,were calculatedusing themeasured 176Lu/177Hf ratios, referred to amodel depleted mantle with present day 176Hf/177Hf ratio of 0.28325(Nowell et al.,1998) and 176Lu/177Hf ratio of 0.0384 (Griffin et al., 2000).

Table 1Zircon reference material analyses.

Analysis 176Lu/177Hf 176Yb/177Hf 176Hf/177Hf 2 SE

MT-06-257 0.000047 0.002127 0.282520 0.000024MT-06 258 0.000045 0.001937 0.282517 0.000017MT-06-260 0.000042 0.002028 0.282516 0.000030MT-06-261 0.000021 0.000746 0.282500 0.000015MT-06-261 0.000050 0.002247 0.282515 0.000019MT-06-262 0.000053 0.002306 0.282549 0.000034MT-06-263 0.000046 0.001935 0.282532 0.000026MT-06-264 0.000039 0.001604 0.282507 0.000044MT-06-265 0.000055 0.002233 0.282505 0.000034MT-06-266 0.000052 0.002210 0.282500 0.000030MT-06-267 0.000020 0.000716 0.282509 0.000013Mudtank average 0.000043 0.001826 0.282515 0.00002691500-06-07 0.000321 0.011455 0.282289 0.00002091500-06-08 0.000311 0.008644 0.282289 0.00001691500-06-09 0.000320 0.008994 0.282289 0.00003291500-06-10 0.000305 0.009293 0.282292 0.00001791500-06-11 0.000322 0.009169 0.282333 0.00002291500-06-12 0.000316 0.009024 0.282317 0.00001891500 average 0.000316 0.009430 0.282302 0.000021

Page 34: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-19-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

Crustal model ages, assuming derivation from a depleted mantle (TDMc ),otherwise known as two stage model ages, were calculated for thesource rock of themagma using the initial 176Hf/177Hf ratio of the zirconand assuming amean crustal value of 176Lu/177Hf=0.0015 (Griffin et al.,2002).

4. Results

4.1. LA-ICP-MS U–Pb detrital zircon data from the Corny Point Paragneiss

Three samples (CP-2003-05, CP-2006-10 and CP-2006-18) wereused for U–Pb zircon age analyses. Physical structures of the analysedzircons are summarised in Table 2. U–Pb zircon ages of the samplescollected from the Corny Point Paragneiss are available in theelectronic supplement, while concordia plots and probability densitydiagrams in Fig. 2.

Zircons from the three Corny Point Paragneiss samples used in thisstudy are 70–250 μm in size, yellow to colourless, and rounded towellrounded in shape. The internal structure of these detrital zirconsvaries from strong oscillatory zoning to almost homogeneous. Internalgrowth patterns are visible in some of the grains, while cores can beclearly identified in others. Internal growth domains were targeted ifcores were not clearly defined.

Of the 182 zircon grains analysed from the Corny Point Paragneiss,116 are within 10% discordancy and provide a sample age rangefrom 1852±18 Ma to 2769±16 Ma (Fig. 2). Samples CP-2003-05 andCP-2006-10 are metapelites and share age populations at 1900 Ma,2000–2020 Ma, and 2450 Ma with smaller peaks at 2160 Ma, and2500–2520 Ma. In addition CP-2006-10 has age population peaks at2060 Ma, 2340 Ma and 2650 Ma. Metapsammite CP-2006-18 hasdetrital zircon age peaks at 2000–2020 Ma, 2060 Ma, 2420 Ma,2510 Ma with minor peaks at 2200 Ma, 2670 Ma and 2770 Ma. Theyoungest detrital zircon grains from samples CP-2003-05, CP-2006-10and CP-2006-18 within 10% discordancy have ages at 1881±18 Ma,1852±18 Ma and 1946±18 Ma respectively.

4.2. LA-ICP-MS U–Pb zircon data from Gawler Craton samples

Since the N1850 Ma components of the adjacent Gawler Craton arean obvious source for the protoliths of the Corny Point Paragneiss,additional U–Pb zircon data was collected from this region to providecomparative data to explore its potential as a source region. Zirconsfrom the Coulta Granodiorite on western Eyre Peninsula (Fig. 1) havewell preserved igneous morphologies (Table 2). U–Pb data from 9concordant zircons define a population with a mean age of 2524±11 Ma (Fig. 2), which is interpreted to be the crystallisation age of therock. This age is consistent with a SHRIMP zircon U–Pb age of 2519±8 Ma from the same intrusive suite (Fanning et al., 2007).

The ca 2520 –2450 Ma rock system in the eastern Gawler Craton isintruded by ca 2000 Ma granodioritic rocks referred to as the MiltalieGneiss (Daly et al., 1998; Hand et al., 2007). U–Pb zircon dating fromigneous-style zircons from the Miltalie Gneiss (Fig. 2) yields aninterpreted crystallisation age of 2017±10 Ma (Fig. 2). This age issimilar to existing SHRIMP ages of 2002 ±15 Ma, 1999±13 Ma and2001±8 Ma (Fanning et al., 2007).

In addition, three localised stream sediment samples were takenfromvarious locations within the outcropping Miltalie Gneiss in orderto examine potential age heterogeneity. Zircon ages from these streamsamples were collated together (Miltalie composite), and have adominant population at 2012±14 Ma (Fig. 2). A significantly youngerpopulation around 1200 Ma in age is ∼250 Ma younger than the lastknown tecotonothermal event in the Gawler Craton (Hand et al., 2007)and is interpreted to belong to a windblown component derived fromthe Musgrave Province in central southern Australia (Belousova et al.,2006; Wade et al., 2008b). The ages of these young grains are notconsidered relevant to the evolution of the high-grade Miltalie Gneiss. Ta

ble2

Description

sof

zircon

sfrom

alls

amples

analysed

.

Sample

Location

Rock

unit

Size

Colour

A.R.

Shap

eCL

description

CP-05

137°

01′03

″–34

°53

′46

″Co

rnyPo

intPa

ragn

eiss

(∼18

50Ma)

70–25

0μm

Yello

wto

colourless

1:2

Roun

dedto

wellrou

nded

withtabu

largrains

,oc

casion

alne

edle

shap

eSm

allc

ores

surrou

nded

bynu

merou

sov

ergrow

thsrimswithzo

ning

rang

ingfrom

oscilla

tory

tominim

al.D

iffus

ean

dmetam

ictfeatures

insomeof

thegrains

.CP

-200

6-10

137°

00′51

″–34

°53

′40

″Co

rnyPo

intPa

ragn

eiss

(∼18

50Ma)

70–25

0μm

Yello

wto

colourless

1:2

Roun

dedto

wellrou

nded

withtabu

largrains

,oc

casion

alne

edle

shap

eSm

allc

ores

surrou

nded

bynu

merou

sov

ergrow

thsrimswithzo

ning

rang

ingfrom

oscilla

tory

tominim

al.D

iffus

ean

dmetam

ictfeatures

insomeof

thegrains

.CP

-200

6-18

137°

00′53

″–34

°53′

36″

CornyPo

intPa

ragn

eiss

(∼18

50Ma)

70–25

0μm

Yello

wto

colourless

1:2

Roun

dedto

wellrou

nded

withtabu

largrains

,oc

casion

alne

edle

shap

eSm

allc

ores

surrou

nded

bynu

merou

sov

ergrow

thsrimswithzo

ning

rang

ingfrom

oscilla

tory

tominim

al.D

iffus

ean

dmetam

ictfeatures

insomeof

thegrains

.CG

135°

13′26

″–34

°07

′44

″Co

ulta

Grano

diorite

(∼25

20Ma)

120–

320μm

Colourless

1:4

Elon

gate,rectang

ular,e

uhed

ral,tabu

lar

grains

Largeco

resfree

from

zoning

surrou

ndingby

rimsof

oscilla

tory

zoning

.

MO7

136°

45′46

″–33

°29′

48″

Miltalie

Ortho

gneiss

(∼20

00Ma)

70–23

0μm

Colourless

1:3

Euhe

dral

rang

ingbe

twee

ntabu

laran

dne

edle

likesh

ape

Zircon

srang

ebe

twee

nlargeco

reswithminor

overgrow

thrimsto

smallc

ores

with

major

oscilla

tory

overgrow

thswithsomediffus

ean

dmetam

ictfeatures

MS

136°

46′38

″–33

°33

′06

″Miltalie

Compo

site

(unc

onsolid

ated

sedimen

ts)

80–30

0μm

Redto

yello

wto

colourless

1:3

Roun

dedto

Euhe

dral

inex

tern

alform

with

mainlytabu

larbu

tsomene

edle

likein

shap

eZircon

sva

ryingwidelybe

twee

nab

sent

tooscilla

tory

zoning

.Ofthezo

nedzircon

sco

resap

pear

tobe

med

ium

insize

withnu

merou

sdiffus

ean

dmetam

ictde

fects

136°

45′58

″–33

°28

′22

136°

43′03

″–33

°19

′50

136°

43′02

″–33

°19

′57

Page 35: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-20-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

Page 36: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-21-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

4.3. Sm–Nd isotopic results

Sm–Nd isotopic results for 11 samples from the Corny PointParagneiss and 3 samples from the Miltalie Gneiss are shown inTable 3. The Corny Point Paragneiss samples range in εNd (1850) from−4.6 to −0.8 with an average of −3.6±0.1. The Miltalie Gneisssamples range in εNd (1850) from −1.6 to −0.8.

4.4. Zircon Hf isotopic results

Hf isotopic results for all samples used in this study are available inthe electronic supplement and are presented comparatively in Fig. 3on an εHf vs. time plot. Of the 58 zircons from the Corny PointParagneiss analysed for Hf isotopes, only 43 were used, limited byb10% age discordancy. These points plot mainly between the CHURand the depleted mantle (Fig. 3).

Hf isotopic data was also collected for the Miltalie Gneiss and theCoulta Granodiorite. Additionally to aid in exploring the provenance ofthe protoliths of the Corny Point Paragneiss, a ca 2000 Ma volcani-clastic package (theWildman Siltstone) from the Pine Creek Orogen inthe North Australian Craton (Worden et al., 2008) was also analysed.All sixteen of the Miltalie Orthogneiss Hf isotopic results were used asthey were within 10% of age concordancy. The Miltalie Orthogneissplots in a small group with εHf values between −2 and −5 at 2000–2020 Ma, suggesting little similarity with similarly-aged detritalzircons in the Corny Point Paragneiss. The composite Miltaliesediment sample supports these results, overlapping with the MiltalieOrthogneiss rock sample data (Fig. 3). Of the 17 zircons analysed for Hfisotopes from the Coulta Granodiorite, 13 were used as they werewithin 10% of age concordancy. The zircons from the CoultaGranodiorite have εHf values between +1 and+4 at 2520–2550 Ma(Fig. 3).

The U–Pb zircon dates for the ca 2000 Ma volcaniclastic WildmanSiltstone from the Pine Creek Orogen in the North Australian Cratonwere obtained from Worden et al. (2008). The Hf isotopic data wereobtained from the same grain mount and age analysis spots used byWorden et al. (2008). These zircons have positive εHf values between+2 and +8 at 2000–2020 Ma.

Crustal model ages (TDMc ) were calculated for each zircon assumingaverage continental crust with 176Lu/177Hf values of 0.0015 (Griffin etal., 2002) as the zircon grain growth reservoir. Based on this crustalmodel, an age range of 2.79 to 2.94 Ga is obtained for the MiltalieGneiss. This is very similar to the crustal model age range of the CoultaGranodiorite (2.76 to 2.95 Ga). The Corny Point Paragneiss has a

younger crustal model age range of 2.30 to 2.55 Ga which overlapswith the range of the ca 2000 MaWildman Siltstone (2.23 to 2.65 Ga).

5. Discussion

5.1. Corny Point Paragneiss — depositional age constraints

Given the similarity in age peaks and close proximity in outcrop,the three Corny Point Paragneiss samples used for U–Pb zircon datingare grouped together for the purpose of discussion (Fig. 4). Theyoungest analysed zircon with interpreted detrital characteristicsyields an age of 1852±18 Ma. This is within error of the intrusive ageof the Donington Suite (Reid et al., 2007) which intrudes the CornyPoint Paragneiss (Reid et al., 2008). However, the age of this singlezircon grain is isolated from a larger group of slightly older detritalzircon grains which give ages around 1870–1880 Ma, followed by acontinuum ranging up to around 2050–2090 Ma. We suggest that this1870–1880 Ma peak provides a realistic maximum depositional age,suggesting that the protoliths to the metasedimentary rocks weredeposited in the interval 1870–1850 Ma.

5.2. Correlation of detrital zircon ages with a potential source region

U–Pb zircon ages from the metasedimentary units are displayed ascomparative probability density plots in Fig. 5. Age population peaksfound within the metasedimentary rocks occur at 1900 Ma, 2000 Ma,2450Ma, and 2510Ma. A suitable source regionwould need to containthese same zircon age populations to be considered viable. The seriesof ages can be considered as a diagnostic pattern for the source of themetasedimentary sequence.

For the purpose of this study, the most obvious potential source toconsider is the N1850 Ma components of the Gawler Craton whichoutcrop to the west of the metasedimentary package (Fig. 1). Fig. 5summarises all the zircon grain ages from N1850 Ma rocks availablefrom the Gawler Craton (Jagodzinski, 2005; Swain et al., 2005;Jagodzinski et al., 2006; Fanning et al., 2007). Three Gawler Cratontime lines associated with zircon growth occur across the numeroussamples represented in Fig. 5: the Dutton Suite (2510–2530 Ma), theSleafordian Orogeny (2420–2480 Ma) and the Miltalie Event (2000–2025 Ma) (Daly et al., 1998; Swain et al., 2005; Fanning et al., 2007;Hand et al., 2007). To supplement this data set, several samples fromthe Gawler Craton that coincide with two of the dominant detritalzircon ages found in the Corny Point Paragneiss were analysed as apart of this study (Fig. 5). These include the 2520 Ma Coulta

Fig. 2. U–Pb concordia plots for samples from the Corny Point Paragneiss, Coulta Granodiorite, Miltalie Orthogneiss and Miltalie Composite with inset probability density plots. Alldata are displayed in the concordia plots, including discordant grains. The probability density plots show 207Pb/206Pb ages with b10% discordant grain peaks in black and all data ingrey. Data-point error ellipses are at the 68.3% confidence interval.

Table 3Results of Sm–Nd isotopic analysis.

Sample no. Location Rock type Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd 2 S.E. εNd (0) εNd (T) TDM (Ma)

CP8 137° 01′ 05″ –34° 53′ 45″ Corny Point Paragneiss (∼1850 Ma) 6.8297 37.3216 0.1107 0.511389 10 −24.4 −4.0 2572CP5 137° 01′ 03″ –34° 53′ 46″ Corny Point Paragneiss (∼1850 Ma) 9.1768 52.4062 0.1058 0.511346 8 −25.2 −3.7 2518CP-2006-23 137° 00′ 57″ –34° 53′ 37″ Corny Point Paragneiss (∼1850 Ma) 7.7677 44.6904 0.1050 0.511483 10 −22.5 −0.8 2312CP-2006-18 137° 00′ 53″ –34° 53′ 36″ Corny Point Paragneiss (∼1850 Ma) 9.4417 47.7419 0.1195 0.511464 8 −22.9 −4.6 2690CP-2006-12 137° 00′ 51″ –34° 53′ 40″ Corny Point Paragneiss (∼1850 Ma) 6.1177 35.9253 0.1029 0.511329 11 −25.5 −3.3 2475CP-2006-11 137° 00′ 51″ –34° 53′ 40″ Corny Point Paragneiss (∼1850 Ma) 8.2414 47.2593 0.1054 0.511337 8 −25.4 −3.7 2519CP-2006-10 137° 00′ 51″ –34° 53′ 40″ Corny Point Paragneiss (∼1850 Ma) 8.2822 47.6594 0.1050 0.511339 9 −25.3 −3.6 2509CP-2006-09 137° 01′ 05″ –34° 53′ 45″ Corny Point Paragneiss (∼1850 Ma) 12.8664 71.4970 0.1088 0.511375 8 −24.6 −3.8 2546CP-2006-07 137° 01′ 05″ –34° 53′ 45″ Corny Point Paragneiss (∼1850 Ma) 10.8773 60.4778 0.1087 0.511357 8 −25.0 −4.1 2570CP-2006-05 137° 01′ 05″ –34° 53′ 45″ Corny Point Paragneiss (∼1850 Ma) 11.2325 63.6159 0.1067 0.511329 10 −25.5 −4.2 2561CP-2006-02 137° 01′ 05″ –34° 53′ 45″ Corny Point Paragneiss (∼1850 Ma) 5.7722 32.4827 0.1074 0.511385 10 −24.4 −3.3 25007D 136° 45′ 46″ –33° 29′ 48″ Miltalie Orthogneiss (∼2000 Ma) 12.5240 73.4780 0.1030 0.511314 16 −25.8 −1.6 229611B 136° 43′ 03″ –33° 19′ 50″ Miltalie Orthogneiss (∼2000 Ma) 22.6219 132.8884 0.1029 0.511353 8 −25.1 −0.8 224011C 136° 43′ 03″ –33° 19′ 50″ Miltalie Orthogneiss (∼2000 Ma) 11.4065 65.8970 0.1046 0.511368 10 −24.8 −0.9 2257

Page 37: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-22-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

Granodiorite in the Dutton Suite, and the 2000 Ma protoliths to theMiltalie Gneiss rock suites of the Gawler Craton.

Further evidence supporting the dominant Gawler Craton time-lines of 2000Ma, 2450Ma, and 2520Ma, comes from a Terranechron®

dataset (Belousova et al., 2006) (Fig. 5). This data was acquired byanalysing detrital zircons in modern day stream sediment derivedfrom erosion of the present day exposed Gawler Craton. Fig. 5 showsthat the dominant ages of zircons currently being eroded matcheswith the detrital zircon ages within the Corny Point Paragneiss.

Therefore, erosion of N1850 Ma components of the Gawler Craton,at least as now presently exposed, would have provided detritalzircons of ages 2000 Ma, 2450Ma and 2520Ma. However, conceivablythis spectrum of ages may not have been available for erosion at ca1870–1850 Ma, which corresponds to the depositional age range ofthe Corny Point Paragneiss Protoliths. The ability of the Gawler Cratonto provide the range of above detrital zircon ages prior to 1850 Maappears to be confirmed by detrital zircon ages in the WarrowQuartzite (Fanning et al., 2007), which forms an extensive sequencethat directly overlies ca 2520–2000 Ma rocks of the Gawler Craton(Daly et al., 1998; Hand et al., 2007). Nd isotope data from theWarrowQuartzite (Fig. 6) shows a similar isotopic composition to thatexpected from erosion of the underlying rocks in the eastern GawlerCraton (Schwarz et al., 2002). Based on this logic, the detrital zirconages of 2000, 2450 and 2520 Ma found in the Warrow Quartzite(Fig. 5) are considered to be representative of ca 1870–1850 Maerosion of the Gawler Craton.

There are a number of recent examples where correspondencesbetween a series of detrital zircon ages and zircon growth events inpotential source regions have been used as either the sole or mostconstraining basis for interpreted palaeogeographic connectionbetween either source to sediment or sediment to sediment links(e.g. Dickinson and Gehrels, 2003; Friend et al., 2003; Gillis et al.,2005; Samson et al., 2005; Talavera-Mendoza et al., 2005; Carter et al.,2006; Darby and Gehrels, 2006; Gleason et al., 2007; Kirkland et al.,2007). Given the correspondence between the ages of detrital zirconsin the Corny Point Paragneiss and the major intervals of zircon growth

in N1850 Ma rocks in the adjacent Gawler Craton, a reasonableinterpretation would be that the protoliths to the Corny PointParagneiss were derived from erosion of pre 1850 Ma rocks in theGawler Craton.

5.3. Correlation of isotopic data with a potential source region

To examine whether the age correspondence between detritalzircons in the Corny Point Paragneiss and N1850 Ma zircon formingevents in the Gawler Craton is significant in terms of identifying thesource region to the metasedimentary rocks, bulk rock Nd and zirconHf isotopic data are used to provide additional constraints. If the CornyPoint Paragneiss protoliths were derived from the adjacent GawlerCraton, then Sm–Nd isotopic data and Hf zircon isotopic compositionsbetween the two regions should correspond.

Existing Nd data from the average late Archaean Gawler Cratonshows that it has a crustally evolved isotopic signaturewith εNd (1850 Ma)

values ranging between −11 and −7 (Stewart, 1992; Turner et al.,1993; Creaser, 1995; Swain et al., 2005; Schaefer, 1998) (Fig. 6). Dueto the significant 2000 Ma detrital zircon age peak in themetasedimentary rocks (Fig. 5), additional Nd isotopic data wascollected from the 2000 Ma Miltalie Gneiss in the adjacent GawlerCraton to supplement existing data. εNd (1850 Ma) values rangebetween −5 and −3 for these rocks. Nd isotopic data from theoverlying 2000–1850 Ma Warrow Quartzite, which overlies theMiltalie Gneiss and contains detrital zircon age peaks of 2000 Ma,2450 Ma and 2520 Ma (Fig. 5), has εNd (1850 Ma) values rangingbetween−10 and−7 (Schwarz et al., 2002). This range is consistentwith the average for the underlying eastern Gawler Craton basement,suggesting that the Warrow Quartzite was derived from erosion ofthe Gawler Craton. If this conclusion is valid, it implies that ca 1870–1850 Ma erosion of the Gawler Craton would have produced detritalzircon age populations of 2520, 2450 and 2000 Ma, which areessentially identical to those found in the Corny Point Paragneiss.

Since the Gawler Craton seems a likely source region for the1850 Ma metasedimentary units based on comparative zircon ages,

Fig. 3. εHf values plotted against 207Pb/206Pb ages for individual zircon grains from the Corny Point Paragneiss, Miltalie Gneiss, Coulta Granodiorite and the Gawler Craton. The GawlerCraton data are from Belousova et al. (2006). Discordant grains (N10%) have been omitted. Vertical lines represent the timing of dominant zircon age populations; 1990–2020 Ma,2420–2450 Ma and 2500–2530 Ma.

Page 38: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-23-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

εNd values expected for the Corny Point Paragneiss should involve amixture of comparatively juvenile material from the Miltalie Gneissand crustally evolved material from the average Archaean GawlerCraton. Thus εNd (1850 Ma) values of between −10 to −6 could bepredicted for the Corny Point Paragneiss.

However, εNd (1850 Ma) values of between−5 to−1 from the CornyPoint Paragneiss suggests derivation from a more juvenile source thanthe average Archaean Gawler Craton. Within the context of sedimentderivation from the Gawler Craton, one explanation for the differentNd isotopic compositions is that significant input from comparatively

more juvenile sources such as the Miltalie Gneiss mixed with smalleramounts of average Archaean Gawler Craton, allowing the overallisotopic signature to remain relatively juvenile. However, the propor-tion of ca 2450–2520 Ma detrital grains suggests that a significantcomponent of the detritus was derived from pre-2000 Ma rocks.Another explanation is that the Gawler Craton could have included arock system that has since eroded away which could have suppliedmore juvenile sediment input. This is a distinct possibility for theproto Gawler Craton, since the granulite facies Miltalie Gneiss wasexposed by ca 1850Ma (Daly et al., 1998; Hand et al., 2007), indicatingsignificant levels of Palaeoproterozoic denudation in the GawlerCraton. However, the crustally evolved isotopic composition of theWarrow Quartzite, which directly overlies the ca 2000 Ma rocks in theGawler Craton suggest that Palaeoproterozoic erosion of the GawlerCraton would have produced crustally evolved detritus. Therefore itappears that the Corny Point Paragneiss and Warrow Quartzite mayhave been derived from terrains with similar aged rock systems, butwith different crustal evolutions.

Hf isotopic data offer further insight into testing the validity of aGawler Craton source for the metasedimentary rocks. εHf data fromGawler Craton samples including theMiltalie Orthogneiss, theMiltaliecomposite sample, and the Coulta Granodiorite are displayed in Fig. 3.

The time interval 2510–2530 Ma corresponds with the oldestmajor peak in the Corny Point Paragneiss as well as a major rockforming period in the Gawler Craton. At this time period Hf isotopesare less useful than younger time slices in determining crustalevolution between zircon populations from different source regions.This is due to two effects: 1) the evolution pathways of crustalvolumes converge back through time toward the depleted mantle;and 2) the scale of the errors on the Hf isotope data. Therefore theisotopic distinction between juvenile and reworked crust is not asdefinitive as for younger periods of Earth history. Regardless, it is stillevident that the ca 2520 Ma Coulta Granodiorite has zircon εHf (2520 Ma)

values ranging from+1 to+4 (Fig. 3) and sitswithin the range of the ca2520–2450 Ma Sleafordian Complex in the Gawler Craton representedby Terranechron® and rock data (Belousova et al., 2006).

Within the ca 2000 Ma interval, the zircons of the Miltalie Gneisshave crustally evolved εHf values ranging from −2 to −5 (Fig. 3). Acompilation of available εHf data from ca 2000 Ma zircons in theGawler Craton (Belousova et al., 2006; Fig. 3), show identical isotopicsignatures, and are probably derived from the Miltalie Gneiss and itsequivalents. This emphasises the comparatively crustally evolvednature of the 2000 Ma zircons within the Gawler Craton. Similaritiesbetween the compiled data (Belousova et al., 2006) and the Miltaliesamples analysed in this study suggest the samples used here arerepresentative of the Miltalie system at a larger scale.

Therefore zircons being eroded from the Gawler Craton wouldshow isotopic signatures with εHf (2520 Ma) values ranging from−2 to+5, and εHf (2000 Ma) values ranging from −2 to −5. If the GawlerCraton was the source region for the Corny Point Paragneiss then thezircons between them should have the same isotopic compositions.

The isotopic composition of the zircons in the 2520 Ma age groupfrom the Corny Point Paragneiss falls within the range of values fromthe Gawler Craton. However, the 2000 Ma detrital zircons from themetasedimentary rocks are too juvenile with εHf (2000 Ma) values of+2to +5. It therefore appears on the basis of Hf isotopic data thatequivalents of the presently exposed Gawler Craton were not thesource of the 2000 Ma detrital zircons in the Corny Point Paragneiss.

Hf isotopic crustal model ages further support this argument(Fig. 3). The crustal model age range for the 2000 Ma zircons from theMiltalie Gneiss and the 2000 Ma zircons from the Gawler CratonTerranechron® is 2.94 Ga to 2.79 Ga, which is identical to that of the2520 Ma Coulta Granodiorite (Fig. 3) suggesting the 2000 Ma zirconswithin the Miltalie Gneiss were formed from reworking of materialisotopically similar to the Coulta Granodiorite. The crustal model agerange of the zircons within the Corny Point Paragneiss is much

Fig. 4. U–Pb zircon probability density plots showing 207Pb/206Pb ages with b10%discordant analyses for the three individual Corny Point Paragneiss samples and acombined probability density plot.

Page 39: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-24-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

younger at 2.30 Ga to 2.55 Ga. This further supports the proposal thatequivalents of the presently exposed Gawler Craton were not thesource of the Corny Point Paragneiss. This conclusion is consistentwith the comparative Nd isotopic compositions of the pre-1850 MaGawler Craton and the Corny Point metasedimentary rocks.

5.4. Other potential source regions for the Corny Point Paragneiss Protoliths

Since derivation of the Corny Point Paragneiss protoliths from theadjacent Gawler Craton appears unlikely despite the good correspon-dence between detrital zircon ages and zircon growth events on thecraton, the source region is unknown. At present our understanding ofthe arrangement of the continents at 1850 Ma is poor (Dawson et al.,2002; Betts and Giles, 2006; Payne et al., 2008; Betts et al., 2008),therefore in searching for the source of the Corny Point Paragneissprotoliths consideration should be given to any region that satisfiesthe U–Pb zircon ages, whole rock Nd and zircon Hf isotopic data.

Withinpresent dayAustralia there are fewknown∼2000Ma zirconbearing rocks systems. In the North Australia Craton, the Pine CreekOrogen (Fig. 7) contains a ca 2000 Ma volcaniclastic (Worden et al.,2008). In theWestern Australian Craton, theGlenburghOrogen (Fig. 7)contains ca 2000 Ma granites (Sheppard et al., 2004). Whole rock Ndisotopic data from the 2000 Ma magmatic rocks in the GlenburghOrogen range from εNd (2000 Ma) −8 to −3 (Sheppard et al., 2004)which is more evolved than the range of the Corny Point Paragneiss.While there is no available Hf isotopic data for these 2000 Mamagmatic rocks, using the calculations determined for the terrestrialHf–Nd array (εHf=1.36 εHf+2.95; Vervoort et al., 1999) whole rockεHf (2000 Ma) values of −2 to −8 can be estimated. Although this is abulk rock estimate, it suggests that the c. 2000 Ma granites of theGlenburgh Orogenwould have been too evolved to have generated theHf isotopic compositions (εHf (2000 Ma) range of +2 to +5) of thesimilarly aged zircons in the Corny Point Paragneiss. Thus it appearsthat the Glenburgh Orogen is an unlikely source region.

The Pine Creek Orogen in the North Australian Craton (Fig. 7) hasat least four major rock forming timelines in commonwith the GawlerCraton, suggesting it could be plausibly linked with the Gawler Craton(Table 4). At ca 2520 Ma, granitic rocks of the Gawler Craton (Swainet al., 2005; Fanning et al., 2007; this study) are comparable in age tothe 2520–2450 Rum Jungle Complex in the Pine Creek Orogen (Crosset al., 2005). Sleafordian metamorphism (2480–2420 Ma) in theGawler Craton (Swain et al., 2005; Hand et al., 2007) is roughlysynchronous with 2470 Ma granite emplacement in the NanambuComplex of the Pine Creek Orogen (Page et al., 1980). The 2000–

Fig. 6. εNd vs. time diagram for the Corny Point Paragneiss, Miltalie Gneiss and theWarrow Quartzite (Schwarz et al., 2002). Average Gawler Craton is calculated frompublished data for currently exposed lithologies N1850 Ma, (Turner et al., 1993; Creaser,1995; Swain et al., 2005; Schaefer, 1998; Stewart, 1992). The depositional age of theWarrow Quartzite is poorly constrained to the interval 2000–1850 Ma (Hand et al.,2007). Data are plotted at 1850 Ma; however, the white band represents the isotopicevolutionary trend back to 2000 Ma.

Fig. 5. U–Pb zircon probability density plot showing207

Pb/206

Pb zircon ages of samplesfrom the Corny Point Paragneiss, the Gawler Craton, the Gawler Craton Terranechron

®, and

theWarrowQuartzite. TheGawlerCraton compilation isderived fromSHRIMPzircongrainsolder than 1840 Ma dated from the Gawler Craton (Jagodzinski, 2005; Swain et al., 2005;Jagodzinski et al., 2006; Fanning et al., 2007). TheGawler Craton Terranechron

®probability

density plot is derived from LA-ICPMS analyses of zircon grains older than 1840 Ma fromBelousova et al. (2006). TheWarrow Quartzite data are from Fanning et al. (2007), and aretaken to represent erosion of the Gawler Craton in the interval 2000–1850Ma (see text fordetails). Grey bands reflect the dominant detrital zircon age peaks of the Corny PointMetasedimentary rocks. Only b10% discordant analyses have been included.

Page 40: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-25-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

2020 Ma time period is represented by the Miltalie Gneiss in theGawler Craton (Fanning et al., 2007; this study), and the tuffaceousWildman Siltstone in the Pine Creek Orogen (Worden et al., 2008).The 1857–1850 Ma Donington Suite and related metamorphism (Reidet al., 2008) is coeval with the 1850–1840 Ma granites in the westernPine Creek Orogen (Page et al., 1985) and 1861–1847 Ma metamorph-ism of the Nimbuwah event (Carson et al., 2008; Worden et al., 2008).

As there are no previous isotopic data for the ca 2000 Ma rocksfrom the Pine Creek Orogen, Hf isotopic datawere collected for zirconsfrom the 2020 Ma Wildman Siltstone (Fig. 3) to compare with the ca2000–2020Ma zircons in the Corny Point Paragneiss. The zircons from

the Wildman Siltstone sample gave an εHf (∼2000 Ma) range of between+7 and −1, which overlaps with the isotopic compositions of the ca2020 Ma zircons from the Corny Point Paragneiss (+2 to +5).Similarly, crustal model ages for the zircons from the WildmanSiltstone range from 2.23 Ga to 2.65 Ga encompassing the crustalmodel age range for the ca 2000 Ma zircons from the Corny PointParagneiss (2.30 Ga to 2.55 Ga; Fig. 3). Thus it is clear that erosionfrom equivalents of the presently exposed Pine Creek Orogen of theNorth Australian Craton could have provided zircons with agescorresponding to the three dominant timelines of 2000–2020 Ma,2420–2450Ma and 2520–2540Ma found in the detrital zircon spectra

Fig. 7. Map of Australia showing the three potential Australian source regions for the Corny Point Paragneiss based on the presence of 2020 Ma zircons; (1) the Glenburgh Orogenwithin the Gascoyne Complex of theWest Australian Craton, (2) theWildman Siltstone within the Pine Creek Inlier of the North Australian Craton, (3) the Miltalie Orthogneiss of theGawler Craton.

Table 4

Gawler Craton Pine Creek Orogen

2545–2520 Ma magmatism 2520 Ma granite emplacement e.g. Glenloth Granite and Coulta Granodiorite(Daly and Fanning, 1993)

2545–2520 Ma granites emplacement — Rum Jungle Complex(Cross et al., 2005)

2545–2480 Ma deposition 2535–2480 Ma sediment deposition e.g. Christie Gneiss and Kenella Paragneiss(Daly et al., 1998; Swain et al., 2005)

2545–2520 Ma sediment deposition — Stanley Metamorphics(Cross et al., 2005)

2480–2420 Ma 2480–2420 Ma metamorphism — Sleafordian Orogeny (Daly and Fanning, 1993;Daly et al., 1998)

2470 Ma granite emplacement — Nanambu Complex(Page et al., 1980)

2000–2020 Ma 2020 Ma magmatism — Miltalie Orthogneiss (Fanning et al., 1988) 2020 Ma deposition of tuffaceous Wildman Siltstone 2020 Ma(Worden et al., 2008)

∼1850 Ma magmatism 1850 Ma granite emplacement — Donington Suite (Reid et al., 2008) 1850–1840 Ma granite emplacement in Litchfield Province(Page et al., 1985)

∼1850 Ma metamorphism 1850 Ma metamorphism —Cornian Orogeny (Reid et al., 2008) 1861–1847 Ma metamorphism — Nimbuwah event(Carson et al., 2008)

Page 41: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-26-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

in the Corny Point Paragneiss. Additionally, the Pine Creek Orogen couldalso have provided2000Ma zirconswith similarHf isotopic compositionsto the2000Mazircons in theCornyPoint Paragneiss in theGawler Craton.

Provenance studies cannot prove a source-sediment connection;they can only disprove it. At this stage the data suggest that the PineCreek Orogen in the North Australian Craton is a plausible sourceregion. However, given the antiquity of the rocks, there is nocompelling reason why the source region is still located in presentday Australia.

Globally the ca 2000 Ma zircons within the Corny Point Paragneisswould appear to limit the worldwide search for a source region to anumber of Palaeoproterozoic terrains which are listed in Table 5.Zircon forming events including magmatism and metamorphismdated at around 2000 Ma have been reported from the North ChinaCraton (Liu et al., 2002; Zhao et al., 2002), the Amazonian Craton (daRosa-Costa et al., 2006), the Brazilian Shield (Hartmann et al., 2003),the East African Craton (Moller et al., 1995; Ring et al., 1997; Collinset al., 2004), the Limpopo Belt (Jaeckel et al., 1997; Kroner et al., 1998;McCourt and Armstrong, 1998; Mapeo et al., 2001; Mapeo et al., 2004;Buick et al., 2006; Dorland et al., 2006; Zeh et al., 2007), the NorthernGreenland Shield (Nutman et al., 2008) and the Rinkian Belt (Kalsbeeket al., 1998; van Gool et al., 2002).

Potentially any of these regions could have provided detrital inputsinto the Corny Point Paragneiss protoliths. Several of these regionscontain other zircon growth time lines that approximately match theages of detrital zircons in the Corny Point Paragneiss. However asdemonstrated above, additional isotopic constraints are requiredbefore any source region is considered viable and in many instancesthere is insufficient isotopic data to refine the list of potential sourceregions shown in Table 5.

5.5. Limitations of provenance as a palaeogeographic tool

Aside from the use of supplementary isotopic data sets to examinethe veracity of interpretations based on age alone, it is worthexploring the limitations of provenance as a tool to constrainpalaeogeography, particularly in the context of the available samplesof N1850 Ma rocks in the south eastern Gawler Craton. Connectionbetween a potential source region and a depositional location can onlybe established if: (a) the source region in question was exposed andundergoing erosion; and (b) a sediment transport system connectedthe two regions. Ideally, sampling of sequences for provenance shouldinvolve a number of different stratigraphic positions to minimisetransient effects such as minor topographic diversion of transportsystems. However, in the case of the sampled sequences in the southeastern Gawler Craton, there is little constraint on the extent ofstratigraphic separation between samples. Additionally, even long-lived sediment transport systemsmay not adequately represent majorrock forming times in the adjacent regions.

An example of the latter scenario is seen today in the Palaeozoic–recent Perth Basin bordering the Yilgarn Craton in western Australia(Fig. 8). Despite their proximity to the Archaean Yilgarn Craton, theQuaternary sediments in the Perth Basin contain a minimal component(4.8% to 11.1%) of Archaean zircons even though the Yilgarn Cratonborders the basins for much of their length, and in places forms presentday escarpments flanking the basin (Sircombe and Freeman, 1999).Given its proximity to the Yilgarn Craton, many previous workers hadassumed that theQuaternarycoastal sandswerederived from its erosion(Baxter, 1977; Harrison, 1990; Shepherd, 1990). Instead, the majority ofzircon grains are Phanerozoic, Neoproterozoic and Mesoproterozoic inage (Sircombe and Freeman, 1999), and can be accounted for by

Table 5ca 2000 Ma high temperature rock systems.

Region Tectonic belt orgeological unit

Analytical method(SHRIMP U–Pbzircon unlessotherwise stated)

Age (Ma) Interpretation εNd (t) ZirconεHf (t)

Timing of other majorN1850 Ma zircon growthevents (Ga)

Reference

Magmatic Metamorphic

North ChinaCraton

Fuping Complex 2024±21 Magmatism −2.6 to−4.6 2.7, 2.52–2.49 1.88–1.8 (Zhao et al., 2002;Liu et al., 2002)

AmazonianCraton

Jari Domain Pb–Pb zirconevaporation

2030±2 Magmatism −2.42 2.8–2.79, 2.66–2.6, 2.32–2.22,2.18–2.13

da Rosa-Costa et al.(2006)

BrazilianShield

Itapema Granite 2022±22 Magmatism 2.5, 2.16 2.7, 2.2 Hartmann et al.(2003)

East AfricanCraton

UsagaranOrogen

1999±1 Eclogitemetamorphism

2.7, 1.9, 1.88 Collins et al. (2004)

UsagaranOrogen

TIMS U–Pbmonazite, titanite

∼2010 Eclogitemetamorphism

Moller et al. (1995)

Ubendi Orogen Pb–Pb zirconevaporation

1988–2002 Magmatismandmetamorphism

Ring et al. (1997)

Limpopo Belt MahalapyeComplex

LA-ICPMS zircon 2019±8 Magmatism −11.3 to−20.1

3.28, 2.71, 2.65,2.61, 2.06

3.2–3.1,2.65–2.52,2.02–2.04

(Zeh et al., 2007;McCourt andArmstrong 1998;

Palapye Group 2034±8 Inheritance Mapeo et al., 2004)Beit BridgeComplex

Pb–Pb zirconevaporation

2023±12,2027±6,2006±4

MagmatismandMetamorphism

(Kroner et al., 1998;Jaeckel et al., 1997)

Central zone SHRIMP U–Pbmonazite

2028±3 Metamorphism Buick et al. (2006)

The EntabeniGranite

2021±5 Magmatism Dorland et al. (2006)

Magondi Belt 2027±8 Metamorphism Mapeo et al. (2001)Northern GreenlandShield

Etah Group(1980)a

1980–2000 Detrital zirconage peak

−3 and +3 3.4, 2.6, 1.98,1.94–1.91,

1.92 Nutman et al.(2008)

Rinkian Belt Karrat Group,(2012–1850 Ma)a

2012±12 Detrital zirconage peak

−2.85 3.15, 2.87–2.7,2.5, 1.92–1.87,1.86–1.84

1.86–1.84 (Kalsbeek et al.,1998; van Gool et al.,2002)

a Maximum–minimum depositional age range.

Page 42: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-27-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

derivation from the Mesoproterozoic Albany Fraser Orogen and theNeoproterozoic Leeuwin Block with transportation via longshore drift.

The Perth Basin is separated from the Yilgarn Craton by thecrustal-scale Darling Fault which forms a basin bounding structure,but is not a suture between the Perth Basin and the Yilgarn Craton.Hypothetically in the future when the specific relationships betweenthe Yilgarn Craton, Perth Basin and Darling Fault may be obscured,the paucity of Yilgarn-derived Archaean zircons in the Perth Basin

could be used as an argument that the Darling Fault was a terrainboundary separating domains that contain contrasting zircon agepopulations.

In the eastern Gawler Craton, the ca 2520–2000 Ma domain of thecraton is separated from the 1870–1850 Ma Corny Point Paragneiss bythe crustal scale Kalinjala Shear Zone, whichwas amajor strike slip faultduring the1730–1700MaKimbanOrogeny (Vassallo andWilson, 2002).The tectonic significance of the shear zone is still not well understood.

Fig. 8.Map and locations and probability detrital plots of Quaternary sands sampled from the Perth Basin and positioned west of the Yilgarn Craton divided by the Darling Fault fromSircombe & Freeman (1999). Inset shows the location of the region within Australia.

NOTE: This figure is included on page 27 of the print copy of the thesis held in the University of Adelaide Library.

Page 43: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-28-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

Betts andGiles (2006) suggest that it represents a 1730–1700Ma suturealong which the 2520–2000 Ma domain in the Gawler Craton wasjuxtaposed against rocks to the east including the 1870–1850 Ma CornyPoint Paragneiss and the enclosing 1850 Ma intrusives. The apparentabsence of a Gawler Craton origin for the 1870–1850 Ma sequencesexamined in this study lends support to such a notion. However, as isclear with the example from the Perth Basin, the absence of zirconsderived from the Gawler Craton does not prove such a model,highlighting that for the most part provenance data can only be usedto preclude models rather than prove them.

6. Conclusion

Detrital zircon ages from the Corny Point Paragneiss in the southeastern Gawler Craton, Australia, coupled with post-depositionaltectonism, constrain sedimentation to the interval ca 1870–1850 Ma.The metasedimentary sequence contains detrital zircons age peaks at2000 Ma, 2450 Ma, and 2510 Ma which match the dominant zirconforming time lines from the immediately adjacent Gawler Craton,suggesting the craton was the source region. However, Nd and zirconHf isotopic data rule out equivalents of the presently exposed GawlerCraton as a dominant source region for the protoliths of the CornyPoint Paragneiss, despite the correspondence between zircon growthevents and detrital zircon ages. Instead, based on a combination of agegroups and comparative Hf isotopic compositions, a plausible (but byno means proven) source region is the Pine Creek Orogen in the farnorthern part of the North Australian Craton.

Detrital zircon dating alone in provenance studies is limiting, andcan lead to erroneous palaeogeographic interpretations. With theaddition of Nd and Hf zircon isotopic data, crustal evolution can becompared from individual zircon grains and on the whole rock scale.This combination of tools can enable more discriminating testing ofsource regions where a correspondence of ages exists betweensedimentary basins and their potential source, further enablingmore accurate palaeogeographic reconstructions.

Acknowledgements

We would like to acknowledge the Mineral Resources Group ofPrimary Industry Resources South Australia (PIRSA) for providingfinancial support for this project. Kurt Worden from GeoscienceAustralia is acknowledged for providing age data, images and thezircon mount from the Wildman Siltstone. The authors would like tothank Justin Payne for the analytical support and numerous discus-sions on isotope systematics and evolution of the Gawler Craton,Jonathan Patchett for comments on an earlier version of the manu-script and Michael Szpunar for a number of discussions about theevolution of the eastern Gawler Craton. Thanks are also given to DavidBruce for assistance with Sm–Nd analyses, and Angus Netting fromAdelaide Microscopy for assistance with zircon imaging and analysis.Lastly we would like to acknowledge journal reviewers Oliver Nebeland an anonymous reviewer for their helpful comments and sugges-tions, and Roberta Rudnick for comments and editorial handling of themanuscript. This work was supported by Australian Research CouncilGrant LP0454301.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, inthe online version, at doi:10.1016/j.chemgeo.2009.01.029.

References

Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolutiondeduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. GeochimicaEt Cosmochimica Acta 64 (24), 4205–4225.

Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance: limitingconditions from statistics and numerical simulation. Chemical Geology 216 (3–4),249–270.

Augustsson, C., Munker, C., Bahlburg, H., Fanning, C.M., 2006. Provenance of late Palaeozoicmetasediments of the SW South American Gondwana margin: a combined U–Pb andHf-isotope study of single detrital zircons. Journal of the Geological Society 163,983–995.

Banks, C.J., et al., 2007. Provenance of intra-Rodinian basin-fills: the Lower DalradianSupergroup, Scotland. Precambrian Research 153 (1–2), 46–64.

Barovich, K.M., Foden, J., 2000. A Neoproterozoic flood basalt province in southern-central Australia; geochemical and Nd isotope evidence from basin fill. PrecambrianResearch 100 (1–3), 213–234.

Baxter, J.L., 1977. Heavymineral sand deposits ofWestern Australia. Geological Survey ofWestern Australia Mineral Resources Bulletin 10, 148.

Belousova, E.A., Reid, A.J., Schwarz, M.P., Griffin, W.L., Fairclough, M.C., 2006. Crustalevolution of the Gawler Craton, South Australia: application of the TerraneChrontechnique to detrital zircon from modern stream sediments. South Australia.Department of Primary Industries and Resources. Report Book. 2006/4. http://www.pir.sa.gov.au/minerals/publications/gawler_releases.

Betts, P.G., Giles, D., 2006. The 1800–1100 Ma tectonic evolution of Australia. PrecambrianResearch 144 (1–2), 92–125.

Betts, P.G., Giles, D., Schaefer, B.F., 2008. Comparing 1800–1600 Ma accretionary andbasin processes in Australia and Laurentia: Possible geographic connections inColumbia. Precambrian Research 166 (1–4), 81–92.

Bizzarro, M., Baker, J.A., Haack, H., Ulfbeck, D., Rosing, M., 2003. Early history of Earth'scrust–mantle system inferred from hafnium isotopes in chondrites. Nature 421(6926), 931–933.

Blichert-Toft, J., Albarede, F., 1997. The Lu–Hf isotope geochemistry of chondrites and theevolution of the mantle–crust system. Earth and Planetary Science Letters 148 (1–2),243–258.

Buick, I.S., Hermann, J., Williams, I.S., Gibson, R.L., Rubatto, D., 2006. A SHRIMP U–Pb andLA-ICP-MS trace element study of the petrogenesis of garnet-cordierite-orthoam-phibole gneisses from the Central Zone of the Limpopo Belt, South Africa. ElsevierScience Bv, pp. 150–172.

Burrett, C., Berry, R., 2000. Proterozoic Australia–Western United States (AUSWUS) fitbetween Laurentia and Australia. Geology 28 (2), 103–106.

Carson, C.J., Worden, K.E., Scrimgeour, I.R., Stern, R.A., 2008. The Palaeoproterozoicevolution of the Litchfield Province, western Pine Creek Orogen, northern Australia:insight from SHRIMP U–Pb zircon and in situmonazite geochronology. PrecambrianResearch 166 (1–4), 145–167.

Carter, B.T.,Hibbard, J.P., Tubrett,M., Sylvester, P., 2006.Detrital zircongeochronologyof theSmith River Allochthon and Lynchburg Group, southern Appalachians: implicationsforNeoproterozoic–Early Cambrianpaleogeography. PrecambrianResearch147 (3–4),279–304.

Cawood, P.A., Nemchin, A.A., Freeman, M., Sircombe, K., 2003. Linking source andsedimentary basin: detrital zircon record of sedimentflux along amodern river systemand implications for provenance studies. Earth andPlanetary Science Letters 210 (1–2),259–268.

Cawood, P.A., Nemchin, A.A., Strachan, R., 2007. Provenance record of Laurentianpassive-margin strata in the northern Caledonides: implications for paleodrai-nage and paleogeography. Geological Society of America Bulletin 119 (7–8),993–1003.

Collins, A.S., Kroner, A., Fitzsimons, I.C.W., Razakamanana, T., 2003. Detrital footprintof the Mozambique ocean: U–Pb SHRIMP and Pb evaporation zircon geochronologyof metasedimentary gneisses in eastern Madagascar. Tectonophysics 375 (1–4),77–99.

Collins, A.S., Reddy, S.M., Buchan, C., Mruma, A., 2004. Temporal constraints onPalaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania).Earth and Planetary Science Letters 224 (1–2), 175–192.

Creaser, R.A.,1995.Neodymium isotopic constraints for the origin ofmesoproterozoic felsicmagmatism,Gawler-craton, SouthAustralia. Canadian Journal of EarthSciences32 (4),460–471.

Cross, A., Claoue-Long, J.C., Scrimgeour, I.R., Ahmad, M., Kruse, P.D., 2005. Summary ofresults. Joint NTGS-GA geochronology project: Rum Jungle, basement to southernGeorgina Basin and eastern Arunta Region 2001–2003. Northern Territory GeologicalSurvey Record 2005-006.

da Rosa-Costa, L.T., Lafon, J.M., Delor, C., 2006. Zircon geochronology and Sm–Ndisotopic study: further constraints for the Archean and Paleoproterozoic geodyna-mical evolution of the southeastern Guiana Shield, north of Amazonian Craton,Brazil. Gondwana Research 10 (3–4), 277–300.

Daly, S.J., Fanning, C.M., 1993. Archaean. In: Drexel, J.F., Preiss, W.V., Parker, A.J. (Eds.),The Geology of South Australia. The Precambrian, vol. 1. Geological Survey of SouthAustralia. Bulletin 54.

Daly, S.J., Fanning, C.M., Fairclough, M.C., 1998. Tectonic evolution and explorationpotential of the Gawler Craton, South Australia. AGSO Journal of Australian Geologyand Geophysics 17 (3), 145–168.

Darby, B.J., Gehrels, G., 2006. Detrital zircon reference for the North China block. Journalof Asian Earth Sciences 26 (6), 637–648.

Dawson, G.C., Krapez, B., Fletcher, I.R., McNaughton, N.J., Rasmussen, B., 2002. Did latePalaeoproterozoic assembly of proto-Australia involve collision between thePilbara, Yilgarn and Gawler cratons? Geochronological evidence from the MountBarren Group in the Albany–Fraser Orogen of Western Australia. PrecambrianResearch 118 (3–4), 195–220.

Dickinson, W.R., Gehrels, G.E., 2003. U–Pb ages of detrital zircons from Permian andJurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implica-tions. Sedimentary Geology 163 (1–2), 29–66.

Page 44: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-29-

Chapter 2 Detrital zircon ages: improving interpretati on via Nd and Hf isotopes

Shepherd, M.S., 1990. Eneabba heavymineral sand placers. In: Hughs, F.E. (Ed.), Geologyof the mineral deposits of Australia and Papua New Guinea. Australiasian Instituteof Mining and Metallurgy, Melbourne, pp. 1591–1594.

Sheppard, S., Occhipinti, S.A., Tyler, I.M., 2004. A 2005–1970 Ma Andean-type batholithin the southern Gascoyne Complex, Western Australia. Precambrian Research 128(3–4), 257–277.

Sircombe, K.N., Freeman, M.J., 1999. Provenance of detrital zircons on the WesternAustralia coastline — implications for the geologic history of the Perth basin anddenudation of the Yilgarn craton. Geology 27 (10), 879–882.

Soderlund, U., Patchett, J.P., Vervoort, J.D., Isachsen, C.E., 2004. The Lu-176 decayconstant determined by Lu–Hf and U–Pb isotope systematics of Precambrian maficintrusions. Earth and Planetary Science Letters 219 (3–4), 311–324.

Stewart, K.P., 1992. High temperature felsic volcanism and the role of mantle magmas inProterozoic crustal growth: The Gawler Range Volcanic Province. Ph.D thesis,University of Adelaide.

Swain, G., et al., 2005. Provenance and tectonic development of the late ArchaeanGawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic implica-tions. Precambrian Research 141 (3–4), 106–136.

Talavera-Mendoza, O., et al., 2005. U–Pb geochronology of the Acatlan Complex andimplications for the Paleozoic paleogeography and tectonic evolution of southernMexico. Earth and Planetary Science Letters 235 (3–4), 682–699.

Turner, S., Foden, J., Sandiford, M., Bruce, D., 1993. Sm–Nd isotopic evidence for theprovenance of sediments from the Adelaide Fold Belt and Southeastern Australiawith implications for episodic crustal addition. Geochimica Et Cosmochimica Acta57 (8), 1837–1856.

van Gool, J.A.M., Connelly, J.N., Marker, M., Mengel, F.C., 2002. The NagssugtoqidianOrogen of West Greenland: tectonic evolution and regional correlations from aWest Greenland perspective. Canadian Journal of Earth Sciences 39 (5), 665–686.

Vassallo, J.J., Wilson, C.J.L., 2002. Palaeoproterozoic regional-scale non-coaxial deforma-tion; an example from eastern Eyre Peninsula, South Australia. Journal of StructuralGeology 24 (1), 1–24.

Veevers, J.J., Saeed, A., Belousova, E.A., Griffin, W.L., 2005. U–Pb ages and sourcecomposition by Hf-isotope and trace-element analysis of detrital zircons in Permiansandstone and modem sand from southwestern Australia and a review of thepaleogeographical and denudational history of the Yilgam Craton. Earth-ScienceReviews 68 (3–4), 245–279.

Veevers, J.J., et al., 2006. Pan-Gondwanalanddetrital zircons fromAustralia analysed forHf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–

500Ma age, T-DM of 2.0–1.0 Ga, and alkaline affinity. Earth-Science Reviews 76 (3–4),135–174.

Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarede, F., 1999. Relationships betweenLu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth andPlanetary Science Letters 168 (1–2), 79–99.

Wade, B.P., Hand, M., Barovich, K.M., 2005. Nd isotopic and geochemical constraints onprovenance of sedimentary rocks in the eastern Officer Basin, Australia: implica-tions for the duration of the intracratonic Petermann Orogeny. Journal of theGeological Society 162, 513–530.

Wade, B.P., Hand, M., Maidment, D.W., Close, D.F., Scrimgeour, I.R., 2008a. Origin ofmetasedimentary and igneous rocks from the Entia Dome, eastern Arunta region,central Australia: a U‐Pb LA-ICPMS, SHRIMP and Sm–Nd isotope study. Taylor &Francis, pp. 703–719.

Wade, B.P., Kelsey, D.E., Hand, M., Barovich, K.M., 2008b. The Musgrave Province:Stitching north, west and south Australia. Precambrian Research 166 (1–4),370–386.

Wingate, M.T.D., Pisarevsky, S.A., Evans, D.A.D., 2002. Rodinia connections betweenAustralia and Laurentia: no SWEAT, no AUSWUS? Terra Nova 14 (2), 121–128.

Worden, K., Carson, C., Scrimgeour, I., Lally, J., Doyle, N., 2008. A revised Palaeoproter-ozoic chronostratigraphy for the Pine Creek Orogen, northern Australia: evidencefrom SHRIMP U–Pb zircon geochronology. Precambrian Research 166 (1–4),122–144.

Yang, J.H., et al., 2006. Constraints on the timing of uplift of the Yanshan Fold and ThrustBelt, North China. Earth and Planetary Science Letters 246 (3–4), 336–352.

Zang, W., 2002. Interpretation of the middle Palaeoproterozoic granites and gneisses(Lincoln Complex), southern Yorke Peninsula, South Australia. Department ofPrimary Industry Resources. Report Book, 2002/17.

Zeh, A., Gerdes, A., Klemd, R., Barton, J.M., 2007. Archaean to Proterozoic Crustalevolution in the Central Zone of the Limpopo Belt (South Africa–Botswana):constraints from combined U–Pb and Lu–Hf isotope analyses of zircon. Journal ofPetrology 48 (8), 1605–1639.

Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2002. SHRIMP U–Pb zircon ages of theFuping Complex: implications for late Archean to Paleoproterozoic accretion andassembly of the North China Craton. American Journal of Science 302 (3), 191–226.

Page 45: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-30-

Chapter 2 Supplementary MaterialSu

pple

men

tary

Tab

le A

.LA

-IC

PMS

zirc

on U

-Pb

isot

opic

dat

a fo

r all

sam

ples

Rat

ios

App

aren

t age

s (M

a)Sp

ot20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

Con

Cor

ny P

oint

Par

agne

iss C

P5

Z10.

2080

00.

0021

12.7

2478

0.15

040.

4437

70.

0054

0.09

057

0.00

0728

9016

2660

1123

6824

1753

1482

Z20.

1284

60.

0014

6.29

021

0.07

870.

3552

00.

0044

0.09

025

0.00

0920

7718

2017

1119

5921

1747

1694

Z30.

1444

30.

0015

5.12

249

0.06

560.

2573

10.

0033

0.04

588

0.00

0422

8118

1840

1114

7617

907

865

Z40.

1266

10.

0013

6.10

193

0.06

790.

3496

10.

0039

0.09

052

0.00

0820

5118

1991

1019

3318

1752

1594

Z50.

1285

60.

0013

6.01

834

0.07

330.

3395

90.

0042

0.09

138

0.00

0820

7818

1979

1118

8520

1767

1591

Z60.

1659

40.

0017

10.4

3208

0.12

130.

4560

00.

0054

0.11

158

0.00

0925

1717

2474

1124

2224

2138

1796

Z70.

1243

00.

0013

4.92

813

0.05

860.

2875

80.

0034

0.08

534

0.00

0720

1918

1807

1016

2917

1655

1381

Z80.

1391

50.

0014

5.15

288

0.06

150.

2686

50.

0033

0.06

272

0.00

0522

1717

1845

1015

3417

1230

1069

Z90.

1215

60.

0014

5.22

691

0.07

470.

3119

50.

0044

0.09

157

0.00

1319

7920

1857

1217

5021

1771

2388

Z10

0.17

091

0.00

182.

7991

50.

0359

0.11

881

0.00

160.

0378

60.

0004

2567

1713

5510

724

975

17

28Z1

10.

1307

70.

0013

5.71

678

0.06

590.

3170

90.

0037

0.12

493

0.00

1221

0818

1934

1017

7618

2379

2284

Z12

0.12

315

0.00

135.

7465

50.

0669

0.33

849

0.00

400.

0912

50.

0008

2002

1819

3810

1879

1917

6515

94Z1

30.

1247

50.

0013

5.87

342

0.06

900.

3415

30.

0041

0.09

019

0.00

0820

2518

1957

1018

9419

1745

1594

Z14

0.14

798

0.00

153.

6881

20.

0452

0.18

080

0.00

220.

0874

90.

0008

2323

1715

6910

1071

1216

9515

46Z1

50.

1607

00.

0016

9.74

268

0.11

480.

4397

70.

0052

0.11

490

0.00

1024

6317

2411

1123

5023

2198

1895

Z16

0.13

315

0.00

135.

8138

40.

0724

0.31

672

0.00

400.

0901

10.

0009

2140

1819

4911

1774

2017

4417

83Z1

70.

1466

10.

0015

5.83

191

0.07

070.

2885

50.

0035

0.10

258

0.00

1023

0717

1951

1116

3418

1974

1871

Z18

0.12

789

0.00

135.

9118

00.

0649

0.33

542

0.00

360.

1040

60.

0012

2069

1819

6310

1865

1720

0121

90Z1

90.

1248

50.

0013

5.56

734

0.06

850.

3234

70.

0040

0.07

900

0.00

0820

2718

1911

1118

0719

1537

1589

Z20

0.15

886

0.00

168.

8268

80.

0999

0.40

307

0.00

460.

1070

60.

0009

2444

1723

2010

2183

2120

5617

89Z2

10.

1892

00.

0019

6.10

539

0.07

770.

2341

10.

0030

0.04

056

0.00

0427

3517

1991

1113

5616

804

750

Z22

0.12

391

0.00

135.

7611

10.

0669

0.33

720.

0039

0.09

997

0.00

0920

1318

1941

1018

7319

1926

1793

Z23

0.12

507

0.00

134.

9955

00.

0613

0.28

969

0.00

350.

0919

60.

0009

2030

1818

1910

1640

1817

7816

81Z2

40.

1241

50.

0013

6.01

000

0.06

570.

3511

20.

0038

0.10

099

0.00

0920

1718

1977

1019

4018

1945

1696

Z25

0.13

020

0.00

134.

3085

80.

0520

0.23

999

0.00

290.

0636

50.

0006

2101

1816

9510

1387

1512

4711

66Z2

60.

1363

70.

0014

8.46

477

0.10

400.

4501

70.

0055

0.08

511

0.00

1021

8218

2282

1123

9624

1651

1911

0Z2

70.

1602

70.

0017

9.49

773

0.10

710.

4298

20.

0048

0.12

856

0.00

1224

5917

2387

1023

0522

2444

2194

Z28

0.16

938

0.00

181.

7846

30.

0221

0.07

640

0.00

090.

1450

10.

0018

2552

1810

408

475

627

3731

19Z2

90.

1185

90.

0013

5.10

378

0.06

600.

3122

70.

0040

0.09

807

0.00

1119

3519

1837

1117

5219

1891

2091

Z30

0.12

582

0.00

134.

8831

80.

0561

0.28

161

0.00

320.

0782

40.

0008

2040

1917

9910

1600

1615

2315

78Z3

10.

1358

30.

0014

7.13

847

0.08

560.

3812

10.

0046

0.10

893

0.00

1121

7518

2129

1120

8221

2090

1996

Z32

0.13

183

0.00

145.

9685

40.

0705

0.32

835

0.00

390.

0979

70.

0010

2123

1819

7110

1830

1918

8918

86Z3

30.

1161

60.

0012

4.86

409

0.05

640.

3036

60.

0035

0.07

986

0.00

0818

9819

1796

1017

0917

1553

1590

Z34

0.11

510

0.00

125.

2784

30.

064

0.33

264

0.00

410.

0976

90.

0010

1881

1818

6510

1851

2018

8417

98Z3

50.

1218

50.

0012

5.53

465

0.06

280.

3294

30.

0038

0.09

922

0.00

0919

8318

1906

1018

3618

1912

1793

Z36

0.16

486

0.00

1710

.294

940.

1203

0.45

293

0.00

540.

1291

30.

0012

2506

1724

6211

2408

2424

5521

96Z3

70.

1411

40.

0014

5.08

130

0.05

780.

2611

30.

0030

0.10

147

0.00

0922

4117

1833

1014

9615

1953

1667

Page 46: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-31-

Chapter 2 Supplementary Material

Rat

ios

App

aren

t age

s (M

a)Sp

ot20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

Con

Cor

ny P

oint

Par

agne

iss C

P5 (c

ontin

ued)

Z38

0.12

807

0.00

145.

5872

30.

0731

0.31

651

0.00

400.

0859

60.

0011

2072

1919

1411

1773

2016

6720

86Z3

90.

1224

10.

0013

5.82

410

0.07

280.

3451

40.

0043

0.09

948

0.00

1119

9218

1950

1119

1121

1917

1996

Z40

0.15

837

0.00

161.

1355

80.

0143

0.05

202

0.00

070.

2137

20.

0023

2438

1777

07

327

439

1539

13Z4

10.

1161

70.

0012

5.28

070

0.06

390.

3296

80.

004

0.09

512

0.00

1118

9818

1866

1018

3719

1837

2097

Z42

0.12

650

0.00

135.

7377

40.

0634

0.32

901

0.00

360.

1084

30.

0016

2050

1819

3710

1834

1820

8130

89Z4

30.

1245

30.

0013

5.74

504

0.07

020.

3346

30.

0041

0.10

805

0.00

1220

2218

1938

1118

6120

2074

2292

Z44

0.12

700

0.00

134.

9140

90.

0667

0.28

071

0.00

380.

1016

40.

0019

2057

1818

0511

1595

1919

5736

78Z4

50.

1325

40.

0027

5.97

230

0.12

320.

3268

50.

0051

0.09

759

0.00

2021

3235

1972

1818

2325

1882

3786

Z46

0.12

647

0.00

146.

3392

80.

0809

0.36

363

0.00

450.

1065

0.00

1420

5019

2024

1119

9921

2045

2598

Z47

0.12

528

0.00

135.

8334

20.

0723

0.33

777

0.00

410.

0920

70.

0009

2033

1919

5111

1876

2017

8017

92Z4

80.

1207

80.

0012

5.64

334

0.06

640.

3389

50.

004

0.09

999

0.00

0919

6818

1923

1018

8219

1926

1796

Z49

0.11

670

0.00

135.

5421

60.

0648

0.34

466

0.00

380.

1019

20.

0010

1906

2019

0710

1909

1819

6219

100

Z50

0.13

072

0.00

164.

8162

00.

0628

0.26

724

0.00

320.

0659

10.

0010

2108

2117

8811

1527

1612

9019

72Z5

10.

1224

70.

0014

5.75

410

0.06

650.

3408

70.

0037

0.10

633

0.00

1319

9320

1940

1018

9118

2043

2495

Z52

0.12

359

0.00

135.

5538

20.

0672

0.32

598

0.00

390.

1027

50.

0010

2009

1919

0910

1819

1919

7719

91Z5

30.

1319

50.

0016

6.44

136

0.08

580.

3541

00.

0044

0.11

454

0.00

1421

2421

2038

1219

5421

2192

2692

Z54

0.14

804

0.00

164.

7450

50.

0583

0.23

255

0.00

280.

0410

20.

0004

2323

1817

7510

1348

1581

38

58Z5

50.

1263

20.

0014

6.01

512

0.07

690.

3454

60.

0043

0.10

103

0.00

1420

4719

1978

1119

1321

1945

2593

Z56

0.12

100

0.00

125.

7570

50.

0664

0.34

520

0.00

390.

0945

10.

0011

1971

1819

4010

1912

1918

2519

97Z5

70.

1597

20.

0017

8.96

776

0.11

290.

4072

30.

0051

0.11

801

0.00

1524

5318

2335

1222

0223

2255

2790

Z58

0.14

047

0.00

156.

3100

40.

0813

0.32

582

0.00

410.

1001

0.00

1422

3319

2020

1118

1820

1928

2681

Z60

0.11

515

0.00

135.

3516

20.

0685

0.33

713

0.00

410.

1000

20.

0015

1882

2018

7711

1873

2019

2728

100

Z61

0.12

216

0.00

135.

8578

80.

0678

0.34

831

0.00

390.

1064

40.

0019

1988

1919

5510

1927

1920

4435

97Z6

30.

1245

40.

0014

5.64

860

0.07

130.

3290

30.

0041

0.09

733

0.00

1520

2219

1924

1118

3420

1877

2891

Z64

0.11

938

0.00

145.

0773

20.

0622

0.30

860

0.00

360.

0964

0.00

1019

4720

1832

1017

3418

1860

1889

Z65

0.15

888

0.00

169.

8669

10.

1128

0.45

042

0.00

520.

1214

80.

0010

2444

1724

2211

2397

2323

1718

98Z6

60.

1272

50.

0013

5.76

532

0.06

750.

3286

10.

0038

0.10

466

0.00

0920

6018

1941

1018

3218

2012

1789

Z67

0.12

924

0.00

154.

8644

30.

0619

0.27

304

0.00

330.

0756

70.

0009

2088

2017

9611

1556

1714

7417

75Z6

80.

1230

00.

0013

4.94

914

0.05

850.

2918

40.

0035

0.08

711

0.00

0820

0018

1811

1016

5117

1688

1483

Z69

0.15

736

0.00

207.

1478

40.

1023

0.32

946

0.00

440.

1272

20.

0020

2428

2121

3013

1836

2124

2136

76Z7

00.

1573

60.

0016

9.00

953

0.10

430.

4152

40.

0048

0.12

565

0.00

1124

2817

2339

1122

3922

2392

2092

Z72

0.12

743

0.00

135.

5074

00.

0628

0.31

347

0.00

360.

0951

60.

0008

2063

1819

0210

1758

1818

3715

85Z7

30.

1610

40.

0016

7.73

504

0.09

430.

3483

70.

0043

0.08

372

0.00

0724

6717

2201

1119

2720

1625

1478

Z74

0.16

086

0.00

178.

6254

30.

1017

0.38

889

0.00

460.

0926

20.

0008

2465

1722

9911

2118

2117

9015

86Z7

50.

1243

50.

0013

5.40

590

0.06

500.

3154

40.

0038

0.07

850.

0008

2020

1818

8610

1767

1915

2815

88Z7

60.

1205

80.

0013

4.89

043

0.05

820.

2942

70.

0035

0.08

815

0.00

0819

6518

1801

1016

6317

1708

1585

Z77

0.13

544

0.00

146.

6780

70.

0816

0.35

773

0.00

440.

1027

40.

0010

2170

1820

7011

1971

2119

7718

91Z7

80.

1243

90.

0013

6.13

860

0.07

190.

3580

00.

0042

0.10

771

0.00

1020

2018

1996

1019

7320

2068

1898

Z79

0.15

785

0.00

168.

0530

10.

1033

0.37

004

0.00

480.

0878

90.

0011

2433

1822

3712

2030

2217

0320

83Z8

20.

1265

80.

0013

6.31

388

0.07

350.

3618

20.

0042

0.10

488

0.00

0920

5118

2020

1019

9120

2016

1797

Page 47: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-32-

Chapter 2 Supplementary MaterialR

atio

sA

ppar

ent a

ges (

Ma)

Spot

207 Pb

/206 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

% C

on

Cor

ny P

oint

Par

agne

iss C

P5 (c

ontin

ued)

Z83

0.12

288

0.00

135.

5370

40.

0723

0.32

682

0.00

420.

0893

90.

0011

1999

1919

0611

1823

2117

3120

91Z8

40.

1180

70.

0012

5.66

684

0.07

090.

3481

90.

0044

0.09

059

0.00

0919

2718

1926

1119

2621

1753

1710

0

Cor

n y P

oint

Par

agne

iss C

P18

Z10.

1600

20.

0016

8.24

260

0.08

120.

3736

30.

0037

0.10

969

0.00

0824

5617

2258

920

4717

2104

1583

Z20.

1626

20.

0017

9.93

530

0.11

510.

4431

40.

0052

0.12

305

0.00

1124

8317

2429

1123

6523

2346

1995

Z30.

1238

30.

0015

5.50

350

0.06

290.

3223

40.

0033

0.15

363

0.00

2820

1221

1901

1018

0116

2889

4990

Z40.

1585

60.

0016

9.41

630

0.11

700.

4307

90.

0054

0.12

641

0.00

1324

4017

2379

1123

0924

2406

2395

Z50.

1932

60.

0021

11.5

5450

0.14

020.

4338

00.

0052

0.13

140

0.00

1327

7017

2569

1123

2323

2495

2384

Z80.

1226

20.

0013

5.68

290

0.06

430.

3361

60.

0038

0.10

417

0.00

0919

9518

1929

1018

6818

2003

1694

Z90.

1220

90.

0012

5.55

730

0.06

530.

3301

50.

0039

0.07

458

0.00

0619

8718

1910

1018

3919

1454

1293

Z10

0.16

779

0.00

199.

6610

00.

1117

0.41

765

0.00

460.

1025

50.

0012

2536

1924

0311

2250

2119

7322

89Z1

10.

1628

70.

0017

10.2

7120

0.11

590.

4574

30.

0051

0.11

863

0.00

1124

8618

2460

1024

2823

2266

2098

Z12

0.12

423

0.00

136.

1061

00.

0688

0.35

682

0.00

40.

1131

70.

0020

2018

1819

9110

1967

1921

6736

97Z1

30.

1279

70.

0014

5.95

540

0.07

770.

3375

40.

0043

0.10

877

0.00

1520

7020

1969

1118

7521

2087

2691

Z14

0.19

317

0.00

1914

.213

600.

1589

0.53

370

0.00

600.

1427

30.

0012

2769

1627

6411

2757

2526

9721

100

Z15

0.12

411

0.00

126.

0257

00.

0661

0.35

218

0.00

390.

1360

80.

0012

2016

1819

8010

1945

1925

7922

96Z1

60.

1190

70.

0012

4.90

430

0.05

440.

2987

50.

0033

0.10

531

0.00

1019

4218

1803

916

8516

2024

1787

Z17

0.12

444

0.00

126.

0928

00.

0682

0.35

510

0.00

400.

1095

20.

0009

2021

1819

8910

1959

1921

0116

97Z1

80.

1559

90.

0016

9.57

630

0.11

130.

4453

00.

0052

0.12

093

0.00

1024

1317

2395

1123

7423

2308

1898

Z19

0.12

231

0.00

126.

0290

00.

0710

0.35

758

0.00

430.

1137

10.

0011

1990

1819

8010

1971

2021

7720

99Z2

10.

1214

90.

0012

6.13

370

0.07

450.

3663

20.

0045

0.10

536

0.00

1219

7818

1995

1120

1221

2025

2210

2Z2

20.

1691

00.

0022

8.79

260

0.10

810.

3774

50.

0041

0.12

598

0.00

9025

4921

2317

1120

6419

2398

161

81Z2

30.

1196

40.

0012

5.86

550

0.06

940.

3556

40.

0042

0.10

369

0.00

1119

5118

1956

1019

6220

1994

2010

1Z2

40.

1193

00.

0012

5.57

680

0.06

340.

3390

90.

0039

0.10

082

0.00

1219

4618

1913

1018

8219

1942

2197

Z25

0.16

538

0.00

1710

.335

300.

1312

0.45

334

0.00

580.

1271

90.

0021

2511

1724

6512

2410

2624

2037

96Z2

60.

1675

20.

0018

10.6

8420

0.11

760.

4626

60.

0050

0.22

957

0.00

6125

3318

2496

1024

5122

4177

100

97Z2

70.

1276

30.

0014

5.50

990

0.06

630.

3134

70.

0036

0.10

519

0.00

5420

6620

1902

1017

5818

2022

9985

Z28

0.15

510

0.00

169.

3846

00.

1147

0.43

889

0.00

540.

1369

30.

0015

2403

1723

7611

2346

2425

9426

98Z2

90.

1216

30.

0012

6.08

120

0.07

080.

3626

70.

0042

0.11

344

0.00

1619

8018

1988

1019

9520

2172

2910

1Z3

00.

1451

70.

0015

6.98

730

0.07

520.

3491

30.

0038

0.11

371

0.00

1622

9017

2110

1019

3018

2177

2984

Z31

0.14

296

0.00

176.

9797

00.

0882

0.35

413

0.00

420.

1270

20.

0017

2263

2021

0911

1954

2024

1730

86Z3

30.

1270

30.

0013

5.75

560

0.06

960.

3283

20.

0039

0.10

351

0.00

1320

5719

1940

1018

3019

1991

2389

Z34

0.15

715

0.00

168.

8710

00.

1065

0.40

944

0.00

490.

1471

40.

0017

2425

1823

2511

2212

2227

7529

91Z3

50.

1317

10.

0014

6.30

850

0.07

200.

3473

60.

0039

0.13

117

0.00

1521

2118

2020

1019

2219

2491

2691

Z36

0.11

913

0.00

133.

9829

00.

0446

0.24

263

0.00

260.

0829

10.

0011

1943

1916

319

1400

1316

1020

72Z3

80.

1379

30.

0015

7.43

120

0.08

560.

3909

20.

0043

0.14

832

0.00

1722

0119

2165

1021

2720

2795

3197

Z39

0.16

453

0.00

1710

.191

200.

1224

0.44

874

0.00

530.

0859

40.

0010

2503

1724

5211

2390

2416

6619

95Z4

00.

1650

40.

0017

10.3

5170

0.11

850.

4548

40.

0051

0.13

729

0.00

1525

0817

2467

1124

1723

2600

2796

Z41

0.16

485

0.00

1810

.148

700.

1288

0.44

637

0.00

560.

1255

60.

0016

2506

1824

4812

2379

2523

9129

95Z4

20.

1810

80.

0022

12.8

0610

0.18

060.

5127

00.

0068

0.06

632

0.00

1026

6320

2666

1326

6829

1298

1810

0Z4

30.

1276

50.

0013

6.33

210

0.07

560.

3598

90.

0043

0.10

987

0.00

1220

6618

2023

1019

8220

2107

2396

Z44

0.12

525

0.00

134.

7934

00.

0564

0.27

764

0.00

330.

0454

00.

0005

2032

1817

8410

1580

1789

810

78

Page 48: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-33-

Chapter 2 Supplementary Material

Rat

ios

App

aren

t age

s (M

a)Sp

ot20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

Con

Cor

ny P

oint

Par

agne

iss C

P18

(con

tinue

d)Z4

50.

1294

70.

0014

6.36

130

0.07

880.

3564

60.

0043

0.11

370

0.00

1520

9119

2027

1119

6520

2177

2794

Z46

0.16

985

0.00

189.

9744

00.

1250

0.42

606

0.00

530.

1477

00.

0018

2556

1724

3212

2288

2427

8431

90Z4

80.

1228

20.

0013

5.91

600

0.07

090.

3494

90.

0042

0.10

636

0.00

1319

9818

1964

1019

3220

2043

2397

Z49

0.16

933

0.00

198.

2880

00.

1057

0.35

532

0.00

440.

1073

70.

0017

2551

1922

6312

1960

2120

6231

77Z5

00.

1265

20.

0013

6.00

970

0.08

160.

3445

20.

0046

0.10

262

0.00

1520

5018

1977

1219

0822

1975

2793

Z51

0.14

509

0.00

185.

8519

00.

0765

0.29

249

0.00

350.

1247

20.

0031

2289

2119

5411

1654

1723

7656

72Z5

20.

1586

70.

0018

9.35

030

0.11

630.

4274

40.

0051

0.12

706

0.00

2524

4219

2373

1122

9423

2418

4594

Z53

0.17

391

0.00

2010

.816

600.

1406

0.45

113

0.00

560.

1350

70.

0026

2596

1925

0812

2400

2525

6145

92Z5

40.

1508

60.

0017

8.04

950

0.11

310.

3869

80.

0052

0.13

111

0.00

2723

5619

2237

1321

0924

2490

4990

Z55

0.12

247

0.00

135.

3502

00.

0693

0.31

687

0.00

400.

1156

40.

0021

1993

1918

7711

1774

2022

1238

89Z5

60.

1454

00.

0016

5.35

230

0.07

050.

2670

60.

0034

0.04

874

0.00

2022

9319

1877

1115

2617

962

3967

Z57

0.12

198

0.00

145.

8828

00.

0737

0.34

980

0.00

420.

0955

00.

0013

1985

2019

5911

1934

2018

4425

97Z5

80.

1757

90.

0020

9.29

290

0.12

0.38

327

0.00

470.

0848

00.

0037

2614

1923

6712

2092

2216

4569

80Z6

00.

1647

60.

0017

10.3

3900

0.13

140.

4551

30.

0058

0.12

971

0.00

2025

0517

2466

1224

1826

2465

3697

Cor

ny P

oint

Par

agne

iss C

P10

Z10.

1500

00.

0015

7.72

970

0.08

670.

3737

50.

0042

0.11

892

0.00

1123

4617

2200

1020

4720

2271

1987

Z20.

1476

60.

0016

8.34

430

0.10

330.

4098

80.

0050

0.12

797

0.00

1523

1918

2269

1122

1423

2434

2695

Z30.

1771

10.

0019

10.8

3399

0.13

260.

4438

70.

0054

0.13

173

0.00

1326

2617

2509

1123

6824

2501

2290

Z40.

1803

40.

0019

11.8

4173

0.14

330.

4765

40.

0057

0.14

468

0.00

1626

5617

2592

1125

1225

2731

2895

Z50.

1154

80.

0013

5.01

360

0.06

330.

3151

30.

0039

0.09

957

0.00

1218

8720

1822

1117

6619

1919

2394

Z60.

1641

80.

0017

9.67

044

0.11

720.

4273

00.

0052

0.12

066

0.00

1124

9917

2404

1122

9423

2303

2092

Z70.

1132

40.

0011

4.57

929

0.05

520.

2933

90.

0036

0.07

845

0.00

0718

5218

1746

1016

5918

1527

1390

Z80.

1147

80.

0012

5.05

653

0.05

870.

3195

50.

0037

0.08

650

0.00

0718

7718

1829

1017

8818

1677

1495

Z90.

1228

10.

0013

5.77

895

0.06

840.

3412

80.

0040

0.09

932

0.00

1019

9718

1943

1018

9319

1914

1895

Z10

0.12

185

0.00

145.

9485

30.

0752

0.35

398

0.00

420.

1047

20.

0014

1984

2019

6811

1954

2020

1325

98Z1

10.

1613

00.

0017

9.97

938

0.12

210.

4487

30.

0054

0.13

285

0.00

1424

6918

2433

1123

9024

2521

2597

Z12

0.11

622

0.00

135.

4780

60.

0718

0.34

186

0.00

430.

0989

00.

0011

1899

2018

9711

1896

2119

0620

100

Z13

0.13

815

0.00

164.

4541

60.

0569

0.23

381

0.00

280.

0630

80.

0010

2204

2017

2311

1354

1512

3619

61Z1

40.

1224

10.

0013

5.82

345

0.06

990.

3450

50.

0041

0.11

253

0.00

1219

9218

1950

1019

1120

2155

2196

Z15

0.11

438

0.00

125.

2584

80.

0650

0.33

341

0.00

410.

0976

60.

0012

1870

1918

6211

1855

2018

8322

99Z1

60.

1355

90.

0014

7.43

771

0.09

980.

3979

40.

0053

0.11

999

0.00

1421

7218

2166

1221

6024

2291

2699

Z17

0.15

807

0.00

169.

5096

60.

1152

0.43

635

0.00

540.

1272

10.

0012

2435

1723

8911

2334

2424

2022

96Z1

80.

1431

30.

0015

7.04

646

0.08

350.

3570

20.

0043

0.10

076

0.00

2722

6518

2117

1119

6820

1941

4987

Z19

0.12

210

0.00

125.

9938

90.

0711

0.35

605

0.00

430.

1105

30.

0011

1987

1819

7510

1963

2021

1919

99Z2

00.

1151

90.

0013

4.50

759

0.06

370.

2838

70.

0039

0.04

705

0.00

1518

8320

1732

1216

1120

929

2986

Z21

0.17

044

0.00

199.

9460

00.

1382

0.42

328

0.00

570.

1386

80.

0020

2562

1924

3013

2275

2626

2535

89Z2

20.

1502

80.

0016

8.72

634

0.12

020.

4211

70.

0056

0.12

380

0.00

1823

4919

2310

1322

6626

2359

3296

Z24

0.16

276

0.00

197.

4165

90.

1029

0.33

047

0.00

440.

0991

00.

0036

2485

1921

6312

1841

2119

1067

74Z2

50.

1394

00.

0016

6.30

980

0.08

900.

3283

40.

0044

0.11

079

0.00

2822

2020

2020

1218

3021

2124

5282

Z26

0.11

972

0.00

144.

3113

30.

0604

0.26

125

0.00

350.

0938

20.

0025

1952

2116

9612

1496

1818

1347

77Z2

70.

1270

20.

0015

6.11

476

0.09

070.

3491

90.

0049

0.10

760

0.00

2820

5721

1992

1319

3123

2066

5194

Page 49: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-34-

Chapter 2 Supplementary MaterialR

atio

sA

ppar

ent a

ges (

Ma)

Spot

207 Pb

/206 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

% C

on

Cor

ny P

oint

Par

agne

iss C

P10

(con

tinue

d)Z2

30.

1285

10.

0015

5.26

733

0.07

480.

2973

50.

0040

0.10

412

0.00

2520

7821

1864

1216

7820

2002

4681

Z28

0.12

073

0.00

125.

6849

00.

0748

0.34

155

0.00

450.

1261

50.

0021

1967

1819

2911

1894

2224

0138

96Z2

90.

1214

80.

0014

6.13

412

0.09

190.

3662

70.

0054

0.10

401

0.00

2319

7820

1995

1320

1225

2000

4110

2Z3

00.

1227

90.

0013

5.97

589

0.07

840.

3530

10.

0045

0.10

275

0.00

1319

9719

1972

1119

4922

1977

2398

Z31

0.12

232

0.00

145.

6570

50.

0749

0.33

540

0.00

430.

0956

60.

0011

1990

2019

2511

1865

2118

4720

94Z3

20.

1223

10.

0013

5.74

047

0.07

690.

3404

30.

0045

0.09

263

0.00

1019

9019

1938

1218

8921

1791

1995

Z33

0.12

299

0.00

145.

9036

70.

0804

0.34

817

0.00

460.

0996

10.

0010

2000

1919

6212

1926

2219

1919

96Z3

40.

1154

10.

0012

5.42

192

0.06

740.

3407

30.

0043

0.10

355

0.00

0918

8618

1888

1118

9020

1992

1710

0Z3

50.

1197

00.

0013

5.77

573

0.07

620.

3499

70.

0046

0.10

989

0.00

1419

5219

1943

1119

3522

2107

2699

Z36

0.12

137

0.00

125.

8755

40.

0750

0.35

114

0.00

450.

1048

70.

0010

1976

1819

5811

1940

2120

1618

98Z3

70.

1277

70.

0014

6.28

678

0.08

690.

3568

10.

0048

0.11

166

0.00

1320

6819

2017

1219

6723

2140

2495

Z38

0.11

647

0.00

125.

3014

40.

0656

0.33

015

0.00

410.

1084

30.

0010

1903

1818

6911

1839

2020

8118

97Z3

90.

1178

90.

0012

5.97

930

0.07

300.

3678

60.

0046

0.11

408

0.00

1219

2518

1973

1120

1921

2184

2110

5Z4

00.

1652

30.

0018

7.58

544

0.09

910.

3330

40.

0043

0.10

295

0.00

1225

1018

2183

1218

5321

1981

2274

Z41

0.11

906

0.00

135.

5150

00.

0749

0.33

593

0.00

450.

1016

30.

0011

1942

1919

0312

1867

2219

5621

96Z4

20.

1172

30.

0013

5.61

527

0.07

370.

3475

20.

0044

0.10

445

0.00

1419

1520

1918

1119

2321

2008

2610

0Z4

30.

1592

20.

0016

9.79

476

0.11

610.

4462

40.

0054

0.13

268

0.00

1324

4717

2416

1123

7924

2518

2297

Z44

0.12

153

0.00

125.

9938

20.

0729

0.35

778

0.00

440.

1072

20.

0010

1979

1819

7511

1972

2120

5918

100

Z45

0.11

583

0.00

125.

4703

90.

0712

0.34

256

0.00

450.

0746

70.

0008

1893

1818

9611

1899

2214

5615

100

Z46

0.11

683

0.00

125.

0631

30.

0656

0.31

442

0.00

400.

1249

10.

0021

1908

1918

3011

1762

2023

7937

92Z4

70.

1164

70.

0012

5.40

520

0.06

990.

3366

30.

0044

0.09

784

0.00

1119

0318

1886

1118

7121

1887

2198

Z48

0.13

425

0.00

174.

7835

00.

0665

0.25

850.

0034

0.06

731

0.00

1421

5421

1782

1214

8217

1317

2669

Z49

0.16

206

0.00

177.

8216

70.

1134

0.35

015

0.00

510.

0792

60.

0011

2477

1822

1113

1935

2415

4220

78Z5

00.

1205

80.

0012

5.91

376

0.07

660.

3557

20.

0047

0.10

109

0.00

1019

6518

1963

1119

6222

1947

1810

0

Cou

lta G

rano

dior

iteZ1

0.17

101

0.00

207.

6633

20.

1016

0.32

517

0.00

410.

1264

10.

0021

2568

2021

9212

1815

2024

0637

71Z2

0.16

829

0.00

179.

6969

00.

1381

0.41

791

0.00

60.

0594

30.

0008

2541

1724

0613

2251

2711

6716

89Z3

0.17

021

0.00

195.

9556

40.

0873

0.25

379

0.00

370.

1137

30.

0018

2560

1819

6913

1458

1921

7733

57Z4

0.17

472

0.00

1810

.557

230.

1309

0.43

835

0.00

540.

1616

30.

0019

2603

1724

8512

2343

2430

2833

90Z5

0.16

746

0.00

1710

.957

790.

1551

0.47

461

0.00

680.

1435

40.

0020

2533

1725

2013

2504

3027

1135

99Z7

0.16

756

0.00

1710

.625

410.

1397

0.45

995

0.00

610.

1387

10.

0017

2533

1724

9112

2439

2726

2629

96Z8

0.16

635

0.00

1710

.778

940.

1417

0.46

997

0.00

620.

1328

90.

0016

2521

1725

0412

2483

2725

2229

98Z9

0.19

233

0.00

196.

5384

20.

0830

0.24

658

0.00

320.

0325

70.

0004

2762

1620

5111

1421

1664

87

51Z1

00.

1669

30.

0018

8.24

557

0.12

580.

3583

50.

0055

0.12

135

0.00

1825

2718

2258

1419

7426

2315

3278

Z11

0.16

746

0.00

1710

.992

460.

1365

0.47

611

0.00

590.

1399

20.

0019

2532

1725

2312

2510

2626

4733

99Z1

20.

1813

10.

0019

12.3

6338

0.16

400.

4946

20.

0066

0.14

264

0.00

1726

6517

2632

1225

9128

2695

3197

Z13

0.16

651

0.00

1810

.410

420.

1631

0.45

352

0.00

720.

1493

10.

0024

2523

1824

7215

2411

3228

1343

96Z1

50.

1854

60.

0019

12.7

7366

0.17

830.

4995

80.

0071

0.14

566

0.00

2027

0217

2663

1326

1230

2749

3597

Z16

0.16

599

0.00

1710

.520

950.

1387

0.45

972

0.00

620.

1358

80.

0017

2518

1724

8212

2438

2725

7530

97Z1

70.

1706

20.

0017

9.83

905

0.14

510.

4182

90.

0063

0.14

783

0.00

2225

6417

2420

1422

5328

2787

3888

Z18

0.16

938

0.00

1710

.103

020.

1353

0.43

262

0.00

590.

0883

70.

0011

2552

1724

4412

2318

2617

1221

91

Page 50: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-35-

Chapter 2 Supplementary Material

Rat

ios

App

aren

t age

s (M

a)Sp

ot20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th20

7 Pb/20

6 Pb20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

Con

Cou

lta G

rano

dior

ite (c

ontin

ued)

Z14

0.16

654

0.00

1710

.645

600.

1404

0.46

365

0.00

620.

1370

60.

0017

2523

1724

9312

2456

2725

9630

97Z1

90.

1661

20.

0017

10.6

3060

0.15

20.

4641

90.

0067

0.13

810

0.00

1925

1917

2491

1324

5830

2615

3498

Z20

0.16

609

0.00

1710

.096

910.

1419

0.44

091

0.00

630.

1329

40.

0018

2519

1724

4413

2355

2825

2332

93

Milt

alie

Ort

hogn

eiss

Z20.

1232

90.

0013

6.23

586

0.08

160.

3668

40.

0048

0.10

721

0.00

1120

0418

2010

1120

1523

2059

2110

1Z3

0.12

534

0.00

156.

2571

10.

0829

0.36

204

0.00

440.

1117

90.

0015

2034

2120

1312

1992

2121

4228

98Z4

0.12

410

0.00

136.

2606

00.

0846

0.36

590

0.00

490.

1063

0.00

1220

1618

2013

1220

1023

2042

2110

0Z5

0.12

328

0.00

136.

3309

80.

0829

0.37

249

0.00

480.

1046

0.00

1220

0418

2023

1120

4123

2011

2110

2Z6

0.12

478

0.00

136.

3664

90.

0829

0.37

006

0.00

480.

1033

60.

0011

2026

1820

2811

2030

2219

8820

100

Z70.

1233

20.

0014

6.30

205

0.09

120.

3706

60.

0052

0.10

256

0.00

1320

0520

2019

1320

3324

1973

2410

1Z8

0.12

434

0.00

136.

1859

60.

0837

0.36

085

0.00

480.

1018

80.

0012

2019

1920

0312

1986

2319

6121

98Z1

10.

1278

40.

0014

6.23

592

0.08

240.

3538

20.

0046

0.11

386

0.00

1320

6818

2010

1219

5322

2180

2394

Z12

0.12

441

0.00

166.

4452

60.

1133

0.37

611

0.00

630.

0912

10.

0025

2020

2320

3915

2058

3017

6446

102

Z13

0.12

943

0.00

166.

1609

10.

0842

0.34

530

0.00

430.

1186

20.

0022

2090

2219

9912

1912

2022

6640

91Z1

40.

1250

90.

0014

6.09

107

0.07

740.

3532

20.

0044

0.10

848

0.00

1320

3019

1989

1119

5021

2082

2396

Z15

0.12

558

0.00

156.

1505

10.

0959

0.35

518

0.00

530.

1087

30.

0015

2037

2019

9714

1959

2520

8628

96Z1

60.

1236

60.

0014

6.22

387

0.08

600.

3650

60.

0048

0.10

457

0.00

1420

1020

2008

1220

0623

2010

2610

0Z1

70.

1243

20.

0013

6.28

162

0.08

690.

3664

80.

0051

0.09

738

0.00

1020

1918

2016

1220

1324

1878

1910

0Z1

80.

1245

90.

0014

6.37

622

0.08

480.

3712

00.

0048

0.10

272

0.00

1320

2319

2029

1220

3522

1976

2310

1Z1

90.

1232

80.

0013

6.10

200

0.07

910.

3590

40.

0046

0.10

231

0.00

1120

0418

1991

1119

7822

1969

2099

Milt

alie

Com

posit

eZ1

0.07

451

0.00

081.

7526

50.

0236

0.17

063

0.00

230.

0503

60.

0005

1055

2110

289

1016

1399

310

96Z2

0.07

943

0.00

142.

0571

90.

0382

0.18

787

0.00

270.

0571

80.

0010

1183

3311

3513

1110

1511

2419

94Z3

0.12

184

0.00

145.

6639

00.

0793

0.33

726

0.00

460.

0807

50.

0011

1983

2019

2612

1874

2215

7020

94Z4

0.12

342

0.00

145.

9965

30.

0852

0.35

246

0.00

490.

1011

0.00

1320

0619

1975

1219

4623

1947

2497

Z50.

0612

10.

0011

0.68

075

0.01

270.

0806

80.

0011

0.02

522

0.00

0464

737

527

850

07

503

877

Z60.

0758

30.

0010

1.67

329

0.02

610.

1600

80.

0022

0.04

989

0.00

0710

9127

998

1095

712

984

1488

Z70.

0790

80.

0010

2.02

102

0.02

980.

1854

00.

0025

0.05

607

0.00

0711

7425

1123

1010

9614

1103

1393

Z80.

1235

90.

0015

5.99

121

0.09

160.

3516

20.

0052

0.10

190.

0015

2009

2119

7513

1942

2519

6127

97Z9

0.07

915

0.00

092.

0629

50.

0298

0.18

907

0.00

260.

0586

90.

0007

1176

2311

3710

1116

1411

5313

95Z1

00.

0801

90.

0010

2.16

241

0.03

140.

1956

20.

0027

0.05

802

0.00

0712

0223

1169

1011

5214

1140

1396

Z11

0.12

493

0.00

136.

3029

70.

0901

0.36

591

0.00

520.

0971

90.

0012

2028

1820

1913

2010

2518

7522

99Z1

30.

1664

60.

0023

9.14

105

0.13

350.

3977

20.

0052

0.01

936

0.00

1325

2223

2352

1321

5924

388

2686

Z14

0.17

769

0.00

208.

4110

30.

1151

0.34

340

0.00

450.

2348

10.

0056

2631

1922

7612

1903

2242

6392

72Z1

50.

1230

10.

0013

5.78

231

0.07

970.

3409

30.

0046

0.10

595

0.00

1320

0019

1944

1218

9122

2035

2495

Z16

0.12

277

0.00

146.

0231

30.

0934

0.35

577

0.00

530.

1028

90.

0016

1997

2119

7914

1962

2519

8030

98Z1

70.

1246

40.

0013

5.99

452

0.08

110.

3488

40.

0047

0.10

224

0.00

1220

2419

1975

1219

2922

1968

2295

Z18

0.12

400

0.00

135.

9612

30.

0810

0.34

868

0.00

460.

1065

50.

0013

2015

1919

7012

1928

2220

4724

96

Page 51: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-36-

Chapter 2 Supplementary MaterialR

atio

sA

ppar

ent a

ges (

Ma)

Spot

207 Pb

/206 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

% C

on

Milt

alie

Com

posit

e (c

ontin

ued)

Z19

0.07

498

0.00

111.

6856

00.

0275

0.16

304

0.00

220.

0493

40.

0007

1068

2910

0310

974

1297

314

91Z2

00.

1000

90.

0013

3.77

029

0.05

640.

2732

10.

0038

0.07

955

0.00

1016

2623

1586

1215

5719

1547

1996

Z21

0.12

469

0.00

135.

3116

40.

0719

0.30

899

0.00

410.

0945

40.

0012

2024

1918

7112

1736

2018

2622

86Z2

20.

1054

40.

0012

3.46

193

0.04

850.

2381

40.

0032

0.07

901

0.00

1017

2220

1519

1113

7717

1537

1880

Z23

0.08

460

0.00

102.

5401

20.

0377

0.21

775

0.00

310.

0638

80.

0009

1306

2212

8411

1270

1612

5216

97Z2

50.

1037

80.

0016

3.89

105

0.07

030.

2719

60.

0043

0.08

183

0.00

1716

9328

1612

1515

5122

1590

3292

Z26

0.16

231

0.00

168.

5052

60.

1152

0.38

007

0.00

520.

0153

60.

0002

2480

1722

8712

2077

2430

84

84Z2

70.

1256

00.

0015

3.31

738

0.05

100.

1915

40.

0029

0.03

609

0.00

0620

3720

1485

1211

3015

717

1255

Z28

0.17

657

0.00

1911

.912

00.

1699

0.48

930

0.00

690.

1367

60.

0019

2621

1825

9813

2568

3025

9134

98Z2

90.

0790

00.

0012

1.98

432

0.03

290.

1822

00.

0025

0.05

450.

0009

1172

2911

1011

1079

1410

7316

92Z3

00.

1242

30.

0014

4.96

190

0.07

710.

2897

00.

0045

0.02

838

0.00

0520

1819

1813

1316

4022

566

981

Page 52: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-37-

Chapter 2 Supplementary Material

Sup

plem

enta

ry T

able

B.

Hf

isot

opic

dat

a17

6 Lu

deca

y co

nsta

nts

Sod

erlu

nd e

t al

., 2

004

(1.8

67x1

0-11 )

Sch

erer

et

al.,

200

1 (1

.865

x10-1

1 )

Anal

ysis

176 H

f/177 H

f2

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

206 P

b/20

7 Pb

age

(Ma)

Hf i

Hf

1SE

T DM

(Ga)

T DM

(cru

stal

)H

f iH

fT D

M(G

a)T D

M(c

rust

al)

Cou

lta

Gra

nodi

orite

CG

020.

2813

500.

0000

340.

0012

130.

0450

8025

410.

2812

914.

690.

602.

672.

760.

2812

914.

632.

672.

76CG

050.

2813

300.

0000

220.

0013

700.

0466

9525

330.

2812

643.

530.

392.

712.

820.

2812

643.

472.

712.

83CG

070.

2812

850.

0000

220.

0007

190.

0232

7325

330.

2812

503.

070.

392.

722.

850.

2812

503.

012.

732.

86CG

080.

2812

520.

0000

180.

0006

070.

0189

8125

210.

2812

231.

810.

312.

762.

930.

2812

231.

752.

762.

93CG

110.

2812

750.

0000

220.

0007

230.

0247

9425

320.

2812

402.

680.

392.

742.

880.

2812

402.

622.

742.

88CG

120.

2812

570.

0000

300.

0005

110.

0195

4326

650.

2812

315.

430.

532.

752.

800.

2812

315.

362.

752.

81CG

130.

2813

230.

0000

240.

0010

240.

0361

5425

230.

2812

743.

660.

422.

692.

810.

2812

743.

602.

702.

81CG

160.

2812

910.

0000

260.

0008

990.

0296

4325

180.

2812

482.

620.

462.

732.

870.

2812

482.

562.

732.

88CG

180.

2813

310.

0000

280.

0016

790.

0564

4825

520.

2812

493.

450.

492.

732.

840.

2812

493.

392.

732.

85CG

190.

2812

940.

0000

300.

0009

300.

0325

0525

190.

2812

492.

700.

532.

732.

870.

2812

492.

642.

732.

87CG

200.

2813

150.

0000

280.

0008

060.

0293

1625

190.

2812

763.

650.

492.

692.

810.

2812

763.

592.

692.

81CG

150.

2811

930.

0000

480.

0006

450.

0170

2927

020.

2811

603.

760.

842.

842.

940.

2811

603.

692.

842.

95M

iltal

ie G

neis

sM

O02

0.28

1437

0.00

0034

0.00

0691

0.02

3320

2004

0.28

1411

-3.3

90.

602.

522.

860.

2814

11-3

.44

2.52

2.86

MO

030.

2814

460.

0000

200.

0006

570.

0213

3920

340.

2814

21-2

.37

0.35

2.50

2.82

0.28

1421

-2.4

22.

502.

82M

O04

0.28

1392

0.00

0030

0.00

0563

0.01

8798

2016

0.28

1370

-4.5

50.

532.

572.

940.

2813

70-4

.60

2.57

2.95

MO

050.

2813

920.

0000

240.

0004

880.

0159

3320

040.

2813

73-4

.72

0.42

2.56

2.94

0.28

1373

-4.7

62.

572.

95M

O06

0.28

1425

0.00

0028

0.00

0578

0.02

0434

2026

0.28

1403

-3.1

80.

492.

522.

860.

2814

03-3

.23

2.53

2.87

MO

070.

2814

540.

0000

360.

0006

620.

0242

6120

050.

2814

29-2

.74

0.63

2.49

2.82

0.28

1429

-2.7

82.

492.

82M

O08

0.28

1442

0.00

0040

0.00

0528

0.01

9214

2019

0.28

1422

-2.6

50.

702.

502.

820.

2814

22-2

.70

2.50

2.83

MO

110.

2814

010.

0000

400.

0005

070.

0197

2820

680.

2813

81-2

.98

0.70

2.55

2.88

0.28

1381

-3.0

32.

552.

89M

O12

0.28

1453

0.00

0028

0.00

1017

0.03

6442

2020

0.28

1414

-2.9

10.

492.

512.

840.

2814

14-2

.96

2.52

2.84

MO

130.

2814

460.

0000

300.

0009

710.

0409

1320

900.

2814

07-1

.54

0.53

2.52

2.81

0.28

1407

-1.5

92.

522.

81M

O14

0.28

1419

0.00

0032

0.00

0597

0.01

8827

2030

0.28

1396

-3.3

30.

562.

532.

870.

2813

96-3

.37

2.54

2.88

MO

150.

2814

050.

0000

240.

0004

660.

0155

6420

370.

2813

87-3

.48

0.42

2.54

2.89

0.28

1387

-3.5

32.

552.

89M

O16

0.28

1451

0.00

0034

0.00

0679

0.02

5643

2010

0.28

1425

-2.7

60.

602.

502.

820.

2814

25-2

.81

2.50

2.83

MO

170.

2814

310.

0000

320.

0007

550.

0302

2720

190.

2814

02-3

.36

0.56

2.53

2.87

0.28

1402

-3.4

12.

532.

87M

O18

0.28

1391

0.00

0028

0.00

0515

0.01

9865

2023

0.28

1371

-4.3

70.

492.

572.

930.

2813

71-4

.41

2.57

2.94

MO

190.

2814

230.

0000

320.

0005

130.

0200

4920

040.

2814

03-3

.65

0.56

2.52

2.87

0.28

1403

-3.7

02.

532.

88M

S03

0.28

1472

0.00

0020

0.00

0525

0.02

2601

1983

0.28

1452

-2.4

00.

352.

462.

780.

2814

52-2

.44

2.46

2.78

MS04

0.28

1424

0.00

0022

0.00

0416

0.01

7892

2006

0.28

1408

-3.4

40.

392.

512.

860.

2814

08-3

.48

2.52

2.87

MS08

0.28

1409

0.00

0022

0.00

0579

0.02

5072

2009

0.28

1387

-4.1

40.

392.

552.

910.

2813

87-4

.18

2.55

2.91

MS11

0.28

1480

0.00

0022

0.00

1150

0.04

8968

2028

0.28

1436

-1.9

70.

392.

492.

790.

2814

36-2

.01

2.49

2.79

Page 53: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-38-

Chapter 2 Supplementary Material

176 L

u de

cay

cons

tant

sSod

erlu

nd e

t al

., 2

004

(1.8

67x1

0-11 )

Sch

erer

et

al.,

200

1 (1

.865

x10-1

1 )

Anal

ysis

176 H

f/177 H

f2

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

206 P

b/20

7 Pb

age

(Ma)

Hf i

Hf

1SE

T DM

(Ga)

T DM

(cru

stal

)H

f iH

fT D

M(G

a)T D

M(c

rust

al)

MS15

0.28

1428

0.00

0013

0.00

0761

0.03

4263

2000

0.28

1399

-3.8

90.

232.

532.

890.

2813

99-3

.94

2.53

2.89

MS16

0.28

1439

0.00

0024

0.00

0595

0.02

5899

1997

0.28

1416

-3.3

60.

422.

512.

850.

2814

16-3

.40

2.51

2.86

MS17

0.28

1424

0.00

0024

0.00

0759

0.03

4062

2024

0.28

1395

-3.5

10.

422.

542.

880.

2813

95-3

.56

2.54

2.89

MS18

0.28

1411

0.00

0022

0.00

0530

0.02

2839

2015

0.28

1391

-3.8

70.

392.

542.

900.

2813

91-3

.92

2.54

2.90

Wild

man

Silt

ston

eD

3.1

0.28

1626

0.00

0042

0.00

0897

0.03

1717

2009

0.28

1592

3.15

0.74

2.27

2.45

0.28

1592

3.10

2.27

2.45

D2.

10.

2817

080.

0000

780.

0015

020.

0597

5220

180.

2816

505.

441.

372.

192.

310.

2816

505.

392.

202.

31D

6.1

0.28

1694

0.00

0088

0.00

1149

0.04

7413

2017

0.28

1650

5.40

1.54

2.19

2.31

0.28

1650

5.35

2.19

2.31

D4.

10.

2817

120.

0000

660.

0013

520.

0569

6420

240.

2816

605.

921.

162.

182.

280.

2816

605.

872.

182.

28D

39.1

0.28

1541

0.00

0028

0.00

1023

0.04

1325

2019

0.28

1502

0.18

0.49

2.39

2.64

0.28

1502

0.13

2.40

2.65

D5.

10.

2816

740.

0000

900.

0007

420.

0320

4320

220.

2816

455.

351.

582.

202.

310.

2816

455.

312.

202.

32D

7.1

0.28

1715

0.00

0080

0.00

1828

0.07

1108

2002

0.28

1645

4.89

1.40

2.20

2.33

0.28

1645

4.85

2.20

2.33

D41

.10.

2816

790.

0001

220.

0023

290.

0860

7720

360.

2815

893.

662.

142.

282.

430.

2815

893.

612.

292.

44D

8.1

0.28

1600

0.00

0078

0.00

0717

0.02

8800

2015

0.28

1573

2.60

1.37

2.30

2.49

0.28

1573

2.56

2.30

2.49

D40

.10.

2815

340.

0000

280.

0006

860.

0265

3820

140.

2815

080.

280.

492.

382.

630.

2815

080.

232.

392.

64D

9.1

0.28

1682

0.00

0056

0.00

0918

0.03

4033

2018

0.28

1647

5.31

0.98

2.20

2.31

0.28

1647

5.26

2.20

2.32

D11

.10.

2817

170.

0001

300.

0008

060.

0369

8920

240.

2816

866.

842.

282.

142.

220.

2816

866.

792.

142.

22D

15.1

0.28

1617

0.00

0050

0.00

0875

0.03

3658

2031

0.28

1583

3.35

0.88

2.28

2.45

0.28

1583

3.30

2.28

2.45

D12

.10.

2815

620.

0001

140.

0010

520.

0406

9820

130.

2815

220.

752.

002.

372.

600.

2815

220.

712.

372.

61Cor

ny P

oint

Par

agne

iss

CP5

-22

0.28

1612

0.00

0046

0.00

1272

0.05

2695

2013

0.28

1563

2.24

0.81

2.31

2.51

0.28

1563

2.19

2.31

2.51

CP5

-24

0.28

1451

0.00

0042

0.00

0679

0.02

7196

2017

0.28

1425

-2.6

00.

742.

502.

820.

2814

25-2

.65

2.50

2.82

CP5

-47

0.28

1615

0.00

0042

0.00

1175

0.04

9911

2033

0.28

1570

2.91

0.74

2.30

2.48

0.28

1570

2.86

2.30

2.48

CP5

-49

0.28

1586

0.00

0026

0.00

0544

0.02

0195

1906

0.28

1566

-0.1

00.

462.

302.

570.

2815

66-0

.15

2.31

2.58

CP5

-51

0.28

1645

0.00

0032

0.00

0782

0.02

8278

1993

0.28

1615

3.61

0.56

2.24

2.40

0.28

1615

3.57

2.24

2.41

CP5

-52

0.28

1573

0.00

0036

0.00

0695

0.02

7464

2009

0.28

1546

1.53

0.63

2.33

2.55

0.28

1546

1.49

2.33

2.55

CP5

-56

0.28

1655

0.00

0024

0.00

0530

0.02

0917

1971

0.28

1635

3.82

0.42

2.21

2.37

0.28

1635

3.77

2.21

2.38

CP5

-61

0.28

1690

0.00

0024

0.00

0985

0.03

8205

1988

0.28

1653

4.83

0.42

2.19

2.32

0.28

1653

4.79

2.19

2.33

CP5

-63

0.28

1667

0.00

0028

0.00

1029

0.04

2249

2022

0.28

1627

4.72

0.49

2.22

2.36

0.28

1627

4.67

2.22

2.36

CP5

-65

0.28

1359

0.00

0024

0.00

0673

0.02

3337

2444

0.28

1328

3.75

0.42

2.62

2.74

0.28

1328

3.69

2.62

2.75

CP5

-78

0.28

1595

0.00

0022

0.00

0578

0.02

2114

2020

0.28

1573

2.73

0.39

2.29

2.48

0.28

1573

2.68

2.30

2.49

CP5

-82

0.28

1712

0.00

0032

0.00

0837

0.03

0149

2051

0.28

1679

7.22

0.56

2.15

2.22

0.28

1679

7.17

2.15

2.22

CP5

-83

0.28

1651

0.00

0038

0.00

1164

0.04

6943

1999

0.28

1607

3.44

0.67

2.25

2.42

0.28

1607

3.39

2.25

2.42

CP1

8-02

0.28

1363

0.00

0038

0.00

0792

0.02

4970

2483

0.28

1325

4.58

0.67

2.62

2.72

0.28

1325

4.52

2.63

2.72

Page 54: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-39-

Chapter 2 Supplementary Material

176 L

u de

cay

cons

tant

sSod

erlu

nd e

t al

., 2

004

(1.8

67x1

0-11 )

Sch

erer

et

al.,

200

1 (1

.865

x10-1

1 )

Anal

ysis

176 H

f/177 H

f2

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

206 P

b/20

7 Pb

age

(Ma)

Hf i

Hf

1SE

T DM

(Ga)

T DM

(cru

stal

)H

f iH

fT D

M(G

a)T D

M(c

rust

al)

CP1

8-12

0.28

1621

0.00

0017

0.00

0903

0.03

5883

2018

0.28

1586

3.16

0.30

2.28

2.45

0.28

1586

3.11

2.28

2.46

CP1

8-13

0.28

1639

0.00

0028

0.00

0985

0.03

3673

2070

0.28

1600

4.85

0.49

2.26

2.38

0.28

1600

4.80

2.26

2.39

CP1

8-14

0.28

1240

0.00

0024

0.00

0879

0.02

7112

2769

0.28

1193

6.51

0.42

2.80

2.82

0.28

1193

6.45

2.80

2.82

CP1

8-15

0.28

1602

0.00

0040

0.00

0903

0.03

5546

2016

0.28

1567

2.45

0.70

2.30

2.50

0.28

1567

2.40

2.31

2.50

CP1

8-19

0.28

1711

0.00

0040

0.00

1282

0.04

7537

1990

0.28

1662

5.23

0.70

2.18

2.30

0.28

1663

5.18

2.18

2.30

CP1

8-21

0.28

1681

0.00

0028

0.00

0994

0.03

8651

1978

0.28

1644

4.29

0.49

2.20

2.35

0.28

1644

4.24

2.20

2.35

CP1

8-23

0.28

1692

0.00

0044

0.00

0775

0.02

8583

1951

0.28

1663

4.36

0.77

2.17

2.32

0.28

1663

4.31

2.18

2.33

CP1

8-23

0.28

1574

0.00

0036

0.00

0052

0.00

2269

1951

0.28

1572

1.12

0.63

2.29

2.53

0.28

1572

1.07

2.29

2.53

CP1

8-24

0.28

1623

0.00

0028

0.00

0802

0.03

0436

1946

0.28

1593

1.76

0.49

2.27

2.49

0.28

1593

1.71

2.27

2.49

CP1

8-25

0.28

1059

0.00

0032

0.00

0543

0.01

9000

2511

0.28

1033

-5.1

70.

563.

013.

360.

2810

33-5

.23

3.02

3.37

CP1

8-28

0.28

1259

0.00

0034

0.00

0563

0.01

9565

2403

0.28

1233

-0.5

50.

602.

752.

990.

2812

33-0

.61

2.75

2.99

CP1

8-38

0.28

1585

0.00

0032

0.00

0479

0.01

9632

2201

0.28

1565

6.60

0.56

2.30

2.37

0.28

1565

6.55

2.30

2.38

CP1

8-43

0.28

1698

0.00

0034

0.00

0843

0.03

0728

2066

0.28

1665

7.05

0.60

2.17

2.24

0.28

1665

7.00

2.17

2.24

CP1

8-45

0.28

1668

0.00

0030

0.00

0913

0.03

6294

2091

0.28

1632

6.44

0.53

2.21

2.30

0.28

1632

6.39

2.22

2.30

CP1

8-48

0.28

1611

0.00

0032

0.00

0816

0.03

2290

1998

0.28

1580

2.47

0.56

2.29

2.48

0.28

1580

2.42

2.29

2.48

CP1

8-50

0.28

1775

0.00

0038

0.00

1404

0.06

6212

2050

0.28

1720

8.66

0.67

2.09

2.12

0.28

1720

8.61

2.10

2.13

CP1

8-57

0.28

1671

0.00

0042

0.00

0457

0.01

6633

1985

0.28

1654

4.81

0.74

2.18

2.32

0.28

1654

4.76

2.19

2.33

10-0

20.

2813

420.

0000

240.

0011

700.

0409

3623

190.

2812

90-0

.45

0.42

2.68

2.91

0.28

1290

-0.5

12.

682.

9210

-03

0.28

1213

0.00

0022

0.00

1097

0.04

0308

2626

0.28

1158

1.93

0.39

2.85

3.00

0.28

1158

1.86

2.85

3.00

10-0

50.

2815

730.

0000

740.

0012

460.

0474

1118

870.

2815

28-1

.88

1.30

2.36

2.67

0.28

1528

-1.9

22.

372.

6810

-06

0.28

1349

0.00

0048

0.00

0684

0.02

5668

2499

0.28

1316

4.63

0.84

2.63

2.73

0.28

1316

4.57

2.64

2.73

10-0

80.

2816

470.

0000

320.

0005

620.

0222

0618

770.

2816

271.

380.

562.

222.

460.

2816

271.

332.

222.

4610

-11

0.28

1315

0.00

0034

0.00

0506

0.01

5951

2469

0.28

1291

3.04

0.60

2.67

2.81

0.28

1291

2.98

2.67

2.81

10-1

20.

2815

720.

0000

440.

0011

230.

0351

5018

990.

2815

31-1

.51

0.77

2.36

2.66

0.28

1532

-1.5

52.

362.

6610

-15

0.28

1746

0.00

0060

0.00

1313

0.04

3659

1870

0.28

1699

3.80

1.05

2.13

2.30

0.28

1699

3.76

2.13

2.30

10-1

70.

2814

100.

0000

260.

0008

000.

0308

7524

350.

2813

735.

160.

462.

562.

650.

2813

735.

102.

562.

6510

-28

0.28

1537

0.00

0030

0.00

0821

0.03

0471

1967

0.28

1506

-0.8

40.

532.

392.

670.

2815

06-0

.89

2.39

2.67

10-2

90.

2816

530.

0000

500.

0012

130.

0444

3219

780.

2816

073.

000.

882.

252.

430.

2816

072.

952.

252.

44

Page 55: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-40-

Chapter 2 Supplementary MaterialS

uppl

emen

tary

Tab

le C

. U-P

b zi

rcon

dat

a an

d Lu

-Hf i

soto

pic

data

from

Bel

ouso

va e

t al.,

200

6

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

EG

C01

-10.

0982

40.

0022

3.73

106

0.09

090.

2754

70.

0064

0.07

564

0.00

1915

9142

1578

2015

6932

1474

3499

0.28

1697

0.00

0019

0.00

1475

0.03

9844

0.28

1653

-4.2

40.

672.

212.

59E

GC

01-2

Rim

0.10

186

0.00

213.

7795

90.

0853

0.26

911

0.00

600.

0658

40.

0015

1658

4015

8818

1536

3012

8928

93E

GC

01-5

0.09

862

0.00

203.

6885

30.

0832

0.27

126

0.00

610.

0786

60.

0017

1598

4015

6918

1547

3015

3032

970.

2817

000.

0000

150.

0007

080.

0174

480.

2816

79-3

.16

0.53

2.16

2.53

EG

C01

-60.

0975

00.

0019

3.67

456

0.07

920.

2733

40.

0060

0.06

753

0.00

1415

7738

1566

1815

5830

1321

2699

0.28

1684

0.00

0013

0.00

1123

0.02

9989

0.28

1650

-4.6

30.

462.

212.

61E

GC

01-9

0.09

762

0.00

203.

7296

90.

0839

0.27

712

0.00

620.

0816

50.

0018

1579

4015

7818

1577

3215

8634

100

EG

C01

-10

0.09

810

0.00

213.

6573

40.

0851

0.27

041

0.00

620.

0787

20.

0018

1588

4015

6218

1543

3215

3234

970.

2817

410.

0000

260.

0006

150.

0160

520.

2817

23-1

.83

0.91

2.10

2.44

EG

C01

-11

0.09

822

0.00

593.

7754

20.

2019

0.27

878

0.00

740.

0815

60.

0020

1591

114

1588

4215

8538

1585

3810

00.

2818

090.

0000

140.

0007

830.

0197

120.

2817

850.

470.

492.

022.

29E

GC

01-1

20.

0979

70.

0020

3.79

446

0.08

520.

2809

90.

0064

0.08

258

0.00

1815

8638

1592

1815

9632

1604

3410

10.

2817

240.

0000

180.

0009

770.

0246

560.

2816

95-2

.86

0.63

2.14

2.50

EG

C01

-13

0.09

818

0.00

213.

6614

50.

0862

0.27

064

0.00

640.

0773

50.

0017

1590

4015

6318

1544

3215

0632

970.

2817

180.

0000

200.

0006

430.

0158

560.

2816

99-2

.63

0.70

2.13

2.49

EG

C01

-14

0.09

958

0.00

223.

7273

00.

0914

0.27

162

0.00

660.

0694

10.

0016

1616

4215

7720

1549

3413

5630

960.

2817

450.

0000

180.

0006

930.

0182

520.

2817

24-1

.15

0.63

2.10

2.42

EG

C01

-15

0.09

784

0.00

193.

7384

60.

0821

0.27

718

0.00

620.

0818

00.

0017

1583

3815

8018

1577

3215

8932

100

0.28

1725

0.00

0014

0.00

0979

0.02

4416

0.28

1696

-2.8

90.

492.

142.

50E

GC

01-2

00.

0983

10.

0021

3.76

024

0.08

770.

2774

80.

0065

0.07

951

0.00

1815

9240

1584

1815

7932

1546

3499

EG

C01

-21

0.10

125

0.00

223.

8944

10.

0946

0.27

915

0.00

660.

0770

30.

0019

1647

4216

1320

1587

3415

0036

960.

2817

010.

0000

180.

0005

420.

0133

180.

2816

84-1

.86

0.63

2.15

2.49

EG

C01

-23

0.10

554

0.00

224.

4153

50.

1024

0.30

363

0.00

720.

0865

70.

0019

1724

3817

1520

1709

3616

7836

990.

2815

920.

0000

470.

0005

590.

0132

260.

2815

74-4

.03

1.65

2.30

2.68

EG

C01

-29

0.09

735

0.00

263.

7200

90.

1074

0.27

725

0.00

710.

0717

60.

0022

1574

5215

7624

1577

3614

0142

100

0.28

1749

0.00

0017

0.00

0470

0.01

1406

0.28

1735

-1.7

00.

602.

082.

42E

GC

01-3

00.

0973

60.

0021

3.76

628

0.09

260.

2807

00.

0068

0.07

377

0.00

1715

7442

1586

2015

9534

1439

3210

10.

2818

030.

0000

180.

0006

720.

0177

360.

2817

830.

000.

632.

022.

31E

GC

01-3

10.

0979

00.

0020

3.72

373

0.08

700.

2760

10.

0064

0.07

824

0.00

1715

8540

1576

1815

7132

1523

3299

EG

C01

-35

0.17

805

0.00

3712

.407

910.

2836

0.50

565

0.01

180.

1330

90.

0028

2635

3426

3622

2638

5025

2550

100

0.28

1128

0.00

0012

0.00

0215

0.00

4688

0.28

1117

0.62

0.42

2.90

3.09

EG

C01

-41

0.09

771

0.00

223.

7824

10.

0928

0.28

064

0.00

660.

0767

70.

0019

1581

4415

8920

1595

3414

9536

101

0.28

1759

0.00

0021

0.00

0608

0.01

5076

0.28

1741

-1.3

40.

742.

072.

40E

GC

01-4

20.

1039

40.

0022

3.87

538

0.09

190.

2704

80.

0063

0.07

360

0.00

1616

9640

1609

2015

4332

1435

3091

0.28

1796

0.00

0017

0.00

0694

0.01

6981

0.28

1774

2.44

0.60

2.03

2.25

EG

C01

-43

0.09

747

0.00

233.

7245

80.

0956

0.27

728

0.00

680.

0665

90.

0016

1576

4415

7720

1578

3413

0332

100

0.28

1763

0.00

0022

0.00

0682

0.01

7598

0.28

1743

-1.3

90.

772.

072.

40E

GC

01-4

40.

0984

90.

0021

3.73

822

0.08

670.

2752

70.

0062

0.08

370

0.00

2015

9642

1580

1815

6732

1625

3698

0.28

1831

0.00

0015

0.00

0810

0.01

9875

0.28

1807

1.33

0.53

1.99

2.24

EG

C01

-46

0.09

916

0.00

213.

7468

80.

0868

0.27

406

0.00

620.

0814

90.

0019

1608

4215

8118

1561

3215

8336

970.

2817

330.

0000

210.

0004

540.

0110

650.

2817

19-1

.49

0.74

2.10

2.43

EG

C01

-54

0.10

182

0.00

243.

7625

20.

0959

0.26

805

0.00

650.

0742

70.

0019

1658

4415

8520

1531

3214

4836

920.

2816

850.

0000

160.

0004

120.

0097

900.

2816

72-2

.03

0.56

2.16

2.51

EG

C01

-55

0.10

152

0.00

223.

6233

20.

0855

0.25

882

0.00

600.

0620

60.

0015

1652

4215

5518

1484

3012

1728

900.

2816

350.

0000

150.

0004

260.

0103

450.

2816

22-3

.96

0.53

2.23

2.62

EG

C01

-63

0.09

730

0.00

223.

7898

20.

0916

0.28

246

0.00

640.

0835

20.

0021

1573

4415

9120

1604

3216

2138

102

0.28

1747

0.00

0015

0.00

0584

0.01

4641

0.28

1730

-1.9

20.

532.

092.

43E

GC

01-6

40.

1055

10.

0021

4.25

462

0.09

470.

2924

20.

0067

0.05

731

0.00

1317

2336

1685

1816

5434

1126

2496

0.28

1557

0.00

0021

0.00

0985

0.02

3260

0.28

1525

-5.7

90.

742.

372.

79E

GC

01-6

50.

1161

90.

0025

4.96

248

0.11

220.

3098

00.

0070

0.07

460

0.00

1718

9838

1813

2017

4034

1454

3292

0.28

1808

0.00

0019

0.00

0588

0.01

4363

0.28

1787

7.50

0.67

2.01

2.08

EG

C01

-71

0.10

595

0.00

214.

4541

50.

0985

0.30

486

0.00

690.

0880

20.

0020

1731

3817

2218

1715

3417

0538

990.

2815

980.

0000

180.

0000

120.

0003

220.

2815

98-3

.02

0.63

2.26

2.63

EG

C01

-74

0.10

255

0.00

234.

1766

00.

1006

0.29

538

0.00

680.

0903

20.

0022

1671

4216

6920

1668

3417

4840

100

EG

C01

-77

0.09

943

0.00

213.

8865

30.

0911

0.28

360

0.00

660.

0763

60.

0017

1613

4016

1118

1609

3414

8732

100

0.28

1657

0.00

0022

0.00

0706

0.01

7638

0.28

1635

-4.3

50.

772.

222.

62E

GC

01-7

80.

1054

30.

0024

4.40

907

0.10

720.

3034

10.

0071

0.08

738

0.00

2117

2242

1714

2017

0836

1693

4099

0.28

1748

0.00

0016

0.00

0394

0.00

9967

0.28

1735

1.66

0.56

2.08

2.32

EG

C01

-80

0.09

841

0.00

263.

8202

30.

1101

0.28

167

0.00

730.

0653

40.

0020

1594

5015

9724

1600

3612

7938

100

0.28

1897

0.00

0019

0.00

0942

0.02

2190

0.28

1869

3.49

0.67

1.90

2.10

EG

C01

-87

0.15

597

0.00

319.

4471

00.

2157

0.43

905

0.01

040.

0760

00.

0015

2412

3423

8220

2346

4614

8128

970.

2813

000.

0000

190.

0006

610.

0158

740.

2812

700.

890.

672.

702.

90E

GC

01-8

80.

0994

00.

0021

3.57

168

0.07

840.

2607

40.

0057

0.07

107

0.00

1516

1340

1543

1814

9430

1388

3093

0.28

1673

0.00

0017

0.00

1930

0.05

4608

0.28

1614

-5.1

10.

602.

272.

67E

GC

01-9

00.

1023

40.

0021

3.76

841

0.08

280.

2671

30.

0059

0.03

343

0.00

0716

6738

1586

1815

2630

665

1492

0.28

1805

0.00

0019

0.00

0861

0.02

1440

0.28

1778

1.92

0.67

2.03

2.26

EG

C01

-92

0.09

733

0.00

213.

7128

80.

0875

0.27

661

0.00

640.

0777

00.

0017

1574

4215

7418

1574

3215

1232

100

0.28

1787

0.00

0021

0.00

0694

0.01

7350

0.28

1766

-0.5

90.

742.

042.

35E

GC

01-9

30.

1001

10.

0022

3.85

022

0.08

850.

2790

30.

0063

0.08

431

0.00

1916

2642

1603

1815

8632

1636

3698

0.28

1767

0.00

0013

0.00

0485

0.01

1742

0.28

1752

0.08

0.46

2.06

2.35

EG

C02

-60.

1125

30.

0023

5.00

283

0.09

290.

3227

20.

0061

0.08

449

0.00

1818

4138

1820

1618

0330

1639

3498

0.28

1500

0.00

0013

0.00

0667

0.01

6178

0.28

1477

-4.8

10.

462.

432.

82E

GC

02-1

80.

0965

90.

0038

3.75

125

0.12

800.

2816

70.

0056

0.08

255

0.00

1615

5976

1582

2816

0028

1603

3010

30.

2817

480.

0000

140.

0005

150.

0123

820.

2817

33-2

.12

0.49

2.08

2.43

EG

C02

-34

0.10

366

0.00

284.

3293

70.

1090

0.30

284

0.00

620.

0887

30.

0027

1691

5216

9920

1705

3017

1850

101

0.28

1509

0.00

0025

0.00

0360

0.00

8467

0.28

1497

-7.4

80.

882.

402.

88E

GC

02-3

70.

1682

20.

0050

11.2

5212

0.30

350.

4858

90.

0108

0.15

212

0.00

4825

4050

2544

2625

5348

2862

8410

10.

2809

680.

0000

190.

0003

290.

0087

790.

2809

52-7

.45

0.67

3.12

3.53

EG

C02

-38

0.11

553

0.00

225.

5172

30.

0955

0.34

614

0.00

640.

1026

10.

0019

1888

3419

0314

1916

3019

7434

101

0.28

1445

0.00

0019

0.00

0723

0.01

8181

0.28

1419

-5.7

90.

672.

512.

92E

GC

02-5

30.

1060

80.

0028

4.21

107

0.10

040.

2881

70.

0057

0.08

573

0.00

2117

3348

1676

2016

3228

1663

4094

0.28

1552

0.00

0030

0.00

0667

0.01

6361

0.28

1530

-5.3

71.

052.

362.

78E

GC

02-5

40.

1581

60.

0042

9.57

594

0.18

310.

4391

20.

0080

0.12

248

0.00

2324

3646

2395

1823

4736

2335

4296

0.28

1182

0.00

0013

0.00

0051

0.00

1525

0.28

1180

-1.7

50.

462.

823.

09E

GC

02-6

10.

1514

30.

0028

8.87

483

0.13

640.

4256

40.

0071

0.12

145

0.00

2023

6232

2325

1422

8632

2317

3697

0.28

1130

0.00

0013

0.00

1318

0.03

3921

0.28

1071

-7.3

30.

462.

983.

39E

GC

02-6

60.

1114

50.

0022

4.94

232

0.10

360.

3216

30.

0069

0.09

653

0.00

2018

2336

1810

1817

9834

1863

3899

0.28

1800

0.00

0015

0.00

1114

0.02

9097

0.28

1761

4.89

0.53

2.05

2.19

EG

C02

-70

0.17

810

0.00

3512

.221

520.

2667

0.49

769

0.01

120.

1418

10.

0030

2635

3426

2220

2604

4826

8054

990.

2810

900.

0000

140.

0002

730.

0069

190.

2810

76-0

.83

0.49

2.95

3.18

EG

C02

-81

0.11

009

0.00

224.

8202

10.

1141

0.31

759

0.00

760.

0928

90.

0021

1801

3817

8820

1778

3817

9538

990.

2816

120.

0000

170.

0005

510.

0128

880.

2815

93-1

.59

0.60

2.27

2.59

EG

C03

-10

0.16

778

0.00

3510

.246

190.

2360

0.44

296

0.01

020.

1124

00.

0027

2536

3624

5722

2364

4621

5348

930.

2813

350.

0000

220.

0012

920.

0408

940.

2812

723.

860.

772.

702.

81E

GC

03-2

00.

1740

60.

0035

10.7

8940

0.25

280.

4496

40.

0107

0.04

348

0.00

1025

9734

2505

2223

9448

860

2092

0.28

1212

0.00

0022

0.00

2834

0.11

1313

0.28

1071

-1.8

90.

772.

993.

22E

GC

03-2

40.

0998

00.

0020

3.82

295

0.08

470.

2778

30.

0062

0.08

042

0.00

1716

2038

1598

1815

8032

1563

3298

0.28

1813

0.00

0014

0.00

0606

0.01

9509

0.28

1794

1.45

0.49

2.00

2.25

Page 56: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-41-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

EG

C03

-34

0.16

871

0.00

3410

.069

460.

2148

0.43

297

0.00

940.

1132

60.

0024

2545

3424

4120

2319

4221

6944

910.

2812

010.

0000

110.

0004

340.

0147

400.

2811

800.

770.

392.

823.

01E

GC

03-3

50.

0999

20.

0021

3.70

098

0.08

200.

2686

80.

0059

0.04

645

0.00

1016

2340

1572

1815

3430

918

2095

0.28

1767

0.00

0017

0.00

0882

0.03

0186

0.28

1740

-0.4

20.

602.

082.

38E

GC

03-4

10.

0972

10.

0020

3.55

584

0.08

340.

2652

60.

0062

0.07

850

0.00

1815

7140

1540

1815

1732

1527

3497

0.28

1609

0.00

0017

0.00

0459

0.01

5641

0.28

1595

-6.7

30.

602.

272.

74E

GC

03-4

20.

0995

50.

0021

3.67

590

0.08

790.

2677

20.

0063

0.07

997

0.00

1916

1640

1566

2015

2932

1555

3695

0.28

1821

0.00

0020

0.00

0608

0.02

0471

0.28

1802

1.64

0.70

1.99

2.24

EG

C03

-45

0.09

786

0.00

213.

5981

60.

0876

0.26

660

0.00

630.

0801

00.

0020

1584

4215

4920

1524

3215

5738

960.

2817

420.

0000

230.

0004

970.

0166

160.

2817

27-1

.76

0.81

2.09

2.43

EG

C03

-46

0.10

484

0.00

214.

3457

40.

0979

0.30

058

0.00

700.

0896

80.

0020

1712

3617

0218

1694

3417

3638

990.

2816

320.

0000

170.

0001

320.

0048

650.

2816

28-2

.38

0.60

2.22

2.57

EG

C03

-47

0.09

934

0.00

203.

7972

10.

0879

0.27

722

0.00

650.

0808

90.

0018

1612

3815

9218

1577

3215

7232

980.

2817

080.

0000

200.

0008

150.

0279

910.

2816

83-2

.68

0.70

2.16

2.51

EG

C03

-49

0.09

725

0.00

213.

5745

70.

0848

0.26

657

0.00

620.

0806

00.

0019

1572

4015

4418

1523

3215

6736

970.

2817

470.

0000

200.

0004

870.

0161

630.

2817

33-1

.84

0.70

2.08

2.43

EG

C03

-56

0.11

222

0.00

234.

8282

50.

1155

0.31

206

0.00

740.

0825

30.

0021

1836

3817

9020

1751

3616

0340

950.

2816

420.

0000

140.

0007

470.

0255

030.

2816

160.

020.

492.

242.

51E

GC

03-6

30.

1648

20.

0034

10.4

7338

0.26

190.

4608

70.

0119

0.08

981

0.00

2125

0636

2478

2424

4352

1738

3897

0.28

1246

0.00

0016

0.00

1568

0.06

7041

0.28

1171

-0.4

50.

562.

843.

06E

GC

03-7

10.

1587

90.

0032

9.79

633

0.22

380.

4475

80.

0105

0.12

552

0.00

2824

4334

2416

2223

8446

2390

5098

0.28

1230

0.00

0012

0.00

0772

0.02

4946

0.28

1194

-1.0

80.

422.

803.

05E

GC

03-7

80.

1071

00.

0021

4.24

794

0.09

720.

2877

60.

0067

0.08

403

0.00

1817

5138

1683

1816

3034

1631

3493

0.28

1734

0.00

0011

0.00

1056

0.03

4689

0.28

1699

1.03

0.39

2.13

2.38

EG

C03

-94

0.16

443

0.00

3210

.392

480.

2443

0.45

839

0.01

110.

1168

20.

0025

2502

3424

7022

2432

4822

3346

970.

2812

740.

0000

170.

0007

890.

0270

430.

2812

361.

790.

602.

752.

91E

GC

03-9

80.

1163

60.

0023

5.35

888

0.12

430.

3339

80.

0080

0.09

081

0.00

2019

0136

1878

2018

5838

1757

3698

0.28

1415

0.00

0016

0.00

0219

0.00

9212

0.28

1407

-5.9

20.

562.

522.

94E

GC

04-5

0.15

922

0.00

329.

5949

50.

2147

0.43

699

0.00

980.

1248

90.

0028

2447

3623

9720

2337

4423

7950

960.

2811

520.

0000

140.

0006

880.

0235

990.

2811

20-3

.62

0.49

2.90

3.22

EG

C04

-60.

1053

40.

0022

4.32

882

0.10

330.

2979

70.

0070

0.07

823

0.00

1717

2040

1699

2016

8134

1522

3298

0.28

1501

0.00

0018

0.00

0794

0.02

7056

0.28

1475

-7.6

20.

632.

442.

91E

GC

04-8

0.15

487

0.00

709.

4077

80.

3538

0.44

057

0.01

100.

1231

40.

0030

2400

7823

7934

2353

5023

4754

980.

2810

860.

0000

120.

0007

580.

0254

430.

2810

51-7

.14

0.42

3.00

3.40

EG

C04

-10

0.15

111

0.00

309.

0018

20.

2063

0.43

205

0.01

000.

1238

90.

0028

2359

3423

3820

2315

4623

6150

980.

2812

450.

0000

150.

0002

900.

0090

330.

2812

32-1

.66

0.53

2.75

3.02

EG

C04

-11

0.16

125

0.00

3210

.283

660.

2342

0.46

245

0.01

060.

1327

40.

0030

2469

3424

6122

2450

4625

1952

990.

2811

390.

0000

190.

0008

790.

0316

210.

2810

98-3

.91

0.67

2.93

3.25

EG

C04

-16

0.10

872

0.00

224.

8655

10.

1153

0.32

483

0.00

790.

0919

40.

0020

1778

3817

9620

1813

3817

7838

102

0.28

1542

0.00

0024

0.00

0886

0.02

6498

0.28

1512

-4.9

90.

842.

392.

79E

GC

04-1

70.

1600

50.

0032

10.1

0623

0.24

140.

4581

30.

0111

0.12

236

0.00

2624

5634

2445

2224

3150

2333

4899

0.28

1097

0.00

0019

0.00

0410

0.01

3229

0.28

1078

-4.9

10.

672.

963.

30E

GC

04-1

90.

1920

30.

0038

12.6

6748

0.28

250.

4784

90.

0109

0.13

402

0.00

2927

6034

2655

2025

2148

2542

5291

0.28

0959

0.00

0011

0.00

0920

0.03

0011

0.28

0910

-3.8

40.

393.

183.

47E

GC

04-2

00.

1589

80.

0032

9.77

454

0.22

720.

4459

80.

0105

0.12

148

0.00

2724

4534

2414

2223

7746

2317

4897

0.28

1097

0.00

0016

0.00

0775

0.02

4730

0.28

1061

-5.7

70.

562.

983.

35E

GC

04-2

10.

1060

80.

0023

4.33

706

0.10

670.

2965

60.

0071

0.06

866

0.00

1517

3340

1700

2016

7436

1342

3097

0.28

1501

0.00

0026

0.00

0618

0.01

9792

0.28

1481

-7.1

30.

912.

432.

89E

GC

04-2

20.

1066

50.

0021

4.43

666

0.10

240.

3017

40.

0070

0.07

932

0.00

1817

4338

1719

2017

0034

1543

3498

0.28

1583

0.00

0013

0.00

0245

0.00

8084

0.28

1575

-3.5

50.

462.

292.

67E

GC

04-2

60.

1068

40.

0022

4.48

572

0.10

430.

3045

70.

0071

0.08

780

0.00

2017

4638

1728

2017

1436

1701

3698

0.28

1616

0.00

0012

0.00

0456

0.01

4214

0.28

1601

-2.5

60.

422.

262.

61E

GC

04-2

90.

1107

80.

0022

4.78

665

0.10

920.

3134

20.

0072

0.09

071

0.00

2018

1238

1783

2017

5836

1755

3697

0.28

1592

0.00

0019

0.00

0684

0.02

2529

0.28

1568

-2.2

20.

672.

312.

64E

GC

04-3

70.

1055

20.

0024

4.37

871

0.11

130.

3010

30.

0072

0.08

947

0.00

2017

2342

1708

2216

9636

1732

3898

0.28

1596

0.00

0017

0.00

0384

0.01

2311

0.28

1583

-3.7

10.

602.

282.

66E

GC

04-4

00.

1597

50.

0032

10.2

1976

0.24

970.

4641

70.

0115

0.12

942

0.00

3024

5336

2455

2224

5850

2460

5410

00.

2809

870.

0000

120.

0006

180.

0216

080.

2809

58-9

.24

0.42

3.12

3.58

EG

C04

-52

0.10

749

0.00

214.

5878

50.

1079

0.30

964

0.00

740.

0939

70.

0021

1757

3817

4720

1739

3618

1540

990.

2817

190.

0000

150.

0004

850.

0138

470.

2817

031.

310.

532.

122.

37E

GC

04-5

50.

0964

50.

0019

3.52

632

0.08

400.

2651

20.

0064

0.08

294

0.00

1915

5738

1533

1815

1632

1611

3697

0.28

1747

0.00

0011

0.00

0974

0.03

3568

0.28

1718

-2.6

80.

392.

112.

47E

GC

04-5

70.

1071

20.

0021

4.52

527

0.10

670.

3063

10.

0074

0.09

500

0.00

2217

5138

1736

2017

2336

1834

4098

0.28

1652

0.00

0016

0.00

0234

0.00

8137

0.28

1644

-0.9

10.

562.

202.

51E

GC

04-6

10.

2479

10.

0106

20.6

5480

0.67

740.

6042

70.

0166

0.16

153

0.00

4531

7170

3123

3230

4766

3027

7896

0.28

0887

0.00

0017

0.00

0896

0.02

8723

0.28

0832

2.96

0.60

3.28

3.35

EG

C04

-63

0.10

936

0.00

224.

7156

90.

1106

0.31

277

0.00

750.

0940

70.

0021

1789

3617

7020

1754

3618

1740

980.

2815

790.

0000

210.

0005

240.

0170

040.

2815

61-3

.00

0.74

2.31

2.67

EG

C04

-67

0.18

081

0.00

4112

.459

550.

3417

0.49

998

0.01

360.

1014

00.

0030

2660

3826

4026

2614

5819

5256

980.

2811

510.

0000

160.

0004

770.

0155

180.

2811

271.

540.

562.

893.

05E

GC

04-7

00.

1055

80.

0021

4.39

553

0.10

540.

3020

00.

0073

0.08

692

0.00

1917

2438

1712

2017

0136

1685

3699

0.28

1595

0.00

0016

0.00

0848

0.03

0585

0.28

1567

-4.2

60.

562.

312.

70E

GC

04-7

20.

1593

40.

0056

9.76

010

0.24

870.

4442

50.

0107

0.12

383

0.00

3124

4960

2412

2423

7048

2360

5697

0.28

1262

0.00

0017

0.00

1147

0.03

7794

0.28

1208

-0.4

30.

602.

793.

01E

GC

04-8

40.

1124

30.

0022

5.32

626

0.13

760.

3436

20.

0093

0.07

505

0.00

2318

3936

1873

2219

0444

1463

4410

40.

2815

900.

0000

150.

0014

320.

0521

680.

2815

40-2

.61

0.53

2.36

2.68

EG

C04

-86

0.16

003

0.00

3410

.246

740.

2725

0.46

494

0.01

250.

1090

50.

0037

2456

3624

5724

2461

5620

9268

100

0.28

1196

0.00

0014

0.00

0153

0.00

5015

0.28

1189

-0.9

60.

492.

803.

05E

GC

04-8

80.

1562

90.

0031

9.72

724

0.23

040.

4520

30.

0112

0.11

774

0.00

3124

1634

2409

2224

0450

2250

5610

00.

2811

040.

0000

180.

0003

580.

0117

250.

2810

88-5

.49

0.63

2.94

3.31

EG

C04

-90

0.10

511

0.00

224.

2521

60.

1059

0.29

325

0.00

730.

0796

90.

0019

1716

4016

8420

1658

3615

5034

970.

2815

060.

0000

160.

0010

450.

0333

830.

2814

72-7

.82

0.56

2.45

2.92

EG

C04

-91

0.15

556

0.00

789.

5894

60.

4008

0.44

710

0.01

220.

1249

10.

0033

2408

8623

9638

2382

5423

7960

990.

2812

170.

0000

210.

0008

260.

0283

960.

2811

79-2

.42

0.74

2.83

3.11

EG

C04

-99

0.09

713

0.00

223.

6015

30.

0946

0.26

876

0.00

680.

0736

20.

0017

1570

4415

5020

1535

3414

3632

980.

2818

060.

0000

250.

0010

700.

0360

790.

2817

74-0

.40

0.88

2.04

2.33

EG

C04

-104

0.15

569

0.00

319.

2912

90.

2351

0.43

283

0.01

170.

0682

50.

0014

2409

3423

6724

2318

5213

3426

960.

2811

400.

0000

180.

0006

240.

0265

960.

2811

11-4

.80

0.63

2.91

3.26

EG

C05

-20.

1083

80.

0022

4.68

383

0.11

440.

3133

90.

0077

0.09

825

0.00

2217

7238

1764

2017

5738

1894

4299

0.28

1669

0.00

0032

0.00

0601

0.01

6254

0.28

1649

-0.2

71.

122.

202.

48E

GC

05-3

0.10

891

0.00

224.

7233

10.

1170

0.31

449

0.00

780.

0988

60.

0023

1781

3817

7120

1763

3819

0542

990.

2815

930.

0000

190.

0009

930.

0253

000.

2815

59-3

.24

0.67

2.32

2.68

EG

C05

-50.

1143

70.

0023

5.30

477

0.13

570.

3363

80.

0086

0.10

296

0.00

2418

7038

1870

2218

6942

1981

4410

00.

2815

380.

0000

200.

0006

740.

0178

670.

2815

14-2

.83

0.70

2.38

2.72

EG

C05

-80.

0996

60.

0020

4.01

164

0.10

040.

2919

70.

0074

0.09

288

0.00

2116

1838

1637

2016

5136

1795

4010

20.

2817

850.

0000

230.

0012

150.

0334

070.

2817

48-0

.25

0.81

2.07

2.36

EG

C05

-12

0.09

926

0.00

373.

4793

20.

1003

0.25

423

0.00

620.

0743

00.

0019

1610

7215

2322

1460

3214

4936

910.

2817

070.

0000

210.

0013

330.

0377

440.

2816

66-3

.32

0.74

2.19

2.55

EG

C05

-15C

0.10

777

0.00

224.

6672

70.

1116

0.31

409

0.00

760.

1029

80.

0024

1762

3817

6120

1761

3819

8144

100

0.28

1661

0.00

0021

0.00

0625

0.01

8585

0.28

1640

-0.8

10.

742.

212.

51E

GC

05-1

5R0.

1071

00.

0022

4.65

695

0.11

180.

3153

70.

0077

0.10

070

0.00

2417

5138

1760

2017

6738

1939

4410

1E

GC

05-1

70.

1077

60.

0021

4.75

964

0.11

190.

3203

50.

0078

0.10

220

0.00

2417

6236

1778

2017

9138

1967

4410

20.

2816

710.

0000

320.

0005

180.

0126

940.

2816

54-0

.33

1.12

2.19

2.48

EG

C05

-18

0.11

238

0.00

225.

1966

70.

1219

0.33

539

0.00

810.

1064

50.

0024

1838

3618

5220

1864

4020

4544

101

EG

C05

-24

0.10

709

0.00

214.

5354

90.

1098

0.30

719

0.00

760.

1061

60.

0026

1750

3817

3820

1727

3820

3946

990.

2817

060.

0000

230.

0007

600.

0203

910.

2816

810.

360.

812.

162.

42

Page 57: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-42-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

EG

C05

-27

0.18

197

0.00

8411

.746

750.

4290

0.46

819

0.01

300.

1288

50.

0036

2671

7825

8434

2476

5824

5064

930.

2808

170.

0000

360.

0005

830.

0176

750.

2807

87-1

0.28

1.26

3.34

3.81

EG

C05

-31

0.10

598

0.00

214.

4480

20.

1053

0.30

443

0.00

740.

0940

70.

0021

1731

3617

2120

1713

3618

1740

990.

2815

590.

0000

260.

0006

220.

0171

170.

2815

39-5

.12

0.91

2.35

2.76

EG

C05

-33

0.11

447

0.00

245.

2986

00.

1317

0.33

575

0.00

840.

1012

90.

0025

1872

3818

6922

1866

4019

5046

100

0.28

1461

0.00

0034

0.00

0500

0.01

2616

0.28

1443

-5.3

01.

192.

472.

88E

GC

05-3

40.

1070

40.

0021

4.61

322

0.10

860.

3126

00.

0075

0.09

026

0.00

2017

5036

1752

2017

5338

1747

3810

00.

2817

210.

0000

310.

0013

100.

0340

250.

2816

780.

251.

092.

172.

43E

GC

05-3

50.

1071

30.

0021

4.60

128

0.10

690.

3115

30.

0074

0.09

243

0.00

2017

5136

1750

2017

4836

1787

3810

00.

2816

400.

0000

240.

0003

030.

0079

200.

2816

30-1

.42

0.84

2.22

2.54

EG

C05

-37

0.10

693

0.00

214.

5476

50.

1061

0.30

846

0.00

740.

0886

30.

0020

1748

3617

4020

1733

3617

1636

990.

2816

390.

0000

200.

0000

630.

0021

830.

2816

37-1

.24

0.70

2.21

2.53

EG

C05

-38

0.10

001

0.00

423.

6738

60.

1218

0.26

641

0.00

670.

0778

00.

0020

1624

8015

6626

1523

3415

1438

940.

2816

480.

0000

210.

0000

590.

0019

480.

2816

46-3

.72

0.74

2.19

2.59

EG

C05

-43

0.10

776

0.00

214.

6471

50.

1126

0.31

274

0.00

770.

0926

40.

0022

1762

3817

5820

1754

3817

9140

100

0.28

1653

0.00

0025

0.00

0425

0.01

2488

0.28

1639

-0.8

60.

882.

212.

51E

GC

05-4

40.

1022

00.

0022

4.06

027

0.10

210.

2881

50.

0071

0.08

950

0.00

2316

6440

1646

2016

3236

1733

4298

0.28

1838

0.00

0023

0.00

0727

0.01

8814

0.28

1815

3.18

0.81

1.97

2.18

EG

C05

-46C

0.11

582

0.00

245.

3700

10.

1312

0.33

623

0.00

830.

1043

10.

0024

1893

3818

8020

1869

4020

0544

990.

2814

600.

0000

140.

0011

530.

0350

540.

2814

19-5

.70

0.49

2.52

2.92

EG

CO

5-46

R0.

1154

20.

0023

5.45

061

0.13

250.

3424

50.

0085

0.09

841

0.00

2318

8636

1893

2018

9840

1897

4210

1E

GC

05-5

30.

1047

20.

0022

4.30

076

0.11

390.

2979

80.

0080

0.08

125

0.00

1917

0940

1694

2216

8140

1579

3698

0.28

1815

0.00

0018

0.00

0597

0.01

8012

0.28

1796

3.51

0.63

2.00

2.19

EG

C05

-54

0.10

607

0.00

214.

4370

50.

1107

0.30

338

0.00

770.

0850

30.

0020

1733

3817

1920

1708

3816

4936

990.

2817

840.

0000

240.

0005

420.

0164

430.

2817

663.

010.

842.

042.

24E

GC

05-5

90.

1090

50.

0022

4.77

333

0.12

000.

3174

30.

0080

0.08

621

0.00

2117

8438

1780

2217

7738

1671

4010

00.

2815

700.

0000

270.

0012

310.

0354

800.

2815

28-4

.28

0.95

2.37

2.75

EG

C05

-66

0.10

497

0.00

214.

3347

00.

1104

0.29

945

0.00

760.

0904

70.

0022

1714

3817

0022

1689

3817

5140

990.

2816

630.

0000

250.

0011

860.

0312

120.

2816

24-2

.45

0.88

2.24

2.58

EG

C05

-69

0.09

873

0.00

213.

7976

10.

0996

0.27

897

0.00

730.

0855

30.

0025

1600

4015

9222

1586

3616

5946

990.

2819

470.

0000

200.

0005

370.

0137

140.

2819

315.

830.

701.

811.

96E

GC

05-8

00.

1091

20.

0022

4.72

788

0.12

160.

3142

50.

0082

0.08

879

0.00

2217

8538

1772

2217

6240

1719

4099

0.28

1601

0.00

0022

0.00

0884

0.02

4658

0.28

1571

-2.7

40.

772.

312.

65E

GC

05-8

20.

1218

00.

0024

6.07

907

0.14

940.

3620

10.

0090

0.10

677

0.00

2519

8336

1987

2219

9242

2050

4410

00.

2814

940.

0000

250.

0006

410.

0172

830.

2814

70-1

.82

0.88

2.44

2.74

EG

C05

-84

0.10

578

0.00

214.

5403

20.

1140

0.31

132

0.00

800.

0979

80.

0024

1728

3817

3820

1747

4018

8944

101

0.28

1718

0.00

0024

0.00

0110

0.00

3186

0.28

1714

1.06

0.84

2.10

2.36

EG

C05

-86

0.12

366

0.00

246.

2794

30.

1557

0.36

831

0.00

940.

1221

10.

0029

2010

3620

1622

2021

4423

2952

101

0.28

1654

0.00

0017

0.00

0306

0.00

8409

0.28

1642

4.92

0.60

2.20

2.33

EG

C05

-87

0.10

698

0.00

224.

6053

40.

1140

0.31

225

0.00

780.

0966

60.

0024

1749

3817

5020

1752

3818

6544

100

0.28

1731

0.00

0022

0.00

0838

0.02

3306

0.28

1703

1.14

0.77

2.13

2.37

EG

C05

-88

0.11

357

0.00

235.

3568

50.

1328

0.34

227

0.00

870.

1012

30.

0025

1857

3618

7822

1898

4219

4946

102

0.28

1497

0.00

0021

0.00

1337

0.03

7794

0.28

1450

-5.4

00.

742.

482.

87E

GC

05-9

50.

1041

40.

0020

4.33

720

0.10

620.

3020

80.

0076

0.09

590

0.00

2316

9936

1700

2017

0238

1851

4210

00.

2818

380.

0000

350.

0008

600.

0238

110.

2818

103.

801.

231.

982.

17E

GC

06-1

0.11

295

0.00

225.

0481

80.

1230

0.32

418

0.00

810.

0888

10.

0021

1847

3618

2720

1810

4017

2038

980.

2816

260.

0000

360.

0006

700.

0180

900.

2816

03-0

.21

1.26

2.26

2.54

EG

C06

-40.

1921

20.

0039

12.8

9721

0.31

970.

4868

60.

0123

0.13

263

0.00

3227

6034

2672

2425

5754

2517

5893

0.28

0905

0.00

0037

0.00

0581

0.01

5412

0.28

0874

-5.1

21.

303.

233.

55E

GC

06-5

0.10

940

0.00

234.

7525

90.

1162

0.31

509

0.00

770.

0932

90.

0021

1789

3817

7720

1766

3818

0340

990.

2815

770.

0000

280.

0006

010.

0156

030.

2815

57-3

.16

0.98

2.32

2.68

EG

C06

-10

0.10

891

0.00

224.

7504

60.

1149

0.31

636

0.00

780.

0846

20.

0020

1781

3817

7620

1772

3816

4238

990.

2817

070.

0000

350.

0003

360.

0085

690.

2816

961.

601.

232.

132.

37E

GC

06-1

20.

1089

70.

0025

4.59

720

0.12

870.

3060

10.

0082

0.08

992

0.00

2417

8242

1749

2417

2140

1740

4497

0.28

1810

0.00

0037

0.00

1133

0.02

9783

0.28

1772

4.32

1.30

2.03

2.20

EG

C06

-13

0.15

179

0.00

309.

2440

50.

2290

0.44

174

0.01

130.

1144

90.

0026

2366

3423

6222

2358

5021

9146

100

0.28

1115

0.00

0030

0.00

0412

0.01

1004

0.28

1096

-6.3

21.

052.

933.

32E

GC

06-2

30.

1068

60.

0021

4.08

553

0.10

620.

2773

00.

0074

0.07

819

0.00

1817

4738

1651

2215

7838

1522

3490

0.28

1611

0.00

0038

0.00

0827

0.02

6661

0.28

1584

-3.1

51.

332.

292.

65E

GC

06-2

60.

1081

00.

0025

4.73

165

0.12

640.

3174

20.

0081

0.09

895

0.00

2717

6842

1773

2217

7740

1907

4810

10.

2817

140.

0000

150.

0005

530.

0139

400.

2816

951.

290.

532.

132.

38E

GC

06-2

70.

1060

00.

0022

4.40

065

0.10

810.

3011

70.

0074

0.09

312

0.00

2217

3238

1712

2016

9736

1800

4098

0.28

1641

0.00

0019

0.00

1113

0.03

1218

0.28

1604

-2.7

60.

672.

272.

61E

GC

06-2

80.

1063

80.

0022

4.58

992

0.11

640.

3128

10.

0079

0.09

855

0.00

2517

3838

1747

2217

5538

1900

4610

10.

2818

900.

0000

210.

0034

340.

0962

650.

2817

773.

500.

742.

052.

21E

GC

06-3

30.

1087

30.

0023

4.67

253

0.11

890.

3116

30.

0078

0.09

355

0.00

2417

7840

1762

2217

4938

1808

4698

0.28

1888

0.00

0022

0.00

2369

0.06

3383

0.28

1808

5.52

0.77

1.99

2.12

EG

C06

-34

0.12

546

0.00

856.

4624

10.

3878

0.37

359

0.01

160.

1066

10.

0032

2035

122

2041

5220

4654

2047

5810

10.

2812

320.

0000

170.

0007

570.

0213

540.

2812

03-1

0.13

0.60

2.80

3.31

EG

C06

-36

0.11

288

0.00

225.

1703

40.

1258

0.33

222

0.00

830.

0993

90.

0022

1846

3618

4820

1849

4019

1542

100

0.28

1683

0.00

0017

0.00

1327

0.03

2109

0.28

1637

0.97

0.60

2.22

2.46

EG

C06

-38

0.10

073

0.00

244.

0419

70.

1062

0.29

103

0.00

720.

0873

70.

0022

1638

4416

4322

1647

3616

9340

101

0.28

1859

0.00

0015

0.00

1045

0.02

6983

0.28

1827

3.00

0.53

1.96

2.17

EG

C06

-39

0.12

852

0.00

646.

6259

00.

2748

0.37

393

0.01

030.

1064

50.

0029

2078

9020

6336

2048

4820

4552

990.

2812

660.

0000

140.

0003

430.

0099

530.

2812

52-7

.38

0.49

2.72

3.17

EG

C06

-44

0.20

651

0.00

4015

.284

810.

3673

0.53

679

0.01

350.

1491

60.

0034

2878

3228

3322

2770

5628

1060

960.

2809

160.

0000

170.

0014

180.

0363

960.

2808

38-3

.68

0.60

3.28

3.55

EG

C06

-46

0.10

828

0.00

224.

7234

40.

1173

0.31

638

0.00

800.

0907

00.

0023

1771

3817

7120

1772

4017

5542

100

0.28

1700

0.00

0014

0.00

1056

0.02

8027

0.28

1665

0.26

0.49

2.18

2.45

EG

C06

-50

0.11

427

0.00

225.

2937

00.

1256

0.33

594

0.00

830.

1001

20.

0024

1868

3618

6820

1867

4019

2944

100

0.28

1576

0.00

0013

0.00

0362

0.00

9033

0.28

1563

-1.1

30.

462.

312.

61E

GC

06-5

20.

1240

80.

0025

6.03

419

0.14

790.

3528

50.

0088

0.10

090

0.00

2420

1636

1981

2219

4842

1943

4497

0.28

1448

0.00

0014

0.00

0962

0.02

5381

0.28

1411

-3.1

60.

492.

522.

85E

GC

06-5

40.

1000

60.

0020

3.91

564

0.09

430.

2837

70.

0070

0.07

829

0.00

2016

2538

1617

2016

1034

1524

3899

0.28

1700

0.00

0020

0.00

0570

0.01

7255

0.28

1682

-2.4

10.

702.

152.

50E

GC

06-5

50.

1081

10.

0022

4.63

612

0.11

420.

3111

30.

0078

0.09

122

0.00

2217

6838

1756

2017

4638

1764

4099

0.28

1597

0.00

0020

0.00

0734

0.02

0774

0.28

1572

-3.0

80.

702.

302.

66E

GC

06-5

80.

2059

00.

0080

14.3

0986

0.40

760.

5040

70.

0132

0.13

710

0.00

3728

7464

2770

2826

3156

2597

6692

0.28

0682

0.00

0022

0.00

0169

0.00

4519

0.28

0673

-9.6

50.

773.

493.

93E

GC

06-5

90.

1027

10.

0024

3.93

138

0.10

700.

2779

80.

0073

0.08

375

0.00

2316

7444

1620

2215

8136

1626

4294

0.28

1983

0.00

0026

0.00

2137

0.06

0278

0.28

1915

6.96

0.91

1.84

1.94

EG

C06

-63

0.13

318

0.00

267.

0689

20.

1764

0.38

508

0.00

990.

1116

90.

0027

2140

3621

2022

2100

4621

4048

980.

2814

930.

0000

210.

0007

150.

0191

240.

2814

641.

550.

742.

442.

65E

GC

06-7

00.

0984

40.

0020

3.79

370

0.09

460.

2795

10.

0070

0.08

277

0.00

2115

9540

1591

2015

8936

1607

4010

00.

2818

250.

0000

210.

0009

780.

0272

850.

2817

950.

920.

742.

002.

27E

GC

06-7

1C0.

2491

00.

0050

20.7

9168

0.51

050.

6051

40.

0154

0.15

482

0.00

4531

7932

3129

2430

5162

2909

7896

0.28

0612

0.00

0020

0.00

0809

0.02

0990

0.28

0563

-6.4

60.

703.

643.

96E

GC

06-7

1R0.

2257

80.

0097

16.7

2668

0.53

030.

5373

10.

0156

0.14

488

0.00

4330

2270

2919

3027

7266

2735

7692

EG

C06

-74

0.12

173

0.00

245.

7694

60.

1438

0.34

364

0.00

890.

0997

30.

0023

1982

3619

4222

1904

4219

2142

960.

2812

910.

0000

170.

0003

540.

0089

710.

2812

78-8

.67

0.60

2.69

3.18

EG

C06

-79

0.10

370

0.00

214.

3167

70.

1089

0.30

185

0.00

780.

0904

60.

0021

1691

3816

9720

1700

3817

5040

101

0.28

1458

0.00

0033

0.00

0745

0.02

0636

0.28

1434

-9.7

31.

162.

493.

02E

GC

06-8

00.

1062

60.

0022

4.62

700

0.12

140.

3158

20.

0084

0.09

237

0.00

2717

3638

1754

2217

6942

1786

5010

20.

2815

700.

0000

290.

0005

390.

0147

050.

2815

52-4

.52

1.02

2.33

2.72

EG

C06

-84

0.14

180

0.00

308.

1521

90.

2151

0.41

692

0.01

110.

1184

30.

0029

2249

3822

4824

2246

5022

6252

100

0.28

1261

0.00

0024

0.00

1278

0.03

3748

0.28

1206

-5.1

00.

842.

803.

16

Page 58: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-43-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

EG

C06

-95

0.12

357

0.00

246.

0885

30.

1494

0.35

729

0.00

910.

1112

80.

0026

2008

3619

8922

1969

4421

3346

980.

2811

790.

0000

300.

0004

050.

0123

510.

2811

64-1

2.13

1.05

2.85

3.41

EG

C06

-102

0.10

950

0.00

264.

4752

80.

1252

0.29

639

0.00

800.

1027

90.

0029

1791

4417

2624

1673

4019

7852

930.

2818

670.

0000

320.

0009

130.

0252

400.

2818

366.

811.

121.

942.

04C

HA

R05

36-2

0.10

616

0.00

224.

4641

40.

1044

0.30

511

0.00

720.

0870

80.

0019

1734

4017

2420

1717

3616

8834

990.

2815

820.

0000

350.

0006

400.

0168

350.

2815

61-4

.25

1.23

2.32

2.71

CH

AR

0536

-40.

1978

70.

0039

14.4

5891

0.32

300.

5301

20.

0124

0.14

146

0.00

3128

0932

2780

2227

4252

2674

5498

0.28

1048

0.00

0017

0.00

0655

0.01

7948

0.28

1013

0.94

0.60

3.04

3.20

CH

AR

0536

-70.

1639

40.

0033

9.41

276

0.20

670.

4158

80.

0094

0.08

515

0.00

2224

9734

2379

2022

4242

1652

4090

0.28

1214

0.00

0015

0.00

1835

0.05

7915

0.28

1127

-2.2

30.

532.

913.

17C

HA

R05

36-1

10.

1682

30.

0034

10.9

8890

0.26

350.

4736

70.

0117

0.12

079

0.00

2825

4036

2522

2225

0052

2305

5098

0.28

1258

0.00

0012

0.00

0465

0.01

2096

0.28

1235

2.63

0.42

2.74

2.89

CH

AR

0536

-15

0.16

653

0.00

3210

.961

070.

2446

0.47

710

0.01

120.

1287

70.

0027

2523

3425

2020

2515

4824

4848

100

0.28

1263

0.00

0016

0.00

1185

0.03

1664

0.28

1206

1.19

0.56

2.79

2.97

CH

AR

0536

-16

0.21

214

0.00

4116

.974

250.

3724

0.57

974

0.01

340.

1542

30.

0032

2922

3229

3322

2948

5428

9956

101

0.28

0974

0.00

0013

0.00

1246

0.03

4445

0.28

0904

-0.3

00.

463.

193.

37C

HA

R05

36-1

70.

1731

30.

0042

10.6

9381

0.30

020.

4482

10.

0123

0.09

035

0.00

2525

8842

2497

2623

8754

1748

4892

0.28

1118

0.00

0017

0.00

1470

0.04

3736

0.28

1045

-3.0

20.

603.

013.

29C

HA

R05

36-1

80.

1656

20.

0033

9.88

115

0.23

730.

4326

10.

0108

0.11

317

0.00

2525

1434

2424

2223

1748

2167

4692

0.28

1072

0.00

0015

0.00

1747

0.05

3131

0.28

0988

-6.7

60.

533.

103.

47C

HA

R05

36-1

90.

1581

40.

0033

9.97

496

0.24

810.

4569

60.

0117

0.09

403

0.00

2724

3636

2432

2224

2652

1816

5010

00.

2812

060.

0000

110.

0011

430.

0384

110.

2811

53-2

.70

0.39

2.86

3.15

CH

AR

0536

-21

0.16

612

0.00

3210

.804

160.

2386

0.47

141

0.01

090.

1290

20.

0026

2519

3425

0620

2490

4824

5346

990.

2811

430.

0000

170.

0003

420.

0098

760.

2811

27-1

.73

0.60

2.89

3.15

CH

AR

0536

-26

0.17

312

0.00

3411

.595

210.

2600

0.48

560

0.01

130.

1323

00.

0028

2588

3425

7220

2552

5025

1150

990.

2812

940.

0000

170.

0011

840.

0396

060.

2812

353.

740.

602.

752.

85C

HA

R05

36-2

80.

1518

10.

0030

8.76

791

0.19

840.

4187

80.

0099

0.11

326

0.00

2423

6634

2314

2022

5544

2169

4295

0.28

1063

0.00

0018

0.00

0628

0.01

8074

0.28

1035

-8.5

20.

633.

023.

46C

HA

R05

36-2

90.

1620

90.

0032

9.64

155

0.21

670.

4312

60.

0100

0.10

831

0.00

2324

7834

2401

2023

1146

2079

4293

0.28

1225

0.00

0015

0.00

1052

0.03

1540

0.28

1175

-0.9

40.

532.

833.

07C

HA

R05

36-3

40.

1666

30.

0033

10.0

4602

0.22

940.

4371

50.

0104

0.12

343

0.00

2625

2434

2439

2223

3846

2352

4893

0.28

1195

0.00

0016

0.00

0943

0.03

3668

0.28

1150

-0.7

90.

562.

863.

10C

HA

R05

35-0

40.

1650

40.

0033

10.0

0416

0.22

940.

4396

70.

0104

0.12

246

0.00

2625

0834

2435

2223

4946

2335

4894

0.28

1180

0.00

0016

0.00

0754

0.02

1489

0.28

1144

-1.3

60.

562.

873.

12C

HA

R05

35-0

70.

1071

60.

0028

4.34

437

0.12

060.

2940

50.

0072

0.08

399

0.00

1817

5248

1702

2216

6236

1630

3495

0.28

1512

0.00

0015

0.00

0519

0.01

4187

0.28

1495

-6.2

00.

532.

412.

84C

HA

R05

35-0

90.

1648

80.

0032

10.3

0855

0.22

470.

4535

00.

0104

0.12

867

0.00

2625

0634

2463

2024

1146

2446

4696

0.28

1207

0.00

0013

0.00

0424

0.01

4193

0.28

1187

0.11

0.46

2.81

3.02

CH

AR

0535

-10

0.17

914

0.00

6512

.079

710.

3277

0.48

906

0.01

160.

1347

90.

0033

2645

6226

1126

2567

5025

5658

970.

2812

020.

0000

180.

0007

470.

0211

080.

2811

642.

530.

632.

842.

98C

HA

R05

35-1

40.

1059

20.

0023

4.40

667

0.10

490.

3015

40.

0069

0.10

427

0.00

2217

3042

1714

2016

9934

2005

4098

0.28

1525

0.00

0015

0.00

0787

0.02

3484

0.28

1499

-6.5

40.

532.

402.

85C

HA

R05

35-1

60.

1752

10.

0036

11.6

7454

0.28

280.

4831

70.

0117

0.14

703

0.00

3326

0836

2579

2225

4150

2773

5897

0.28

1147

0.00

0024

0.00

1206

0.03

9480

0.28

1087

-1.0

80.

842.

953.

18C

HA

R05

35-1

90.

1622

30.

0069

10.0

8896

0.34

380.

4510

50.

0113

0.12

550

0.00

3224

7974

2443

3224

0050

2390

5697

0.28

1108

0.00

0013

0.00

0488

0.01

4219

0.28

1084

-2.6

30.

462.

953.

23C

HA

R05

35-2

10.

1687

00.

0034

10.7

9479

0.24

830.

4639

70.

0108

0.13

111

0.00

2725

4534

2506

2224

5748

2490

4897

0.28

1194

0.00

0018

0.00

1687

0.05

2106

0.28

1114

-3.0

00.

632.

923.

20C

HA

R05

35-2

30.

1804

20.

0068

11.6

2393

0.33

430.

4672

80.

0114

0.12

870

0.00

3226

5764

2575

2624

7250

2447

5893

CH

AR

0535

-27

0.16

925

0.00

3411

.094

330.

2486

0.47

549

0.01

080.

1327

90.

0026

2550

3425

3120

2508

4825

2046

980.

2808

600.

0000

170.

0008

970.

0257

220.

2808

14-9

.64

0.60

3.31

3.76

CH

AR

0535

-28

0.16

806

0.00

3410

.810

260.

2448

0.46

658

0.01

080.

1286

30.

0026

2538

3425

0722

2469

4824

4646

970.

2810

720.

0000

160.

0005

860.

0162

970.

2810

43-3

.97

0.56

3.00

3.32

CH

AR

0535

-31

0.17

431

0.00

4111

.507

830.

3010

0.47

885

0.01

210.

1214

90.

0040

2599

4025

6524

2522

5223

1772

970.

2815

100.

0000

150.

0005

470.

0143

540.

2814

90-1

.62

0.53

2.41

2.71

CH

AR

0535

-32

0.19

295

0.00

3813

.313

890.

3008

0.50

057

0.01

180.

0851

20.

0018

2767

3227

0222

2616

5016

5132

950.

2811

930.

0000

170.

0010

810.

0302

720.

2811

390.

580.

602.

883.

07C

HA

R02

37-0

10.

1974

60.

0239

13.4

1959

1.51

100.

4929

10.

0217

0.13

460

0.00

5228

0520

227

1010

625

8394

2552

9292

CH

AR

0237

-10

0.16

192

0.00

3210

.136

300.

2302

0.45

403

0.01

060.

1377

10.

0028

2476

3424

4720

2413

4626

0850

970.

2823

370.

0000

180.

0003

350.

0097

750.

2823

33-2

.20

0.63

1.27

1.70

CH

AR

0237

-12

0.25

460

0.00

9021

.077

400.

5462

0.60

043

0.01

430.

1601

10.

0039

3214

5631

4226

3032

5830

0268

940.

2810

540.

0000

170.

0006

370.

0177

700.

2810

24-6

.37

0.60

3.03

3.41

CH

AR

0237

-13

0.10

103

0.00

594.

1103

90.

2130

0.29

509

0.00

780.

0860

80.

0022

1643

110

1656

4216

6738

1669

4010

1C

HA

R02

37-1

60.

2512

80.

0098

21.0

3426

0.61

530.

6071

10.

0157

0.16

208

0.00

4331

9364

3140

2830

5862

3036

7696

0.28

1179

0.00

0019

0.00

0992

0.03

7798

0.28

1133

-3.0

10.

672.

893.

18C

HA

R02

37-1

70.

1597

80.

0031

9.24

604

0.20

670.

4197

60.

0098

0.10

428

0.00

2124

5334

2363

2022

5944

2005

4092

0.28

0802

0.00

0013

0.00

0951

0.02

5047

0.28

0744

0.31

0.46

3.40

3.54

CH

AR

0237

-19

0.15

579

0.00

319.

7221

10.

2308

0.45

257

0.01

110.

1255

90.

0029

2410

3424

0922

2407

5023

9152

100

0.28

1156

0.00

0013

0.00

0863

0.03

2638

0.28

1116

-3.6

40.

462.

913.

22C

HA

R02

37-2

10.

0965

50.

0087

3.73

861

0.31

770.

2808

30.

0085

0.08

231

0.00

2115

5917

415

8068

1596

4215

9940

102

CH

AR

0237

-22

0.17

041

0.00

3610

.909

670.

2533

0.46

410

0.01

090.

1301

60.

0029

2562

3625

1522

2458

4824

7352

960.

2810

790.

0000

190.

0006

620.

0248

230.

2810

49-7

.01

0.67

3.00

3.40

CH

AR

0237

-26

0.16

001

0.00

319.

9592

80.

2166

0.45

123

0.01

040.

1272

00.

0026

2456

3424

3120

2401

4624

2046

980.

2811

600.

0000

200.

0010

090.

0289

000.

2811

090.

810.

702.

923.

09C

HA

R02

37-3

20.

1635

70.

0032

10.3

2943

0.22

860.

4578

20.

0107

0.12

356

0.00

2524

9334

2465

2024

3048

2355

4697

0.28

0793

0.00

0013

0.00

1114

0.03

6216

0.28

0725

-1.0

70.

463.

423.

60C

HA

R05

37-0

80.

1674

90.

0032

9.78

629

0.21

180.

4237

10.

0097

0.08

150

0.00

1625

3334

2415

2022

7744

1584

3090

0.28

1130

0.00

0012

0.00

0555

0.02

0602

0.28

1104

-3.8

70.

422.

923.

24C

HA

R05

37-0

90.

1041

40.

0022

4.18

961

0.09

960.

2917

80.

0069

0.08

199

0.00

1716

9940

1672

2016

5034

1593

3297

0.28

1296

0.00

0029

0.00

2258

0.06

9039

0.28

1187

0.74

1.02

2.82

3.00

CH

AR

0537

-18

0.16

628

0.00

6210

.064

890.

2848

0.43

900

0.01

060.

1218

60.

0030

2521

6424

4126

2346

4823

2454

930.

2810

970.

0000

180.

0014

290.

0533

640.

2810

31-7

.29

0.63

3.03

3.43

CH

AR

0537

-27

0.16

968

0.00

3210

.202

970.

2171

0.43

614

0.00

980.

1165

10.

0022

2554

3224

5320

2333

4422

2840

910.

2811

490.

0000

170.

0005

370.

0145

030.

2811

23-1

.48

0.60

2.90

3.15

CH

AR

0909

-03

0.16

628

0.00

6410

.532

160.

3134

0.45

939

0.01

140.

1275

20.

0032

2521

6624

8328

2437

5024

2658

970.

2812

170.

0000

240.

0009

650.

0245

580.

2811

700.

630.

842.

843.

03C

HA

R09

09-0

60.

2409

90.

0100

19.2

4108

0.60

680.

5790

70.

0157

0.15

520

0.00

4331

2768

3054

3029

4564

2916

7494

0.28

1342

0.00

0018

0.00

0711

0.01

9039

0.28

1308

4.77

0.63

2.65

2.74

CH

AR

0909

-08

0.24

637

0.00

8620

.138

050.

5008

0.59

282

0.01

450.

1585

60.

0040

3162

5630

9824

3001

5829

7570

950.

2806

630.

0000

110.

0006

160.

0151

170.

2806

26-5

.42

0.39

3.55

3.85

CH

AR

0909

-14

0.16

234

0.00

329.

7782

30.

2203

0.43

691

0.01

030.

1201

80.

0027

2480

3424

1420

2337

4622

9448

940.

2823

440.

0000

170.

0012

060.

0348

580.

2823

1610

.74

0.60

1.29

1.34

CH

AR

0909

-16

0.17

433

0.00

3611

.089

510.

2656

0.46

148

0.01

130.

1295

50.

0034

2600

3625

3122

2446

5024

6262

940.

2812

240.

0000

160.

0004

870.

0166

110.

2812

010.

020.

562.

793.

01C

HA

R09

09-2

20.

1604

00.

0034

10.1

7293

0.24

760.

4601

50.

0114

0.13

789

0.00

3124

6036

2451

2224

4050

2611

5499

0.28

1224

0.00

0015

0.00

1033

0.03

2993

0.28

1173

1.79

0.53

2.83

2.99

CH

AR

0909

-29

0.16

266

0.00

3210

.325

740.

2312

0.46

048

0.01

070.

1394

20.

0031

2483

3424

6420

2442

4826

3856

980.

2820

830.

0000

120.

0013

930.

0401

310.

2820

55-1

.89

0.42

1.66

2.03

CH

AR

0909

-32

0.10

509

0.00

254.

3681

70.

1101

0.30

148

0.00

710.

0963

90.

0024

1716

4417

0620

1699

3418

6044

990.

2811

520.

0000

130.

0004

790.

0112

180.

2811

29-2

.46

0.46

2.89

3.17

CH

AR

0909

-35

0.16

772

0.00

3910

.917

660.

2859

0.47

231

0.01

210.

1419

40.

0033

2535

4025

1624

2494

5426

8358

980.

2816

920.

0000

160.

0006

270.

0169

340.

2816

72-0

.73

0.56

2.17

2.47

CH

AR

0909

-36

0.15

848

0.00

349.

9835

30.

2277

0.45

695

0.01

040.

1360

90.

0041

2440

3624

3322

2426

4625

7974

990.

2811

260.

0000

190.

0012

730.

0357

810.

2810

64-3

.57

0.67

2.98

3.28

Page 59: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-44-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

TOD

1-2

0.10

562

0.00

234.

5516

70.

1044

0.31

285

0.00

690.

0913

00.

0019

1725

4017

4020

1755

3417

6636

102

0.28

1230

0.00

0021

0.00

0576

0.01

6320

0.28

1203

-0.8

20.

742.

793.

03TO

D1-

40.

1145

90.

0023

5.34

932

0.12

030.

3389

70.

0077

0.09

571

0.00

2018

7338

1877

2018

8236

1847

3610

00.

2816

510.

0000

160.

0002

750.

0064

960.

2816

42-1

.58

0.56

2.20

2.53

TOD

1-5

0.10

643

0.00

224.

5735

60.

1058

0.31

201

0.00

710.

0920

90.

0020

1739

3817

4420

1751

3617

8136

101

0.28

1632

0.00

0016

0.00

0974

0.02

5592

0.28

1597

0.20

0.56

2.27

2.53

TOD

1-6

0.16

008

0.00

379.

9862

40.

2533

0.45

300

0.01

050.

1299

70.

0030

2457

4024

3424

2409

4624

7054

980.

2816

320.

0000

160.

0010

350.

0229

460.

2815

98-2

.83

0.56

2.27

2.62

TOD

1-6B

0.15

810

0.00

349.

9704

60.

2372

0.45

768

0.01

050.

1301

30.

0029

2435

3824

3222

2429

4624

7352

100

TOD

1-7

0.12

225

0.00

265.

9079

00.

1368

0.35

092

0.00

780.

1026

90.

0022

1989

3819

6220

1939

3819

7640

970.

2811

480.

0000

160.

0002

580.

0064

930.

2811

36-2

.82

0.56

2.88

3.17

TOD

1-9

0.11

292

0.00

245.

2562

70.

1233

0.33

793

0.00

780.

0949

10.

0021

1847

3818

6220

1877

3818

3338

102

0.28

1449

0.00

0017

0.00

0982

0.02

7667

0.28

1412

-3.7

50.

602.

522.

87TO

D1-

100.

1136

10.

0024

5.21

728

0.12

240.

3333

40.

0077

0.09

243

0.00

2018

5838

1855

2018

5538

1787

3810

00.

2817

220.

0000

270.

0004

480.

0113

830.

2817

063.

470.

952.

122.

30TO

D1-

110.

1072

30.

0022

4.59

399

0.10

610.

3109

80.

0070

0.09

276

0.00

2017

5340

1748

2017

4634

1793

3610

00.

2816

130.

0000

130.

0008

290.

0228

950.

2815

84-0

.63

0.46

2.29

2.57

TOD

1-13

0.20

059

0.00

7113

.808

560.

3620

0.49

928

0.01

210.

1361

40.

0034

2831

6027

3724

2611

5225

8060

920.

2816

720.

0000

200.

0007

240.

0198

990.

2816

446.

180.

702.

202.

29TO

D1-

150.

1060

30.

0021

4.62

534

0.10

650.

3164

20.

0073

0.09

742

0.00

2217

3238

1754

2017

7236

1879

4210

20.

2809

090.

0000

220.

0008

780.

0226

870.

2808

61-3

.94

0.77

3.25

3.53

TOD

1-16

0.12

337

0.00

266.

2255

60.

1556

0.36

598

0.00

910.

1082

80.

0030

2006

3820

0822

2010

4420

7854

100

0.28

1757

0.00

0022

0.00

0360

0.01

0932

0.28

1745

2.24

0.77

2.06

2.29

TOD

1-17

0.11

188

0.00

225.

0631

40.

1230

0.32

821

0.00

810.

1074

40.

0025

1830

3618

3020

1830

4020

6346

100

0.28

1376

0.00

0021

0.00

0529

0.01

6578

0.28

1356

-5.3

50.

742.

592.

99TO

D1-

180.

1153

40.

0024

5.32

074

0.13

450.

3345

70.

0084

0.09

125

0.00

2318

8538

1872

2218

6040

1765

4299

0.28

1553

0.00

0023

0.00

1210

0.03

5172

0.28

1511

-3.8

50.

812.

392.

75TO

D1-

19A

0.10

572

0.00

224.

6129

90.

1162

0.31

644

0.00

790.

0925

20.

0023

1727

4017

5222

1772

3817

8942

103

TOD

1-19

B0.

1073

90.

0022

4.74

550

0.10

780.

3205

10.

0072

0.09

945

0.00

2317

5638

1775

2017

9236

1916

4210

20.

2816

710.

0000

200.

0012

570.

0375

190.

2816

261.

490.

702.

232.

46TO

D1-

230.

1122

20.

0022

5.15

288

0.12

240.

3330

30.

0080

0.10

182

0.00

2418

3636

1845

2018

5338

1960

4410

10.

2818

090.

0000

250.

0017

220.

0477

450.

2817

57-0

.15

0.88

2.07

2.35

TOD

1-25

0.23

658

0.00

4619

.548

650.

4473

0.59

929

0.01

400.

1665

20.

0038

3097

3230

6922

3027

5631

1366

980.

2816

530.

0000

190.

0006

380.

0209

650.

2816

310.

540.

672.

222.

48TO

D1-

260.

1125

70.

0048

5.00

792

0.17

310.

3226

50.

0079

0.09

308

0.00

2318

4178

1821

3018

0338

1799

4298

0.28

0825

0.00

0015

0.00

0810

0.02

3490

0.28

0777

-0.7

50.

533.

353.

53TO

D1-

270.

1065

90.

0022

4.44

902

0.11

030.

3027

60.

0075

0.07

164

0.00

1817

4238

1722

2017

0538

1398

3498

0.28

1619

0.00

0023

0.00

0571

0.01

7446

0.28

1599

-0.4

70.

812.

262.

55TO

D1-

280.

1254

40.

0025

6.13

230

0.14

420.

3545

60.

0084

0.10

319

0.00

2420

3536

1995

2019

5640

1985

4496

0.28

1596

0.00

0018

0.00

0654

0.02

4065

0.28

1574

-3.5

90.

632.

302.

67TO

D1-

300.

1055

10.

0052

4.45

292

0.18

950.

3061

00.

0078

0.08

889

0.00

2217

2394

1722

3617

2138

1721

4210

00.

2813

930.

0000

170.

0008

990.

0284

780.

2813

58-4

.60

0.60

2.59

2.96

TOD

1-31

0.10

642

0.00

214.

5407

10.

1037

0.30

944

0.00

710.

0935

30.

0022

1739

3817

3820

1738

3418

0740

100

0.28

1893

0.00

0021

0.00

2041

0.06

1160

0.28

1826

4.92

0.74

1.96

2.11

TOD

1-32

0.12

208

0.00

256.

0421

00.

1391

0.35

897

0.00

830.

1091

20.

0026

1987

3619

8220

1977

4020

9348

990.

2813

640.

0000

190.

0000

650.

0020

100.

2813

62-1

1.21

0.67

2.58

3.15

TOD

1-33

0.10

906

0.00

534.

8592

90.

2011

0.32

316

0.00

820.

0935

30.

0024

1784

9017

9534

1805

4018

0744

101

0.28

1386

0.00

0022

0.00

1414

0.04

1016

0.28

1333

-6.6

10.

772.

643.

05TO

D1-

370.

1246

70.

0025

6.08

941

0.13

680.

3542

80.

0081

0.08

372

0.00

1920

2436

1989

2019

5538

1625

3497

0.28

1319

0.00

0021

0.00

4073

0.14

5403

0.28

1115

0.18

0.74

2.93

3.11

TOD

1-42

A0.

1066

30.

0022

4.54

770

0.11

430.

3093

20.

0078

0.08

310

0.00

2117

4338

1740

2017

3738

1613

3810

00.

2813

780.

0000

180.

0005

300.

0149

100.

2813

58-4

.87

0.63

2.59

2.97

TOD

1-42

B0.

1981

50.

0040

14.6

1042

0.35

870.

5347

80.

0133

0.13

718

0.00

3528

1134

2790

2427

6256

2598

6298

0.28

1627

0.00

0018

0.00

0367

0.00

8335

0.28

1615

-2.1

40.

632.

242.

58TO

D1-

460.

1130

40.

0025

5.26

959

0.14

010.

3381

30.

0088

0.09

834

0.00

2718

4940

1864

2218

7842

1896

4810

20.

2813

700.

0000

220.

0011

460.

0392

170.

2813

25-5

.34

0.77

2.64

3.02

TOD

1-47

0.12

673

0.00

256.

2385

70.

1511

0.35

707

0.00

880.

0547

10.

0013

2053

3620

1022

1968

4210

7724

960.

2816

680.

0000

210.

0008

490.

0230

380.

2816

381.

100.

742.

212.

45TO

D1-

480.

1229

40.

0026

6.39

965

0.16

400.

3775

60.

0096

0.10

355

0.00

2619

9938

2032

2220

6546

1992

4810

30.

2814

150.

0000

210.

0007

430.

0219

210.

2813

86-3

.20

0.74

2.55

2.89

TOD

1-49

0.12

353

0.00

266.

1992

10.

1496

0.36

399

0.00

880.

1081

10.

0026

2008

3820

0422

2001

4220

7548

100

0.28

1438

0.00

0028

0.00

0997

0.02

9028

0.28

1400

-3.9

30.

982.

542.

89TO

D1-

530.

1165

20.

0023

5.48

798

0.12

900.

3416

20.

0082

0.09

111

0.00

2119

0436

1899

2018

9440

1762

4099

0.28

1304

0.00

0020

0.00

0643

0.01

9386

0.28

1279

-8.0

20.

702.

693.

16TO

D1-

600.

1247

40.

0025

6.42

317

0.15

520.

3735

00.

0091

0.10

768

0.00

2620

2536

2035

2220

4642

2067

4810

10.

2817

370.

0000

210.

0005

310.

0143

710.

2817

185.

180.

742.

102.

24TO

D1-

610.

2423

40.

0049

20.3

5279

0.48

920.

6091

60.

0148

0.16

481

0.00

4031

3532

3108

2430

6760

3084

7098

0.28

1397

0.00

0013

0.00

0501

0.01

6222

0.28

1378

-4.1

40.

462.

562.

92TO

D1-

620.

1075

90.

0022

4.49

711

0.11

050.

3031

70.

0075

0.07

047

0.00

1917

5938

1730

2017

0736

1376

3697

0.28

0772

0.00

0018

0.00

0348

0.00

9903

0.28

0751

-0.7

80.

633.

383.

56TO

D1-

650.

1072

50.

0022

4.65

522

0.11

280.

3148

10.

0076

0.09

442

0.00

2217

5338

1759

2017

6438

1824

4210

10.

2815

490.

0000

240.

0000

910.

0024

950.

2815

46-4

.22

0.84

2.33

2.72

TOD

1-70

0.23

236

0.00

4619

.158

370.

4559

0.59

797

0.01

450.

1631

10.

0039

3068

3230

5022

3022

5830

5468

990.

2810

960.

0000

190.

0005

100.

0132

680.

2810

79-2

0.93

0.67

2.96

3.77

TOD

1-70

B0.

1326

50.

0027

6.95

879

0.17

960.

3805

10.

0098

0.09

989

0.00

2821

3336

2106

2220

7946

1924

5297

0.28

0797

0.00

0021

0.00

0496

0.01

1895

0.28

0768

-1.7

50.

743.

363.

57TO

D1-

710.

1235

30.

0025

6.30

547

0.15

030.

3702

10.

0089

0.10

707

0.00

2520

0836

2019

2020

3042

2056

4610

10.

2810

470.

0000

290.

0001

870.

0044

380.

2810

39-1

3.69

1.02

3.01

3.61

TOD

1-85

0.11

624

0.00

235.

2232

00.

1238

0.32

588

0.00

780.

0941

90.

0023

1899

3618

5620

1818

3818

1942

960.

2813

550.

0000

190.

0011

330.

0327

780.

2813

12-6

.87

0.67

2.66

3.08

TOD

1-87

0.23

397

0.00

4619

.232

330.

4704

0.59

622

0.01

480.

1656

50.

0040

3079

3230

5424

3015

6030

9870

980.

2817

250.

0000

260.

0005

880.

0155

700.

2817

044.

570.

912.

122.

27TO

D1-

940.

1153

50.

0023

5.37

634

0.13

120.

3380

80.

0083

0.09

201

0.00

2318

8538

1881

2018

7740

1779

4210

00.

2808

580.

0000

170.

0017

010.

0464

030.

2807

57-1

.86

0.60

3.39

3.59

TOD

1-99

0.10

433

0.00

214.

3919

40.

1070

0.30

532

0.00

740.

0914

20.

0022

1703

3817

1120

1718

3617

6840

101

0.28

1534

0.00

0024

0.00

1138

0.03

4535

0.28

1493

-3.2

20.

842.

412.

76TO

D1-

103

0.11

377

0.00

245.

2502

20.

1294

0.33

474

0.00

820.

1022

00.

0027

1860

3818

6122

1861

4019

6748

100

0.28

1523

0.00

0021

0.00

0757

0.02

3329

0.28

1499

-7.1

70.

742.

412.

87TO

D2-

20.

1251

00.

0025

6.10

926

0.14

080.

3542

80.

0082

0.09

896

0.00

2320

3036

1992

2019

5538

1907

4296

0.28

1685

0.00

0021

0.00

1012

0.02

8968

0.28

1649

1.75

0.74

2.20

2.42

TOD

2-3

0.12

537

0.00

256.

3249

90.

1401

0.36

607

0.00

810.

1087

90.

0024

2034

3620

2220

2011

3820

8744

990.

2813

800.

0000

150.

0004

520.

0127

110.

2813

63-4

.56

0.53

2.58

2.95

TOD

2-4

0.12

541

0.00

266.

2490

50.

1429

0.36

165

0.00

820.

1052

80.

0024

2035

3820

1120

1990

3820

2344

980.

2814

560.

0000

140.

0003

700.

0103

480.

2814

42-1

.66

0.49

2.47

2.77

TOD

2-5

0.12

493

0.00

256.

2932

70.

1426

0.36

558

0.00

830.

1059

10.

0023

2028

3620

1820

2009

3820

3542

990.

2813

900.

0000

150.

0005

290.

0140

780.

2813

70-4

.20

0.53

2.57

2.93

TOD

2-6

0.12

605

0.00

266.

3401

40.

1441

0.36

513

0.00

820.

1054

50.

0024

2044

3820

2420

2006

3820

2644

980.

2812

950.

0000

130.

0006

880.

0197

250.

2812

68-7

.95

0.46

2.71

3.17

TOD

2-8

0.12

445

0.00

256.

3215

70.

1481

0.36

851

0.00

870.

1042

80.

0024

2021

3620

2120

2022

4020

0544

100

0.28

2224

0.00

0018

0.00

1013

0.02

8295

0.28

2206

0.82

0.63

1.45

1.77

TOD

2-9

0.12

474

0.00

295.

9102

60.

1548

0.34

356

0.00

860.

0086

10.

0003

2025

4219

6322

1904

4217

36

940.

2813

850.

0000

180.

0005

930.

0184

750.

2813

62-4

.78

0.63

2.58

2.96

TOD

2-10

0.10

599

0.00

224.

6346

40.

1108

0.31

727

0.00

740.

0962

80.

0024

1732

4017

5620

1776

3618

5844

103

0.28

1445

0.00

0018

0.00

1399

0.04

4956

0.28

1391

-3.6

60.

632.

552.

89TO

D2-

110.

1241

90.

0025

6.22

361

0.13

840.

3634

50.

0081

0.10

909

0.00

2420

1736

2008

2019

9938

2093

4499

0.28

1494

0.00

0023

0.00

0892

0.02

6327

0.28

1465

-7.7

20.

812.

452.

92

Page 60: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-45-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

TOD

2-12

0.12

479

0.00

295.

8340

80.

1395

0.33

908

0.00

760.

0764

50.

0021

2026

4219

5120

1882

3614

8940

930.

2814

410.

0000

210.

0012

900.

0395

620.

2813

92-3

.83

0.74

2.55

2.90

TOD

2-13

0.12

427

0.00

256.

1798

20.

1366

0.36

069

0.00

800.

1090

50.

0024

2018

3620

0220

1985

3820

9244

980.

2813

630.

0000

300.

0007

180.

0225

650.

2813

35-5

.62

1.05

2.62

3.02

TOD

2-14

0.11

296

0.00

235.

1570

90.

1194

0.33

114

0.00

760.

0924

00.

0022

1848

3818

4620

1844

3617

8642

100

0.28

1475

0.00

0024

0.00

1247

0.03

9982

0.28

1427

-2.5

40.

842.

502.

82TO

D2-

150.

1249

70.

0025

6.37

713

0.14

070.

3701

30.

0082

0.10

942

0.00

2420

2836

2029

2020

3038

2099

4410

00.

2816

110.

0000

200.

0008

730.

0240

190.

2815

80-0

.97

0.70

2.29

2.59

TOD

2-16

0.12

482

0.00

266.

3033

90.

1428

0.36

627

0.00

820.

1079

70.

0025

2026

3820

1920

2012

3820

7246

990.

2813

860.

0000

110.

0007

040.

0218

270.

2813

59-4

.74

0.39

2.59

2.96

TOD

2-17

0.15

316

0.00

338.

3765

30.

2077

0.39

649

0.01

000.

0690

10.

0022

2382

3822

7322

2153

4613

4942

900.

2814

430.

0000

170.

0014

320.

0487

050.

2813

88-3

.75

0.60

2.56

2.90

TOD

2-18

0.12

488

0.00

296.

0840

70.

1433

0.35

351

0.00

760.

0856

70.

0024

2027

4219

8820

1951

3616

6144

960.

2812

750.

0000

260.

0026

120.

0777

640.

2811

56-3

.82

0.91

2.88

3.18

TOD

2-19

0.12

282

0.00

286.

1442

40.

1555

0.36

291

0.00

870.

0991

80.

0027

1998

4219

9722

1996

4219

1148

100

0.28

1410

0.00

0020

0.00

0723

0.02

2175

0.28

1382

-3.9

30.

702.

562.

91TO

D2-

200.

1241

40.

0025

6.31

116

0.14

110.

3687

40.

0082

0.09

956

0.00

2220

1738

2020

2020

2338

1918

4010

0TO

D2-

210.

1164

50.

0071

5.60

530

0.30

690.

3491

10.

0093

0.10

037

0.00

2519

0211

219

1748

1930

4419

3346

101

0.28

1420

0.00

0026

0.00

0674

0.02

0096

0.28

1394

-4.1

60.

912.

542.

90TO

D2-

220.

1241

30.

0025

6.13

597

0.14

360.

3585

30.

0085

0.10

371

0.00

2420

1636

1995

2019

7540

1994

4498

0.28

1419

0.00

0018

0.00

0441

0.01

3330

0.28

1403

-6.0

40.

632.

532.

95TO

D2-

230.

1247

50.

0025

6.02

142

0.14

000.

3500

00.

0081

0.09

486

0.00

2220

2536

1979

2019

3538

1832

4096

0.28

1443

0.00

0019

0.00

1093

0.03

5819

0.28

1401

-3.5

10.

672.

542.

88TO

D2-

240.

1230

20.

0025

5.87

309

0.13

970.

3462

80.

0083

0.09

909

0.00

2320

0036

1957

2019

1740

1910

4296

0.28

1443

0.00

0019

0.00

1093

0.03

5819

0.28

1401

-3.3

10.

672.

542.

87TO

D2-

250.

1230

00.

0052

5.94

898

0.20

730.

3507

70.

0085

0.10

029

0.00

2420

0078

1968

3019

3840

1932

4497

TOD

2-26

0.16

016

0.00

339.

7060

10.

2272

0.43

948

0.01

030.

1259

20.

0029

2457

3624

0722

2348

4623

9752

960.

2814

030.

0000

140.

0009

100.

0283

860.

2813

68-5

.04

0.49

2.58

2.96

TOD

2-27

0.12

272

0.00

255.

9229

00.

1390

0.35

001

0.00

820.

1026

90.

0024

1996

3819

6520

1935

3819

7644

970.

2809

770.

0000

180.

0002

020.

0053

570.

2809

68-8

.81

0.63

3.10

3.55

TOD

2-28

0.11

194

0.00

244.

7431

50.

1248

0.30

748

0.00

810.

0338

00.

0009

1831

4017

7522

1728

4067

218

940.

2813

580.

0000

190.

0007

680.

0226

140.

2813

29-6

.53

0.67

2.63

3.05

TOD

2-29

0.12

378

0.00

256.

0459

90.

1386

0.35

431

0.00

810.

1028

40.

0023

2011

3619

8220

1955

3819

7942

97TO

D2-

300.

1239

60.

0025

5.98

168

0.13

920.

3500

20.

0082

0.09

970

0.00

2320

1436

1973

2019

3540

1921

4296

TOD

2-31

0.12

443

0.00

256.

2016

50.

1433

0.36

144

0.00

850.

1034

90.

0023

2021

3620

0520

1989

4019

9042

98TO

D2-

320.

1250

20.

0025

6.22

159

0.14

700.

3608

50.

0087

0.10

252

0.00

2320

2936

2007

2019

8642

1973

4298

TOD

2-33

0.12

495

0.00

256.

2232

70.

1457

0.36

116

0.00

860.

1043

50.

0024

2028

3620

0820

1988

4020

0644

98TO

D2-

340.

1240

30.

0025

6.17

993

0.14

440.

3612

60.

0085

0.10

447

0.00

2420

1536

2002

2019

8840

2008

4499

TOD

2-35

0.12

497

0.00

256.

2679

00.

1477

0.36

368

0.00

870.

1071

40.

0024

2028

3620

1420

2000

4220

5744

99TO

D2-

360.

1245

10.

0025

5.98

378

0.15

040.

3485

80.

0089

0.07

886

0.00

1920

2236

1973

2219

2842

1534

3695

TOD

2-37

0.12

366

0.00

256.

2752

20.

1473

0.36

792

0.00

870.

1040

30.

0024

2010

3620

1520

2020

4220

0044

100

TOD

2-38

0.12

070

0.00

256.

4524

80.

1539

0.38

754

0.00

920.

1063

50.

0026

1967

3820

3920

2111

4220

4346

107

TOD

2-39

0.12

470

0.00

256.

1030

40.

1442

0.35

472

0.00

850.

0901

40.

0020

2025

3619

9120

1957

4017

4438

97TO

D2-

400.

1246

00.

0025

5.65

202

0.13

400.

3287

90.

0078

0.08

233

0.00

1920

2336

1924

2018

3338

1599

3691

TOD

2-47

0.12

481

0.00

256.

1889

90.

1494

0.35

953

0.00

870.

1047

80.

0024

2026

3620

0322

1980

4220

1444

98TO

D2-

510.

1249

40.

0025

6.36

966

0.15

650.

3696

60.

0091

0.10

752

0.00

2620

2836

2028

2220

2842

2064

4610

0TO

D2-

580.

1215

30.

0061

5.95

927

0.25

600.

3556

50.

0095

0.10

181

0.00

2719

7992

1970

3819

6246

1960

4899

0.28

1295

0.00

0023

0.00

1070

0.02

6262

0.28

1243

3.37

0.81

2.74

2.86

TOD

2-79

0.11

172

0.00

724.

8896

30.

2854

0.31

744

0.00

900.

0916

50.

0024

1828

120

1800

5017

7744

1772

4697

0.28

1497

0.00

0014

0.00

0794

0.02

4354

0.28

1467

-2.0

10.

492.

442.

75TO

D2-

930.

1118

00.

0063

4.79

863

0.23

950.

3112

90.

0084

0.08

987

0.00

2318

2910

617

8542

1747

4217

3944

960.

2814

360.

0000

210.

0008

540.

0281

160.

2814

06-7

.61

0.74

2.53

2.99

WA

NG

-10.

1669

40.

0036

11.0

5118

0.29

990.

4802

00.

0131

0.12

506

0.00

3625

2738

2527

2625

2856

2382

6410

00.

2814

110.

0000

180.

0011

030.

0321

850.

2813

73-8

.78

0.63

2.58

3.07

WA

NG

-20.

1078

50.

0032

4.61

789

0.15

520.

3114

50.

0094

0.06

448

0.00

2717

6356

1753

2817

4846

1263

5299

0.28

1170

0.00

0015

0.00

1288

0.03

4815

0.28

1108

-2.2

10.

532.

923.

19W

AN

G-3

0.12

525

0.00

286.

0454

60.

1672

0.35

006

0.00

950.

0666

20.

0019

2032

4019

8224

1935

4613

0436

950.

2815

350.

0000

200.

0004

890.

0131

490.

2815

19-5

.10

0.70

2.37

2.78

WA

NG

-50.

1581

20.

0031

10.0

4866

0.25

850.

4609

30.

0122

0.12

536

0.00

2924

3634

2439

2424

4454

2387

5210

00.

2814

040.

0000

150.

0004

630.

0129

380.

2813

86-3

.68

0.53

2.55

2.90

WA

NG

-60.

1090

30.

0021

4.68

698

0.11

730.

3118

30.

0081

0.07

239

0.00

1817

8336

1765

2017

5040

1413

3498

0.28

1244

0.00

0015

0.00

0887

0.02

3501

0.28

1203

-0.9

30.

532.

793.

04W

AN

G-7

0.12

530

0.00

266.

4167

30.

1634

0.37

148

0.00

960.

1072

10.

0027

2033

3820

3522

2036

4620

5850

100

0.28

1416

0.00

0013

0.00

0542

0.01

4335

0.28

1398

-8.9

40.

462.

543.

04W

AN

G-1

00.

1135

00.

0024

5.23

033

0.14

070.

3342

10.

0090

0.09

465

0.00

2418

5640

1858

2218

5944

1828

4410

00.

2813

980.

0000

140.

0006

340.

0173

160.

2813

74-4

.10

0.49

2.57

2.93

WA

NG

-14

0.11

483

0.00

235.

1233

90.

1342

0.32

360

0.00

870.

0885

70.

0022

1877

3618

4022

1807

4217

1540

960.

2815

520.

0000

140.

0005

330.

0148

630.

2815

33-2

.47

0.49

2.35

2.69

WA

NG

-15

0.12

421

0.00

256.

2532

80.

1621

0.36

517

0.00

970.

1033

80.

0027

2018

3820

1222

2007

4619

8848

990.

2815

700.

0000

170.

0009

620.

0303

150.

2815

36-1

.90

0.60

2.35

2.67

WA

NG

-16

0.11

877

0.00

255.

6697

80.

1483

0.34

623

0.00

920.

0955

50.

0025

1938

3819

2722

1917

4418

4446

990.

2814

320.

0000

180.

0007

560.

0216

780.

2814

03-3

.40

0.63

2.53

2.87

WA

NG

-17

0.12

309

0.00

266.

0075

60.

1454

0.35

409

0.00

860.

1066

00.

0026

2001

3819

7722

1954

4020

4746

980.

2813

860.

0000

250.

0004

620.

0138

840.

2813

69-6

.43

0.88

2.57

3.00

WA

NG

-18

0.12

606

0.00

256.

3232

60.

1466

0.36

386

0.00

860.

1099

20.

0024

2044

3620

2220

2000

4021

0844

980.

2814

640.

0000

170.

0006

590.

0196

290.

2814

39-2

.51

0.60

2.48

2.80

WA

NG

-19

0.12

469

0.00

256.

2545

50.

1425

0.36

380

0.00

850.

1040

90.

0023

2024

3620

1220

2000

4020

0142

990.

2814

060.

0000

130.

0004

600.

0137

330.

2813

88-3

.33

0.46

2.54

2.89

WA

NG

-20

0.12

415

0.00

275.

9993

80.

1547

0.35

055

0.00

890.

0925

90.

0025

2017

4019

7622

1937

4217

9046

960.

2814

270.

0000

130.

0006

080.

0178

710.

2814

04-3

.24

0.46

2.53

2.87

WA

NG

-22

0.12

435

0.00

296.

2018

70.

1689

0.36

181

0.00

950.

1047

90.

0032

2020

4220

0524

1991

4420

1458

990.

2814

040.

0000

190.

0005

840.

0176

750.

2813

82-4

.18

0.67

2.56

2.92

WA

NG

-24

0.10

700

0.00

224.

4613

60.

1117

0.30

245

0.00

770.

0455

30.

0011

1749

3817

2420

1703

3890

022

970.

2813

970.

0000

210.

0006

320.

0190

490.

2813

73-4

.43

0.74

2.57

2.94

WA

NG

-27

0.15

909

0.00

3210

.015

290.

2323

0.45

659

0.01

090.

1334

40.

0028

2446

3424

3622

2424

4825

3250

990.

2813

500.

0000

240.

0006

430.

0196

810.

2813

25-5

.64

0.84

2.63

3.03

WA

NG

-28

0.10

851

0.00

224.

7435

10.

1149

0.31

711

0.00

790.

0805

30.

0020

1775

3817

7520

1776

3815

6538

100

0.28

1244

0.00

0012

0.00

0653

0.02

0608

0.28

1214

-0.3

20.

422.

783.

00W

AN

G-3

00.

1241

40.

0025

6.28

558

0.14

590.

3672

40.

0088

0.10

912

0.00

2420

1736

2016

2020

1642

2093

4410

00.

2813

940.

0000

210.

0008

650.

0280

110.

2813

65-1

0.29

0.74

2.59

3.12

WA

NG

-32

0.11

323

0.00

234.

8265

30.

1219

0.30

930

0.00

810.

0244

00.

0006

1852

3817

9022

1737

4048

712

940.

2813

790.

0000

170.

0006

960.

0212

070.

2813

52-5

.22

0.60

2.60

2.99

Page 61: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-46-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

WA

NG

-33C

0.12

444

0.00

266.

3602

90.

1552

0.37

100

0.00

910.

1133

90.

0027

2021

3820

2722

2034

4221

7150

101

0.28

1626

0.00

0016

0.00

0856

0.02

8276

0.28

1596

-0.3

30.

562.

272.

55W

AN

G-3

3R0.

1244

90.

0028

6.40

488

0.16

510.

3733

80.

0093

0.10

632

0.00

3120

2242

2033

2220

4544

2042

5810

1W

AN

G-3

40.

1155

50.

0023

5.26

598

0.11

810.

3305

40.

0077

0.05

091

0.00

1218

8836

1863

2018

4138

1004

2498

0.28

1404

0.00

0012

0.00

0979

0.02

9910

0.28

1366

-4.6

30.

422.

582.

95W

AN

G-3

90.

1256

90.

0026

6.48

063

0.15

700.

3741

90.

0092

0.11

491

0.00

2720

3938

2043

2220

4944

2199

5010

00.

2821

430.

0000

100.

0005

500.

0156

820.

2821

312.

680.

351.

551.

81W

AN

G-4

00.

1264

40.

0027

6.46

950

0.16

070.

3712

70.

0092

0.11

363

0.00

2920

4938

2042

2220

3544

2175

5499

0.28

1415

0.00

0024

0.00

0732

0.02

2546

0.28

1387

-3.5

00.

842.

552.

89W

AN

G-4

10.

1257

90.

0025

6.46

571

0.15

060.

3727

70.

0089

0.10

826

0.00

2520

4036

2041

2020

4242

2078

4610

00.

2814

520.

0000

280.

0005

040.

0144

900.

2814

32-1

.65

0.98

2.49

2.78

WA

NG

-44

0.15

108

0.00

308.

9677

80.

2170

0.43

072

0.01

080.

1308

30.

0031

2358

3423

3522

2309

4824

8556

980.

2813

160.

0000

150.

0008

760.

0261

680.

2812

82-7

.19

0.53

2.69

3.13

WA

NG

-46

0.12

504

0.00

256.

2908

00.

1544

0.36

497

0.00

920.

1064

20.

0024

2029

3620

1722

2006

4420

4444

990.

2810

370.

0000

170.

0009

060.

0260

850.

2809

96-1

0.07

0.60

3.07

3.56

WA

NG

-48

0.12

517

0.00

256.

1791

60.

1500

0.35

810

0.00

890.

1017

00.

0024

2031

3620

0222

1973

4219

5844

97W

AN

G-4

90.

1585

80.

0031

9.84

738

0.22

780.

4504

60.

0109

0.12

455

0.00

2624

4134

2421

2223

9748

2373

4898

0.28

1430

0.00

0019

0.00

0882

0.02

5194

0.28

1396

-3.4

00.

672.

542.

88W

AN

G-5

30.

1230

70.

0026

6.32

028

0.15

600.

3725

00.

0093

0.10

931

0.00

2720

0138

2021

2220

4144

2097

4810

2W

AN

G-5

50.

1237

80.

0025

6.39

469

0.15

330.

3747

60.

0092

0.10

855

0.00

2520

1136

2032

2220

5244

2083

4410

2W

AN

G-5

60.

1263

80.

0025

6.28

160

0.14

150.

3606

60.

0084

0.07

500

0.00

1520

4836

2016

2019

8540

1462

2897

WA

NG

-60

0.12

368

0.00

266.

3120

80.

1499

0.37

022

0.00

890.

1058

90.

0025

2010

3820

2020

2030

4220

3446

101

WA

NG

-62

0.11

337

0.00

225.

2645

20.

1228

0.33

688

0.00

810.

0869

20.

0019

1854

3618

6320

1872

4016

8536

101

0.28

1249

0.00

0016

0.00

0659

0.01

8993

0.28

1218

-0.2

60.

562.

773.

00W

AN

G-6

30.

1237

70.

0025

5.95

549

0.13

990.

3491

10.

0084

0.04

720

0.00

1020

1136

1969

2019

3040

932

2096

0.28

1522

0.00

0016

0.00

0652

0.02

0628

0.28

1499

-3.7

30.

562.

402.

76W

AN

G-7

00.

1245

40.

0026

6.35

443

0.15

800.

3701

20.

0093

0.11

051

0.00

2620

2238

2026

2220

3044

2119

4810

0W

AN

G-7

10.

1256

70.

0027

6.48

580

0.16

960.

3744

00.

0097

0.11

041

0.00

2820

3838

2044

2420

5046

2117

5210

1W

AN

G-7

20.

1264

90.

0026

6.49

045

0.15

850.

3724

00.

0091

0.11

054

0.00

2520

5038

2045

2220

4142

2119

4610

0W

AN

G-7

40.

1256

50.

0026

6.44

563

0.16

140.

3721

90.

0094

0.10

910

0.00

2620

3838

2039

2220

4044

2093

4610

0W

AN

G-8

20.

1258

30.

0025

6.17

696

0.14

970.

3562

20.

0088

0.06

552

0.00

1420

4136

2001

2219

6442

1283

2696

WA

NG

-85

0.12

572

0.00

256.

5908

70.

1589

0.38

040

0.00

940.

1156

70.

0025

2039

3620

5822

2078

4422

1244

102

WA

NG

-88

0.12

499

0.00

256.

3908

50.

1541

0.37

105

0.00

910.

1113

00.

0024

2029

3620

3122

2034

4221

3344

100

WA

NG

-89

0.12

433

0.00

256.

4414

10.

1563

0.37

595

0.00

920.

1122

70.

0025

2019

3820

3822

2057

4421

5146

102

WA

NG

-92

0.11

345

0.00

225.

2216

80.

1292

0.33

403

0.00

850.

0884

80.

0021

1855

3618

5622

1858

4217

1438

100

0.28

1392

0.00

0013

0.00

0776

0.02

2557

0.28

1362

-5.0

00.

462.

582.

97W

AN

G-9

60.

1570

10.

0031

9.29

150

0.21

040.

4294

10.

0101

0.12

992

0.00

2724

2433

2367

2123

0345

2469

4895

0.28

1608

0.00

0018

0.00

1284

0.03

8954

0.28

1563

-1.4

40.

632.

322.

62W

AN

G-9

70.

1241

40.

0025

6.26

427

0.15

190.

3659

00.

0091

0.09

556

0.00

2220

1736

2013

2220

1042

1845

4210

0W

AN

G-9

80.

1129

90.

0022

4.94

003

0.11

810.

3173

20.

0079

0.10

611

0.00

2018

4836

1809

2017

7738

2038

3896

0.28

1280

0.00

0022

0.00

1103

0.03

2323

0.28

1229

-0.2

80.

772.

762.

99W

AN

G-9

90.

1650

20.

0032

10.7

9239

0.23

560.

4743

30.

0109

0.12

554

0.00

2425

0832

2505

2025

0348

2390

4210

00.

2816

500.

0000

230.

0009

270.

0261

270.

2816

170.

340.

812.

242.

50W

AN

G-1

020.

1142

20.

0022

5.26

473

0.11

810.

3342

60.

0079

0.09

758

0.00

1818

6836

1863

2018

5938

1882

3410

00.

2811

990.

0000

140.

0014

950.

0423

940.

2811

27-1

.95

0.49

2.90

3.16

WA

NG

-103

0.12

419

0.00

246.

2266

20.

1414

0.36

362

0.00

860.

0785

10.

0014

2017

3620

0820

1999

4015

2826

99W

AN

G-1

040.

1238

60.

0024

6.24

943

0.13

780.

3660

20.

0084

0.11

262

0.00

2020

1336

2011

2020

1140

2157

3610

0W

AN

G-1

060.

1235

00.

0024

6.17

065

0.13

850.

3624

90.

0085

0.10

185

0.00

1920

0736

2000

2019

9440

1960

3499

0.28

1542

0.00

0020

0.00

0861

0.02

6788

0.28

1511

-2.9

70.

702.

392.

73P

ineC

reek

1-8

0.18

456

0.00

3813

.051

880.

2485

0.51

344

0.00

970.

1334

40.

0026

2694

3426

8318

2671

4225

3246

990.

2812

670.

0000

190.

0005

690.

0197

570.

2812

49-1

6.00

0.67

2.74

3.42

Pin

eCre

ek1-

20C

0.10

487

0.00

454.

1418

40.

1659

0.28

646

0.00

610.

0854

00.

0028

1712

8016

6332

1624

3016

5652

950.

2813

100.

0000

090.

0007

170.

0264

400.

2812

85-1

1.33

0.31

2.69

3.25

Pin

eCre

ek1-

20R

0.09

872

0.00

303.

8514

10.

1124

0.28

294

0.00

590.

0708

80.

0016

1600

5816

0424

1606

3013

8430

100

Pin

eCre

ek1-

220.

2434

30.

0049

21.1

2314

0.39

410.

6294

30.

0118

0.04

246

0.00

1031

4332

3144

1831

4746

840

2010

00.

2818

950.

0000

080.

0006

720.

0208

740.

2818

736.

330.

281.

892.

01P

ineC

reek

1-23

0.11

659

0.00

245.

3376

00.

0992

0.33

208

0.00

610.

0830

80.

0015

1905

3818

7516

1848

3016

1328

970.

2807

300.

0000

080.

0002

810.

0080

970.

2807

13-1

.95

0.28

3.43

3.64

Pin

eCre

ek1-

240.

2424

60.

0061

18.5

7639

0.48

080.

5560

40.

0135

0.06

549

0.00

2131

3640

3020

2428

5056

1282

4091

0.28

1575

0.00

0010

0.00

0488

0.01

6389

0.28

1557

-0.4

90.

332.

322.

60P

ineC

reek

1-27

0.16

181

0.00

3410

.471

590.

2301

0.46

933

0.01

010.

1019

70.

0019

2475

3624

7720

2481

4419

6336

100

0.28

0832

0.00

0008

0.00

1083

0.03

9430

0.28

0766

0.25

0.29

3.37

3.51

Pin

eCre

ek1-

300.

1647

70.

0034

10.9

4995

0.19

150.

4820

90.

0082

0.12

312

0.00

2025

0536

2519

1625

3636

2347

3610

10.

2808

210.

0000

080.

0007

080.

0234

700.

2807

88-1

4.80

0.29

3.35

3.94

Pin

eCre

ek1-

320.

1645

90.

0034

10.2

6758

0.18

110.

4524

80.

0078

0.10

381

0.00

1825

0336

2459

1624

0634

1996

3296

0.28

0763

0.00

0008

0.00

1311

0.05

3040

0.28

0681

-0.6

70.

293.

483.

64P

ineC

reek

1-36

0.25

746

0.00

5121

.414

670.

3760

0.60

334

0.01

080.

1443

10.

0025

3231

3231

5818

3043

4427

2544

940.

2812

860.

0000

100.

0008

100.

0308

250.

2812

62-1

8.65

0.35

2.73

3.48

Pin

eCre

ek1-

470.

2032

80.

0044

15.2

4712

0.27

400.

5442

40.

0093

0.14

641

0.00

3228

5336

2831

1828

0138

2762

5698

0.28

0756

0.00

0010

0.00

1057

0.03

6385

0.28

0690

-0.7

00.

353.

473.

63P

ineC

reek

1-48

0.24

240

0.00

4820

.990

470.

3601

0.62

814

0.01

100.

0905

10.

0015

3136

3231

3816

3142

4417

5128

100

0.28

1087

0.00

0010

0.00

1212

0.03

6565

0.28

1021

2.25

0.33

3.03

3.15

Pin

eCre

ek1-

490.

1103

20.

0031

4.62

832

0.11

440.

3043

30.

0056

0.08

696

0.00

1918

0552

1754

2017

1328

1685

3695

0.28

0749

0.00

0009

0.00

0845

0.02

6154

0.28

0698

-2.6

40.

313.

463.

68P

ineC

reek

1-52

0.10

215

0.00

244.

0730

80.

0826

0.28

925

0.00

500.

0837

70.

0019

1664

4416

4916

1638

2616

2636

980.

2815

340.

0000

120.

0005

980.

0169

610.

2815

14-4

.33

0.42

2.38

2.77

Pin

eCre

ek1-

570.

1635

20.

0037

10.5

6854

0.21

530.

4684

50.

0086

0.12

230

0.00

2224

9240

2486

1824

7738

2332

4099

0.28

2344

0.00

0010

0.00

0767

0.02

3949

0.28

2336

-3.2

70.

331.

281.

73P

ineC

reek

1-70

0.18

426

0.00

3912

.782

460.

2767

0.50

402

0.01

090.

0908

00.

0023

2692

3626

6420

2631

4617

5742

980.

2813

770.

0000

110.

0012

100.

0399

660.

2813

54-2

7.99

0.39

2.63

3.62

Pin

eCre

ek1-

73C

0.16

358

0.00

3510

.366

490.

2259

0.46

075

0.00

990.

1144

50.

0027

2493

3624

6820

2443

4421

9048

980.

2811

440.

0000

130.

0026

850.

0959

160.

2810

06-2

.02

0.46

3.07

3.30

Pin

eCre

ek1-

73R

0.16

785

0.00

3411

.359

280.

2143

0.49

045

0.00

920.

1220

50.

0024

2536

3625

5318

2573

4023

2844

101

Pin

eCre

ek1-

830.

2237

80.

0045

18.0

0613

0.29

740.

5833

80.

0098

0.14

256

0.00

2430

0832

2990

1629

6340

2694

4299

0.28

1277

0.00

0010

0.00

0762

0.02

1010

0.28

1241

1.73

0.35

2.74

2.91

Pin

eCre

ek1-

920.

1044

70.

0023

4.36

484

0.08

710.

3030

60.

0057

0.08

951

0.00

1817

0540

1706

1617

0628

1733

3210

00.

2819

360.

0000

080.

0016

740.

0509

930.

2818

99-4

.83

0.29

1.88

2.31

Pin

eCre

ek1-

960.

2312

60.

0049

18.9

0939

0.33

270.

5930

90.

0103

0.13

711

0.00

2630

6134

3037

1630

0242

2597

4698

0.28

0829

0.00

0009

0.00

1382

0.04

9532

0.28

0751

-5.0

80.

313.

403.

70

Page 62: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-47-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

Pin

eCre

ek1-

990.

1071

00.

0024

4.62

968

0.08

630.

3135

20.

0052

0.08

805

0.00

1817

5142

1755

1617

5826

1706

3410

00.

2807

030.

0000

120.

0006

980.

0197

030.

2806

62-5

.68

0.42

3.51

3.82

Pin

eCre

ek1-

103C

0.10

108

0.00

503.

7630

60.

1671

0.27

000

0.00

560.

0787

60.

0017

1644

9415

8536

1541

2815

3232

94P

ineC

reek

1-10

3R0.

0964

50.

0031

3.71

912

0.11

780.

2796

50.

0063

0.07

608

0.00

2315

5762

1575

2615

9032

1482

4410

2P

ineC

reek

1-11

10.

2575

60.

0052

23.1

2623

0.42

370.

6507

70.

0120

0.14

929

0.00

2832

3232

3232

1832

3146

2812

4810

00.

2821

240.

0000

100.

0004

820.

0157

270.

2821

141.

160.

351.

571.

87P

ineC

reek

1-11

20.

2556

70.

0052

22.8

2356

0.38

960.

6474

80.

0111

0.16

493

0.00

2932

2034

3219

1632

1844

3086

5010

00.

2807

310.

0000

090.

0006

700.

0211

690.

2806

89-0

.71

0.32

3.47

3.63

Pin

eCre

ek1-

114C

0.10

078

0.00

223.

9780

30.

0784

0.28

586

0.00

530.

0824

30.

0016

1639

4016

3016

1621

2616

0130

990.

2821

070.

0000

080.

0006

820.

0225

900.

2820

8611

.09

0.28

1.60

1.61

Pin

eCre

ek1-

117

0.25

058

0.00

5021

.925

970.

3763

0.63

450

0.01

100.

1646

00.

0030

3188

3231

8016

3167

4430

8052

990.

2816

880.

0000

070.

0005

970.

0199

090.

2816

69-2

.56

0.25

2.17

2.52

Pin

eCre

ek1-

118

0.16

339

0.00

3510

.555

340.

1967

0.46

827

0.00

840.

1271

80.

0025

2491

3624

8518

2476

3824

2044

990.

2808

250.

0000

160.

0007

010.

0195

230.

2807

821.

560.

563.

343.

45P

ineC

reek

1-11

90.

1621

70.

0034

10.2

8406

0.18

420.

4598

50.

0080

0.12

446

0.00

2224

7836

2461

1624

3936

2371

4098

0.28

0876

0.00

0009

0.00

0378

0.01

2153

0.28

0858

-11.

920.

313.

253.

77P

ineC

reek

1-12

10.

0965

20.

0026

3.64

537

0.09

060.

2737

30.

0052

0.07

677

0.00

2015

5852

1559

2015

6026

1495

3810

00.

2809

150.

0000

100.

0006

970.

0214

400.

2808

82-1

1.37

0.34

3.22

3.73

LT1-

20.

2166

00.

0044

17.2

9483

0.30

920.

5792

50.

0103

0.14

285

0.00

2629

5634

2951

1829

4642

2699

4610

00.

2821

490.

0000

090.

0004

600.

0131

510.

2821

392.

660.

321.

531.

80LT

1-5

0.10

735

0.00

224.

2483

80.

0769

0.28

717

0.00

500.

0414

50.

0007

1755

4016

8314

1627

2682

114

930.

2821

100.

0000

110.

0004

350.

0141

210.

2821

010.

890.

391.

591.

90LT

1-8C

0.10

663

0.00

244.

6229

30.

0938

0.31

448

0.00

590.

0553

80.

0010

1743

4217

5316

1763

2810

8920

101

0.28

1518

0.00

0006

0.00

0654

0.02

1499

0.28

1496

-6.0

80.

222.

412.

84LT

1-8R

0.10

394

0.00

224.

2525

00.

0778

0.29

682

0.00

520.

0584

70.

0012

1696

4016

8416

1676

2611

4924

99LT

1-12

0.10

397

0.00

214.

2947

90.

0762

0.29

976

0.00

530.

0710

10.

0013

1696

3816

9214

1690

2613

8724

100

0.28

2102

0.00

0008

0.00

0570

0.01

8568

0.28

2089

2.54

0.29

1.60

1.86

LT1-

150.

1122

40.

0027

4.95

184

0.10

260.

3201

90.

0058

0.08

821

0.00

2518

3644

1811

1817

9128

1709

4698

0.28

2011

0.00

0009

0.00

0400

0.01

0694

0.28

2003

-2.3

20.

321.

722.

11LT

1-17

0.10

713

0.00

264.

3918

00.

0960

0.29

749

0.00

540.

0331

50.

0008

1751

4617

1118

1679

2865

916

960.

2815

880.

0000

070.

0015

720.

0608

920.

2815

33-2

.92

0.25

2.37

2.70

LT1-

350.

1029

30.

0023

3.94

820

0.08

280.

2782

10.

0054

0.07

610

0.00

1416

7842

1624

1615

8228

1482

2694

0.28

2115

0.00

0010

0.00

1536

0.05

2845

0.28

2072

8.02

0.35

1.63

1.72

LT1-

390.

1414

30.

0030

8.00

762

0.15

020.

4106

40.

0074

0.11

105

0.00

2122

4538

2232

1622

1834

2128

3899

0.28

1648

0.00

0014

0.00

1027

0.02

9733

0.28

1615

-3.5

90.

492.

252.

62LT

1-41

0.11

120

0.00

234.

7803

70.

1010

0.31

182

0.00

650.

0676

90.

0013

1819

3817

8118

1750

3213

2424

960.

2812

810.

0000

120.

0005

100.

0158

920.

2812

59-3

.31

0.42

2.72

3.04

LT1-

420.

1048

10.

0025

3.95

648

0.08

770.

2738

00.

0052

0.07

681

0.00

1517

1146

1625

1815

6026

1496

2891

0.28

1569

0.00

0008

0.00

0659

0.02

4771

0.28

1546

-2.8

40.

292.

342.

68LT

1-48

0.10

413

0.00

224.

3734

00.

0825

0.30

462

0.00

550.

0701

60.

0013

1699

4017

0716

1714

2813

7124

101

0.28

2094

0.00

0009

0.00

0469

0.01

4421

0.28

2085

-0.5

80.

321.

611.

96LT

1-54

0.10

468

0.00

244.

1476

90.

0834

0.28

734

0.00

510.

0756

10.

0017

1709

4416

6416

1628

2614

7332

950.

2815

550.

0000

090.

0004

100.

0117

830.

2815

376.

850.

332.

342.

40LT

1-60

0.10

331

0.00

244.

2224

10.

0857

0.29

657

0.00

530.

0783

90.

0014

1684

4416

7816

1674

2615

2526

990.

2816

100.

0000

110.

0008

990.

0322

090.

2815

81-4

.11

0.39

2.30

2.68

LT1-

620.

1038

70.

0023

3.95

287

0.07

830.

2759

50.

0051

0.01

711

0.00

0316

9442

1625

1615

7126

343

693

0.28

1681

0.00

0007

0.00

0746

0.02

2258

0.28

1657

-1.9

70.

252.

192.

52LT

1-65

0.10

329

0.00

223.

8562

40.

0744

0.27

026

0.00

500.

0657

50.

0012

1684

4016

0516

1542

2612

8722

920.

2816

370.

0000

070.

0009

940.

0301

680.

2816

05-3

.59

0.26

2.26

2.63

LT1-

660.

1031

40.

0021

4.10

743

0.07

570.

2884

50.

0052

0.08

066

0.00

1516

8138

1656

1616

3426

1568

2897

0.28

1518

0.00

0010

0.00

0594

0.01

7817

0.28

1499

-7.5

90.

352.

402.

88LT

1-76

0.10

164

0.00

223.

9734

10.

0769

0.28

366

0.00

510.

0635

40.

0013

1654

4216

2916

1610

2612

4526

970.

2823

560.

0000

100.

0004

830.

0151

350.

2823

500.

210.

331.

251.

61LT

1-79

0.10

717

0.00

244.

4982

50.

0890

0.30

444

0.00

550.

0461

30.

0010

1752

4217

3116

1713

2891

220

98LT

1-90

C0.

1038

10.

0022

4.37

305

0.08

660.

3052

30.

0057

0.08

276

0.00

1516

9340

1707

1617

1728

1607

2810

10.

2821

160.

0000

140.

0006

490.

0187

760.

2821

022.

400.

491.

591.

85LT

1-93

R0.

1109

60.

0026

4.58

517

0.09

220.

2996

30.

0053

0.07

969

0.00

1518

1544

1747

1616

8926

1550

2893

0.28

2138

0.00

0008

0.00

0643

0.01

8934

0.28

2124

3.23

0.27

1.56

1.80

LT1-

104

0.11

597

0.00

275.

1198

00.

1179

0.32

384

0.00

670.

0552

80.

0012

1895

4418

3920

1808

3210

8822

950.

2822

230.

0000

090.

0006

950.

0221

500.

2822

093.

480.

321.

441.

69M

YA

LL-1

0.09

873

0.00

473.

8772

30.

1826

0.28

474

0.00

740.

0843

80.

0055

1600

9216

0938

1615

3616

3710

210

10.

2815

680.

0000

080.

0007

090.

0222

400.

2815

43-1

.25

0.28

2.34

2.64

MY

ALL

-80.

1026

10.

0034

4.08

544

0.12

620.

2888

80.

0059

0.08

540

0.00

2816

7262

1651

2616

3630

1656

5298

0.28

2229

0.00

0009

0.00

0731

0.02

2031

0.28

2213

6.10

0.32

1.43

1.61

MY

ALL

-90.

2444

90.

0051

21.0

7219

0.39

940.

6254

30.

0116

0.17

528

0.00

4431

4934

3142

1831

3146

3264

7699

0.28

1825

0.00

0010

0.00

0569

0.01

5195

0.28

1807

3.07

0.34

1.98

2.19

MY

ALL

-10

0.10

323

0.00

263.

9557

70.

0922

0.27

802

0.00

540.

0834

10.

0024

1683

4616

2518

1581

2816

1944

940.

2807

910.

0000

110.

0005

360.

0145

070.

2807

59-0

.19

0.39

3.37

3.54

MY

ALL

-28

0.10

308

0.00

224.

1445

50.

0889

0.29

157

0.00

590.

0900

50.

0018

1680

4216

6318

1649

3017

4334

980.

2821

820.

0000

090.

0005

180.

0141

880.

2821

704.

890.

331.

491.

69M

YA

LL-3

30.

0995

20.

0022

3.82

268

0.09

320.

2786

40.

0064

0.03

284

0.00

1116

1542

1598

2015

8532

653

2098

0.28

1834

0.00

0009

0.00

0359

0.01

0651

0.28

1826

-6.5

90.

311.

962.

45M

YA

LL-3

40.

1423

80.

0029

8.18

590

0.15

390.

4169

30.

0077

0.12

501

0.00

2422

5636

2252

1822

4736

2381

4410

00.

2819

690.

0000

110.

0030

870.

1016

140.

2818

754.

180.

391.

912.

08M

YA

LL-4

00.

1059

40.

0026

4.47

473

0.10

390.

3063

70.

0061

0.09

449

0.00

2417

3146

1726

2017

2330

1825

4410

00.

2824

440.

0000

110.

0025

150.

0757

530.

2824

016.

760.

391.

191.

36M

YA

LL-4

10.

1008

20.

0023

4.00

834

0.08

780.

2883

90.

0058

0.09

025

0.00

1916

3942

1636

1816

3328

1746

3610

00.

2817

300.

0000

120.

0005

300.

0143

920.

2817

131.

060.

422.

112.

37M

YA

LL-4

60.

1011

80.

0035

4.03

511

0.14

160.

2894

70.

0072

0.08

755

0.00

3016

4666

1641

2816

3936

1696

5610

00.

2822

590.

0000

080.

0006

910.

0195

410.

2822

438.

820.

281.

391.

49M

YA

LL-4

70.

1013

50.

0021

3.91

005

0.07

900.

2798

20.

0055

0.06

813

0.00

1316

4940

1616

1615

9028

1332

2496

0.28

1896

0.00

0012

0.00

0511

0.01

4209

0.28

1880

5.08

0.42

1.88

2.04

MY

ALL

-48

0.10

893

0.00

244.

8249

40.

1005

0.32

127

0.00

630.

0937

20.

0020

1782

4217

8918

1796

3018

1136

101

0.28

1915

0.00

0008

0.00

1222

0.03

2962

0.28

1877

5.03

0.27

1.89

2.05

MY

ALL

-58

0.10

234

0.00

233.

8916

30.

0820

0.27

575

0.00

540.

0806

80.

0017

1667

4216

1218

1570

2815

6832

940.

2824

090.

0000

080.

0009

020.

0288

020.

2823

981.

530.

281.

191.

51M

YA

LL-5

90.

1064

60.

0022

4.51

102

0.08

680.

3072

10.

0057

0.09

381

0.00

1917

4040

1733

1617

2728

1812

3499

0.28

1634

0.00

0008

0.00

0497

0.01

4443

0.28

1618

-3.7

40.

282.

242.

62M

YA

LL-6

00.

0961

30.

0024

3.50

511

0.08

340.

2644

40.

0052

0.07

823

0.00

2015

5048

1528

1815

1326

1522

3698

0.28

1488

0.00

0011

0.00

0447

0.01

3636

0.28

1473

-7.2

30.

392.

432.

90M

YA

LL-6

70.

0981

60.

0021

3.79

674

0.08

260.

2803

80.

0059

0.07

653

0.00

1815

8940

1592

1815

9330

1491

3410

00.

2821

530.

0000

100.

0008

760.

0275

470.

2821

342.

310.

351.

551.

81M

YA

LL-7

10.

0947

60.

0021

3.49

569

0.07

230.

2674

00.

0050

0.07

585

0.00

1815

2344

1526

1615

2826

1478

3410

00.

2819

300.

0000

100.

0002

710.

0096

300.

2819

24-3

.59

0.34

1.82

2.24

MY

ALL

-73

0.10

064

0.00

213.

7021

10.

0736

0.26

667

0.00

520.

0598

20.

0013

1636

4015

7216

1524

2611

7424

930.

2820

980.

0000

130.

0010

940.

0308

080.

2820

668.

910.

461.

631.

70M

YA

LL-7

40.

1989

00.

0039

14.7

7674

0.28

260.

5388

40.

0105

0.13

374

0.00

2428

1732

2801

1827

7944

2537

4299

0.28

1893

0.00

0009

0.00

1509

0.04

8432

0.28

1846

3.65

0.32

1.94

2.13

MY

ALL

-79

0.17

925

0.00

3912

.557

670.

2944

0.50

815

0.01

150.

1320

80.

0029

2646

3626

4722

2649

5025

0752

100

0.28

0789

0.00

0009

0.00

0586

0.01

4962

0.28

0757

-7.9

60.

323.

383.

78M

YA

LL-9

10.

1018

30.

0063

4.06

729

0.24

520.

2897

30.

0068

0.07

797

0.00

2216

5811

616

4850

1640

3415

1842

990.

2809

980.

0000

080.

0005

000.

0146

440.

2809

73-4

.26

0.26

3.09

3.41

MY

ALL

-101

0.10

089

0.00

233.

9963

20.

0955

0.28

734

0.00

630.

0421

00.

0011

1641

4416

3320

1628

3283

420

990.

2820

430.

0000

100.

0061

870.

2502

530.

2818

326.

770.

351.

972.

05

Page 63: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-48-

Chapter 2 Supplementary MaterialA

naly

sis

Isot

ope

Rat

ios

Age

s (M

a)Is

otop

e R

atio

sS

cher

er e

t al.

2001

dec

ay c

onst

ant

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

%co

n17

6 Hf/17

7 Hf

1 S

E17

6 Lu/17

7 Hf

176 Yb

/177 H

fH

f iH

f1

SE

T DM

(Ga)

T DM

Cru

stal

(Ga)

MY

ALL

-108

0.10

738

0.00

234.

7733

10.

1009

0.32

232

0.00

660.

0859

20.

0019

1755

4017

8018

1801

3216

6636

103

0.28

1627

0.00

0008

0.00

0673

0.01

9137

0.28

1606

-4.7

60.

282.

262.

67M

YA

LL-1

140.

1150

30.

0026

5.42

034

0.11

690.

3416

80.

0067

0.09

462

0.00

2118

8042

1888

1818

9532

1827

4010

10.

2815

440.

0000

090.

0006

730.

0201

930.

2815

22-5

.17

0.30

2.37

2.78

MY

ALL

-115

0.09

753

0.00

213.

6598

20.

0856

0.27

212

0.00

600.

0433

10.

0009

1577

4215

6318

1552

3085

716

980.

2815

370.

0000

120.

0011

050.

0297

240.

2814

98-3

.19

0.42

2.41

2.75

Eas

tBar

ton-

1C0.

1619

70.

0036

10.6

1595

0.22

620.

4755

20.

0096

0.11

999

0.00

2624

7638

2490

2025

0842

2290

4610

10.

2824

900.

0000

100.

0027

210.

1143

200.

2824

563.

360.

351.

131.

39E

astB

arto

n-1R

0.15

819

0.00

3310

.089

340.

2103

0.46

263

0.00

960.

1285

10.

0027

2436

3624

4320

2451

4224

4448

101

0.28

1050

0.00

0005

0.00

0670

0.02

2381

0.28

1018

-6.5

70.

163.

043.

43E

astB

arto

n-13

0.10

506

0.00

254.

3552

90.

1028

0.30

084

0.00

630.

0891

30.

0019

1715

4417

0420

1695

3217

2634

990.

2822

540.

0000

120.

0007

170.

0232

910.

2822

403.

440.

421.

401.

65E

astB

arto

n-14

0.17

043

0.00

6811

.052

620.

3547

0.47

035

0.01

120.

1302

50.

0031

2562

6825

2830

2485

5024

7556

970.

2815

520.

0000

100.

0011

030.

0316

500.

2815

16-6

.28

0.35

2.39

2.82

Eas

tBar

ton-

170.

1082

50.

0023

4.66

130

0.09

960.

3125

70.

0065

0.04

145

0.00

0917

7040

1760

1817

5332

821

1899

0.28

1076

0.00

0009

0.00

0221

0.00

6287

0.28

1065

-2.9

20.

332.

973.

26E

astB

arto

n-28

0.10

193

0.00

774.

0591

30.

2893

0.28

881

0.00

750.

0841

70.

0020

1660

144

1646

5816

3638

1633

3899

0.28

1970

0.00

0013

0.00

0566

0.01

5799

0.28

1955

2.00

0.46

1.78

2.04

Eas

tBar

ton-

330.

1337

20.

0028

7.26

939

0.14

130.

3943

60.

0075

0.11

636

0.00

2621

4738

2145

1821

4334

2225

4610

00.

2820

970.

0000

100.

0005

550.

0157

030.

2820

852.

000.

341.

611.

88E

astB

arto

n-35

0.09

981

0.00

233.

9600

60.

0980

0.28

745

0.00

650.

0823

80.

0020

1621

4416

2620

1629

3216

0038

100

0.28

2264

0.00

0010

0.00

0449

0.01

3159

0.28

2255

5.22

0.35

1.38

1.58

Eas

tBar

ton-

390.

1621

70.

0036

10.4

3732

0.25

470.

4663

60.

0108

0.12

361

0.00

3124

7838

2474

2224

6848

2356

5610

00.

2821

300.

0000

070.

0005

250.

0149

140.

2821

182.

840.

251.

561.

82E

astB

arto

n-44

0.11

162

0.00

284.

9719

40.

1166

0.32

326

0.00

630.

1018

40.

0027

1826

4618

1520

1806

3019

6050

990.

2820

570.

0000

120.

0006

040.

0175

690.

2820

423.

080.

421.

671.

91E

astB

arto

n-53

0.10

723

0.00

294.

6055

30.

1209

0.31

150

0.00

660.

0929

80.

0023

1753

5017

5022

1748

3217

9744

100

0.28

2146

0.00

0013

0.00

0620

0.01

7611

0.28

2132

3.09

0.46

1.54

1.79

Eas

tBar

ton-

550.

1596

60.

0037

10.2

6670

0.21

670.

4665

00.

0090

0.13

583

0.00

3224

5240

2459

2024

6840

2574

5810

10.

2824

010.

0000

190.

0001

730.

0050

070.

2823

989.

640.

671.

181.

28E

astB

arto

n-71

0.20

448

0.00

4016

.660

250.

3262

0.58

965

0.01

190.

1570

30.

0030

2862

3229

1518

2988

4829

4852

104

Eas

tBar

ton-

720.

1081

90.

0027

4.62

783

0.12

550.

3102

20.

0076

0.05

435

0.00

1417

6946

1754

2217

4238

1070

2898

0.28

2214

0.00

0008

0.00

0596

0.01

6630

0.28

2201

4.92

0.29

1.45

1.66

Eas

tBar

ton-

750.

1563

10.

0034

9.93

839

0.20

440.

4609

60.

0091

0.13

064

0.00

3524

1638

2429

1824

4440

2482

6210

10.

2815

900.

0000

080.

0006

670.

0200

050.

2815

68-3

.22

0.29

2.31

2.67

Eas

tBar

ton-

890.

1536

30.

0048

9.25

788

0.26

910.

4369

50.

0096

0.08

704

0.00

3223

8754

2364

2623

3742

1687

6098

0.28

2055

0.00

0009

0.00

0466

0.01

3509

0.28

2048

-7.9

50.

331.

662.

21E

astB

arto

n-10

00.

1591

90.

0034

10.3

9118

0.25

170.

4736

60.

0113

0.12

821

0.00

4224

4738

2470

2225

0050

2438

7410

20.

2810

400.

0000

080.

0002

790.

0077

640.

2810

27-8

.30

0.28

3.02

3.47

Eas

tBar

ton-

104

0.16

109

0.00

3510

.261

120.

2045

0.46

166

0.00

880.

1263

00.

0025

2467

3824

5918

2447

3824

0444

990.

2811

690.

0000

090.

0000

290.

0013

570.

2811

68-1

.92

0.32

2.83

3.11

Eas

tBar

ton-

105

0.10

238

0.00

224.

4552

20.

0935

0.31

543

0.00

640.

0738

50.

0015

1668

4017

2318

1767

3214

4028

106

Eas

tBar

ton-

106

0.15

984

0.00

3410

.187

510.

2080

0.46

195

0.00

910.

1214

30.

0023

2454

3824

5218

2448

4023

1640

100

Eas

tBar

ton-

108

0.16

007

0.00

3810

.053

050.

2243

0.45

515

0.00

910.

1133

70.

0026

2456

4024

4020

2418

4021

7148

980.

2811

500.

0000

100.

0003

620.

0100

880.

2811

33-2

.70

0.35

2.88

3.17

Eas

tBar

ton-

109

0.15

680

0.00

339.

9431

60.

1943

0.45

954

0.00

880.

1128

70.

0021

2421

3624

3018

2438

3821

6238

101

0.28

1069

0.00

0008

0.00

0457

0.01

3320

0.28

1048

-5.9

90.

263.

003.

37K

ingo

onya

Wes

t-10.

1454

40.

0029

7.92

089

0.13

840.

3955

00.

0069

0.11

109

0.00

2122

9336

2222

1621

4832

2129

3894

0.28

1935

0.00

0010

0.00

0386

0.01

0640

0.28

1925

0.12

0.35

1.82

2.13

Kin

goon

ya W

est-2

0.16

307

0.00

329.

2812

10.

1598

0.41

287

0.00

720.

1070

20.

0018

2488

3423

6616

2228

3220

5532

90K

ingo

onya

Wes

t-40.

1573

00.

0031

9.59

398

0.16

090.

4423

00.

0076

0.12

431

0.00

2224

2734

2397

1623

6134

2368

3897

0.28

1210

0.00

0006

0.00

0126

0.00

4662

0.28

1204

-4.1

60.

202.

783.

13K

ingo

onya

Wes

t-60.

1585

50.

0039

9.70

505

0.24

770.

4425

00.

0104

0.08

863

0.00

3524

4042

2407

2423

6246

1716

6697

0.28

2191

0.00

0013

0.00

0353

0.01

0035

0.28

2184

2.59

0.46

1.47

1.75

Kin

goon

ya W

est-7

0.15

894

0.00

3110

.144

280.

2106

0.46

175

0.00

970.

1095

70.

0022

2444

3424

4820

2447

4221

0240

100

0.28

1253

0.00

0010

0.00

2376

0.10

4330

0.28

1142

-2.9

80.

352.

893.

17K

ingo

onya

Wes

t-14

0.16

082

0.00

329.

8959

30.

1735

0.44

623

0.00

790.

0289

90.

0005

2464

3424

2516

2378

3657

810

970.

2819

890.

0000

100.

0006

070.

0171

520.

2819

75-1

.92

0.34

1.76

2.13

Kin

goon

ya W

est-1

90.

1594

80.

0031

10.3

1968

0.19

850.

4693

60.

0093

0.12

328

0.00

2324

5034

2464

1824

8140

2350

4010

10.

2811

950.

0000

090.

0000

910.

0037

210.

2811

91-0

.71

0.31

2.80

3.04

Kin

goon

ya W

est-2

00.

1598

70.

0032

10.2

6029

0.17

870.

4654

50.

0081

0.13

423

0.00

2424

5434

2459

1624

6436

2546

4410

00.

2812

300.

0000

090.

0002

830.

0102

720.

2812

17-0

.11

0.30

2.77

2.99

Kin

goon

ya W

est-3

30.

1594

20.

0033

10.2

3240

0.23

700.

4650

10.

0108

0.11

803

0.00

3224

5036

2456

2224

6248

2255

5810

00.

2821

980.

0000

110.

0006

850.

0184

670.

2821

835.

150.

391.

481.

67K

ingo

onya

Wes

t-51

0.16

496

0.00

3410

.771

240.

2063

0.47

379

0.00

900.

1341

30.

0026

2507

3625

0418

2500

4025

4446

100

0.28

2040

0.00

0011

0.00

0542

0.01

5854

0.28

2027

1.53

0.39

1.69

1.97

Kin

goon

ya W

est-6

20.

1603

80.

0032

10.0

7310

0.18

420.

4556

90.

0084

0.11

000

0.00

2124

6034

2442

1624

2038

2109

3898

0.28

2447

0.00

0005

0.00

0859

0.02

7275

0.28

2437

1.75

0.19

1.13

1.46

Kin

goon

ya W

est-6

70.

1033

50.

0033

4.25

825

0.13

130.

2989

00.

0064

0.08

291

0.00

2216

8560

1685

2616

8632

1610

4210

00.

2811

960.

0000

080.

0015

230.

0625

290.

2811

25-3

.16

0.27

2.91

3.20

Kin

goon

ya W

est-7

70.

1573

20.

0033

9.41

158

0.19

490.

4346

20.

0088

0.08

521

0.00

2024

2736

2379

2023

2740

1653

3696

0.28

2950

0.00

0013

0.00

1962

0.05

3647

0.28

2946

8.40

0.46

0.44

0.63

Kin

goon

ya W

est-8

00.

1586

60.

0031

10.1

2319

0.20

200.

4625

90.

0094

0.12

274

0.00

2424

4134

2446

1824

5142

2340

4410

00.

2823

900.

0000

130.

0007

680.

0211

440.

2823

801.

260.

461.

211.

54K

ingo

onya

Wes

t-82

0.11

289

0.00

235.

2351

00.

1008

0.33

618

0.00

630.

0865

30.

0017

1846

3818

5816

1868

3016

7732

101

0.28

1244

0.00

0012

0.00

0342

0.01

5011

0.28

1228

0.09

0.42

2.75

2.98

Kin

goon

ya W

est-8

60.

1619

10.

0034

10.2

5094

0.20

290.

4589

10.

0089

0.09

714

0.00

2024

7636

2458

1824

3540

1874

3698

0.28

1230

0.00

0010

0.00

0892

0.02

7323

0.28

1194

-8.9

80.

352.

813.

29K

ingo

onya

Wes

t-87

0.15

599

0.00

319.

6877

40.

1850

0.45

012

0.00

880.

0151

60.

0003

2413

3424

0618

2396

4030

46

990.

2811

150.

0000

120.

0007

710.

0241

850.

2810

79-4

.42

0.42

2.96

3.29

Kin

goon

ya W

est-9

40.

1625

80.

0037

10.3

3188

0.23

100.

4605

10.

0096

0.12

406

0.00

2824

8340

2465

2024

4242

2364

5098

0.28

1197

0.00

0007

0.00

0437

0.01

4225

0.28

1177

-2.3

80.

252.

823.

11La

keIfo

uld-

010.

1561

10.

0031

9.70

498

0.17

320.

4508

90.

0081

0.12

471

0.00

1924

1434

2407

1623

9936

2375

3499

0.28

1223

0.00

0011

0.00

0741

0.02

0735

0.28

1188

-0.3

80.

392.

813.

04La

keIfo

uld-

060.

1602

30.

0032

10.1

3347

0.18

450.

4586

80.

0084

0.11

968

0.00

1824

5834

2447

1624

3438

2285

3299

0.28

2130

0.00

0012

0.00

0365

0.01

2209

0.28

2122

1.19

0.42

1.56

1.86

Lake

Ifoul

d-08

0.10

527

0.00

244.

3378

50.

0889

0.29

887

0.00

560.

0860

60.

0015

1719

4217

0116

1686

2816

6928

980.

2820

350.

0000

150.

0011

380.

0395

230.

2820

09-0

.42

0.53

1.72

2.05

Lake

Ifoul

d-09

0.18

243

0.00

4612

.875

620.

3139

0.51

186

0.01

150.

1343

50.

0052

2675

4226

7122

2665

5025

4892

100

0.28

1571

0.00

0008

0.00

1231

0.03

7330

0.28

1531

-5.6

60.

292.

372.

78La

keIfo

uld-

100.

1129

80.

0076

4.66

101

0.29

090.

2992

20.

0075

0.08

629

0.00

2018

4812

417

6052

1687

3816

7336

910.

2811

860.

0000

090.

0007

480.

0251

220.

2811

482.

640.

322.

862.

99La

keIfo

uld-

110.

1057

10.

0053

4.42

292

0.20

750.

3035

20.

0087

0.08

795

0.00

3217

2794

1717

3817

0944

1704

6099

0.28

1621

0.00

0008

0.00

1531

0.05

2870

0.28

1567

-1.4

40.

272.

322.

62La

keIfo

uld-

120.

1538

80.

0031

9.25

480

0.17

230.

4362

40.

0081

0.12

082

0.00

2123

8936

2364

1823

3436

2305

3898

0.28

1636

0.00

0017

0.00

1082

0.03

6270

0.28

1601

-3.0

10.

602.

272.

62La

keIfo

uld-

140.

1052

40.

0024

4.03

962

0.08

430.

2784

50.

0054

0.07

071

0.00

1217

1942

1642

1615

8428

1381

2292

0.28

2139

0.00

0010

0.00

0599

0.01

9673

0.28

2127

-0.1

80.

341.

551.

90La

keIfo

uld-

160.

1499

00.

0036

8.72

845

0.14

680.

4223

20.

0071

0.11

841

0.00

2223

4542

2310

1622

7132

2262

3897

0.28

1805

0.00

0008

0.00

0402

0.01

3810

0.28

1796

-7.7

00.

292.

002.

52La

keIfo

uld-

190.

1534

90.

0030

8.47

103

0.15

680.

4004

60.

0075

0.11

201

0.00

1823

8534

2283

1621

7134

2146

3491

0.28

2171

0.00

0013

0.00

0607

0.02

1408

0.28

2158

2.80

0.46

1.51

1.77

Lake

Ifoul

d-20

0.10

529

0.00

334.

3436

30.

1036

0.29

921

0.00

600.

0869

10.

0018

1719

5817

0220

1687

3016

8534

980.

2812

180.

0000

130.

0004

420.

0165

190.

2811

98-2

.28

0.46

2.80

3.08

Page 64: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-49-

Chapter 2 Supplementary Material

Ana

lysi

sIs

otop

e R

atio

sA

ges

(Ma)

Isot

ope

Rat

ios

Sch

erer

et a

l. 20

01 d

ecay

con

stan

t20

7 Pb/20

6 Pb

207 Pb

/235 U

206 Pb

/238 U

208 Pb

/232 Th

207 Pb

/206 P

b20

7 Pb/23

5 U20

6 Pb/23

8 U20

8 Pb/23

2 Th%

con

176 H

f/177 H

f1

SE

176 Lu

/177 H

f17

6 Yb/17

7 Hf

Hf i

Hf

1 S

ET D

M(G

a)T D

MC

rust

al

(Ga)

Lake

Ifoul

d-26

0.10

383

0.00

244.

1834

00.

0904

0.29

226

0.00

560.

0848

00.

0015

1694

4416

7118

1653

2816

4528

980.

2814

800.

0000

100.

0006

540.

0259

040.

2814

59-8

.23

0.33

2.46

2.95

Lake

Ifoul

d-27

0.15

618

0.00

329.

6451

80.

1793

0.44

800

0.00

820.

1236

20.

0021

2415

3624

0118

2386

3623

5638

990.

2816

170.

0000

090.

0014

190.

0469

840.

2815

71-4

.79

0.32

2.32

2.71

Lake

Ifoul

d-28

0.10

928

0.00

444.

5551

10.

1769

0.30

231

0.00

810.

0865

20.

0028

1787

7617

4132

1703

4016

7752

950.

2811

920.

0000

050.

0000

710.

0028

290.

2811

89-1

.91

0.18

2.80

3.08

Lake

Ifoul

d-29

0.15

570

0.00

329.

5701

40.

1787

0.44

583

0.00

830.

1269

40.

0022

2409

3623

9418

2377

3824

1538

990.

2815

630.

0000

100.

0013

260.

0434

940.

2815

18-4

.57

0.35

2.39

2.77

Lake

Ifoul

d-31

0.15

074

0.00

318.

4628

00.

1515

0.40

720

0.00

730.

1152

70.

0018

2354

3622

8216

2202

3422

0532

940.

2821

240.

0000

080.

0006

120.

0205

430.

2821

112.

380.

281.

571.

84La

keIfo

uld-

330.

1027

10.

0021

4.20

274

0.07

550.

2968

30.

0053

0.08

705

0.00

1416

7438

1675

1416

7626

1687

2610

00.

2811

980.

0000

090.

0000

600.

0027

730.

2811

95-3

.08

0.31

2.80

3.11

Lake

Ifoul

d-35

0.14

283

0.00

338.

0470

50.

1796

0.40

866

0.00

850.

1134

60.

0029

2262

4222

3620

2209

3821

7252

980.

2815

920.

0000

080.

0013

880.

0406

250.

2815

48-6

.08

0.27

2.35

2.77

Lake

Ifoul

d-36

0.10

446

0.00

264.

3522

20.

1047

0.30

218

0.00

640.

0841

80.

0018

1705

4617

0320

1702

3216

3434

100

0.28

1250

0.00

0009

0.00

0284

0.01

0358

0.28

1238

-3.6

90.

302.

743.

08La

keIfo

uld-

400.

1098

40.

0062

4.62

723

0.24

950.

3057

40.

0102

0.09

513

0.00

5417

9710

417

5446

1720

5018

3710

096

0.28

1749

0.00

0010

0.00

0504

0.01

6498

0.28

1733

1.19

0.35

2.08

2.34

Lake

Ifoul

d-43

0.10

514

0.00

254.

4019

20.

1031

0.30

375

0.00

650.

0862

30.

0019

1717

4417

1320

1710

3216

7236

100

0.28

1565

0.00

0011

0.00

0548

0.01

8245

0.28

1546

-3.3

40.

392.

342.

70La

keIfo

uld-

450.

1075

30.

0022

4.62

052

0.08

390.

3116

70.

0057

0.08

858

0.00

1417

5838

1753

1617

4928

1715

2699

0.28

1742

0.00

0008

0.00

0294

0.01

0529

0.28

1739

-24.

460.

282.

083.

05La

keIfo

uld-

460.

1526

80.

0031

9.03

289

0.17

250.

4291

10.

0082

0.11

895

0.00

2023

7636

2341

1823

0236

2272

3697

0.28

1731

0.00

0010

0.00

0714

0.02

5065

0.28

1707

1.48

0.34

2.12

2.36

Lake

Ifoul

d-47

0.16

073

0.00

3910

.042

370.

2320

0.45

318

0.00

960.

1226

50.

0032

2463

4224

3922

2409

4223

3856

980.

2812

120.

0000

080.

0002

300.

0090

490.

2812

02-2

.35

0.28

2.79

3.08

Lake

Ifoul

d-48

0.09

510

0.00

213.

4650

00.

0747

0.26

427

0.00

530.

0731

10.

0014

1530

4215

1916

1512

2814

2626

990.

2812

760.

0000

100.

0006

210.

0211

290.

2812

471.

260.

352.

732.

92La

keIfo

uld-

520.

1613

10.

0037

10.3

9095

0.22

420.

4672

20.

0095

0.13

011

0.00

3124

6940

2470

2024

7142

2472

5410

00.

2817

080.

0000

110.

0004

920.

0181

430.

2816

94-4

.16

0.39

2.14

2.54

Lake

Ifoul

d-53

0.10

459

0.00

254.

3634

50.

0970

0.30

259

0.00

580.

0909

00.

0019

1707

4617

0518

1704

2817

5936

100

0.28

1271

0.00

0008

0.00

0417

0.01

4818

0.28

1251

1.56

0.27

2.72

2.90

Lake

Ifoul

d-56

0.10

499

0.00

284.

4186

60.

1047

0.30

533

0.00

590.

0855

80.

0022

1714

5017

1620

1718

3016

6040

100

0.28

1547

0.00

0010

0.00

0671

0.02

2983

0.28

1525

-6.1

30.

342.

372.

80La

keIfo

uld-

620.

1610

00.

0034

10.1

7994

0.19

420.

4585

90.

0086

0.13

087

0.00

2524

6636

2451

1824

3338

2486

4699

0.28

1571

0.00

0010

0.00

0745

0.02

5366

0.28

1547

-5.2

10.

352.

342.

75La

keIfo

uld-

630.

1606

10.

0033

9.93

185

0.19

240.

4485

10.

0086

0.12

796

0.00

2424

6236

2428

1823

8938

2434

4297

0.28

1180

0.00

0010

0.00

0037

0.00

1623

0.28

1178

-1.1

10.

352.

823.

07La

keIfo

uld-

64C

0.12

544

0.00

295.

9602

50.

1227

0.34

468

0.00

640.

1000

10.

0022

2035

4219

7018

1909

3019

2740

940.

2812

320.

0000

070.

0004

060.

0124

540.

2812

130.

030.

252.

773.

00La

keIfo

uld-

64R

0.11

272

0.00

454.

8273

00.

1621

0.31

061

0.00

670.

0896

00.

0020

1844

7417

9028

1744

3417

3436

95La

keIfo

uld-

650.

1595

40.

0034

10.2

6127

0.20

460.

4665

00.

0090

0.13

035

0.00

2624

5138

2459

1824

6840

2477

4610

10.

2812

100.

0000

080.

0000

960.

0036

270.

2812

06-1

0.00

0.28

2.78

3.30

Lake

Ifoul

d-66

0.16

099

0.00

3310

.279

760.

1976

0.46

313

0.00

890.

1279

40.

0022

2466

3624

6018

2453

4024

3340

990.

2812

460.

0000

070.

0006

000.

0191

160.

2812

18-0

.04

0.23

2.77

2.99

Lake

Ifoul

d-68

0.09

891

0.00

203.

7892

40.

0724

0.27

787

0.00

530.

0776

30.

0014

1604

3815

9016

1581

2615

1126

990.

2812

000.

0000

090.

0000

450.

0018

110.

2811

98-0

.41

0.32

2.79

3.03

Lake

Ifoul

d-71

0.15

706

0.00

549.

5627

50.

2637

0.44

157

0.00

920.

1232

50.

0026

2424

6023

9426

2358

4223

4948

970.

2817

010.

0000

110.

0012

680.

0449

710.

2816

63-3

.60

0.39

2.19

2.56

Lake

Ifoul

d-72

0.14

181

0.00

297.

4882

60.

1373

0.38

301

0.00

690.

1094

50.

0019

2249

3621

7216

2090

3220

9934

930.

2812

450.

0000

070.

0004

860.

0157

430.

2812

23-0

.50

0.25

2.76

3.00

Lake

Ifoul

d-73

0.15

920

0.00

3310

.031

640.

1780

0.45

704

0.00

800.

1292

70.

0023

2447

3624

3816

2426

3624

5742

990.

2812

360.

0000

100.

0002

650.

0091

790.

2812

25-4

.45

0.34

2.76

3.12

Lake

Ifoul

d-74

0.15

737

0.00

3210

.107

740.

1898

0.46

587

0.00

870.

1325

60.

0023

2428

3624

4518

2465

3825

1640

102

0.28

1369

0.00

0021

0.00

1896

0.07

4297

0.28

1280

2.09

0.74

2.69

2.85

Lake

Ifoul

d-75

0.15

974

0.00

3310

.062

320.

1838

0.45

690

0.00

820.

1301

30.

0022

2453

3624

4116

2426

3624

7340

990.

2811

870.

0000

100.

0000

160.

0007

320.

2811

86-1

.70

0.34

2.81

3.08

Lake

Ifoul

d-76

0.14

842

0.00

318.

8488

20.

1723

0.43

242

0.00

830.

1276

70.

0023

2328

3623

2318

2317

3824

2942

100

0.28

1230

0.00

0010

0.00

0165

0.00

5477

0.28

1222

0.16

0.34

2.76

2.98

Lake

Ifoul

d-77

0.15

758

0.00

349.

9869

90.

2032

0.45

969

0.00

900.

1311

80.

0029

2430

3824

3418

2438

4024

9152

100

0.28

1326

0.00

0008

0.00

1277

0.04

1551

0.28

1269

-1.0

50.

282.

712.

96La

keIfo

uld-

810.

0975

90.

0028

3.69

197

0.09

670.

2743

80.

0056

0.08

299

0.00

1815

7954

1570

2015

6328

1611

3499

0.28

1215

0.00

0010

0.00

0032

0.00

1523

0.28

1214

-0.6

80.

352.

773.

02La

keIfo

uld-

850.

1576

40.

0033

9.74

328

0.18

190.

4483

00.

0082

0.13

310

0.00

2424

3136

2411

1823

8836

2526

4298

0.28

1921

0.00

0012

0.00

0650

0.02

1130

0.28

1902

4.32

0.42

1.86

2.04

Lake

Ifoul

d-90

0.15

731

0.00

3410

.136

040.

2077

0.46

734

0.00

930.

1268

00.

0025

2427

3824

4718

2472

4024

1344

102

0.28

1236

0.00

0008

0.00

0358

0.01

1598

0.28

1219

-0.4

50.

282.

773.

00

Page 65: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 66: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 3

This chapter is published as:

Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Belousova, E.A., 2011. U-Pb, Lu-Hf and depositi onal ti ming of metasedimentary rocks in the western Gawler Craton: Implicati ons for

Proterozoic reconstructi on models. Precambrian Research, 184, 43-62.

Page 67: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 68: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-53-

U–Pb, Lu–Hf and Sm–Nd isotopic constraints on provenance and depositional

timing of metasedimentary rocks in the western Gawler Craton:

Implications for Proterozoic reconstruction models

Katherine E. Howarda,∗, Martin Handa, Karin M. Barovicha, Justin L. Paynea, Elena A. Belousovab

a Centre for Tectonics, Resources and Exploration, University of Adelaide, Adelaide, SA 5005, Australiab GEMOC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia

a r t i c l e i n f o

Article history:

Received 23 February 2010

Received in revised form 18 October 2010

Accepted 19 October 2010

Keywords:

Provenance

Proterozoic

Nd isotopes

Hf isotopes

Zircon

Gawler Craton

a b s t r a c t

The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that

links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtu-

ally unexposed region where the timing of basin development and metamorphism is largely unknown,

making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.

Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler

Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital com-

ponents ranging in age up to 3130 Ma. In the bulk of samples, εNd(1700 Ma) values range between −4.3

and −3.8. The combination of these data suggest on average, comparatively evolved but age-restricted

source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values

(εHf(1700 Ma) +6 to −6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamor-

phic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban

Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin

development immediately preceded medium to high grade metamorphism.

The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton

coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona

Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of

a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics

between these basins are remarkably similar and point to the Arunta Region in the North Australian

Craton as a potential source. In this context there is little support for tectonic reconstruction models

that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca

1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were

separate continental fragments between 1760 and 1700 Ma.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The role that sedimentary provenance studies play in con-

straining reconstruction models has been recognised by numerous

authors. Provenance studies in metamorphic terrains often use sim-

ilarities in detrital zircon age spectra, and geochemical and isotopic

compositions to link source regions to sedimentary basins or to

correlate once contiguous ancient sedimentary basins, thus provid-

ing constraints on palaeogeographic reconstructions (e.g. Patchett

et al., 1999; Rainbird et al., 2001; Dickinson and Gehrels, 2003;

∗ Corresponding author. Tel.: +61 8 8303 4971.

E-mail address: [email protected] (K.E. Howard).

Fitzsimons and Hulscher, 2005; Samson et al., 2005; Talavera-

Mendoza et al., 2005; Cawood et al., 2007; Kirkland et al., 2007;

Howard et al., 2009).

Currently, several models exist for the reconstruction of Pale-

oproterozoic Australia (Betts and Giles, 2006; Betts et al., 2002;

Dawson et al., 2002; Fitzsimons, 2003; Giles et al., 2002, 2004;

Myers et al., 1996; Payne et al., 2009; Wade et al., 2006). The

majority of these models involve collision or accretion of separate

continental domains to build up a broader continental system. Such

models depend crucially on geological constraints that establish

the likelihood that accretion and collision actually occurred (e.g.

Payne et al., 2010). These constraints include developing a com-

positional and temporal framework for sedimentary basins that

identify potential source regions and provide palaeogeographical

constraints.

0301-9268/$ – see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.precamres.2010.10.002

Page 69: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-54-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 1. Simplified solid geology of the Gawler Craton (after Fairclough et al., 2003; Payne et al., 2006). Inset location of the Gawler Craton and other Proterozoic terrains

in Australia (after Myers et al., 1996; Payne et al., 2006). AR, Arunta Region; CP, Curnamona Province, GC, Gawler Craton; MI, Mt Isa Province; MP, Musgrave Province; PC,

Pilbara Craton; YG, Yilgarn Craton.

Unfortunately, many parts of Proterozoic Australia have poor

geological constraints, including critical regions at the postulated

margins of cratons. In most cases this lack of data reflects the

paucity of outcrop. As a consequence, existing reconstruction

models are often very poorly constrained. A further consequence

of the lack of outcrop is that regional geological boundaries

are frequently only geophysically defined (Daly et al., 1998;

Fairclough et al., 2003), which do not necessarily relate to

variations in age and origin of the crustal domains they sepa-

rate.

One such geophysically defined area is the Fowler Domain in

the western Gawler Craton (Figs. 1 and 2). Due to the paucity

of outcrop (<1%), the tectonic history of the Fowler Domain is

largely unknown. Despite this, its role in the tectonic development

of the southern Australian Proterozoic has been discussed by a

number of workers (Betts et al., 2008; Daly et al., 1998; Dawson

et al., 2002; Direen et al., 2005; Teasdale, 1997; Thomas et al.,

2008). Daly et al. (1998) suggest that the Fowler Domain records

deformation and metamorphism associated with the development

of a SE-dipping Palaeo-Mesoproterozoic aged subduction system

on the northwestern margin of the proto-Gawler Craton that

resulted in collision of Archean rocks of the Yilgarn Craton with

the Meso-Archean core of the Gawler Craton. Others (e.g. Dawson

et al., 2002), added to this model by suggesting the Karari Shear

Zone (Fig. 1), was the leading edge of the convergent margin, and

that the rocks northwest of the Karari Shear Zone were a part of a

micro-continent which included the proto-Yilgarn Craton (Fig. 1).

In contrast, Betts and Giles (2006) suggested the Fowler Domain

was accreted to the rest of the Gawler Craton by a north-dipping

subduction system at around 1670 Ma. Other workers consider

the steeply dipping crustal-scale shear zones within the Fowler

Domain to be evidence of a strike-slip dominated regime that

Page 70: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-55-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 2. Total magnetic intensity image of the western Gawler Craton including the Fowler Domain and interpreted major shear zones. The Fowler Domain lies between the

Tallacootra and Coorabie Shear Zones. Drill hole samples used in this study are displayed and labelled. Previously collected age data are displayed. *Fanning et al. (2007),

Swain et al. (2005b).

reworked an existing orogenic belt (Direen et al., 2005; Stewart

et al., 2009; Thomas et al., 2008).

Although these models attempt to explain the gross architecture

of the Fowler Domain and relate it to the broad scale tectonics of

southern Australian Proterozoic assembly, there is very little basic

geological data to constrain the timing of deposition of sedimentary

rocks, and their subsequent medium to high grade metamorphism.

This study utilises detrital zircon U–Pb and Lu–Hf isotopic data,

bulk rock Sm–Nd isotopic and geochemical data with metamorphic

monazite U–Pb age data to characterise the provenance and to con-

strain the depositional interval of sedimentary protoliths within the

Fowler Domain. The data allow the Fowler Domain to be assessed

in the context of other metasedimentary-bearing domains in the

southern Australian Proterozoic.

2. Geological background

The Gawler Craton (Fig. 1) consists of a Meso- to Neo-Archean

(3150–2500 Ma) to Paleoproterozoic (ca 2000–1850 Ma) base-

ment which is intruded and overlain by late Paleoproterozoic

(1790–1600 Ma) to early Mesoproterozoic (1600–1550 Ma) rocks

(Daly et al., 1998; Fraser et al., 2010; Hand et al., 2007; Swain

et al., 2005a). Neoproterozoic and Phanerozoic sedimentary rocks

and sediments overlie most of the craton, greatly restricting study

of crustal composition and tectonothermal evolution (Ferris et al.,

2002).

Recent work has identified 3150 Ma granitic basement to Neo-

Archean metasedimentary lithologies in the Sleaford Complex.

The extent of this Meso-Archean basement in other parts of the

craton is presently unknown. The Sleaford Complex, located in

the south of the craton, and the Mulgathing Complex situated

in the mid-north of the craton (Fig. 1) are thought to be a part

of a single 2560–2500 Ma domain based on geochemical, iso-

topic and geochronological similarities (Hand et al., 2007; Swain

et al., 2005a). These complexes are composed of metasedimentary

lithologies and felsic, ultra-mafic and mafic volcanics (Hand et al.,

2007; Swain et al., 2005a).

Following a period of apparent tectonic quiescence, between

ca 2400 and 2020 Ma, the protoliths to the granodioritic Miltalie

Suite were intruded at 2020–2000 Ma in the eastern part of the

craton (Daly et al., 1998; Fanning et al., 2007; Howard et al., 2009).

The Miltalie Suite is overlain by shallow marine succession of the

Hutchison Group. The minimum depositional age of the Hutchison

Group is interpreted to be 1866 ± 10 Ma, which is the U–Pb zir-

con age of the volcanic Bosanquet Formation. This is interpreted to

occur at the top of the Hutchison Group (Daly et al., 1998; Fanning

et al., 2007; Rankin et al., 1990). However, recent isotopic work

suggests that parts of the Hutchison Group may be younger than

ca 1780 Ma, highlighting ambiguities in the current understand-

ing of the Hutchison Group stratigraphy (Hand et al., 2007). To the

east of the Hutchison Group the 1850 Ma Donington Suite volu-

metrically dominates the southeastern Gawler Craton (Ferris et al.,

2002; Hoek and Schaefer, 1998; Reid et al., 2008). The Doning-

ton Suite intrudes metasedimentary packages deposited before ca

1870–1850 Ma (Howard et al., 2009), and was associated with the

Cornian Orogeny, a short-lived (1850–1847 Ma) cycle of shortening

and high grade metamorphism followed by extension (Reid et al.,

2008). The relationship between the Donington Suite and the older

parts of the Hutchison Group was obscured by tectonic reactivation

during the 1730–1690 Ma Kimban Orogeny (Hand et al., 2007).

After the Cornian Orogeny, widespread sedimentation occurred

over much of the craton (Daly et al., 1998; Payne et al., 2006). In

the eastern Gawler Craton, the Myola Volcanics and associated sed-

iments were deposited at around 1791 ± 4 Ma (Fanning et al., 1988).

Interbedded Tidnamurkuna Volcanics of the Peake and Denison

Inliers (Fig. 1) in the northeastern part of the craton, constrain the

depositional timing of the associated sedimentary rocks to approxi-

mately 1774 ± 16 Ma in age (Fanning et al., 2007). This was followed

by further widespread sedimentation. In the south eastern Gawler

Craton (Fig. 1), this included the 1767 ± 17 Ma protoliths to the Price

Metasediments (Oliver and Fanning, 1997), the ca 1763–1741 Ma

Wallaroo Group (Fanning et al., 2007), the 1756 ± 8 Ma Moon-

abie Formation (Jagodzinski, 2005) and the 1740 Ma McGregor

Volcanics (Fanning et al., 1988). In the north west of the Craton,

Page 71: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-56-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

protoliths to the ca 1750 Ma metasedimentary rocks of the Mt

Woods Domain were deposited (Jagodzinski et al., 2006). In the

northern Gawler Craton, also known as the Nawa Domain (Fig. 1),

metasedimentary rocks intersected in drillcore were deposited in

the interval 1740–1720 Ma (Payne et al., 2006; Payne et al., 2008).

Payne et al. (2006) have shown with geochemical and Nd isotopic

data that these metasedimentary rocks are too enriched and too

isotopically juvenile to have been derived from the erosion of the

currently preserved >1740 Ma rocks of the Gawler Craton. Instead

the authors suggest that ca 1800–1700 Ma rocks in the Aileron

Province of the Arunta Region in the North Australian Craton may

have been a likely source region.

The Kimban Orogeny is a widespread tectonic event that

occurred in the Gawler Craton from 1730 to 1690 Ma (Dutch et al.,

2010; Hand et al., 2007; Payne et al., 2008). The effects of the Kim-

ban Orogeny are recorded in Paleoproterozoic metasedimentary

sequences of the northern Gawler Craton, Mount Woods Domain

and Peak and Denison Inliers (Betts et al., 2003; Hopper, 2001;

Payne et al., 2006, 2008) as well as throughout the eastern and

central parts of the Eyre Peninsular (Fig. 1; Vassallo and Wilson,

2002; Dutch et al., 2010).

In the poorly exposed Fowler Domain of the western Gawler Cra-

ton (Fig. 1), there is limited evidence for the timing of sedimentary

basin development. The majority of the lithological information

is a product of mineral exploration drilling programs. Reconnais-

sance U–Pb zircon dating by Teasdale (1997) from drillcore from the

central Fowler Domain suggests that the protoliths to the metased-

imentary rocks are Paleoproterozoic in age (Fanning et al., 2007).

Minimum age constraints of ca 1715 and 1670 Ma are provided by

Teasdale (1997) and Swain et al. (2005b) using SHRIMP and EMPA

dating of metamorphic monazite.

The Fowler Domain (Fig. 2), is bound by crustal scale shear zones

(Stewart et al., 2009; Thiel and Heinson, 2010; Thomas et al., 2008),

and is defined as a NE to NNE trending, geophysically distinctive

region of highly magnetic metamorphic and igneous rocks (Daly

et al., 1998; Stewart et al., 2009; Teasdale, 1997; Thomas et al.,

2008). To the northwest, the Fowler Domain is separated from the

late Archean Christie Domain by the Tallacootra Shear Zone. To the

east the Fowler Domain is separated from late Paleoproterozoic

rocks of the St Peters Suite (Swain et al., 2008) by the Coorabie

Shear Zone.

Within the Fowler Domain (Fig. 2), four distinct blocks bounded

by crustal scale shear zones have been identified: The Colona, Bar-

ton, Central and Nundroo Blocks (Teasdale, 1997; Thomas et al.,

2008). Although the individual blocks have similarities in their geo-

physical signatures (Stewart et al., 2009; Thomas et al., 2008), they

have contrasting metamorphic grades (Teasdale, 1997; Thomas

et al., 2008).

The Colona Block is the most westerly domain and is bound

by two branches of the 1670 Ma Tallacootra Shear Zone. Litholo-

gies include layered intermediate to mafic intrusive igneous rocks

deformed and metamorphosed to low amphibolite facies (550 ◦C

and 5 kbar; Thomas et al., 2008). U–Pb dating of a metagabbro from

drill hole Colona DDH43 yielded an age of 1727 ± 8 Ma (Fanning

et al., 2007). Granite at Lake Ifould, just west of the Tallacootra

Shear Zone (Fig. 2), gave an age of 1681 ± 15 Ma (Fanning et al.,

2007). Reconnaissance EMPA monazite data suggest that metamor-

phism within the Colona Block may have occurred between 1650

and 1600 Ma (Thomas et al., 2008).

The Barton Block is bound to the east by the Colona Shear Zone

and to the west by the Tallacootra Shear Zone. Drilling has shown

that the Barton Block consists of metasedimentary rocks, grani-

toids and mafic rocks metamorphosed up to the amphibolites to

granulite facies transition (700 ◦C, 7.5 kbar; Teasdale, 1997; Thomas

et al., 2008). U–Pb dating of weakly deformed granite close to the

northern boundary of the Fowler Domain yielded an approximate

age of 1675 Ma (Fanning et al., 2007). Reconnaissance EMPA mon-

azite data from felsic gneisses and metapelites suggest that upper

amphibolite to granulite grade metamorphism and deformation

occurred in the Barton Block at 1606 ± 17 Ma and 1592 ± 18 Ma

(Thomas et al., 2008). However, the presence of a ca 1675 Ma

weakly deformed granite, which has been interpreted to cross

cut the regional structural trend (Teasdale, 1997), suggests that

regional metamorphism occurred prior to 1675 Ma and therefore

the EMPA monazite ages may not be reliable.

The Central Block is bound by the Coorabie Shear Zone to the

east and the Colona Shear Zone to the west. Major lithologies

include felsic intrusives, granitoids and mafic rocks, and there is

little evidence so far for metasedimentary lithologies (Teasdale,

1997; Thomas et al., 2008). Granite at White Gin Rockhole in the

northern Central Block (Fig. 2) has been dated at 1670 ± 9 Ma, and

an orthogneiss from the mid-Central Block gives a crystallisation

age of 1568 ± 11 Ma (Fanning et al., 2007). The presence of this

orthogneiss implies that some magmatism is Mesoproterozoic in

age.

The non-outcropping Nundroo Block is bound by two branches

of the Coorabie Shear Zone. Dominant lithologies include inter-

mediate to mafic rocks interlayered with metapelitic gneisses

(Teasdale, 1997). Metamorphism in the Nundroo Block was up to

granulite grade (800 ◦C, 9 kbar; Thomas et al., 2008). Metamorphic

zircons from mafic granulite in Nundroo DDH2 yielded a U–Pb zir-

con age of 1547 ± 9 (Fanning et al., 2007). Foliated granite from

drill hole NDR 13 in the Nundroo Block yielded a U–Pb zircon

age of 1586 ± 9 Ma (Fanning et al., 2007). Reconnaissance EMPA

monazite dating suggests metamorphism in the Nundroo Block

occurred between 1557 ± 15 Ma and 1471 ± 14 Ma (Thomas et al.,

2008). An undeformed crosscutting pegmatite from Nundroo DDH

2 yielded a U–Pb zircon age of 1489 ± 4 Ma (Fanning et al., 2007).40Ar/39Ar dating of muscovite from the Tallacootra Shear

Zone which dissects the Fowler Domain yielded ages of

1467 ± 11 Ma, 1445 ± 10 Ma and 1441 ± 10 Ma, at Lake Tallacootra,

and 1537 ± 14 Ma and 1478 ± 11 Ma at Lake Ifould (Fraser and

Lyons, 2006). The younger ages are interpreted to be the timing of

either shear zone reactivation or regional cooling (Fraser and Lyons,

2006). Similar ages were also obtained by Swain et al. (2005b) from

EMPA monazite dating in shear zones.

3. Samples and analytical methods

Access to basement rocks is limited in the Fowler Domain and

the bulk of basement information comes from drilling. Samples in

this study were taken from diamond and reverse circulation drill-

holes that were completed as a part of regional mineral exploration

programs. The BAC drill holes were drilled with reverse circulation

methods and the samples for this study are taken from short end

of hole plugs. For this reason the exact depths within the basement

interval for each sample from the BAC drill holes is unknown. Drill

holes that have intersected metasedimentary basement rocks have

narrow diameters ∼4 cm and have limited intervals of basement

intersection (≤6 m, with the exception of TAL20) with variable

recovery. With such short basement intersection intervals, only one

lithology is present in each drillhole.

Typical pelitic assemblages that incorporate biotite, muscovite,

garnet, quartz, sillimanite and cordierite were targeted for sedi-

mentary protoliths (Fig. 3). Sampled drill-holes, drill-hole interval,

sampled lithology and petrological summaries are listed in Table 1,

and the locations of drill-holes are shown in Fig. 2.

3.1. Whole rock geochemistry

Rocks were crushed with a jaw crusher then milled in a tungsten

carbide ring mill to a fine powder at the University of Adelaide. Geo-

Page 72: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-57-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 3. Photomicrographs of typical mineral assemblages in metasedimentary rocks from the Fowler Domain. (a) TAL4 schistosity defined entirely by biotite, (b) TAL20

banded gneiss with layers of biotite alternating with quartz and k-feldspar, (c) BAC18 banded gneissic foliation defined by alternating layers of quartz and feldspar against

bands of sillimanite, biotite and garnet, (d) BAC28 gneissic bands of quartz and feldspar alternating with biotite and rare sillimanite.

chemical analyses were done at Amdel Limited, South Australia. For

the acquisition of major elements, a sub-sample of 0.1 g of analyti-

cal pulp was fused with lithium metaborate followed by dissolution

to give a total solution, which was run on an ICP-OES. Trace and rare

earth element data were acquired from the digestion of 0.2 g sub-

sample of analytical pulp in HF and multi acid digest, the solution

was then run on an ICP-MS and an ICP-OES.

3.2. U–Pb zircon and monazite dating

Analytical techniques for U–Pb isotopic dating of zircon and

monazite follow those of Payne et al. (2006, 2008). Rocks were

crushed with a jaw crusher, and sieved, collecting the 79–300 �m

portion. Separates were obtained using panning, Frantz (at 0.6 nT),

and heavy liquid methods before being handpicked and mounted

into epoxy resin blocks. Prior to analysis zircon grains were

imaged using CL imaging on a Phillips XL-20 SEM with attached

Gatan Cathode Luminescence detector in order to identify detri-

tal domains within the grains. Monazite grains were imaged

prior to analysis via a back-scattered electron on a Phillips XL20

SEM. U–Pb isotopic analyses were obtained using a New Wave

213 nm Nd–YAG laser in a He ablation atmosphere, coupled to

an Agilent 7500cs ICP-MS at the University of Adelaide. U–Pb

fractionation was corrected using the GEMOC GJ1 zircon (TIMS nor-

malisation data 207Pb/206Pb = 608.3 Ma, 206Pb/238U = 600.7 Ma and207Pb/235U = 602.2 Ma; Jackson et al., 2004) and the MAdel mon-

azite standard (TIMS normalisation data 207Pb/206Pb = 490.7 Ma,206Pb/238U = 514.8 Ma and 207Pb/235U = 510.4 Ma; Payne et al.,

2008). Accuracy was checked with an in-house Sri Lankan zircon

standard (BJWP-1, ca 720 Ma) and an in-house monazite stan-

dard (94-222/Bruna-NW, ca 450 Ma). The 207Pb/206Pb grain ages

were used. A number of zircon grains were excluded from analysis

due to metamictisation and small grain size. Detrital cores larger

than 40 �m in size were targeted, as well as some large meta-

morphic rims. Data were processed using the program “Glitter”

developed at Macquaries University, Sydney (Jackson et al., 2004).

In the data interpretation, a <10% discordancy threshold was used

to filter the data. Over the duration of this study the reported aver-

age normalised ages for GJ-1 are 608.0 ± 3.6 Ma, 601.5 ± 0.9 Ma and

602.9 ± 0.9 Ma for the 207Pb/206Pb, 206Pb/238U and 207Pb/235U ratios

respectively (2�, n = 266). The reported average normalised ages for

MAdel are 513.0 ± 1.7 Ma and 510.7 ± 1.6 Ma for the 206Pb/238U and207Pb/235U ages, respectively (2�, n = 55).

3.3. Zircon Hf isotopic analyses

Analytical methods for zircon Hf isotope determination are

described in detail in Griffin et al. (2006) and Howard et al. (2009),

and are summarised below. Analyses were undertaken with a New

Wave/Merchantek UP-213 laser attached to a Nu Plasma multi-

collector ICP-MS at Macquarie University. Most analyses were

obtained using a beam diameter of 55 �m and a 5 Hz repetition

rate resulting in typical Hf signals of 1–5 × 10−11 A. Typical ablation

times were 80–120 s, resulting in pits 40–50 �m deep.

Data were normalised to 179Hf/177Hf = 0.7325, using an expo-

nential correction for mass bias. Interference of 176Lu on 176Hf

is corrected using the Hf mass bias factor and by measuring

the intensity of the interference-free 175Lu isotope and using176Lu/175Lu = 0.02669 (DeBievre and Taylor, 1993) to calculate176Lu/177Hf. Similarly, the interference of 176Yb on 176Hf has been

corrected by measuring the interference-free 172Yb isotope and

using an empirically derived value for 176Yb/172Yb to calculate176Yb/177Hf. The appropriate value of 176Yb/172Yb was determined

by spiking the JMC475 Hf standard with Yb, and finding the value

of 176Yb/172Yb (0.5865) required to yield the value of 176Hf/177Hf

obtained on the pure Hf solution (Griffin et al., 2004). The accu-

racy of the Yb and Lu corrections has been demonstrated by

repeated analysis of standard zircons with a range in 176Yb/177Hf

and 176Lu/177Hf (Griffin et al., 2004). Before and during the analysis

of unknowns, the 91500 and Mud Tank zircons (Griffin et al., 2004)

were analysed to check instrument performance and stability. The

measured 176Lu/177Hf ratios of the zircons have been used to calcu-

late initial 176Hf/177Hf ratios. These age corrections are very small,

and the typical uncertainty on a single analysis of 176Lu/177Hf (+1%)

contributes an uncertainty of <0.05 εHf unit.

Depleted mantle model ages (TDM) have been calcu-

lated using the measured 176Lu/177Hf ratios of the zircon,

(176Hf/177Hf)i = 0.279718 at 4.56 Ga and 176Lu/177Hf = 0.0384

Page 73: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-58-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

48 K.E. Howard et al. / Precambrian Research 184 (2011) 43–62

Tab

le1

Sam

ple

deta

ils.

Dri

llh

ole

Sam

ple

Co

rety

pe

Lo

cati

on

Do

main

Base

men

tin

terv

al(

m)

Sam

ple

din

terv

al(

m)

Min

era

lass

em

bla

ge

Inte

rpre

ted

pro

toli

th

East

ing

No

rth

ing

Fro

mT

oFro

mT

o

TA

L4

R1

47

27

57

Dia

mo

nd

24

60

28

65

61

17

2Fo

wle

r2

5.0

26

.52

5.5

26

.2p

lg-q

tz-g

t-b

i-co

rdsc

his

tSed

imen

tary

TA

L2

0R

14

72

75

9D

iam

on

d2

47

02

86

56

02

72

Fo

wle

r2

6.0

58

.05

7.0

57

.5q

tz-k

spar-

plg

-bi-

sill

-gt

gn

eis

sSed

imen

tary

BA

C1

8R

14

72

78

1E

OH

sam

ple

24

86

14

65

74

43

7Fo

wle

r4

5.0

48

.0E

OH

qtz

-bi-

ksp

ar-

gt-

sill

-plg

gn

eis

sSed

imen

tary

BA

C2

3R

14

72

78

2E

OH

sam

ple

25

03

74

65

73

84

2Fo

wle

r4

8.0

57

.0E

OH

qtz

-ksp

ar-

plg

-bi-

gt-

sill

gn

eis

sSed

imen

tary

BA

C2

8R

14

72

78

3E

OH

sam

ple

25

18

64

65

73

52

0Fo

wle

r5

4.0

57

.0E

OH

qtz

-bi-

sill

-pla

g-g

tg

neis

sSed

imen

tary

BA

C3

3R

14

72

78

4E

OH

sam

ple

25

35

52

65

73

28

8Fo

wle

r1

5.0

51

.0E

OH

qtz

-bi-

sill

-gt

gn

eis

sSed

imen

tary

BA

C4

1R

14

72

78

5E

OH

sam

ple

25

56

70

65

73

10

7Fo

wle

r3

2.0

45

.0E

OH

plg

-bi-

qtz

-sil

l-g

t-il

mg

neis

sSed

imen

tary

CO

L2

0D

R1

47

27

56

Dia

mo

nd

78

22

83

65

36

36

4Fo

wle

r4

3.0

48

.04

6.6

47

.5g

t-b

i-m

us-

qtz

-plg

-ilm

-sil

lg

neis

sSed

imen

tary

(Griffin et al., 2000, 2004). This produces a depleted mantle model

with present day 176Hf/177Hf = 0.28325, similar to that of average

MORB (Nowell et al., 1998). Crustal model ages (TDM(crustal)) have

also been calculated to simulate an average continental crust

magma source using 176Lu/177Hf = 0.015 (Geochemical Earth

Reference Model database, http://www.earthref.org/).

For the calculation of εHf, we have adopted a decay constant

for 176Lu of 1.865 × 10−11 y−1 derived by Scherer et al. (2001). εHf

values for two other decay constants (Blichert-Toft and Albarede,

1997; Bizzarro et al., 2003) are calculated for comparison purposes.

3.4. Whole-rock Sm–Nd isotopic analyses

Analytical techniques for whole rock Sm–Nd isotopic data follow

those of Wade et al. (2005). Sm–Nd isotope analyses were under-

taken at the University of Adelaide. Samples were spiked with a150Nd/147Sm solution. HF was added to the sample in Teflon ‘bombs’

and evaporated. The samples were then oven-heated at 190 ◦C for

5 days in HF in sealed Teflon bombs. The HF was then evaporated,

with HNO3 added shortly before samples were completely dry. 6 M

HCl was added and samples were heated for 2 days at 160 ◦C. Rare

Earth Elements (REEs) were separated in Biorad Polyprep columns,

and were further separated in HDEHP-impregnated Teflon-powder

columns to isolate Sm and Nd. Nd was run on a Finnigan MAT

262 Thermal Ionisation Mass Spectrometer (TIMS) and Sm was

run on a MAT 261 TIMS. The La Jolla and JNdi-1 standards give

long term running averages of 0.511834 ± 0.000018 (2�, n = 96) and

0.512092 ± 0.000016 (2�, n = 164) respectively.

4. Results

4.1. Major and trace element geochemistry of metasedimentary

rocks

Results of major and trace element analyses are shown in

Table 2 and Figs. 3 and 4. The Fowler Domain metasedimentary

rocks have variable amounts of SiO2 (53.6–70.5 wt%) and high

amounts of Al2O3 (14.3–19.2 wt%) suggesting pelitic compositions

(Fig. 4a). Trace element abundances range from similar to signifi-

cantly higher than Post Archean Australian Shale (PAAS; Taylor and

McLennan, 1985). Th values range from 3 to 47 ppm, and Cr from

60 to 160 ppm (Fig. 4b and c). The samples have very high Th/Sc

ratios with the exceptions of TAL 4 which has a low Th/Sc ratio.

Elevated ratios of K2O/Na2O above PAAS (with the exception

of two samples COL20D and TAL 4), suggest chemical maturity of

the sedimentary protoliths. Using the discrimination plot of Roser

and Korsch (1986), metasedimentary rock samples fall within the

tectonic setting of a passive margin, with the exception of COL20D

and TAL 4 which plot with the tectonic setting of an active con-

tinental margin (Fig. 4e). Sedimentary and igneous discrimination

diagrams (Fig. 4f and g) support petrographic interpretations that

the majority of samples are paragneisses (Table 1).

Chondrite-normalised Rare Earth Element (REE) patterns are

shown in Fig. 5. The Fowler Domain samples all display significant

Eu depletion with the exception of sample TAL4. Samples BAC18,

BAC33 and BAC23 are the most enriched in REE and are shaped sim-

ilarly to PAAS except for BAC23 which is slightly depleted in Heavy

Rare Earth Elements (HREEs) compared to PAAS. Samples BAC41,

COL20D, TAL20 and BAC28 have steeper REE pattern than PAAS;

the Light Rare Earth Elements (LREEs) are more enriched while the

HREEs are comparatively depleted. Sample TAL4 has a positive Eu

anomaly and shows depleted LREEs and slightly enriched HREEs

compared to PAAS.

Page 74: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-59-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Table 2Major and trace element analyses for paragneisses of the Fowler Domain.

TAL4 TAL20 BAC18 BAC23 BAC28 BAC33 BAC41 COL20D PAAS

Major (wt%)

SiO2 64.2 58.4 59 65.8 60.6 53.6 70.5 61.6 62.8

TiO2 0.74 0.73 1.04 0.82 0.75 1.2 0.55 0.84 1.0

Al2O3 14.6 18.3 15 16.5 17.9 19.2 14.3 15 18.9

Fe2O3 8.89 9.12 12.3 8.35 8.4 13.8 5.02 10.6 7.2

MnO 0.25 0.165 0.19 0.055 0.2 0.36 0.045 0.205 0.11

MgO 3.58 2.74 3.37 2.17 2.56 5.3 1.37 2.93 2.2

CaO 3.06 0.2 0.38 0.16 0.2 0.09 0.22 1.65 1.3

Na2O 1.82 0.56 0.58 0.4 0.56 0.16 0.7 1.64 1.2

K2O 2.35 4.85 4.6 3.55 3.94 3.08 4.56 3.27 3.7

P2O5 0.01 0.03 0.1 0.06 0.02 0.03 0.06 0.09 0.16

LOI 0.69 4.5 3.31 2.36 5.01 2.43 2.13 1.66

Total 100.19 99.60 99.87 100.23 100.14 99.25 99.46 99.49

Trace (ppm)

Ag 0.2 0.2 0.2 <0.1 <0.1 0.4 <0.1 0.1 –

As 1 <0.5 0.5 <0.5 1 0.5 0.5 1 –

Ba 700 1050 950 1000 750 700 950 650 650

Bi <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 –

Cd <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 –

Co 74 42 72 80 68 70 78 56 23

Cr 150 80 100 110 70 160 60 120 110

Cs 1.1 2.8 2.5 0.7 2.4 2.1 1.9 2 15

Cu 46.5 9.5 78 9 8 13.5 5 30 50

Ga 21.5 29 25 20.5 29 31.5 18.5 27.5 20

In 0.05 0.1 0.1 0.1 0.1 0.15 0.05 <0.05 –

Mo 1.1 0.5 0.7 0.8 0.5 0.5 0.7 0.5 1.0

Nb 14 19 18 10.5 10.5 23.5 9.5 13 19

Ni 80 39 54 36 36 68 16 45 55

Pb 5.5 20 20.5 22 19.5 10.5 25.5 17.5 20

Rb 90 120 170 82 115 135 130 100 160

Sb <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 –

Sc 16 14 12 10 14 26 10 8 16

Se <0.5 <0.5 0.5 0.5 <0.5 <0.5 <0.5 <0.5 –

Sr 200 82 84 120 76 34 125 140 200

Te <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 –

Th 3 22.5 47 38 22.5 45.5 29 31 14.6

Tl 0.5 0.8 0.8 0.4 0.7 0.7 0.7 0.5 –

U 0.29 1.05 1.4 0.85 0.49 1 1.75 1.15 3.1

V 100 70 100 60 60 120 40 100 150

W 280 110 290 360 250 200 270 190 2.7

Y 33 14 42.5 24.5 15.5 36 20 14 27

Zn 105 105 105 90 125 240 60 130 85

Zr 180 190 330 350 160 280 270 240 210

REE (ppm)

La 17 39 92 76 41 86 58 58 38

Ce 33 86 180 170 90 170 115 115 80

Pr 4.1 11.5 22.5 23 11.5 22.5 15.5 14 8.9

Nd 14.5 42.5 80 86 42 80 56 50 32

Sm 2.5 7.5 15 15 8 14 9.5 8.5 5.6

Eu 1.15 1.5 2.2 2.5 1.4 2.1 1.65 1.5 1.1

Gd 2.6 5 10 9.5 5.5 9.5 6.5 5 4.7

Tb 0.61 0.75 1.35 1.3 0.76 1.3 0.88 0.64 0.77

Dy 4.9 3.9 7.5 6.5 3.9 7 4.7 3.1 4.4

Ho 1.15 0.6 1.4 1 0.6 1.3 0.76 0.51 1.0

Er 3.5 1.35 4.3 2.3 1.25 3.7 1.95 1.4 2.9

Tm 0.55 0.15 0.65 0.25 0.15 0.5 0.25 0.2 0.40

Yb 3.8 0.9 4.6 1.15 0.7 3.1 1.5 1.15 2.8

Lu 0.54 0.15 0.66 0.17 0.11 0.45 0.23 0.17 0.43

Table 3Sm–Nd isotopic data.

Sample Domain Drill hole Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd 2 S.E. εNd(0)a εNd(T) TDM (Ma)b Age (Ma)

R1472757 Fowler TAL 4 1.6 10.0 0.1001 0.511366 11 −24.8 −3.8 2177 1700

R1472781 Fowler BAC 18 8.6 47.7 0.1086 0.511460 11 −23.0 −3.8 2214 1700

R1472782 Fowler BAC 23 2.8 16.2 0.1055 0.511437 9 −23.4 −3.6 2186 1700

R1472784 Fowler BAC 33 9.2 54.0 0.1028 0.511389 9 −24.4 −3.9 2197 1700

R1472756 Fowler COL20D 5.0 30.5 0.1000 0.511338 8 −25.4 −4.3 2210 1700

a 143Nd/144Nd CHUR(0) = 0.512638, 147Sm/144Nd CHUR(0) = 0.1966.b TDM calculated using the single stage model of Michard et al. (1985).

Page 75: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-60-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 4. Selected Harker-type variation diagrams for Fowler Domain rocks. Metasedimentary rocks are indicated by black squares, PAAS: the post-Archean Australian Shale

(Taylor and McLennan, 1985) is shown for reference as a white square. Plot e is a discrimination diagram of Roser and Korsch (1986). Plot f and g are orthogneiss vs. paragneiss

discrimination plots of Werner (1987).

4.2. Sm–Nd systematics

Results from Sm–Nd isotopic analysis are summarised in Table 3.

εNd(t) is calculated at 1.7 Ga for all samples based on zircon and

monazite U–Pb age constraints (see below). Nd isotopic data are

displayed in Fig. 6. The Fowler Domain metasedimentary samples

plot in a tight group with εNd(1700 Ma) from −3.8 to −4.3.

4.3. U–Pb zircon geochronology

A summary of sample ages is shown in Table 4, U–Pb zircon

data are presented in Supplementary Table 1, and 207Pb/206Pb age

spectra are presented in Fig. 7. Five metasedimentary samples are

used to represent the detrital zircon depositional age spectra in the

Fowler Domain; COL20D, TAL4, BAC18, BAC23 and BAC41.

The zircons obtained from the metasedimentary samples are

mainly sub-rounded, range in size from 50 to 200 �m and have

varying aspect ratios from 1:1.5 to 1:4 (Fig. 8). Zircon grains vary

widely in morphology and internal structure from metamict to per-

fect oscillatory zoning.

Only 7 out of 50 zircon analyses were found to be concordant

from BAC 18. The concordant grains produce one major detrital

zircon peak at ca 1740 Ma. A mean weighted average calculated

from the concordant analyses provides the maximum depositional

age of 1738 ± 15 Ma (MSWD = 0.73).

From BAC 23, 27 out of 90 analyses were found to be within 10%

concordance. A dominant peak exists at ca 1740 Ma and two older

grains record ages of 1818 ± 22 Ma and 2277 ± 20 Ma. A maximum

depositional age of 1717 ± 11 Ma (MSWD = 1.08) is provided by the

mean weighted average of the youngest 17 grains.

From BAC 41, 67 out of 98 analyses were within 10% concor-

dancy. These grains show a dominant peak at ca 1730 Ma with one

older grain aged 1834 ± 19 Ma. A mean weighted average age of

the youngest 48 zircons provided a maximum depositional age of

1722 ± 6 Ma (MSWD = 0.29).

54 from 75 zircon analyses were found to be concordant from

drill hole TAL 4. This detrital zircon histogram is dominated by

one major peak at ca 1705 Ma, with one older grain giving an

age of 2195 ± 20 Ma. A mean weighted average age of 1698 ± 7 Ma

(MSWD = 1.18) calculated from the youngest 47 grains provides the

maximum depositional age.

From COL20D, 30 analyses of 44 were found to be within

10% concordancy. COL20D records the largest age range, with

two major overlapping peaks at ca 1780 Ma and ca 1830 Ma,

and a minor peak at ca 1960. Older individual zircon grains give

ages of 2067 ± 27 Ma, 2118 ± 18 Ma, 2378 ± 17 Ma, 2469 ± 23 Ma,

2544 ± 19 Ma, 2814 ± 17 Ma, 2841 ± 21 Ma and 3131 ± 22 Ma. The

maximum depositional age for COL20D has been calculated from

the mean weighted average age of the youngest 13 grains of

1760 ± 14 Ma (MSWD = 1.20).

Page 76: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-61-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Table 4Zircon and monazite U–Pb ages.

Drill hole Zircon maximum depositional age Zircon metamorphic age Monazite metamorphic age

COL20D 1760 ± 14 Ma (n = 13) 1695 ± 18 Ma (n = 5) 1690 ± 9 Ma (n = 20)

TAL 4 1698 ± 7 Ma (n = 47)

BAC 18 1738 ± 15 Ma (n = 7) 1696 ± 10 Ma (n = 17)

BAC 23 1717 ± 11 Ma (n = 17)

BAC 41 1722 ± 6 Ma (n = 48) 1664 ± 7 Ma (n = 30)

TAL 20 1673 ± 9 Ma (n = 20)

A small number of zircon analyses from COL20D have been

interpreted as metamorphic, as CL images show they target

dark zircon rims and homogenous areas which cross cut original

oscillatory zoning. A mean weighted average of 5 interpreted meta-

morphic zircon analyses record metamorphism at 1695 ± 18 Ma

(MSWD = 0.45). In addition, another two zircon analyses, Z33

and Z52, target areas of oscillatory zoning yet provide ages of

1707 ± 21 Ma and 1712 ± 20 Ma. These ages are much younger than

the next youngest group of detrital zircon grains (ca 1760 Ma).

Given the evidence for high-grade metamorphism in the region

at ∼1700–1690 Ma, including within this sample, it is not possible

for us to determine if these ages are reliable or suffer from ancient

Pb-loss. Hence we assume the older age (1760 Ma) to represent

the maximum deposition age so as to avoid incorrectly assigning a

young depositional age which would have significant implications

for the tectonic depositional environment of this sample.

4.4. Zircon Hf isotopic results

Zircon Hf isotopic results are shown in Supplementary Table 3

and Fig. 9. Data were obtained from four metasedimentary samples;

COL20D, BAC41, BAC18 and TAL4. Together, the 1780–1700 Ma zir-

cons from the Fowler Domain metasedimentary samples have a

broad range of initial εHf values between −6 and +6.

However, there are slight variations between samples. Initial

isotopic εHf compositions for the bulk of detrital zircons aged

between 1780 and 1700 Ma range from +2 to −2 for BAC18 and +3

to −2 for TAL4. In addition, TAL4 has three 1720–1650 Ma grains

with initial εHf values between +6 and +8, and BAC18 has one very

evolved 1760 Ma aged grain with an εHf value of −16. Initial εHf

compositions for samples BAC41 and COL20D are similar but have

slightly more evolved ranges of εHf units of +2 to −6 and +2 to −5

respectively for 1780–1700 Ma detrital zircons. COL20D contains a

cluster of zircons with ages between 1980 and 1950 Ma which have

initial Hf isotopic compositions of between +3 and +5. Zircon grains

older than 2100 Ma from COL20D and TAL 4 have crustal model ages

older than 3000 Ma.

4.5. U–Pb monazite geochronology

In order to better constrain the minimum depositional ages

of the metasedimentary protoliths and to improve existing con-

straints on the timing of metamorphism in the western Gawler

Craton, monazites from four metasedimentary samples were

dated; BAC18, BAC41, TAL20, and COL20D. Monazite grains have

been interpreted as metamorphic as all samples contain upper

amphibolite grade mineral assemblages (Thomas et al., 2008) and

the grains occupy a matrix textural setting. Monazite ages are sum-

marised in Table 4, data are displayed in Supplementary Table 2 and

weighted mean 207Pb/206Pb age plots are shown in Fig. 10.

Back-scatter electron (BSE) images show that monazites from

the four samples have two irregularly shaped compositional zones

(Fig. 11). While there is some range in the ages of monazites, no

correlation was found between U–Pb age and compositional zoning

for any of the samples analysed.

Twenty monazites from COL20D, within the Colona Block, gave

a weighted mean 207Pb/206Pb age of 1690 ± 9 Ma. This is within

error of the metamorphic zircon age of 1704 ± 17 Ma. Within the

Barton Block, 30 monazites from sample BAC 41, gave a weighted

mean 207Pb/206Pb age of 1665 ± 7 Ma. TAL 20 has a weighted mean207Pb/206Pb age of 1673 ± 9 Ma from 20 monazites. Sample BAC

18 has a weighted mean 207Pb/206Pb age of 1696 ± 13 Ma from 17

monazites.

5. Discussion

5.1. Depositional age constraints

Due to young cover sequences blanketing the western Gawler

Craton, relationships between different rock types in the Fowler

Domain are rarely exposed. Additionally, the spatial extent of units

is largely unknown, because of the wide spacing of drill holes and

the presence of intervening crustal-scale faults (Fig. 2; Thomas

et al., 2008; Stewart et al., 2009). There is no direct information

to prove the metasedimentary rocks are part of the same sedimen-

tary succession. However, because the data are similar they can be

interpreted as representative of depositional ages over a broad area,

and as having a shared source. Taken together, the U–Pb zircon data

from metasedimentary rocks in the Fowler Domain suggest that

maximum depositional ages range between ca 1760 and 1700 Ma.

As these samples were collected from limited amounts of drill

core, minimum depositional ages could not easily be obtained by

dating crosscutting igneous intrusives. Monazite ages can be used

to constrain the minimum depositional ages for metasedimentary

rocks if they record the timing of metamorphism. The samples from

which monazites were obtained contain metapelitic assemblages

that formed between 500 and 700 ◦C and 4–9 kbar (Thomas et al.,

2008). Since detrital monazite is uncommon in high grade meta-

morphic rocks (Copeland et al., 1988), monazite ages from these

rocks are interpreted to reflect the timing of metamorphism.

Metamorphic monazite ages and hence minimum depositional

ages for metasedimentary rocks from the Fowler Domain range

between ca 1695 and 1665 Ma. These monazite U–Pb age con-

straints are significantly older than the EMPA monazite ages

obtained by Thomas et al. (2008) from the Fowler Domain which

ranged from 1650 to 1600 Ma. The source of this discrepancy

appears to be analytical in nature. In their study, Thomas et al.

(2008) do not appear to have adequately accounted for spectral

overlaps between the Th Mg peak on U Mb and U Mz2 on Pb Mb

in their monazite analyses. This conclusion is based upon the spec-

tral analysis of Dutch et al. (2010) for monazite analysis within

the same facility using the same operating conditions. For the

analysed monazite compositions, this resulted in ages that were

slightly too young. Reprocessing of the original data of Thomas

et al. (2008) using the spectral overlaps determined by Dutch et al.

(2010), results in more consistency between the existing EMPA data

and the LA-ICPMS monazite ages obtained in this study (Table 5).

Nevertheless, given that the EMPA ages can be affected by slight

discordance in the monazite populations, we suggest that the LA-

ICPMS monazite ages are more reliable than the EMPA ages.

Page 77: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-62-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 5. Chondrite-normalised REE plots of Fowler Domain metasedimentary rocks

overlaying patterns from metasedimentary rocks of the northern Gawler Craton

(Payne et al., 2006), the Mt Woods Domain (Chalmers, 2007), the lower Willyama

Supergroup of the Curnamona Province (Barovich and Hand, 2008) and granites of

the Arunta Region (Zhao and McCulloch, 1995). PAAS: the post-Archean Australian

Shale and normalising values after Taylor and McLennan (1985).

Fig. 6. εNd vs. time for Fowler Domain metasedimentary rocks compared with

(meta)sedimentary rocks of the lower Willyama Supergroup (Barovich and Hand,

2008), the northern Gawler Craton (Payne et al., 2006), the Mt Woods Domain (this

study) and the Arunta Region (Zhao and McCulloch, 1995). Data for average Archean

Gawler Craton are from Swain et al. (2005a), Fanning et al. (2007), Payne et al. (2010)

and Fraser et al. (2010). Data for average Palaeoproterozoic Gawler Craton >1750 Ma

are from Howard et al. (2009) and Schaefer (1998). Average Gawler Craton fields

have margins of ±1 standard deviation.

Very little is known about the basement rocks to the metasedi-

mentary cover sequences in the Gawler Craton. However, a granite

which intrudes around 1710 Ma (Howard, in preparation) has εNd

values of −2.1 suggesting that basement may be comparatively

juvenile with respect to the average Gawler Craton. There are other

granites whose isotopic character is unknown but could potentially

provide information on basement to the cover sequences in the

Fowler Domain (Teasdale, 1997). In the Colona Block detrital zir-

cons range in age down to ca 1730 Ma. This is similar to the age

of a weakly to moderately deformed gabbro dated from drill hole

COLDDH43 (1727 ± 8 Ma; Fanning et al., 2007). Based on available

age constraints it is not possible to determine if the emplacement

of this metagabbro predates or postdates deposition.

The paucity of outcrop, intensity of deformation and lack of

knowledge of the basement to the Fowler Domain make it difficult

to have any firm idea about the tectonic setting of sedimenta-

tion.

5.2. Source characteristics of the Fowler Domain

metasedimentary rocks

Geochemically, the metasedimentary units of the Fowler

Domain are interpreted to be pelitic in composition, with some

of the more silica rich samples considered psammitic. REE plots

show that these samples are significantly enriched compared to

PAAS, particularly in the LREEs, while slightly depleted in HREEs

compared to PAAS in some samples. Very high Th/Sc ratios in the

majority of samples suggest that the provenance to the metasedi-

mentary rocks consisted of enriched felsic upper crust (McLennan

et al., 2003; Taylor and McLennan, 1995).

U–Pb detrital zircon data from two samples, BAC18 and TAL4,

are dominated by single peaks with individual zircon ages ranging

from 1770 to 1700 Ma. The mineral assemblages in these samples

have a pelitic character (Table 1) and major element compositions

also suggest a sedimentary protolith. The presence of restricted

zircon populations suggests comparatively local derivation in a

sedimentary system isolated from source regions >1800 Ma old.

Unfortunately, other evidence for a proximal source region, such

Page 78: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-63-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 7. Age probability density plots for detrital zircons from metasedimentary rocks

of the Fowler Domain. Dark grey shaded field represents data with less than 10%

discordance. Light grey shaded fields represent all data. Maximum depositional ages

are displayed.

Fig. 8. CL images of representative zircon grains from the Fowler Domain. (a) Z34,

from sample COL20D, a typical detrital zircon and (b) Z58, from sample COL20D, an

interpreted metamorphic analysis.

as coarser grain size or lithic fragments, is not preserved due to the

intensity of recrystallisation. However, the restricted populations

in these samples could also be explained by the limited number of

zircons analysed, as the spectra do not necessarily represent statis-

tically robust detrital zircon populations (Andersen, 2005). Samples

COL20D, BAC23 and BAC41 record older detrital components, with

minor peaks up to 3130 Ma in age. This suggests that additional

source regions contributed Paleoproterozoic and Archean material.

The metasedimentary rocks of the Fowler Domain record

εNd(1700 Ma) values of between −4.3 and −3.8 including COL20D

and BAC23 which have older detrital zircon ages. This range is

more juvenile than the average Archean and early Paleoproterozoic

(>2450 Ma) Gawler Craton with εNd(1700 Ma) value of approximately

−12 (Fanning et al., 2007; Fraser et al., 2010; Howard et al., 2009;

Payne et al., 2010; Swain et al., 2005a). However, metasedimen-

tary rocks from the Fowler Domain are similar but slightly more

juvenile compared with the average Paleoproterozoic (>1750 Ma)

Gawler Craton which has εNd(1700 Ma) value of approximately −5

(Howard et al., 2009; Scrimgeour et al., 2001). Given the presence

of Archean zircon ages in some of the metasedimentary samples,

it seems likely that the Archean Gawler Craton contributed at least

a small portion of material to the basin system. However, if the

metasedimentary rocks were derived solely from the Archean and

Paleoproterozoic Gawler Craton, we would expect them to have

initial isotopic compositions between −5 and −12. Therefore the

less negative initial εNd values of the metasedimentary rocks of

the Fowler Domain suggest additional input from a more juvenile

source region.

Within the 1780–1700 Ma time frame, Hf isotopic data from

the Fowler Domain are isotopically similar to modern day sed-

iment sampled from the Gawler Craton in not including the

Fowler Domain in a Terranechron study (Belousova et al., 2009;

Figs. 8 and 12). The crustal model ages calculated for 1780–1700 Ma

detrital zircons from the Fowler Domain metasedimentary rocks

range from 2.20 to 2.84 Ga. These model ages are significantly

younger than model ages from >1900 Ma aged zircons eroding

from the Gawler Craton (Belousova et al., 2009). Assuming that

the Gawler Craton Terranechron reflects erosion from the Gawler

Craton, this suggests that the 1780–1700 Ma zircons are evidence

of a younger or more juvenile contribution. However, Hf isotopic

data from the 1700–1900 Ma zircon grains from the Gawler Craton

Terranechron have identical model ages to those from the Fowler

Domain (Belousova et al., 2009), suggesting that juvenile input to

the Gawler Craton occurred during this time interval.

Zircons grains analysed >2100 Ma have crustal model ages of

greater than 3.0 Ga suggesting that metasedimentary rocks of the

Fowler Domain may have been derived from a small portion of

Mesoarchean Gawler Craton.

Page 79: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-64-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 9. εHf values plotted against 207Pb/206Pb ages for individual zircon grains from four metasedimentary samples from the Fowler Domain. The Gawler Craton data are from

Belousova et al. (2009). Discordant grains (>10%) have been omitted. Inset is a probability density plot of εHf values for zircons from the 1700–1750 Ma cluster. The range of

crustal model ages is indicated.

5.3. Correlations with other basin systems within the southern

Australian Proterozoic

There are a series of Paleoproterozoic basin systems in the

Gawler Craton with similar depositional age constraints and detri-

tal zircon spectra to the Fowler Domain metasedimentary rocks

(Fig. 13; Table 6). These are the ca 1760–1740 Ma Wallaroo Group

(Fanning et al., 1988; Jagodzinski, 2005), ca 1740 Ma metased-

imentary rocks from the Mt Woods Domain (Chalmers, 2007;

Jagodzinski et al., 2007) and ca 1740 Ma metasedimentary rocks of

the northern Gawler Craton (Payne et al., 2006). Previous authors

have suggested that the similarity in the timing of deposition of

these (meta)sedimentary units indicate that they could be part of

a widespread Paleoproterozoic basin system (Hand et al., 2007;

Payne et al., 2006) suggesting the presence of a coherent older base-

ment. The depositional age constraints on the metasedimentary

units from the Fowler Domain suggest that they could also belong

to this large scale basin system. The Nd isotopic data from the Mt

Woods Domain was obtained as an additional part of this study and

is shown in Appendix 1. Appendix 1 also summarises all the avail-

able Sm–Nd isotopic data from the southern Australian Proterozoic

ca 1760–1700 Ma basins.

Previous work on metasedimentary rocks from drill core within

the northern Gawler Craton (Payne et al., 2006), show similarities in

provenance to the Fowler Domain (Table 6, Fig. 14). The metasedi-

mentary rocks from the northern Gawler Craton record a maximum

depositional age of ca 1740 Ma, calculated by the youngest group

of detrital zircons and a minimum depositional age of ca 1720 Ma

based on the ages of metamorphic zircons and monazite (Payne

et al., 2006, 2008). Major detrital zircon populations are recorded at

ca 1730–1750, 1750–1780 and 1800–1820 Ma (Payne et al., 2006),

which are similar to the range of zircon ages found in the Fowler

Domain. Nd isotopic data are almost identical to the Fowler Domain

samples, with εNd(1700 Ma) values ranging from −6 to −3 (Payne

et al., 2006). Geochemically, the REE patterns for metasedimentary

rocks from the northern Gawler Craton are similar with slightly

more HREE enrichment compared with those from the Fowler

Domain (Payne et al., 2006). Both appear too enriched to be derived

from the >1800 Ma components of the Gawler Craton (Swain et al.,

2005a).

In the Mt Woods Domain in the central eastern Gawler Cra-

ton (Fig. 1) metasedimentary rocks record maximum depositional

ages of ca 1750 Ma based on the youngest group of detrital zir-

cons in three samples (Chalmers, 2007; Jagodzinski et al., 2007).

Minimum depositional ages of 1691 ± 25 Ma are constrained by

the intrusive Engenina Adamellite (Chalmers, 2007). Therefore, the

Mt Woods metasedimentary rocks show similar depositional tim-

ing to those from the Fowler Domain and the northern Gawler

Craton. Detrital zircon histograms are also very similar to those

from the Fowler Domain and northern Gawler Craton, and are

dominated by one major peak at ca 1750 Ma, with some minor

inheritance of 1850 Ma zircon grains, and a lack of >1850 Ma grains

(Chalmers, 2007; Jagodzinski et al., 2007). The Nd isotopic com-

positions from the metasedimentary rocks (εNd(1700 Ma) −2.1 to

−4.9) are similar to the values from the northern Gawler Craton

and the Fowler Domain. REE patterns from the metasedimentary

rocks of the Mt Woods Domain (Fig. 4) are a good match with

the northern Gawler Craton, and are similar but slightly more

Table 5Recalculated EMPA monazite ages from Thomas et al. (2008) and LA-ICPMS monazite ages obtained in this study.

Drill hole Depth (m) Easting Northing Rock type Mineral assemblage Age (Ma) Method Reference

BAC23 EOH 250347 6573841 Protomylonite gt-bi-sill 1666 ± 17 EMPA Thomas et al. (2008) a

BAC33 EOH 253552 6573288 Mylonite gt-bi-sill 1635 ± 19 EMPA Thomas et al. (2008) a

COL20D 44.0 782283 6536364 Metapelite gt-bi-mus-plag-ilm 1683 ± 12 EMPA Thomas et al. (2008) a

COL20D 46.2 782283 6536364 Metapelite gt-bi-mus-plag 1649 ± 14 EMPA Thomas et al. (2008) a

COL20D 47.0 782283 6536364 Metapelite gt-bi-mus-plag 1688 ± 13 EMPA Thomas et al. (2008) a

NDR1 41.0 238062 6478212 Metapelite gt-bi-plag 1505 ± 14 EMPA Thomas et al. (2008) a

NDR5 45.0 240516 6474390 Pelitic gneiss gt-bi-sill-plag-kf-ilm 1593 ± 15 EMPA Thomas et al. (2008) a

COL20D 46.6–47.5 782283 6536364 Metapelite gt-bi-mus-plag-ilm 1690 ± 9 LA-ICP-MS This study

BAC18 EOH 248614 6574437 Metapelite qtz-bi-kspar-gt-sill-plg 1696 ± 10 LA-ICP-MS This study

BAC41 EOH 255670 6573107 Metapelite plg-bi-qtz-sill-gt-ilm 1664 ± 7 LA-ICP-MS This study

TAL20 57.0–57.5 247028 6560272 Metapelite qtz-kspar-plg-bi-sill-gt 1673 ± 9 LA-ICP-MS This study

a Reprocessed using the spectral overlaps determined by Dutch et al. (2010).

Page 80: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-65-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 10. Concordia and weighted average plots for monazites from metasedimentary rock samples from the Fowler Domain.

enriched in HREEs when compared with REE patterns of the Fowler

Domain.

The Wallaroo Group in the south eastern Gawler Craton

(Fig. 1) contains a range of Paleoproterozoic metasedimentary and

metavolcanic units (Conor, 1995; Cowley et al., 2003). The Wan-

dearah Formation has a maximum depositional age of 1762 ± 7 Ma

based on the youngest detrital zircon peak with inheritance up

to 3320 Ma (Jagodzinski, 2005). The timing of deposition for the

Wandearah Formation is also constrained by intercalated felsic

volcanics with ages of 1763 ± 14 Ma and 1750 ± 7 Ma (Fanning in

Conor, 1995), making the Wallaroo Group similar to COL20D but

slightly older than the other Fowler Domain metasedimentary

rocks. Whole rock εNd(1700 Ma) values vary widely from +1.4 to −6.6

between the members of the Wandearah Formation (Huffadine,

1993; Simpson, 1994), suggesting that sediment input was derived

from isotopically varied source regions. Isotopic Hf zircon data

for the Wandearah Formation yielded εHf(ca 1750 Ma) values rang-

ing from −5 to 0 (Belousova et al., 2009), which match with the

ca 1750 Ma aged zircons from the Fowler Domain. This suggests

that zircons (and sediment) of similar age and isotopic compo-

sition were being deposited at least at the present day eastern

and western edges of the Gawler Craton, but potentially craton-

wide, between 1760–1700 Ma. A fine-bedded tuffaceous siltstone

of the Mona Volcanics Member, also belonging to the Wallaroo

Page 81: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-66-

Chapter 3 Provenance and depositi onal ti ming, western Gawler CratonTa

ble

6Su

mm

ary

tab

leco

mp

ari

ng

sou

rce

chara

cteri

stic

sfo

rP

ala

eo

pro

tero

zo

icB

asi

ns

syst

em

sfr

om

the

Gaw

ler

Cra

ton

an

dth

eC

urn

am

on

aP

rov

ince

.

Fo

wle

rD

om

ain

Naw

aD

om

ain

Mt

Wo

od

sD

om

ain

Wall

aro

oG

rou

pLo

wer

Wil

lyam

a

Su

perg

rou

p

Dep

osi

tio

nal

tim

ing

17

60

–1

70

0M

aa

17

40

–1

72

0M

ab

17

50

–1

69

0M

ac

,dca

17

60

Ma

e1

71

5–

16

70

Ma

j,k

Detr

ital

zir

con

peak

s1

70

0–

17

80

,18

30

,19

50

,

very

min

or

inh

eri

tan

ceto

31

00

Ma

a

17

30

–1

75

0,1

75

0–

17

80

an

d1

80

0–

18

20

Ma

b

17

10

–1

79

0,w

ith

min

or

peak

18

50

Ma

c,d

17

15

–1

81

0,1

85

0,v

ery

min

or

peak

sca

20

00

an

d

25

00

–2

60

0M

ae

,f

16

70

–1

71

0,1

72

0–

18

90

,

20

50

,23

00

,25

00

–2

70

0

an

d3

00

0M

aj,

k

Wh

ole

rock

Nd

iso

top

icat

17

00

Ma

−3.8

to−4

.3a

−3to

−6b

−2.1

to−4

.9a

+1

.4to

−6.6

g,h

−3to

−8l

ε Hf

zir

con

valu

es

at

ca1

71

0–

17

80

Ma

+2

to−6

aN

oav

ail

ab

led

ata

No

av

ail

ab

led

ata

0to

−5i

No

av

ail

ab

led

ata

RE

Ep

att

ern

sco

mp

are

dto

Fo

wle

rD

om

ain

Sim

ilar

bu

tsl

igh

tly

mo

re

en

rich

ed

inH

RE

Esb

Sim

ilar

bu

tsl

igh

tly

mo

re

en

rich

ed

inH

RE

Esd

No

av

ail

ab

led

ata

Sim

ilar

RE

Ep

att

ern

sl

aT

his

stu

dy

.b

Pay

ne

et

al.

(20

06

).c

Jag

od

zin

ski

et

al.

(20

07

).d

Ch

alm

ers

(20

07

).e

Jag

od

zin

ski

(20

05

).f

Fan

nin

get

al.

(20

07

).g

Hu

ffad

ine

(19

93

).h

Sim

pso

n(1

99

4).

iB

elo

uso

va

et

al.

(20

09

).j

Pag

eet

al.

(20

05

a).

kP

ag

eet

al.

(20

05

b).

lB

aro

vic

han

dH

an

d(2

00

8).

Fig. 11. BSE images of representative monazites from samples BAC41, COL20D and

TAL20.

Group, contains a bimodal zircon distribution with populations at

1740 ± 16 Ma and 1790 ± 15 Ma (Fanning et al., 2007). The younger

age is thought to represent the timing of volcanic eruption, and

therefore the timing of deposition, while the older peak represents

inheritance (Fanning et al., 2007). The inferred depositional age is

similar to the inferred range in the northern Gawler Craton.

The Moonabie Formation from the eastern Gawler Craton has a

maximum depositional age of 1756 ± 8 Ma based on the dominant

unimodal detrital zircon peak (Jagodzinski, 2005). Isotopically this

unit has εNd(1700 Ma) of −7.1 (Simpson, 1994), which is more evolved

than the Fowler Domain metasedimentary rocks.

Within the Gawler Craton it is clear that there was widespread

sedimentation between ca 1760 and 1700 Ma. The timing of the

sedimentation initially predates the Kimban Orogeny (Chalmers,

2007; Fanning et al., 2007; Jagodzinski, 2005; Jagodzinski et al.,

2007; Payne et al., 2006). In the eastern Gawler Craton the Kimban

Orogeny was responsible for low to medium pressure greenschist

to granulite facies metamorphism between 1720 and 1690 Ma

(Dutch et al., 2010). This range of ages is similar to the metamorphic

Page 82: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-67-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Fig. 12. εHf values plotted against 207Pb/206Pb ages for individual zircon grains from the Fowler Domain compared with modern sediment samples from different regions of

the Gawler Craton (Belousova et al., 2009). Solid geology Gawler Craton map is modified after Fairclough et al. (2003). The shaded area is the Fowler Domain.

ages in the northern Gawler Craton (Payne et al., 2008). However, it

appears that both the timing of sedimentation and also deformation

in the Fowler Domain was slightly younger, with sedimentation

until ca 1700 Ma and metamorphism as late as ca 1660 Ma.

External to the Gawler Craton, but within the South Australian

Craton (Fig. 1), the metasedimentary Willyama Supergroup of

the Palaeo-Mesoproterozoic Curnamona Province is another basin

system which could potentially correlate with the Gawler Cra-

ton metasedimentary rocks. The timing of deposition of units

from the lower Willyama Supergroup is ca 1715–1670 Ma (Page

et al., 2005a,b) which encompasses the interval of deposition of

sequences in the Fowler Domain. Major detrital zircon peaks occur

at 1690 and 1790 Ma, and there is a large array of inherited grains

up to ca 3000 Ma (Page et al., 2005b). The basins represented by

the lower Willyama Supergroup probably sourced sediment from

a variety of terranes of various ages compared with the Fowler

Domain. Sm–Nd isotopic data from the lower Willyama Super-

group are similar but display a wider range compared to the Fowler

Domain (Fig. 5) with εNd(1700 Ma) values ranging from ca −3 to

−8, and averaging −5 ± 1 (Barovich and Hand, 2008). This is only

slightly more evolved than the Fowler Domain metasedimentary

samples, which, coupled with the abundance of older zircons (Page

Fig. 13. Detrital zircon age histograms and isotopic whole rock εNd values from Paleoproterozoic basin systems within the Gawler Craton and Curnamona Province of similar

depositional timing to the Fowler Domain. Northern Gawler Craton data from Payne et al. (2006); Fowler Domain data from this study; Mt Woods Domain U–Pb zircon data

from Chalmers (2007) and Jagodzinski et al. (2007), Nd isotopic data from this study; Wallaroo Group U–Pb zircon data from Jagodzinski (2005) and Fanning et al. (2007),

Nd isotopic data from Huffadine (1993) and Simpson (1994); Willyama Supergroup U–Pb zircon data from Page et al. (2005a,b), Nd isotopic data from Barovich and Hand

(2008).

Page 83: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-68-

Chapter 3 Provenance and deposi� onal � ming, western Gawler Craton

Fig. 14. Reconstruction models for Paleoproterozoic Australia. (a) Dawson et al. (2002) positions the northern Gawler Craton as the indentor to the Yilgarn Craton as it

collides with the Gawler Craton deforming the Fowler Domain. (b) Wade et al. (2006) suggests the Gawler Craton and North Australian join around 1590–1550 Ma. (c) Betts

and Giles (2006) propose that the Gawler Craton accreted in three stages to the North Australian Craton via a north dipping subduction zone on the southern margin of the

North Australian Craton. (d) Payne et al. (2009) presents a model which places the entire Gawler Craton and Curnamona Province adjacent to the North Australian for the

duration of the Proterozoic.

et al., 2005a,b), suggests some input from older and more isotopi-

cally evolved source regions. Geochemically, REE patterns from the

lower Willyama Supergroup are unusually enriched (Barovich and

Hand, 2008), and are a good match with the patterns from the

metasedimentary rocks of the Fowler Domain (Fig. 4).

We have established that southern Australian Paleoprotero-

zoic basin systems within the Gawler Craton and the Curnamona

Province share similarities in timing of deposition. REE patterns

of the basins are enriched and remarkably similar. In particu-

lar, REE patterns from metasedimentary rocks from the northern

Gawler Craton and Mt Woods Domains are almost identical. The

Nd isotopic character of the basin systems is also similar, however

(meta)sedimentary rocks with a wider range of inherited zircon

ages such as the Wallaroo Group and the Lower Willyama Super-

group (presently the easterly-most basins) tend to have a slightly

more evolved range of initial εNd values. This suggests that the east-

erly basins may have received a contribution of older and more

evolved material than the northwestern basins. Given the overall

NOTE: This figure is included on page 68 of the print copy of the thesis held in the University of Adelaide Library.

NOTE: This figure is included on page 68 of the print copy of the thesis held in the University of Adelaide Library.

Page 84: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-69-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

similarities in source characteristics, it is likely that these Paleopro-

terozoic basin systems had a shared provenance, and derived some

material from common source regions.

Given the locations of these Paleoproterozoic basin systems, the

first source region to consider would be the Archean to Paleopro-

terozoic Mawson Continent which includes the Gawler Craton and

the Adelie Craton in Antarctica (Payne et al., 2009). The appear-

ance of a small number of ca 1850 Ma detrital zircons in each of

the basin systems (northern Gawler Craton, Mt Woods Domain,

Wallaroo Group, Lower Willyama Supergroup and Fowler Domain;

Fig. 13 and Table 6) suggests that the voluminous ca 1850 Ma Don-

ington Suite located in the eastern Gawler Craton may have been

exposed between 1760 and 1700 Ma. This implies that >1750 Ma

components of the Gawler Craton may have supplied detritus to

these sedimentary basin systems. In addition, >3000 Ma crustal

model ages for detrital zircons aged >2100 Ma suggests that a small

portion of material may have been derived from the Mesoarchean

Gawler Craton. However, the general lack of Gawler Craton zir-

con forming time lines >1850 Ma in detrital zircon histograms

(2520 Ma, 2470–2450, 2000 Ma; Hand et al., 2007; Howard et al.,

2009; Belousova et al., 2009), suggests that the Gawler Craton was

not a major source of material to these 1760–1700 Ma basin sys-

tems. Additionally, detritus derived from a mixture of the currently

exposed Paleoproterozoic and Archean rocks from the Gawler Cra-

ton would be isotopically too evolved (Fanning et al., 2007; Fraser

et al., 2010; Howard et al., 2009; Payne et al., 2010; Schaefer, 1998;

Swain et al., 2005a) to be the principle source for the relatively less

evolved Paleoproterozoic basin systems (Fig. 6). For these reasons,

we suggest that the 1760–1700 Ma sequences in the southern Aus-

tralian Proterozoic received additional more juvenile material from

source regions beyond the Gawler Craton.

Payne et al. (2006) had considered a Laurentian source region

for the metasedimentary rocks of the northern Gawler Craton, but

this was excluded as suitably aged rocks were much too juvenile.

Likewise, Barovich and Hand (2008) considered the Mt Isa Inlier

of northern Australia as a potential source region for the lower

Willyama Supergroup; however trace and rare earth element abun-

dances were PAAS like and not enriched. Payne et al. (2006) and

Barovich and Hand (2008) therefore concluded that the most likely

source region to the lower Willyama Supergroup and the northern

Gawler Craton metasedimentary rocks was the Aileron Province

of the Arunta Region (Fig. 1) in the southern part of the North

Australian Craton.

Major zircon forming time lines in the Aileron Province occur

at 1820–1800 Ma, 1780–1750 Ma, and 1735–1690 Ma (Black and

Shaw, 1992; Claoueı̌-Long et al., 2008; Claoué-Long and Hoatson,

2005; Collins and Shaw, 1995; Collins and Williams, 1995;

Maidment et al., 2005; Scrimgeour et al., 2001; Wade et al.,

2008; Zhao and Bennett, 1995; Zhao and Cooper, 1992; Zhao and

McCulloch, 1995), which match many of the dominant detrital

zircon peaks from the 1760–1700 Ma basin systems of the South

Australian Craton. The Arunta Region also records metamorphism

during the Strangways Orogeny (1730–1690 Ma; Maidment et al.,

2005; Claoué-Long et al., 2008), which is similar but slightly older

than metamorphism in the Fowler Domain, but matches well with

the timing of metamorphism in the northern Gawler Craton (Payne

et al., 2008).

Geochemically, the 1820–1700 Ma magmatic rocks in the

Arunta Region are moderately to highly enriched in REE (Fig. 5;

Sun et al., 1995; Zhao and McCulloch, 1995; Budd et al., 2001).

Isotopically, 1770–1710 Ma magmatic rocks of the Arunta Region

provide initial εNd values within the range −0.2 to −4.9 and aver-

age εNd value of −2 ± 1.5 at 1700 Ma (Fig. 6; Zhao and McCulloch,

1995). This is comparatively more juvenile than the Paleoprotero-

zoic basin systems of the South Australian Craton as well as the

average Archean and Paleoproterozoic Gawler Craton. However,

a mixture of juvenile detritus from the Arunta Region combined

with more evolved Archean and Palaeoproterozoic Gawler Craton

material would result in the range of isotopic compositions similar

to what is recorded by the Paleoproterozoic basin systems of the

South Australian Craton.

5.4. Provenance implications for reconstruction models of

Proterozoic Australia

The notion that the Arunta Region may have been a domi-

nant source for Paleoproterozoic sedimentary basins of the Gawler

Craton and the Curnamona Province has implications for at least

four recently published Paleoproterozoic reconstruction models for

southern and central Australia; Dawson et al. (2002), Wade et al.

(2006), Betts and Giles (2006) and Payne et al. (2009).

The reconstruction model by Dawson et al. (2002) is based on a

provenance connection between a sedimentary succession on the

Yilgarn Craton with the most likely source being the Gawler Craton.

This model proposes that the Fowler Domain and the Karari Shear

Zone (Fig. 1) record the collision between the Yilgarn Craton includ-

ing the present day northern Gawler Craton and a Gawler-Pilbara

continent at ca 1750–1700 Ma (Fig. 14a). Our results highlight sev-

eral problems with this model. Firstly, it places the northern Gawler

Craton on the Yilgarn micro-continent, separating it from the other

basin systems and from the Arunta Province until 1750–1700 Ma.

This does not allow much time for sediment to be transported

from the North Australian Craton and deposited before metamor-

phism at 1720 Ma (Payne et al., 2006). Secondly, if the northern

Gawler Craton were to have been positioned at the leading edge

of a continental plate as it collided with the Gawler Craton, it is

likely that geochemistry and whole rock Nd isotopes would have

detected some component of juvenile arc magmatism as a source.

Instead, geochemistry of the northern Gawler Craton metasedi-

mentary rocks point to an enriched intracrustal source for the

sediments, similar to the other time correlative basin sequences

in southern Australia (Payne et al., 2006).

Based on the inferred existence of arc-like magmatism at ca

1590–1550 Ma in the Musgrave Block, positioned between the

North Australian Craton and the Gawler Craton, Wade et al. (2006)

suggested the presence of an active margin between the two

cratons (Fig. 14b). This positions the northern Gawler Craton,

Fowler, and Mt Woods Domains and Wallaroo Groups together

on the Mawson Continent, while the Willyama Supergroup is

positioned on a separate Curnamona Province micro-plate at

around 1590–1550 Ma. This model does not allow a mechanism

for sediment transport from the North Australian Craton to the

Paleoproterozoic basin systems at around 1760–1710 Ma without

a complicated rifting phase between 1710 and 1590 Ma.

Betts and Giles (2006) build on previous models (Betts et al.,

2002; Giles et al., 2002, 2004), and propose a north dipping accre-

tion zone on the southern margin of the North Australian Craton

(Fig. 14c). Attached to the North Australian Craton are those basins

which are located to the present day east of the Kalinjala Shear Zone,

located in the south eastern Gawler Craton (Fig. 1), and include the

Willyama Supergroup and the Wallaroo Group. The proto-Gawler

Craton, including its Archean components, is thought to have been

accreted between 1740 and 1690 Ma to the North Australian Craton

aligning the Kimban Orogeny with the Strangways Orogeny of the

Arunta Province. A ribbon of crust including the Fowler and north-

ern Gawler Craton are then accreted alongside the Archean Christie

Domain between 1690 and 1650 Ma (Fig. 14c).

Betts and Giles (2006) suggest that the Archean Mulgathing

Complex (Christie Domain), is accreted to the crust containing

the Archean Sleafordian Complex during the Paleoproterozoic at

ca 1690 Ma, even though they have been shown to share identi-

cal tectonic and sedimentary histories (Payne et al., 2009; Swain

Page 85: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-70-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

et al., 2005a). Similarly this model also divides the group of simi-

larly sourced sedimentary basins across different micro-continents

at the time of basin formation. While the model does allow

a connection between the Willyama Supergroup and Wallaroo

Group to a likely source, the Arunta Region, during the time

of deposition, other basins such as the northern Gawler Craton,

the Fowler and the Mt Woods Domains are isolated from this

source.

If the reconstruction model of Betts and Giles (2006) is cor-

rect it means that the Fowler Domain and northern Gawler Craton

metasedimentary rocks must have been entirely locally sourced

from the northern Gawler Craton/Fowler/Christie Domain micro-

continent with no contribution from the Gawler Craton or the North

Australian Craton. This is very difficult to account for as there are

no known magmatic sources for the 1740–1780 Ma detrital zircon

grains within those three domains. If derived from the micro-

continent alone, we would expect the Fowler Domain and northern

Gawler Craton metasedimentary rocks to contain a large contribu-

tion of inherited material from the 2560–2450 Ma Christie Domain.

However, this is not the case as there are no zircons >2450 Ma in

the metasedimentary rocks of the northern Gawler Craton (Payne

et al., 2006) and <5% from metasedimentary rocks of the Fowler

Domain (this study). Metasedimentary rocks from the northern

Gawler Craton and the Fowler Domain (εNd(1700 Ma) −3 to −6)

show little contribution from the evolved Archean Christie Domain

(εNd(1700 Ma) of −11.7 to −12.3; Swain et al., 2005a,b). Another

requirement which the Betts and Giles (2006) model does not sat-

isfy are the geochemical constraints from the northern Gawler

Craton and the Fowler Domain that suggest that the sediments

were derived from an intracratonic source. It therefore appears

unlikely that the northern Gawler Craton and the Fowler Domain

metasedimentary rocks were derived from a northern Gawler Cra-

ton/Fowler/Christie Domain micro-continent.

A more favourable reconstruction model using recent con-

straints was proposed by Payne et al. (2009), which recognises the

similarities in time lines of events between the North Australian

Craton, Curnamona Province and Gawler Craton and consequently

places them adjacent for the duration of the Paleoproterozoic

(Fig. 14d). This model places the Paleoproterozoic basins of the

South Australian Craton contiguous to one another in an intracra-

tonic position satisfying geochemical constraints. It also positions

the Arunta Region adjacent to the South Australian Craton at

the time of deposition of the basin systems thereby providing a

source of isotopically mixed material and detrital zircons with

1720–1780 Ma ages that match those found in samples studied

from the basin systems.

6. Conclusions

1. Detrital zircon and monazite data provide maximum depo-

sitional ages of between 1710 and 1760 Ma and minimum

depositional ages of between 1690 and 1670 Ma for the Fowler

Domain metasedimentary rocks.

2. Paleoproterozoic basins from the Gawler Craton and the Curna-

mona Province, including the Fowler and Mt Woods Domains,

the northern Gawler Craton, the Wallaroo Group and the lower

Willyama Supergroup show similar geochemical and Nd iso-

tope source characteristics supporting an evolved and enriched

intracrustal source region with detrital zircon histograms dom-

inated by 1790–1710 Ma grains that are best interpreted as

sourced from the Arunta Region of the North Australian Craton.

3. Implications for an Arunta Region source to the Paleoproterozoic

basin systems of the Gawler Craton and Curnamona Province

require a connection between the South Australian Craton and

the North Australian Craton by at least 1760–1710 Ma, implying

that many existing reconstruction models for Paleoproterozoic

Australia require modification.

Acknowledgements

We would like to acknowledge discussions with Anthony Reid,

Mike Szpunar, Rian Dutch and Ailsa Woodhouse (Geological Sur-

vey, Primary Industries and Resources South Australia) and Kathryn

Cutts (University of Adelaide). We are grateful to Benjamin Wade

and Angus Netting of Adelaide Microscopy for invaluable assistance

with the LA-ICPMS facility. Catherine Spaggiari and Russel Korsch

are thanked for thorough and constructive reviews which greatly

improved the manuscript. This work was supported by Australian

Research Council Grant LP0454301.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.precamres.2010.10.002.

References

Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance: limit-ing conditions from statistics and numerical simulation. Chemical Geology 216(3–4), 249–270.

Barovich, K., Hand, M., 2008. Tectonic setting and provenance of the Paleoprotero-zoic Willyama Supergroup, Curnamona Province, Australia: geochemical andNd isotopic constraints on contrasting source terrain components. PrecambrianResearch 166 (1–4), 318–337.

Belousova, E.A., Reid, A.J., Griffin, W.L., O’Reilly, S.Y., 2009. Rejuvenation vs. recyclingof Archean crust in the Gawler Craton, South Australia: evidence from U–Pb andHf isotopes in detrital zircon. Lithos 113, 570–582.

Betts, P.G., Giles, D., 2006. The 1800–1100 Ma tectonic evolution of Australia. Pre-cambrian Research 144 (1–2), 92–125.

Betts, P.G., Giles, D., Lister, G.S., Frick, L.R., 2002. Evolution of the Australian litho-sphere. Australian Journal of Earth Sciences 49 (4), 661–695.

Betts, P.G., Giles, D., Schaefer, B.F., 2008. Comparing 1800–1600 Ma accretionary andbasin processes in Australia and Laurentia: possible geographic connections inColumbia. Precambrian Research 166 (1–4), 81–82.

Betts, P.G., Valenta, R.K., Finlay, J., 2003. Evolution of the Mount Woods Inlier,northern Gawler Craton, Southern Australia: an integrated structural and aero-magnetic analysis. Tectonophysics 366 (1–2), 83–111.

Bizzarro, M., Baker, J.A., Haack, H., Ulfbeck, D., Rosing, M., 2003. Early history ofEarth’s crust–mantle system inferred from hafnium isotopes in chondrites.Nature 421 (6926), 931–933.

Black, L.P., Shaw, R.D., 1992. U–Pb zircon chronology of prograde Proterozoic eventsin the central and southern provinces of the Arunta Block, Central Australia.Australian Journal of Earth Sciences 39 (2), 153–171.

Blichert-Toft, J., Albarede, F., 1997. The Lu–Hf isotope geochemistry of chondrites andthe evolution of the mantle–crust system. Earth and Planetary Science Letters148 (1–2), 243–258.

Budd, A.R., Wyborn, L.A.I., Bastrakova, I.V., 2001. The metallogenic potential of Aus-tralian granites. Geoscience Australia Record, 12.

Cawood, P.A., Nemchin, A.A., Strachan, R., Prave, T., Krabbendam, M., 2007. Sedi-mentary basin and detrital zircon record along East Laurentia and Baltica duringassembly and breakup of Rodinia. Journal of the Geological Society 164, 257–275.

Chalmers, N.C., 2007. Mount Woods Domain: Proterozoic Metasediments and Intru-sives, South Australia. Department of Primary Industries and Resources, ReportBook/02.

Claoué-Long, J., Maidment, D., Hussey, K., Huston, D., 2008. The duration of theStrangways event in central Australia: evidence for prolonged deep crust pro-cesses. Precambrian Research 166 (1–4), 246–262.

Claoueı̌-Long, J., Maidment, D., Hussey, K., Huston, D., 2008. The duration of theStrangways event in central Australia: evidence for prolonged deep crust pro-cesses. Precambrian Research 166 (1–4), 246–262.

Claoué-Long, J.C., Hoatson, D.M., 2005. Proterozoic mafic-ultramafic intrusions inthe Arunta Region, central Australia. Part 2. Event chronology and regional cor-relations. Precambrian Research 142 (3–4), 134–158.

Collins, W.J., Shaw, R.D., 1995. Geochronological constraints on orogenic events inthe Arunta Inlier: a review. Precambrian Research 71 (1–4), 315–346.

Collins, W.J., Williams, I.S., 1995. SHRIMP ion-probe dating of short-lived Protero-zoic tectonic cycles in the northern Arunta Inlier, central Australia. PrecambrianResearch 71 (1–4), 69–89.

Conor, C.H.H., 1995. Moonta-Wallaroo Region: An Interpretation of the Geology ofthe Maitland and Wallaroo 1:100 000 Sheet Areas. South Australia Departmentof Mines and Energy, Open File Envelope 8886.

Copeland, P., Parrish, R.R., Harrison, T.M., 1988. Identification of inherited radiogenicPb in monazite and its implications for U–Pb systematics. Nature 333 (6175),760–763.

Page 86: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-71-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Cowley, W.M., Conor, C.H.H., Zang, W., 2003. New and revised Proterozoic strati-graphic units on northern Yorke Peninsula. MESA Journal 29, 46–58.

Daly, S.J., Fanning, C.M., Fairclough, M.C., 1998. Tectonic evolution and explorationpotential of the Gawler Craton, South Australia. AGSO Journal of AustralianGeology and Geophysics 17 (3), 145–168.

Dawson, G.C., Krapez, B., Fletcher, I.R., McNaughton, N.J., Rasmussen, B., 2002. Didlate Palaeoproterozoic assembly of proto-Australia involve collision betweenthe Pilbara, Yilgarn and Gawler cratons? Geochronological evidence from theMount Barren Group in the Albany-Fraser Orogen of Western Australia. Pre-cambrian Research 118 (3–4), 195–220.

DeBievre, P., Taylor, P.D.P., 1993. Table of the isotopic compositions of the ele-ments. International Journal of Mass Spectrometry and Ion Processes 123 (2),149–166.

Dickinson, W.R., Gehrels, G.E., 2003. U–Pb ages of detrital zircons from Permianand Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographicimplications. Sedimentary Geology 163 (1–2), 29–66.

Direen, N.G., Cadd, A.G., Lyons, P., Teasdale, J.P., 2005. Architecture of Proterozoicshear zones in the Christie Domain, western Gawler Craton, Australia: geophys-ical appraisal of a poorly exposed orogenic terrane. Precambrian Research 142(1–2), 28–44.

Dutch, R.A., Hand, M., Kelsey, D.E., 2010. Unravelling the tectonothermal evolutionof reworked Archean granulite facies metapelites using in situ geochronology:an example from the Gawler Craton, Australia. Journal of Metamorphic Geology28 (3), 293–316.

Fairclough, M.C., Schwarz, M., Ferris, G.M., 2003. Interpreted Crystalline BasementGeology of the Gawler Craton, South Australia (Special Map 1:1 000 000 scale).Primary Industries and Resources, South Australia, Adelaide.

Fanning, C.M., Flint, R.B., Parker, A.J., Ludwig, K.R., Blissett, A.H., 1988. Refined Pro-terozoic evolution of the Gawler Craton, South Australia, through U–Pb zircongeochronology. Precambrian Research 40–41, 363–386.

Fanning, C.M., Reid, A.J., Teale, G.S., 2007. A Geochronological framework for theGawler Craton, South Australia. Geological Survey Bulletin, 55.

Ferris, G., Schwarz, M., Heithersay, P., 2002. The geological framework, distributionand controls of Fe-oxide and related alteration, and Cu–Au mineralisation inthe Gawler Craton, South Australia. Part 1: Geological and Tectonic Framework.In: Porter, T. (Ed.), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: AGlobal Perspective. PGC Publishing, Adelaide.

Fitzsimons, I.C.W., 2003. Proterozoic basement provinces of southern and south-western Australia, and their correlation with Antarctica. In: Yoshida, M.,Windley, B.F., Dasgupta, S. (Eds.), Proterozoic East Gondwana: SupercontinentAssembly and Breakup. Geological Society of London Special Publication 206,London, pp. 93–130.

Fitzsimons, I.C.W., Hulscher, B., 2005. Out of Africa: detrital zircon provenance ofcentral Madagascar and Neoproterozoic terrane transfer across the MozambiqueOcean. Terra Nova 17 (3), 224–235.

Fraser, G., McAvaney, S., Neumann, N., Szpunar, M., Reid, A., 2010. Discovery of earlyMesoarchean crust in the eastern Gawler Craton, South Australia. PrecambrianResearch 179 (1–4), 1–21.

Fraser, G.L., Lyons, P., 2006. Timing of Mesoproterozoic tectonic activity in thenorthwestern Gawler Craton constrained by Ar-40/Ar-39 geochronology. Pre-cambrian Research 151 (3–4), 160–184.

Giles, D., Betts, P., Lister, G., 2002. Far-field continental backarc setting for the1.80–1.67 Ga basins of northeastern Australia. Geology 30 (9), 823–826.

Giles, D., Betts, P.G., Lister, G.S., 2004. 1.8–1.5-Ga links between the North and SouthAustralian Cratons and the Early-Middle Proterozoic configuration of Australia.Tectonophysics 380, 27–41.

Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O’Reilly, S.Y., 2004. Archeancrustal evolution in the northern Yilgam Craton: U–Pb and Hf-isotope evidencefrom detrital zircons. Precambrian Research 131 (3–4), 231–282.

Griffin, W.L., Belousova, E.A., Walters, S.G., O’Reilly, S.Y., 2006. Archaean and Protero-zoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia:U–Pb and Hf-isotope studies of detrital zircons. Australian Journal of Earth Sci-ences 53 (1), 125–149.

Griffin, W.L., et al., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica EtCosmochimica Acta 64 (1), 133–147.

Hand, M., Reid, A., Jagodzinski, E., 2007. Tectonic framework and evolu-tion of the Gawler Craton, southern Australia. Economic Geology 102 (8),1377–1395.

Hoek, J.D., Schaefer, B.F., 1998. Palaeoproterozoic Kimban mobile belt, Eyre Penin-sula: timing and significance of felsic and mafic magmatism and deformation.Australian Journal of Earth Sciences 45 (2), 305–313.

Hopper, D.J., 2001. Crustal Evolution of Palaeo- to Mesoproterozoic Rocks in thePeake and Denison Ranges, South Australia. Unpublished Ph.D. Thesis. Brisbane,Australia, University of Queensland.

Howard, K.E., in preparation. Geotectonics in the Gawler Craton: Constraints fromGeochemistry, U–Pb geochronology and Sm–Nd and Lu–Hf Isotopes. PhD Thesis.University of Adelaide.

Howard, K.E., et al., 2009. Detrital zircon ages: Improving interpretation via Nd andHf isotopic data. Chemical Geology 262 (3–4), 277–292.

Huffadine, S.J., 1993. Environment, Timing and Petrogenesis of a Mid-ProterozoicVolcanic Suite: Pt Victoria, South Australia. Unpub. Honours Thesis. Universityof Adelaide.

Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laserablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircongeochronology. Chemical Geology 211 (1–2), 47–69.

Jagodzinski, E., 2005. Compilation of SHRIMP U–Pb Geochronological Data, OlympicDomain, Gawler Craton, South Australia, 2001–2003. Geoscience Australia,Record 2005/20: 197.

Jagodzinski, E., et al., 2006. Compilation of SHRIMP U–Pb Geochronological Datafor the Gawler Craton, South Australia, 2006. South Australia. Department ofPrimary Industries and Resources. Report Book, 2006/20.

Jagodzinski, E.A., et al., 2007. Compilation of SHRIMP U–Pb Geochronological Datafor the Gawler Craton, South Australia, 2007. South Australia. Department ofPrimary Industries and Resources, Report Book, 2007/21.

Kirkland, C.L., Daly, J.S., Whitehouse, M.J., 2007. Provenance and terrane evolutionof the Kalak Nappe Complex, Norwegian Caledonides: implications for neopro-terozoic paleogeography and tectonics. Journal of Geology 115 (1), 21–41.

Maidment, D.W., Hand, M., Williams, I.S., 2005. Tectonic cycles in the Strang-ways Metamorphic Complex, Arunta Inlier, central Australia: geochronologicalevidence for exhumation and basin formation between two high-grade meta-morphic events. Australian Journal of Earth Sciences 52 (2), 205–215.

McLennan, S.M., et al., 2003. The roles of provenance and sedimentary processesin the geochemistry of sedimentary rocks. In: Lentz, D.R. (Ed.), Geochemistryof Sediments and Sedimentary Rocks: Evolutionary Considerations to MineralDeposit-Forming Environments. Geological Association of Canada, pp. 7–38.

Michard, A., Gurriet, P., Soudant, M., Albarede, F., 1985. Nd Isotopes in FrenchPhanerozoic Shales – External Vs Internal Aspects of Crustal Evolution. Geochim-ica Et Cosmochimica Acta 49, 601–610.

Myers, J.S., Shaw, R.D., Tyler, I.M., 1996. Tectonic evolution of Proterozoic Australia.Tectonics 15 (6), 1431–1446.

Nowell, G.M., et al., 1998. High precision Hf isotope measurements of MORB andOIB by thermal ionisation mass spectrometry: insights into the depleted mantle.Chemical Geology 149 (3–4), 211–233.

Oliver, R.L., Fanning, C.M., 1997. Australia and Antarctica; precise correlation ofPalaeoproterozoic terrains. In: R. C.A (Ed.), The Antarctic Region; GeologicalEvolution and Processes; Proceedings of the VII International Symposium onAntarctic Earth Sciences. International Symposium on Antarctic Earth Sciences.Terra Antarctica Publication, Siena, Italy, pp. 163–172.

Page, R.W., et al., 2005a. Correlation of Olary and Broken Hill Domains, Curna-mona Province: possible relationship to Mount Isa and other North AustralianPb–Zn–Ag-bearing successions. Economic Geology 100, 663–676.

Page, R.W., Stevens, B.P.J., Gibson, G.M., 2005b. Geochronology of the sequencehosting the Broken Hill Pb–Zn–Ag orebody, Australia. Economic Geology 100,633–651.

Patchett, P.J., et al., 1999. Nd isotopes, geochemistry, and constraints on sources ofsediments in the Franklinian mobile belt, Arctic Canada. Bulletin of the Geolog-ical Society of America 111 (4), 578–589.

Payne, J.L., Barovich, K.M., Hand, M., 2006. Provenance of metasedimentary rocksin the northern Gawler Craton, Australia: implications for Palaeoproterozoicreconstructions. Precambrian Research 148 (3–4), 275–291.

Payne, J.L., Ferris, G., Barovich, K.M., Hand, M., 2010. Pitfalls of classifying ancientmagmatic suites with tectonic discrimination diagrams: an example from thePaleoproterozoic Tunkillia Suite, southern Australia. Precambrian Research 177(3–4), 227–240.

Payne, J.L., Hand, M., Barovich, K.M., Reid, A., Evans, D.A.D., 2009. Correlationsand reconstruction models for the 2500–1500 Ma evolution of the MawsonContinent. In: Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S. (Eds.),Palaeoproterozoic Supercontinents and Global Evolution. Geological Society,London, Special Publications, pp. 319–355.

Payne, J.L., Hand, M., Barovich, K.M., Wade, B.P., 2008. Temporal constraints on thetiming of high-grade metamorphism in the northern Gawler Craton: implica-tions for assembly of the Australian Proterozoic. Australian Journal of EarthSciences 55 (5), 623–640.

Rainbird, R.H., Hamilton, M.A., Young, G.M., 2001. Detrital zircon geochronology andprovenance of the Torridonian, NW Scotland. Journal of the Geological Society158 (1), 15–27.

Rankin, L.R., Flint, R.B., Fanning, C.M., 1990. The Bosanquet Formation of the GawlerCraton. South Australia Geological Survey. Quarterly Geological Notes 105,12–18.

Reid, A., Hand, M., Jagodzinski, E., Kelsey, D., Pearson, N., 2008. Paleoproterozoic oro-genesis in the southeastern Gawler Craton, South Australia. Australian Journalof Earth Sciences 55 (4), 449–471.

Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting ofsandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. TheJournal of Geology 94 (5), 635–650.

Samson, S.D., D’Lemos, R.S., Miller, B.V., Hamilton, M.A., 2005. Neoproterozoicpalaeogeography of the Cadomia and Avalon terranes: constraints from detritalzircon U–Pb ages. Journal of the Geological Society 162, 65–71.

Schaefer, B.R., 1998. Insights into Proterozoic Tectonics from Southern Eyre Penin-sula, South Australia. Ph.D. Thesis. University of Adelaide, unpublished.

Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock.Science 293, 683–687.

Scrimgeour, I., Smith, J.B., Raith, J.G., 2001. Palaeoproterozoic high-T, low-P meta-morphism and dehydration melting in metapelites from the Mopunga Range,Arunta Inlier, central Australia. Journal of Metamorphic Geology 19 (6), 739–757.

Simpson, C.A., 1994. Constraints on Proterozoic Crustal Evolution from An Iso-topic and Geochemical Study of Clastic Sediments of the Gawler Craton, SouthAustralia. Honours Thesis. University of Adelaide.

Stewart, J.R., Betts, P.G., Collins, A.S., Schaefer, B.F., 2009. Multi-scale analysis ofProterozoic shear zones: an integrated structural and geophysical study. Journalof Structural Geology 31, 1238–1254.

Page 87: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-72-

Chapter 3 Provenance and depositi onal ti ming, western Gawler Craton

Sun, S.-s., Warren, R.G., Shaw, R.D., 1995. Nd isotope study of granites from theArunta Inlier, central Australia: constraints on geological models and limitationof the method. Precambrian Research 71 (1–4), 301–314.

Swain, G., Barovich, K., Hand, M., Ferris, G., Schwarz, M., 2008. Petrogenesis of the StPeter Suite, southern Australia: Arc magmatism and Proterozoic crustal growthof the South Australian Craton. Precambrian Research 166, 283–296.

Swain, G., et al., 2005a. Provenance and tectonic development of the late ArchaeanGawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic impli-cations. Precambrian Research 141 (3–4), 106–136.

Swain, G.M., Hand, M., Teasdale, J., Rutherford, L., Clark, C., 2005b. Age constraints onterrane-scale shear zones in the Gawler Craton, southern Australia. PrecambrianResearch 139 (3–4), 164–180.

Talavera-Mendoza, O., et al., 2005. U–Pb geochronology of the Acatlan Complexand implications for the Paleozoic paleogeography and tectonic evolution ofsouthern Mexico. Earth and Planetary Science Letters 235 (3–4), 682–699.

Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evo-lution. Blackwell, Oxford, 312 pp.

Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continentalcrust. Reviews of Geophysics 33 (2), 241–265.

Teasdale, J., 1997. Methods for Understanding Poorly Exposed Terranes: The Inter-pretive Geology and Tectonothermal Evolution of the Western Gawler Craton.PhD Thesis. University of Adelaide, Adelaide, 179 pp.

Thiel, S., Heinson, G., 2010. Crustal imaging of a mobile belt using magnetotellurics:an example of the Fowler Domain in South Australia. Journal of GeophysicalResearch B: Solid Earth 115 (6).

Thomas, J.L., Direen, N.G., Hand, M., 2008. Blind orogen: integrated appraisal of mul-tiple episodes of Mesoproterozoic deformation and reworking in the FowlerDomain, western Gawler Craton, Australia. Precambrian Research 166 (1–4),263–282.

Vassallo, J.J., Wilson, C.J.L., 2002. Palaeoproterozoic regional-scale non-coaxial defor-mation; an example from eastern Eyre Peninsula, South Australia. Journal ofStructural Geology 24 (1), 1–24.

Wade, B.P., Barovich, K.M., Hand, M., Scrimgeour, I.R., Close, D.F., 2006. Evidence forearly Mesoproterozoic arc magmatism in the Musgrave Block, central Australia:Implications for Proterozoic crustal growth and tectonic reconstructions ofAustralia. Journal of Geology 114 (1), 43–63.

Wade, B.P., Hand, M., Barovich, K.M., 2005. Nd isotopic and geochemical constraintson provenance of sedimentary rocks in the eastern Officer Basin, Australia:implications for the duration of the intracratonic Petermann Orogeny. Journalof the Geological Society 162, 513–530.

Wade, B.P., Hand, M., Maidment, D.W., Close, D.F., Scrimgeour, I.R., 2008. Originof metasedimentary and igneous rocks from the Entia Dome, eastern AruntaRegion, central Australia: a U–Pb LA-ICPMS, SHRIMP and Sm–Nd isotope study.Australian Journal of Earth Sciences 55 (5), 703–719.

Werner, C.D., 1987. Saxonian Granulites—a contribution to the geochemical diag-nosis of original rocks in high-metamorphic complexes. Gerlands Beitrage zurGeophysik 96 (3–4), 271–290.

Zhao, J.X., Bennett, V.C., 1995. Shrimp U–Pb zircon geochronology of granites in theArunta-Inlier, Central Australia-implications for Proterozoic crustal evolution.Precambrian Research 71 (1–4), 17–43.

Zhao, J.X., Cooper, J.A., 1992. The Atnarpa Igneous Complex, southeast Arunta Inlier,central Australia: implications for subduction at an Early-Mid Proterozoic con-tinental margin. Precambrian Research 56, 227–253.

Zhao, J.X., McCulloch, M.T., 1995. Geochemical and Nd isotopic systematics ofgranites from the Arunta-Inlier, Central Australia—implications for Proterozoiccrustal evolution. Precambrian Research 71 (1–4), 265–299.

Page 88: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-73-

Chapter 3 Supplementary Material

Supp

lem

enta

ry T

able

1. U

-Pb

zirc

on d

ata

from

met

ased

imen

tary

rock

s of t

he F

owle

r Dom

ain

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

C

OL

20D

Z1

0.10

678

0.00

15

4.19

940

0.07

06

0.28

560

0.00

44

0.06

166

0.00

09

1745

25

16

20

22

1674

14

12

09

16

93Z2

0.

1315

2 0.

0013

6.

8170

5 0.

0902

0.

3760

5 0.

0050

0.

1321

5 0.

0015

21

18

18

2058

24

20

88

12

2509

26

97

Z4

0.10

640

0.00

11

4.32

110

0.05

74

0.29

464

0.00

39

0.08

058

0.00

08

1739

19

16

65

19

1697

11

15

66

15

96Z5

0.

1685

9 0.

0019

10

.711

46

0.15

54

0.46

096

0.00

66

0.14

260

0.00

17

2544

19

24

44

29

2498

13

26

95

30

96Z6

0.

1612

2 0.

0022

9.

2282

7 0.

1536

0.

4155

8 0.

0065

0.

0765

7 0.

0012

24

69

23

2240

30

23

61

15

1491

22

91

Z7

0.11

452

0.00

15

5.31

170

0.07

85

0.33

658

0.00

45

0.16

286

0.00

36

1872

23

18

70

22

1871

13

30

50

63

100

Z8

0.11

763

0.00

14

4.39

098

0.06

23

0.27

080

0.00

36

0.06

916

0.00

08

1921

21

15

45

18

1711

12

13

52

16

80Z9

0.

1136

7 0.

0013

3.

1020

1 0.

0436

0.

1979

6 0.

0027

0.

0755

8 0.

0009

18

59

20

1164

14

14

33

11

1473

17

63

Z10

0.11

593

0.00

13

4.31

197

0.06

27

0.26

980

0.00

39

0.06

624

0.00

08

1894

20

15

40

20

1696

12

12

96

14

81Z1

2 0.

1081

2 0.

0012

4.

4667

5 0.

0660

0.

2996

5 0.

0043

0.

0736

3 0.

0009

17

68

21

1690

21

17

25

12

1436

16

96

Z13

0.11

975

0.00

14

5.66

670

0.07

93

0.34

341

0.00

45

0.12

611

0.00

24

1952

21

19

03

22

1926

12

24

01

43

97Z1

6 0.

1123

0 0.

0011

4.

6162

8 0.

0606

0.

2981

6 0.

0040

0.

0817

1 0.

0008

18

37

18

1682

20

17

52

11

1588

15

92

Z17

0.12

774

0.00

20

6.21

715

0.09

94

0.35

304

0.00

47

0.14

671

0.00

48

2067

27

19

49

23

2007

14

27

67

85

94Z1

9 0.

1067

4 0.

0011

4.

9454

5 0.

0654

0.

3360

4 0.

0045

0.

0927

3 0.

0009

17

45

18

1868

22

18

10

11

1792

17

10

7Z2

0 0.

1093

7 0.

0011

4.

6433

6 0.

0611

0.

3079

3 0.

0041

0.

0947

7 0.

0010

17

89

19

1731

20

17

57

11

1830

19

97

Z21

0.11

989

0.00

12

5.86

326

0.07

63

0.35

476

0.00

47

0.09

878

0.00

10

1955

18

19

57

22

1956

11

19

04

19

100

Z22

0.12

135

0.00

19

6.08

325

0.10

10

0.36

354

0.00

52

0.13

331

0.00

32

1976

27

19

99

24

1988

14

25

29

57

101

Z23

0.11

110

0.00

12

3.90

536

0.05

59

0.25

500

0.00

36

0.07

748

0.00

10

1818

20

14

64

18

1615

12

15

08

18

81Z2

4 0.

1081

5 0.

0011

4.

4203

1 0.

0603

0.

2964

8 0.

0040

0.

0780

9 0.

0008

17

69

19

1674

20

17

16

11

1520

15

95

Z25*

0.

1040

9 0.

0012

4.

2797

0 0.

0588

0.

2982

2 0.

0040

0.

0853

2 0.

0010

16

98

21

1683

20

16

90

11

1655

18

99

Z27

0.11

912

0.00

14

4.08

477

0.06

00

0.24

888

0.00

35

0.09

709

0.00

19

1943

21

14

33

18

1651

12

18

73

35

74Z2

8 0.

1203

8 0.

0021

5.

4817

2 0.

0958

0.

3303

7 0.

0046

0.

2555

9 0.

0157

19

62

30

1840

22

18

98

15

4601

25

3 94

Z29

0.11

470

0.00

14

3.38

030

0.05

08

0.21

383

0.00

31

0.04

811

0.00

10

1875

22

12

49

16

1500

12

95

0 19

67

Z31

0.11

224

0.00

14

4.68

291

0.06

84

0.30

283

0.00

41

0.09

282

0.00

14

1836

23

17

05

20

1764

12

17

94

25

93Z3

3 0.

1045

8 0.

0012

4.

4029

8 0.

0577

0.

3053

3 0.

0038

0.

0819

4 0.

0009

17

07

21

1718

19

17

13

11

1592

16

10

1Z3

4 0.

1099

6 0.

0012

4.

3135

0 0.

0526

0.

2844

6 0.

0034

0.

0903

6 0.

0010

17

99

20

1614

17

16

96

10

1749

19

90

Z36

0.10

703

0.00

16

4.33

357

0.07

16

0.29

380

0.00

43

0.08

144

0.00

18

1749

26

16

61

21

1700

14

15

83

33

95Z3

7 0.

1984

8 0.

0020

13

.617

93

0.17

27

0.49

777

0.00

64

0.11

991

0.00

21

2814

17

26

04

28

2724

12

22

89

37

93Z3

9 0.

1058

9 0.

0011

4.

5387

4 0.

0576

0.

3108

9 0.

0039

0.

0853

6 0.

0009

17

30

19

1745

19

17

38

11

1656

18

10

1Z4

0 0.

2416

9 0.

0033

19

.707

10

0.30

97

0.59

212

0.00

90

0.19

020

0.00

71

3131

22

29

98

37

3077

15

35

20

121

96Z4

1 0.

1424

2 0.

0017

5.

3121

8 0.

0754

0.

2706

7 0.

0037

0.

0801

3 0.

0023

22

57

21

1544

19

18

71

12

1558

42

68

Z42

0.10

928

0.00

12

4.55

555

0.06

44

0.30

252

0.00

41

0.09

167

0.00

25

1787

20

17

04

21

1741

12

17

73

47

95Z4

3 0.

1058

8 0.

0012

4.

6271

5 0.

0586

0.

3169

8 0.

0039

0.

1026

3 0.

0021

17

30

20

1775

19

17

54

11

1975

39

10

3Z4

4*

0.10

355

0.00

11

4.18

630

0.05

22

0.29

320

0.00

35

0.08

385

0.00

11

1689

20

16

58

18

1671

10

16

28

20

98Z4

5 0.

1172

6 0.

0017

3.

9937

7 0.

0669

0.

2473

0 0.

0038

0.

1488

5 0.

0164

19

15

25

1425

20

16

33

14

2805

28

9 74

Z46

0.12

118

0.00

20

4.61

549

0.08

59

0.27

620

0.00

44

0.08

994

0.00

65

1974

29

15

72

22

1752

16

17

41

121

80Z4

7 0.

1085

7 0.

0014

4.

7720

7 0.

0668

0.

3189

8 0.

0041

0.

0880

1 0.

0013

17

76

23

1785

20

17

80

12

1705

25

10

1Z4

8 0.

1528

1 0.

0015

9.

1534

8 0.

1092

0.

4345

3 0.

0053

0.

1167

1 0.

0013

23

78

17

2326

24

23

54

11

2231

23

98

Z49

0.11

180

0.00

13

4.25

480

0.05

84

0.27

637

0.00

37

0.08

146

0.00

18

1829

20

15

73

18

1685

11

15

83

34

86Z5

0 0.

1130

0 0.

0013

3.

4415

8 0.

0480

0.

2213

6 0.

0030

0.

0549

5 0.

0010

18

48

21

1289

16

15

14

11

1081

19

70

Z51

0.20

182

0.00

26

14.0

0757

0.

2190

0.

5043

5 0.

0078

0.

1265

6 0.

0185

28

41

21

2633

33

27

50

15

2409

33

2 93

Z52

0.10

488

0.00

12

4.51

983

0.05

79

0.31

263

0.00

38

0.08

459

0.00

13

1712

20

17

54

19

1735

11

16

41

24

102

Page 89: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-74-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

C

OL

20D

(con

tinue

d)Z5

3 0.

1258

8 0.

0017

4.

6815

5 0.

0693

0.

2696

6 0.

0035

0.

0896

7 0.

0028

20

41

24

1539

18

17

64

12

1736

51

75

Z54*

0.

1048

6 0.

0014

4.

7652

4 0.

0694

0.

3298

4 0.

0043

0.

0926

2 0.

0019

17

12

24

1838

21

17

79

12

1790

34

10

7Z5

5 0.

1122

1 0.

0013

4.

9646

0 0.

0668

0.

3211

1 0.

0041

0.

0940

3 0.

0018

18

36

20

1795

20

18

13

11

1816

34

98

Z56

0.10

905

0.00

13

4.83

023

0.06

56

0.32

131

0.00

41

0.09

243

0.00

27

1784

22

17

96

20

1790

11

17

87

50

101

Z57

0.10

903

0.00

15

4.29

732

0.06

32

0.28

603

0.00

37

0.06

896

0.00

19

1783

24

16

22

19

1693

12

13

48

36

91Z5

8*

0.10

281

0.00

12

4.52

888

0.05

92

0.31

952

0.00

40

0.09

048

0.00

12

1676

21

17

87

19

1736

11

17

51

22

107

Z59

0.12

628

0.00

19

5.15

206

0.08

46

0.29

612

0.00

43

0.09

652

0.00

54

2047

26

16

72

21

1845

14

18

62

100

82Z6

0*

0.10

457

0.00

12

4.59

992

0.05

73

0.31

905

0.00

38

0.09

091

0.00

13

1707

20

17

85

19

1749

10

17

59

25

105

B

AC

18

Z1

0.10

605

0.00

13

0.23

131

0.00

35

3.38

166

0.05

40

0.00

661

0.00

01

1733

23

13

41

18

1500

13

13

3 2

77Z2

0.

1054

3 0.

0017

0.

2424

4 0.

0038

3.

5233

2 0.

0657

0.

0063

8 0.

0002

17

22

30

1399

20

15

33

15

129

4 81

Z3

0.10

379

0.00

18

0.26

260

0.00

45

3.75

624

0.07

64

0.07

859

0.00

31

1693

31

15

03

23

1583

16

15

29

58

89Z4

0.

1091

7 0.

0012

0.

2159

8 0.

0033

3.

2502

4 0.

0501

0.

0072

5 0.

0001

17

86

20

1261

17

14

69

12

146

2 71

Z5

0.10

615

0.00

15

0.19

332

0.00

31

2.82

863

0.04

93

0.00

707

0.00

02

1734

25

11

39

17

1363

13

14

2 3

66Z6

0.

1075

2 0.

0015

0.

2577

2 0.

0041

3.

8198

5 0.

0667

0.

0183

3 0.

0005

17

58

25

1478

21

15

97

14

367

9 84

Z7

0.10

720

0.00

11

0.24

713

0.00

38

3.65

179

0.05

61

0.00

873

0.00

01

1752

19

14

24

20

1561

12

17

6 2

81Z8

0.

1068

4 0.

0013

0.

2497

1 0.

0037

3.

6764

2 0.

0582

0.

0208

3 0.

0003

17

46

23

1437

19

15

66

13

417

6 82

Z9

0.10

764

0.00

12

0.25

621

0.00

40

3.80

167

0.06

07

0.01

901

0.00

03

1760

21

14

70

20

1593

13

38

1 5

84Z1

0 0.

1067

5 0.

0013

0.

2961

1 0.

0047

4.

3560

1 0.

0720

0.

0327

0 0.

0004

17

45

22

1672

23

17

04

14

650

9 96

Z11

0.10

607

0.00

11

0.26

054

0.00

39

3.80

905

0.05

71

0.01

418

0.00

02

1733

19

14

93

20

1595

12

28

5 4

86Z1

2 0.

1117

8 0.

0014

0.

1594

1 0.

0026

2.

4561

7 0.

0420

0.

0042

4 0.

0001

18

29

23

954

15

1259

12

86

1

52Z1

3 0.

1213

2 0.

0016

0.

1421

1 0.

0024

2.

3765

4 0.

0422

0.

0060

7 0.

0001

19

76

24

857

14

1236

13

12

2 2

43Z1

4 0.

1103

9 0.

0013

0.

1779

4 0.

0026

2.

7069

7 0.

0412

0.

0102

6 0.

0002

18

06

21

1056

14

13

30

11

206

3 58

Z15

0.10

838

0.00

14

0.25

354

0.00

41

3.78

682

0.06

50

0.02

796

0.00

05

1772

23

14

57

21

1590

14

55

7 10

82

Z16

0.10

800

0.00

13

0.28

549

0.00

48

4.24

893

0.07

26

0.03

331

0.00

06

1766

22

16

19

24

1684

14

66

2 11

92

Z17

0.10

980

0.00

14

0.21

414

0.00

36

3.23

971

0.05

65

0.01

857

0.00

03

1796

23

12

51

19

1467

14

37

2 7

70Z1

8 0.

1098

6 0.

0013

0.

1839

6 0.

0030

2.

7855

0 0.

0464

0.

0106

8 0.

0002

17

97

21

1089

16

13

52

12

215

3 61

Z19

0.10

672

0.00

12

0.27

182

0.00

47

4.00

284

0.06

79

0.01

342

0.00

03

1744

21

15

50

24

1635

14

27

0 5

89Z2

0 0.

1051

3 0.

0012

0.

2145

9 0.

0034

3.

1096

8 0.

0493

0.

0073

6 0.

0001

17

17

20

1253

18

14

35

12

148

2 73

Z21

0.11

723

0.00

18

0.12

124

0.00

22

1.95

864

0.03

76

0.00

517

0.00

02

1915

27

73

8 13

11

01

13

104

3 39

Z22

0.10

949

0.00

13

0.23

050

0.00

36

3.47

949

0.05

57

0.00

754

0.00

01

1791

21

13

37

19

1523

13

15

2 3

75Z2

3 0.

1084

6 0.

0015

0.

2600

5 0.

0046

3.

8883

7 0.

0710

0.

0320

5 0.

0009

17

74

25

1490

23

16

11

15

638

17

84Z2

4 0.

1055

6 0.

0011

0.

2018

5 0.

0031

2.

9377

8 0.

0445

0.

0141

7 0.

0002

17

24

20

1185

16

13

92

11

284

4 69

Z25

0.11

285

0.00

14

0.14

545

0.00

23

2.26

321

0.03

69

0.00

897

0.00

02

1846

22

87

5 13

12

01

11

180

3 47

Z26

0.10

673

0.00

11

0.20

934

0.00

32

3.08

047

0.04

73

0.00

573

0.00

01

1744

19

12

25

17

1428

12

11

6 2

70Z2

7 0.

1059

0 0.

0011

0.

2765

2 0.

0042

4.

0376

2 0.

0596

0.

0313

2 0.

0004

17

30

18

1574

21

16

42

12

623

7 91

Z28

0.11

459

0.00

16

0.17

253

0.00

31

2.72

574

0.05

00

0.00

624

0.00

02

1873

25

10

26

17

1336

14

12

6 4

55Z2

9 0.

1177

0 0.

0015

0.

1195

6 0.

0021

1.

9404

9 0.

0341

0.

0053

8 0.

0001

19

22

23

728

12

1095

12

10

8 3

38Z3

0 0.

1126

7 0.

0013

0.

1568

3 0.

0025

2.

4367

0 0.

0391

0.

0052

8 0.

0001

18

43

20

939

14

1254

12

10

7 2

51Z3

1 0.

1050

4 0.

0012

0.

2367

8 0.

0036

3.

4275

6 0.

0523

0.

0389

9 0.

0006

17

15

20

1370

19

15

11

12

773

11

80Z3

2 0.

1069

1 0.

0012

0.

2449

9 0.

0036

3.

6095

9 0.

0538

0.

0313

2 0.

0005

17

47

20

1413

18

15

52

12

623

9 81

Z33

0.11

536

0.00

13

0.13

256

0.00

19

2.10

779

0.03

04

0.00

703

0.00

01

1885

20

80

3 11

11

51

10

142

2 43

Z34

0.10

734

0.00

11

0.26

367

0.00

38

3.90

150

0.05

56

0.04

877

0.00

06

1755

19

15

09

19

1614

12

96

3 11

86

Z35

0.10

752

0.00

12

0.29

325

0.00

42

4.34

638

0.06

36

0.06

614

0.00

08

1758

20

16

58

21

1702

12

12

95

15

94

Page 90: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-75-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

B

AC

18

Z36

0.11

567

0.00

17

0.26

611

0.00

43

4.23

294

0.07

36

0.04

756

0.00

13

1890

26

15

21

22

1680

14

93

9 25

80

Z37

0.10

548

0.00

11

0.28

377

0.00

40

4.12

604

0.05

79

0.08

086

0.00

09

1723

18

16

10

20

1660

11

15

72

17

93Z3

8 0.

1060

9 0.

0011

0.

2811

0 0.

0040

4.

1104

1 0.

0574

0.

0681

1 0.

0008

17

33

18

1597

20

16

56

11

1332

14

92

Z39

0.10

726

0.00

11

0.23

572

0.00

34

3.48

499

0.04

99

0.03

247

0.00

04

1753

19

13

64

18

1524

11

64

6 8

78Z4

0 0.

1457

3 0.

0020

0.

0676

6 0.

0011

1.

3563

7 0.

0225

0.

0039

0 0.

0001

22

96

23

422

6 87

0 10

79

2

18Z4

1 0.

1049

7 0.

0011

0.

2487

2 0.

0036

3.

5995

0 0.

0527

0.

0342

7 0.

0005

17

14

20

1432

19

15

49

12

681

9 84

Z42

0.10

375

0.00

11

0.16

555

0.00

24

2.36

758

0.03

42

0.03

850

0.00

05

1692

19

98

8 13

12

33

10

764

10

58Z4

3 0.

1052

6 0.

0012

0.

2813

5 0.

0042

4.

0826

5 0.

0623

0.

0443

6 0.

0007

17

19

21

1598

21

16

51

12

877

13

93Z4

4 0.

1089

6 0.

0014

0.

2213

9 0.

0031

3.

3272

8 0.

0507

0.

0291

6 0.

0009

17

82

23

1289

16

14

88

12

581

18

72Z4

5 0.

1087

8 0.

0012

0.

2568

2 0.

0037

3.

8518

8 0.

0558

0.

0081

7 0.

0001

17

79

20

1474

19

16

04

12

165

2 83

Z46

0.11

009

0.00

15

0.18

075

0.00

25

2.74

415

0.04

26

0.00

780

0.00

02

1801

24

10

71

14

1341

12

15

7 4

59Z4

7 0.

1086

2 0.

0011

0.

1367

3 0.

0019

2.

0478

8 0.

0288

0.

0315

5 0.

0006

17

76

19

826

11

1132

10

62

8 11

47

Z48

0.10

648

0.00

12

0.24

994

0.00

36

3.66

936

0.05

44

0.01

582

0.00

02

1740

20

14

38

19

1565

12

31

7 5

83Z4

9 0.

1540

0 0.

0018

0.

1102

4 0.

0017

2.

3406

8 0.

0362

0.

0093

0 0.

0002

23

91

20

674

10

1225

11

18

7 4

28Z5

0 0.

1095

1 0.

0012

0.

2414

4 0.

0035

3.

6458

6 0.

0535

0.

0246

4 0.

0004

17

91

20

1394

18

15

60

12

492

7 78

B

AC

23

Z1

0.10

818

0.00

14

0.27

945

0.00

34

4.16

760

0.05

71

0.07

495

0.00

17

1769

23

15

89

17

1668

11

14

61

31

90Z2

0.

1072

4 0.

0012

0.

2355

8 0.

0028

3.

4826

0 0.

0434

0.

0633

5 0.

0008

17

53

20

1364

15

15

23

10

1242

15

78

Z3

0.12

136

0.00

14

0.11

621

0.00

14

1.94

369

0.02

49

0.03

171

0.00

04

1976

21

70

9 8

1096

9

631

8 36

Z4

0.11

325

0.00

15

0.23

809

0.00

30

3.71

769

0.05

31

0.06

255

0.00

11

1852

24

13

77

16

1575

11

12

26

21

74Z5

0.

1578

3 0.

0020

0.

1188

8 0.

0015

2.

5866

1 0.

0351

0.

0278

2 0.

0004

24

33

21

724

9 12

97

10

555

8 30

Z6

0.10

806

0.00

13

0.18

724

0.00

23

2.78

886

0.03

68

0.05

337

0.00

09

1767

22

11

06

12

1353

10

10

51

17

63Z7

0.

1158

0 0.

0016

0.

1193

8 0.

0015

1.

9056

0 0.

0273

0.

0335

4 0.

0006

18

92

25

727

8 10

83

10

667

12

38Z8

0.

1061

4 0.

0012

0.

2735

7 0.

0034

4.

0023

9 0.

0528

0.

0757

2 0.

0009

17

34

21

1559

17

16

35

11

1475

17

90

Z9

0.12

503

0.00

16

0.14

145

0.00

19

2.43

790

0.03

61

0.02

586

0.00

04

2029

23

85

3 11

12

54

11

516

7 42

Z10

0.11

067

0.00

15

0.23

338

0.00

32

3.56

320

0.05

55

0.05

872

0.00

16

1811

24

13

52

17

1541

12

11

53

31

75Z1

1 0.

1185

5 0.

0016

0.

1191

4 0.

0017

1.

9453

6 0.

0304

0.

0265

5 0.

0006

19

35

25

726

10

1097

10

53

0 11

38

Z12

0.10

329

0.00

13

0.29

243

0.00

37

4.16

581

0.05

75

0.07

714

0.00

11

1684

23

16

54

18

1667

11

15

02

21

98Z1

3 0.

1441

4 0.

0017

0.

4154

1 0.

0055

8.

2494

1 0.

1141

0.

0747

3 0.

0030

22

78

20

2240

25

22

59

13

1457

57

98

Z14

0.10

785

0.00

15

0.26

835

0.00

34

3.98

612

0.05

78

0.07

521

0.00

16

1763

25

15

32

17

1631

12

14

66

29

87Z1

5 0.

1068

3 0.

0012

0.

2889

3 0.

0036

4.

2561

6 0.

0551

0.

0736

1 0.

0009

17

46

20

1636

18

16

85

11

1436

17

94

Z16

0.10

515

0.00

13

0.26

490

0.00

37

3.83

518

0.05

70

0.06

291

0.00

11

1717

23

15

15

19

1600

12

12

33

20

88Z1

7 0.

1084

3 0.

0015

0.

2882

5 0.

0040

4.

3040

6 0.

0662

0.

0603

4 0.

0011

17

73

25

1633

20

16

94

13

1184

21

92

Z18

0.10

718

0.00

14

0.27

915

0.00

38

4.11

970

0.06

04

0.06

713

0.00

13

1752

23

15

87

19

1658

12

13

13

24

91Z1

9 0.

1078

4 0.

0013

0.

1845

1 0.

0023

2.

7417

7 0.

0369

0.

0487

6 0.

0008

17

63

23

1092

12

13

40

10

962

16

62Z2

0 0.

1026

9 0.

0013

0.

2959

8 0.

0038

4.

1897

1 0.

0594

0.

0773

5 0.

0018

16

73

24

1671

19

16

72

12

1506

34

10

0Z2

1 0.

1086

1 0.

0014

0.

1195

5 0.

0015

1.

7893

9 0.

0244

0.

0267

8 0.

0007

17

76

23

728

8 10

42

9 53

4 13

41

Z22

0.10

882

0.00

14

0.22

620

0.00

30

3.39

043

0.04

97

0.04

817

0.00

09

1780

23

13

15

16

1502

11

95

1 17

74

Z23

0.11

742

0.00

14

0.17

925

0.00

22

2.90

193

0.03

83

0.05

179

0.00

08

1917

21

10

63

12

1382

10

10

21

16

55Z2

4 0.

1167

6 0.

0013

0.

3202

0 0.

0039

5.

1543

6 0.

0657

0.

0868

5 0.

0017

19

07

20

1791

19

18

45

11

1683

32

94

Z25

0.11

398

0.00

13

0.07

245

0.00

09

1.13

857

0.01

46

0.01

337

0.00

02

1864

20

45

1 5

772

7 26

8 4

24Z2

6 0.

1123

5 0.

0013

0.

1654

9 0.

0021

2.

5632

9 0.

0342

0.

0436

1 0.

0008

18

38

21

987

11

1290

10

86

3 15

54

Z27

0.11

681

0.00

14

0.12

072

0.00

15

1.94

374

0.02

60

0.02

292

0.00

04

1908

21

73

5 9

1096

9

458

9 39

Z28

0.10

382

0.00

11

0.27

728

0.00

34

3.96

879

0.04

95

0.07

801

0.00

12

1693

20

15

78

17

1628

10

15

18

23

93

Page 91: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-76-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

B

AC

23

(con

tinue

d)Z2

9 0.

1138

3 0.

0015

0.

0915

2 0.

0012

1.

4367

8 0.

0208

0.

0250

7 0.

0007

18

62

24

565

7 90

4 9

501

13

30Z3

0 0.

1111

3 0.

0013

0.

2987

0 0.

0036

4.

5752

8 0.

0597

0.

0870

3 0.

0013

18

18

22

1685

18

17

45

11

1687

24

93

B

AC

23

sess

ion

2

Z01

0.10

283

0.00

15

0.29

928

0.00

42

4.24

116

0.06

90

0.07

697

0.00

22

1676

26

16

88

21

1682

13

14

99

42

101

Z02

0.10

696

0.00

12

0.24

260

0.00

32

3.57

819

0.04

81

0.06

597

0.00

08

1748

20

14

00

16

1545

11

12

91

15

80Z0

3 0.

1038

1 0.

0019

0.

2960

3 0.

0046

4.

2353

0 0.

0832

0.

0670

1 0.

0028

16

93

33

1672

23

16

81

16

1311

52

99

Z04

0.10

544

0.00

22

0.28

844

0.00

47

4.19

484

0.09

27

0.06

038

0.00

14

1722

38

16

34

23

1673

18

11

85

27

95Z0

5 0.

1067

6 0.

0013

0.

2771

8 0.

0037

4.

0798

7 0.

0575

0.

0705

6 0.

0010

17

45

21

1577

19

16

50

12

1378

19

90

Z06

0.10

800

0.00

14

0.32

021

0.00

46

4.76

447

0.07

55

0.07

776

0.00

13

1766

24

17

91

22

1779

13

15

14

24

101

Z07

0.10

727

0.00

13

0.16

739

0.00

22

2.47

540

0.03

54

0.02

305

0.00

04

1754

23

99

8 12

12

65

10

461

9 57

Z08

0.10

877

0.00

13

0.20

371

0.00

29

3.05

358

0.04

59

0.05

209

0.00

08

1779

22

11

95

15

1421

12

10

26

15

67Z0

9 0.

1099

6 0.

0012

0.

1341

4 0.

0018

2.

0336

1 0.

0275

0.

0247

8 0.

0003

17

99

20

812

10

1127

9

495

6 45

Z10

0.10

001

0.00

13

0.30

057

0.00

42

4.14

240

0.06

50

0.07

310

0.00

20

1624

25

16

94

21

1663

13

14

26

37

104

Z11

0.10

558

0.00

12

0.29

442

0.00

38

4.28

588

0.05

78

0.07

143

0.00

13

1725

20

16

64

19

1691

11

13

95

25

96Z1

2 0.

1056

1 0.

0012

0.

2779

7 0.

0036

4.

0474

5 0.

0560

0.

0828

7 0.

0014

17

25

21

1581

18

16

44

11

1609

25

92

Z13

0.11

064

0.00

12

0.11

053

0.00

15

1.68

581

0.02

33

0.01

582

0.00

03

1810

20

67

6 9

1003

9

317

5 37

Z14

0.10

887

0.00

18

0.31

528

0.00

49

4.72

730

0.08

85

0.06

958

0.00

16

1781

30

17

67

24

1772

16

13

60

31

99Z1

5 0.

1064

2 0.

0013

0.

2465

9 0.

0032

3.

6177

6 0.

0506

0.

0709

7 0.

0013

17

39

22

1421

17

15

53

11

1386

24

82

Z16

0.10

781

0.00

16

0.30

112

0.00

44

4.47

416

0.07

50

0.08

638

0.00

27

1763

26

16

97

22

1726

14

16

75

51

96Z1

7 0.

1055

7 0.

0014

0.

2426

6 0.

0035

3.

5302

6 0.

0551

0.

0592

9 0.

0013

17

24

23

1401

18

15

34

12

1164

24

81

Z18

0.11

662

0.00

16

0.10

873

0.00

16

1.74

795

0.02

80

0.02

910

0.00

05

1905

24

66

5 9

1026

10

58

0 11

35

Z19

0.11

175

0.00

14

0.11

672

0.00

16

1.79

806

0.02

74

0.02

926

0.00

05

1828

23

71

2 9

1045

10

58

3 11

39

Z20

0.10

476

0.00

12

0.28

370

0.00

38

4.09

760

0.05

79

0.07

321

0.00

18

1710

21

16

10

19

1654

12

14

28

33

94Z2

1 0.

1096

5 0.

0013

0.

3004

7 0.

0041

4.

5411

0 0.

0661

0.

0711

2 0.

0017

17

94

22

1694

20

17

39

12

1389

32

94

Z22

0.10

603

0.00

13

0.30

595

0.00

42

4.47

101

0.06

70

0.07

997

0.00

16

1732

23

17

21

21

1726

12

15

55

30

99Z2

3 0.

1132

8 0.

0013

0.

0993

8 0.

0013

1.

5514

3 0.

0218

0.

0216

1 0.

0004

18

53

20

611

8 95

1 9

432

8 33

Z24

0.10

520

0.00

15

0.26

363

0.00

40

3.81

550

0.06

56

0.04

804

0.00

19

1718

27

15

08

20

1596

14

94

8 37

88

Z25

0.10

519

0.00

15

0.29

069

0.00

40

4.21

383

0.06

69

0.07

207

0.00

17

1718

25

16

45

20

1677

13

14

07

31

96Z2

6 0.

1063

5 0.

0018

0.

2843

0 0.

0043

4.

1648

9 0.

0780

0.

0694

5 0.

0023

17

38

31

1613

22

16

67

15

1357

44

93

Z27

0.10

448

0.00

12

0.29

029

0.00

39

4.17

925

0.06

01

0.07

716

0.00

15

1705

22

16

43

19

1670

12

15

02

29

96Z2

8 0.

1065

6 0.

0012

0.

2965

0 0.

0040

4.

3536

7 0.

0618

0.

0835

8 0.

0016

17

42

21

1674

20

17

04

12

1622

30

96

Z29

0.10

784

0.00

14

0.31

667

0.00

44

4.70

723

0.07

16

0.08

418

0.00

20

1763

23

17

73

21

1769

13

16

34

38

101

Z30

0.11

263

0.00

17

0.09

442

0.00

14

1.45

968

0.02

54

0.01

540

0.00

06

1842

26

58

2 8

914

10

309

12

32

BA

C 4

1Z1

0.

1122

7 0.

0012

0.

2631

9 0.

0041

4.

0741

3 0.

0636

0.

0882

1 0.

0011

18

36

19

1506

21

16

49

13

1709

21

82

Z2

0.10

405

0.00

12

0.29

730

0.00

53

4.26

465

0.07

60

0.07

580

0.00

10

1698

21

16

78

27

1687

15

14

77

19

99Z3

0.

1056

3 0.

0014

0.

2807

5 0.

0052

4.

0882

2 0.

0779

0.

0702

6 0.

0012

17

25

24

1595

26

16

52

16

1372

22

92

Z4

0.11

123

0.00

13

0.28

362

0.00

48

4.34

873

0.07

41

0.08

868

0.00

13

1820

21

16

10

24

1703

14

17

17

24

88Z5

0.

1054

0 0.

0011

0.

3152

4 0.

0051

4.

5810

5 0.

0732

0.

0924

2 0.

0011

17

21

19

1766

25

17

46

13

1787

21

10

3Z6

0.

1113

8 0.

0011

0.

1986

1 0.

0033

3.

0491

1 0.

0497

0.

0528

4 0.

0006

18

22

19

1168

18

14

20

12

1041

12

64

Page 92: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-77-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

B

AC

41

(con

tinue

d)Z7

0.

1057

5 0.

0011

0.

2804

1 0.

0046

4.

0883

3 0.

0660

0.

0820

1 0.

0010

17

27

19

1593

23

16

52

13

1593

18

92

Z8

0.10

601

0.00

11

0.31

077

0.00

50

4.54

218

0.07

15

0.08

613

0.00

10

1732

18

17

45

24

1739

13

16

70

19

101

Z9

0.10

546

0.00

11

0.30

901

0.00

50

4.49

317

0.07

23

0.08

478

0.00

11

1722

19

17

36

25

1730

13

16

45

20

101

Z10

0.10

516

0.00

12

0.23

105

0.00

44

3.35

015

0.06

21

0.05

691

0.00

10

1717

21

13

40

23

1493

15

11

19

20

78Z1

1 0.

1052

2 0.

0015

0.

2776

4 0.

0055

4.

0263

0 0.

0811

0.

0603

6 0.

0019

17

18

26

1580

27

16

40

16

1185

36

92

Z12

0.12

301

0.00

17

0.13

704

0.00

24

2.32

409

0.04

23

0.01

299

0.00

02

2000

24

82

8 13

12

20

13

261

5 41

Z13

0.11

089

0.00

13

0.17

169

0.00

27

2.62

499

0.04

26

0.05

550

0.00

09

1814

21

10

21

15

1308

12

10

92

17

56Z1

4 0.

1019

2 0.

0015

0.

2191

9 0.

0037

3.

0714

1 0.

0538

0.

1937

3 0.

0249

16

59

27

1278

20

14

26

13

3579

42

2 77

Z15

0.10

608

0.00

11

0.31

621

0.00

52

4.62

435

0.07

44

0.08

607

0.00

10

1733

18

17

71

25

1754

13

16

69

19

102

Z16

0.10

906

0.00

12

0.27

132

0.00

43

4.07

919

0.06

37

0.07

295

0.00

13

1784

19

15

48

22

1650

13

14

23

25

87Z1

8 0.

1066

5 0.

0012

0.

2750

0 0.

0045

4.

0430

1 0.

0664

0.

0775

5 0.

0011

17

43

20

1566

23

16

43

13

1510

20

90

Z19

0.10

762

0.00

12

0.23

919

0.00

43

3.54

935

0.06

33

0.06

035

0.00

11

1760

21

13

83

22

1538

14

11

84

21

79Z2

0 0.

1064

1 0.

0011

0.

2946

1 0.

0050

4.

3216

8 0.

0726

0.

0911

0 0.

0013

17

39

19

1665

25

16

98

14

1762

23

96

Z21

0.10

637

0.00

12

0.28

811

0.00

44

4.22

138

0.06

61

0.10

375

0.00

22

1738

21

16

32

22

1678

13

19

95

40

94Z2

2 0.

1054

5 0.

0012

0.

3014

2 0.

0044

4.

3812

8 0.

0645

0.

0795

1 0.

0010

17

22

20

1698

22

17

09

12

1546

19

99

Z23

0.10

938

0.00

12

0.25

759

0.00

40

3.88

330

0.06

04

0.06

083

0.00

12

1789

20

14

78

20

1610

13

11

94

23

83Z2

4 0.

1086

1 0.

0012

0.

2785

9 0.

0042

4.

1704

3 0.

0635

0.

0689

4 0.

0010

17

76

20

1584

21

16

68

12

1348

19

89

Z25

0.10

700

0.00

13

0.22

474

0.00

34

3.31

383

0.05

24

0.06

043

0.00

12

1749

22

13

07

18

1484

12

11

86

22

75Z2

6 0.

1064

0 0.

0012

0.

2863

2 0.

0041

4.

1997

5 0.

0616

0.

0834

5 0.

0010

17

39

20

1623

21

16

74

12

1620

19

93

Z28

0.10

704

0.00

11

0.27

941

0.00

39

4.12

377

0.05

70

0.08

410

0.00

10

1750

19

15

88

19

1659

11

16

32

19

91Z2

9 0.

1050

2 0.

0011

0.

3005

1 0.

0042

4.

3511

2 0.

0601

0.

0856

6 0.

0010

17

15

19

1694

21

17

03

11

1661

19

99

Z30

0.10

878

0.00

15

0.16

564

0.00

27

2.48

385

0.04

30

0.03

566

0.00

11

1779

25

98

8 15

12

67

13

708

21

56Z3

1 0.

1057

1 0.

0011

0.

3000

6 0.

0043

4.

3727

7 0.

0621

0.

0848

8 0.

0013

17

27

19

1692

21

17

07

12

1647

24

98

Z32

0.10

681

0.00

11

0.27

940

0.00

42

4.11

883

0.06

14

0.07

931

0.00

17

1746

19

15

88

21

1658

12

15

43

32

91Z3

3 0.

1058

0 0.

0013

0.

2867

8 0.

0043

4.

1855

6 0.

0651

0.

0788

5 0.

0014

17

28

21

1625

22

16

71

13

1534

25

94

Z34

0.10

696

0.00

12

0.26

972

0.00

39

3.97

739

0.05

86

0.07

561

0.00

10

1748

20

15

39

20

1630

12

14

73

19

88Z3

5 0.

1057

9 0.

0011

0.

2993

8 0.

0042

4.

3663

3 0.

0600

0.

0849

6 0.

0010

17

28

19

1688

21

17

06

11

1648

19

98

Z36

0.10

768

0.00

12

0.28

972

0.00

45

4.30

325

0.06

63

0.06

290

0.00

18

1760

20

16

40

22

1694

13

12

33

34

93Z3

7 0.

1053

4 0.

0012

0.

2971

5 0.

0044

4.

3166

1 0.

0652

0.

0790

0 0.

0019

17

20

21

1677

22

16

97

12

1537

35

97

Z38

0.11

865

0.00

13

0.13

297

0.00

19

2.17

499

0.03

15

0.03

677

0.00

06

1936

19

80

5 11

11

73

10

730

11

42Z3

9 0.

1094

4 0.

0012

0.

2147

7 0.

0032

3.

2414

7 0.

0483

0.

0739

6 0.

0017

17

90

20

1254

17

14

67

12

1442

32

70

Z40

0.10

554

0.00

11

0.30

744

0.00

44

4.47

275

0.06

37

0.09

051

0.00

16

1724

19

17

28

22

1726

12

17

51

29

100

B

AC

41

sess

ion

2z0

1 0.

1047

0 0.

0012

0.

2670

0 0.

0033

3.

8531

7 0.

0497

0.

0937

7 0.

0014

17

09

21

1526

17

16

04

10

1812

26

89

z02

0.11

210

0.00

12

0.30

806

0.00

40

4.75

902

0.06

24

0.09

065

0.00

12

1834

19

17

31

20

1778

11

17

54

22

94z0

3 0.

1056

2 0.

0013

0.

3026

2 0.

0042

4.

4018

5 0.

0651

0.

0785

6 0.

0011

17

25

22

1704

21

17

13

12

1529

21

99

z04

0.10

558

0.00

12

0.30

697

0.00

41

4.46

518

0.06

23

0.09

282

0.00

14

1724

21

17

26

20

1725

12

17

94

25

100

z05

0.10

587

0.00

12

0.30

874

0.00

41

4.50

237

0.06

28

0.08

628

0.00

13

1729

21

17

35

20

1731

12

16

73

23

100

z06

0.10

470

0.00

12

0.26

617

0.00

37

3.83

733

0.05

58

0.07

086

0.00

10

1709

22

15

21

19

1601

12

13

84

19

89z0

7 0.

1066

7 0.

0012

0.

3124

6 0.

0042

4.

5917

8 0.

0641

0.

0861

1 0.

0012

17

43

20

1753

21

17

48

12

1670

22

10

1z0

8 0.

1068

4 0.

0012

0.

2999

9 0.

0039

4.

4156

5 0.

0593

0.

0863

6 0.

0011

17

46

20

1691

20

17

15

11

1674

21

97

z09

0.10

784

0.00

13

0.29

232

0.00

39

4.34

243

0.06

17

0.08

335

0.00

13

1763

22

16

53

20

1702

12

16

18

24

94z1

0 0.

1268

4 0.

0017

0.

2526

9 0.

0034

4.

4141

5 0.

0660

0.

0749

5 0.

0014

20

55

23

1452

18

17

15

12

1461

26

71

Z11

0.10

576

0.00

13

0.28

344

0.00

39

4.13

223

0.05

95

0.07

552

0.00

11

1728

22

16

09

19

1661

12

14

72

21

93

Page 93: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-78-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

B

AC

41

sess

ion

2 (c

ontin

ued)

Z12

0.10

417

0.00

13

0.30

358

0.00

44

4.35

752

0.06

71

0.06

555

0.00

11

1700

23

17

09

22

1704

13

12

83

21

101

Z13

0.10

863

0.00

12

0.22

023

0.00

29

3.29

796

0.04

52

0.04

359

0.00

06

1777

20

12

83

15

1481

11

86

2 11

72

Z14

0.10

603

0.00

13

0.21

831

0.00

31

3.19

122

0.04

77

0.03

948

0.00

07

1732

22

12

73

16

1455

12

78

3 13

73

Z15

0.10

493

0.00

13

0.30

840

0.00

41

4.46

071

0.06

32

0.08

799

0.00

13

1713

22

17

33

20

1724

12

17

05

24

101

Z16

0.10

557

0.00

12

0.32

641

0.00

44

4.74

991

0.06

63

0.09

171

0.00

13

1724

21

18

21

21

1776

12

17

74

24

106

Z17

0.10

612

0.00

16

0.28

770

0.00

41

4.20

876

0.07

00

0.07

337

0.00

11

1734

27

16

30

21

1676

14

14

31

20

94Z1

8 0.

1086

6 0.

0015

0.

0960

3 0.

0013

1.

4386

0 0.

0219

0.

0427

8 0.

0007

17

77

24

591

8 90

5 9

847

14

33Z1

9 0.

1050

0 0.

0012

0.

3187

8 0.

0042

4.

6146

5 0.

0635

0.

0868

9 0.

0013

17

14

21

1784

21

17

52

11

1684

23

10

4Z2

0 0.

1040

1 0.

0012

0.

2772

5 0.

0037

3.

9752

7 0.

0555

0.

0810

4 0.

0011

16

97

22

1578

18

16

29

11

1575

21

93

Z21

0.10

627

0.00

12

0.31

301

0.00

42

4.58

372

0.06

36

0.08

704

0.00

12

1736

20

17

56

20

1746

12

16

87

21

101

Z22

0.10

575

0.00

13

0.29

073

0.00

43

4.23

777

0.06

64

0.07

355

0.00

11

1727

22

16

45

21

1681

13

14

34

22

95Z2

3 0.

1057

9 0.

0013

0.

3109

7 0.

0042

4.

5343

5 0.

0678

0.

0845

4 0.

0013

17

28

23

1746

21

17

37

12

1640

25

10

1Z2

4 0.

1121

2 0.

0014

0.

2984

5 0.

0044

4.

6109

7 0.

0733

0.

0788

3 0.

0014

18

34

23

1684

22

17

51

13

1534

26

92

Z25

0.10

640

0.00

12

0.30

833

0.00

41

4.52

234

0.06

23

0.08

450

0.00

11

1739

20

17

33

20

1735

11

16

40

20

100

Z26

0.10

918

0.00

13

0.29

061

0.00

38

4.37

361

0.06

06

0.08

338

0.00

11

1786

21

16

45

19

1707

11

16

19

20

92Z2

7 0.

1081

9 0.

0015

0.

2289

5 0.

0034

3.

4163

6 0.

0567

0.

0631

8 0.

0013

17

69

25

1329

18

15

08

13

1238

24

75

Z28

0.12

320

0.00

15

0.11

619

0.00

16

1.97

337

0.02

82

0.03

834

0.00

06

2003

21

70

9 9

1107

10

76

1 11

35

Z29

0.10

570

0.00

14

0.30

008

0.00

44

4.37

043

0.07

13

0.07

772

0.00

13

1727

24

16

92

22

1707

13

15

13

24

98Z3

0 0.

1077

6 0.

0017

0.

2821

2 0.

0046

4.

1931

8 0.

0787

0.

0622

8 0.

0018

17

62

29

1602

23

16

73

15

1221

34

91

Z31

0.10

708

0.00

12

0.30

154

0.00

40

4.45

145

0.06

21

0.08

156

0.00

10

1750

21

16

99

20

1722

12

15

85

19

97Z3

2 0.

1045

9 0.

0012

0.

2983

4 0.

0039

4.

3018

7 0.

0580

0.

0785

4 0.

0010

17

07

20

1683

19

16

94

11

1528

18

99

Z33

0.10

537

0.00

11

0.30

297

0.00

40

4.40

117

0.05

82

0.07

865

0.00

09

1721

19

17

06

20

1713

11

15

30

17

99Z3

4 0.

1025

8 0.

0013

0.

3000

2 0.

0043

4.

2430

4 0.

0649

0.

0693

8 0.

0010

16

71

22

1691

22

16

82

13

1356

19

10

1Z3

5 0.

1124

2 0.

0012

0.

2978

2 0.

0039

4.

6154

4 0.

0607

0.

0865

1 0.

0010

18

39

19

1681

19

17

52

11

1677

19

91

Z36

0.10

868

0.00

13

0.22

354

0.00

33

3.34

858

0.05

12

0.04

948

0.00

06

1777

22

13

01

17

1493

12

97

6 12

73

Z37

0.10

386

0.00

12

0.31

105

0.00

42

4.45

437

0.06

21

0.07

769

0.00

10

1694

20

17

46

21

1723

12

15

12

18

103

Z38

0.10

542

0.00

11

0.30

131

0.00

41

4.37

954

0.06

03

0.07

414

0.00

09

1722

20

16

98

20

1709

11

14

46

17

99Z3

9 0.

1048

6 0.

0011

0.

3071

8 0.

0042

4.

4410

3 0.

0609

0.

0807

5 0.

0010

17

12

19

1727

21

17

20

11

1570

19

10

1Z4

0 0.

1057

4 0.

0013

0.

3071

3 0.

0042

4.

4776

8 0.

0664

0.

0756

6 0.

0009

17

27

22

1727

21

17

27

12

1474

17

10

0Z4

1 0.

1100

3 0.

0013

0.

2348

3 0.

0033

3.

5621

8 0.

0523

0.

0738

0 0.

0010

18

00

21

1360

17

15

41

12

1439

19

76

Z42

0.10

415

0.00

11

0.30

472

0.00

41

4.37

523

0.05

97

0.08

853

0.00

12

1699

20

17

15

20

1708

11

17

15

22

101

Z43

0.10

524

0.00

12

0.25

387

0.00

34

3.68

331

0.05

16

0.07

426

0.00

10

1719

20

14

58

18

1568

11

14

48

20

85Z4

4 0.

1057

1 0.

0011

0.

2889

4 0.

0039

4.

2105

3 0.

0578

0.

0776

7 0.

0011

17

27

20

1636

20

16

76

11

1512

20

95

Z45

0.10

533

0.00

13

0.28

593

0.00

40

4.15

217

0.06

23

0.08

289

0.00

15

1720

23

16

21

20

1665

12

16

10

27

94Z4

6 0.

1074

9 0.

0012

0.

2393

1 0.

0034

3.

5467

0 0.

0513

0.

0669

4 0.

0009

17

57

21

1383

17

15

38

11

1310

18

79

Z47

0.10

549

0.00

13

0.29

526

0.00

41

4.29

393

0.06

29

0.08

261

0.00

13

1723

22

16

68

20

1692

12

16

04

24

97Z4

8 0.

1066

7 0.

0013

0.

3008

7 0.

0041

4.

4247

2 0.

0656

0.

0858

0 0.

0012

17

43

22

1696

21

17

17

12

1664

22

97

Z49

0.10

588

0.00

13

0.30

695

0.00

42

4.48

110

0.06

62

0.08

786

0.00

15

1730

22

17

26

21

1728

12

17

02

27

100

Z50

0.11

175

0.00

13

0.19

017

0.00

28

2.93

197

0.04

51

0.04

884

0.00

08

1828

21

11

22

15

1390

12

96

4 15

61

Z51

0.10

425

0.00

15

0.30

310

0.00

43

4.35

623

0.07

03

0.08

602

0.00

15

1701

25

17

07

21

1704

13

16

68

28

100

Z52

0.10

554

0.00

13

0.28

520

0.00

46

4.15

453

0.06

76

0.04

780

0.00

14

1724

22

16

18

23

1665

13

94

4 28

94

Z53

0.10

628

0.00

12

0.30

356

0.00

42

4.44

784

0.06

37

0.08

622

0.00

13

1737

20

17

09

21

1721

12

16

72

24

98Z5

4 0.

1058

6 0.

0012

0.

3330

7 0.

0046

4.

8614

5 0.

0693

0.

0925

0 0.

0014

17

29

20

1853

22

17

96

12

1788

26

10

7Z5

5 0.

1095

9 0.

0016

0.

1916

9 0.

0028

2.

8963

3 0.

0476

0.

0859

5 0.

0015

17

93

26

1131

15

13

81

12

1667

28

63

Z56

0.10

484

0.00

11

0.29

464

0.00

41

4.25

899

0.06

05

0.08

011

0.00

12

1712

20

16

65

20

1686

12

15

58

22

97

Page 94: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-79-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

B

AC

41

sess

ion

2 (c

ontin

ued)

Z57

0.10

687

0.00

12

0.31

159

0.00

45

4.59

098

0.06

88

0.08

040

0.00

13

1747

21

17

49

22

1748

13

15

63

25

100

Z58

0.10

745

0.00

12

0.30

894

0.00

43

4.57

740

0.06

52

0.08

913

0.00

14

1757

20

17

36

21

1745

12

17

26

25

99Z5

9 0.

1056

1 0.

0012

0.

3117

5 0.

0043

4.

5392

1 0.

0669

0.

0843

9 0.

0012

17

25

21

1749

21

17

38

12

1638

22

10

1Z6

0 0.

1068

7 0.

0012

0.

3100

0 0.

0043

4.

5679

8 0.

0661

0.

0873

1 0.

0013

17

47

21

1741

21

17

43

12

1692

25

10

0

TAL

4Z1

0.

1064

6 0.

0011

3.

2691

8 0.

0414

0.

2227

3 0.

0028

0.

0694

0 0.

0007

17

40

19

1474

10

12

96

15

1356

13

75

Z2

0.10

547

0.00

14

4.42

015

0.06

95

0.30

400

0.00

43

0.09

771

0.00

16

1723

24

17

16

13

1711

21

18

84

29

99Z3

0.

1073

5 0.

0011

4.

4502

6 0.

0572

0.

3007

0 0.

0038

0.

0849

5 0.

0008

17

55

19

1722

11

16

95

19

1648

15

97

Z4

0.10

811

0.00

12

3.06

183

0.03

99

0.20

544

0.00

25

0.06

570

0.00

07

1768

20

14

23

10

1205

14

12

86

14

68Z5

0.

1135

4 0.

0020

2.

0816

8 0.

0393

0.

1329

8 0.

0019

0.

0479

4 0.

0007

18

57

31

1143

13

80

5 11

94

7 14

43

Z6

0.11

483

0.00

20

2.48

516

0.04

48

0.15

705

0.00

21

0.08

001

0.00

14

1877

30

12

68

13

940

12

1556

26

50

Z7

0.10

701

0.00

13

4.34

728

0.05

87

0.29

472

0.00

36

0.08

414

0.00

09

1749

21

17

02

11

1665

18

16

33

16

95Z8

0.

1034

0 0.

0013

3.

4992

0 0.

0496

0.

2455

3 0.

0031

0.

0736

3 0.

0009

16

86

22

1527

11

14

15

16

1436

17

84

Z9

0.11

600

0.00

17

2.70

045

0.04

31

0.16

892

0.00

22

0.03

563

0.00

04

1896

26

13

29

12

1006

12

70

8 9

53Z1

0 0.

1086

2 0.

0016

4.

2794

9 0.

0714

0.

2857

9 0.

0039

0.

0836

5 0.

0010

17

76

27

1689

14

16

21

19

1624

19

91

Z11

0.11

958

0.00

17

2.54

059

0.04

11

0.15

412

0.00

21

0.03

980

0.00

06

1950

25

12

84

12

924

12

789

11

47Z1

2 0.

1025

7 0.

0011

4.

0941

8 0.

0519

0.

2894

7 0.

0036

0.

0826

7 0.

0010

16

71

19

1653

10

16

39

18

1605

19

98

Z13

0.12

363

0.00

31

0.99

601

0.02

44

0.05

845

0.00

08

0.00

787

0.00

04

2009

44

70

2 12

36

6 5

158

7 18

Z14

0.11

240

0.00

14

2.22

595

0.03

04

0.14

362

0.00

18

0.04

183

0.00

05

1839

22

11

89

10

865

10

828

10

47Z1

5 0.

1045

6 0.

0012

4.

1900

1 0.

0573

0.

2905

8 0.

0038

0.

0840

4 0.

0011

17

07

20

1672

11

16

44

19

1631

20

96

Z16

0.10

377

0.00

18

4.33

296

0.07

60

0.30

292

0.00

38

0.08

173

0.00

17

1693

31

17

00

14

1706

19

15

88

32

101

Z17

0.10

748

0.00

16

3.67

176

0.05

80

0.24

777

0.00

31

0.07

918

0.00

14

1757

27

15

65

13

1427

16

15

40

27

81Z1

8 0.

1056

1 0.

0012

4.

3375

4 0.

0593

0.

2978

5 0.

0038

0.

0843

7 0.

0009

17

25

21

1701

11

16

81

19

1637

17

97

Z19

0.11

030

0.00

20

1.07

765

0.02

03

0.07

087

0.00

10

0.04

387

0.00

09

1804

32

74

3 10

44

1 6

868

18

24Z2

0 0.

1132

6 0.

0018

2.

3021

3 0.

0400

0.

1474

0 0.

0020

0.

0590

2 0.

0012

18

52

29

1213

12

88

6 11

11

59

23

48Z2

1 0.

1060

4 0.

0012

4.

1879

8 0.

0577

0.

2865

0 0.

0038

0.

0849

1 0.

0009

17

32

20

1672

11

16

24

19

1647

16

94

Z22

0.10

687

0.00

16

4.40

660

0.07

71

0.29

921

0.00

43

0.07

965

0.00

11

1747

27

17

14

14

1687

21

15

49

20

97Z2

3 0.

1085

9 0.

0012

2.

5104

6 0.

0339

0.

1677

0 0.

0022

0.

0435

8 0.

0004

17

76

19

1275

10

99

9 12

86

2 9

56Z2

4 0.

1027

4 0.

0013

4.

1407

1 0.

0561

0.

2923

5 0.

0035

0.

0763

0 0.

0016

16

74

22

1662

11

16

53

18

1486

30

99

Z25

0.11

444

0.00

14

1.53

417

0.02

18

0.09

724

0.00

13

0.05

365

0.00

08

1871

22

94

4 9

598

7 10

56

16

32Z2

6 0.

1657

1 0.

0037

1.

6996

4 0.

0382

0.

0743

7 0.

0011

0.

0338

0 0.

0014

25

15

37

1008

14

46

2 7

672

27

18Z2

7 0.

1028

9 0.

0012

4.

0764

4 0.

0570

0.

2873

3 0.

0039

0.

0794

7 0.

0019

16

77

21

1650

11

16

28

19

1546

35

97

Z28

0.10

552

0.00

13

4.56

774

0.06

81

0.31

412

0.00

42

0.08

423

0.00

18

1723

23

17

43

12

1761

21

16

35

33

102

Z29

0.10

448

0.00

16

4.41

532

0.07

25

0.30

657

0.00

41

0.08

676

0.00

14

1705

27

17

15

14

1724

20

16

82

27

101

Z30

0.10

530

0.00

13

4.50

105

0.06

68

0.31

009

0.00

41

0.08

811

0.00

21

1720

23

17

31

12

1741

20

17

07

39

101

Z31

0.12

677

0.00

21

1.39

973

0.02

41

0.08

009

0.00

10

0.04

362

0.00

13

2054

29

88

9 10

49

7 6

863

25

24Z3

2 0.

1228

1 0.

0017

2.

6966

3 0.

0413

0.

1592

7 0.

0021

0.

0500

6 0.

0014

19

98

24

1328

11

95

3 12

98

7 26

48

Z33

0.10

099

0.00

13

3.02

788

0.04

61

0.21

752

0.00

30

0.06

929

0.00

18

1642

24

14

15

12

1269

16

13

54

34

77Z3

4 0.

1029

4 0.

0012

4.

2523

0 0.

0588

0.

2996

3 0.

0038

0.

0833

9 0.

0015

16

78

22

1684

11

16

90

19

1619

27

10

1Z3

5 0.

1036

4 0.

0012

3.

8816

3 0.

0542

0.

2717

1 0.

0036

0.

0784

7 0.

0019

16

90

21

1610

11

15

50

18

1527

35

92

Z36

0.13

741

0.00

16

7.36

729

0.10

12

0.38

899

0.00

50

0.11

574

0.00

34

2195

20

21

57

12

2118

23

22

14

61

97Z3

7 0.

1034

0 0.

0012

4.

1730

2 0.

0595

0.

2927

4 0.

0039

0.

1041

3 0.

0034

16

86

22

1669

12

16

55

19

2002

62

98

Z38

0.10

425

0.00

12

4.33

141

0.05

93

0.30

144

0.00

39

0.08

588

0.00

23

1701

21

16

99

11

1698

19

16

65

43

100

Z39

0.10

443

0.00

16

4.48

214

0.07

59

0.31

134

0.00

42

0.08

376

0.00

25

1704

28

17

28

14

1747

21

16

26

46

103

Page 95: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-80-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

Spo

t20

7 Pb/

206 P

b20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

207 Pb

/206 Pb

20

7 Pb/

235 U

206 P

b/23

8 U20

8 Pb/

232 Th

% C

onc

TA

L 4

(con

tinue

d)Z4

0 0.

1058

8 0.

0012

4.

4223

8 0.

0623

0.

3030

2 0.

0040

0.

0792

6 0.

0017

17

30

21

1717

12

17

06

20

1542

32

99

Z41

0.10

458

0.00

14

4.44

567

0.06

68

0.30

835

0.00

40

0.08

608

0.00

17

1707

24

17

21

12

1733

20

16

69

32

102

Z42

0.10

486

0.00

15

4.54

810

0.07

32

0.31

463

0.00

42

0.08

923

0.00

18

1712

26

17

40

13

1763

21

17

28

33

103

Z43

0.10

495

0.00

19

4.39

876

0.08

64

0.30

388

0.00

44

0.08

560

0.00

37

1713

33

17

12

16

1711

22

16

60

69

100

Z44

0.10

571

0.00

13

4.30

821

0.06

26

0.29

560

0.00

38

0.07

631

0.00

11

1727

23

16

95

12

1670

19

14

86

21

97Z4

5 0.

1029

4 0.

0014

4.

0692

9 0.

0619

0.

2867

3 0.

0037

0.

1158

3 0.

0053

16

78

25

1648

12

16

25

19

2215

96

97

Z46

0.10

433

0.00

12

4.34

643

0.05

97

0.30

218

0.00

39

0.08

026

0.00

12

1703

21

17

02

11

1702

19

15

61

22

100

Z47

0.10

157

0.00

16

3.87

523

0.06

69

0.27

672

0.00

40

0.07

505

0.00

34

1653

28

16

09

14

1575

20

14

63

63

95Z4

8 0.

1040

5 0.

0011

3.

7767

2 0.

0483

0.

2633

0 0.

0033

0.

0689

5 0.

0011

16

98

19

1588

10

15

07

17

1348

21

89

Z49

0.10

593

0.00

19

4.09

238

0.08

00

0.28

031

0.00

40

0.08

058

0.00

21

1731

33

16

53

16

1593

20

15

66

38

92Z5

0 0.

1050

2 0.

0011

4.

2485

7 0.

0554

0.

2934

7 0.

0037

0.

0823

7 0.

0012

17

15

20

1684

11

16

59

18

1600

23

97

Z51

0.10

477

0.00

11

4.48

646

0.05

79

0.31

064

0.00

39

0.08

835

0.00

13

1710

20

17

29

11

1744

19

17

11

25

102

Z52

0.10

853

0.00

12

4.66

910

0.06

00

0.31

206

0.00

39

0.09

853

0.00

15

1775

19

17

62

11

1751

19

19

00

28

99Z5

3 0.

1038

9 0.

0012

4.

2605

2 0.

0563

0.

2974

9 0.

0038

0.

0868

6 0.

0013

16

95

20

1686

11

16

79

19

1684

25

99

Z54

0.09

871

0.00

19

3.74

315

0.07

09

0.27

512

0.00

39

0.07

660

0.00

56

1600

35

15

81

15

1567

20

14

92

105

98Z5

5 0.

1050

8 0.

0013

4.

4226

8 0.

0602

0.

3053

4 0.

0039

0.

0879

7 0.

0025

17

16

22

1717

11

17

18

19

1704

46

10

0

TAL

4 se

ssio

n 2

Z01

0.10

440

0.00

12

0.29

460

0.00

37

4.23

880

0.05

52

0.12

019

0.00

28

1704

21

16

65

18

1682

11

22

94

50

98Z0

2 0.

1028

9 0.

0012

0.

3036

5 0.

0038

4.

3058

4 0.

0565

0.

0971

1 0.

0022

16

77

21

1709

19

16

95

11

1873

41

10

2Z0

3 0.

1023

8 0.

0011

0.

2986

1 0.

0037

4.

2136

3 0.

0548

0.

1321

7 0.

0060

16

68

20

1684

18

16

77

11

2509

10

8 10

1Z0

4 0.

1024

4 0.

0013

0.

2977

1 0.

0037

4.

2031

0 0.

0578

0.

0881

0 0.

0015

16

69

23

1680

19

16

75

11

1707

28

10

1Z0

5 0.

1018

5 0.

0013

0.

2747

2 0.

0036

3.

8571

3 0.

0551

0.

0575

4 0.

0016

16

58

23

1565

18

16

05

12

1131

31

94

Z06

0.10

192

0.00

12

0.29

326

0.00

37

4.11

964

0.05

64

0.10

731

0.00

48

1659

22

16

58

19

1658

11

20

60

88

100

Z07

0.10

875

0.00

13

0.27

180

0.00

35

4.07

464

0.05

59

0.08

150

0.00

11

1779

21

15

50

18

1649

11

15

84

20

87Z0

8 0.

1013

3 0.

0011

0.

2811

1 0.

0035

3.

9263

8 0.

0497

0.

0858

1 0.

0015

16

49

20

1597

18

16

19

10

1664

27

97

Z09

0.10

790

0.00

14

0.24

052

0.00

33

3.57

758

0.05

34

0.06

587

0.00

11

1764

23

13

89

17

1545

12

12

89

20

79Z1

0 0.

1022

9 0.

0015

0.

2861

9 0.

0037

4.

0355

9 0.

0624

0.

0822

6 0.

0056

16

66

26

1623

19

16

41

13

1598

10

5 97

Z11

0.10

371

0.00

12

0.25

996

0.00

34

3.71

671

0.05

13

0.07

453

0.00

12

1692

22

14

90

17

1575

11

14

53

22

88Z1

2 0.

1042

4 0.

0013

0.

2728

1 0.

0037

3.

9205

2 0.

0564

0.

0842

2 0.

0019

17

01

22

1555

19

16

18

12

1634

36

91

Z13

0.10

315

0.00

11

0.29

016

0.00

36

4.12

634

0.05

26

0.08

618

0.00

15

1682

20

16

42

18

1660

10

16

71

29

98Z1

4 0.

1048

0 0.

0012

0.

2835

5 0.

0034

4.

0975

4 0.

0518

0.

0838

9 0.

0014

17

11

20

1609

17

16

54

10

1628

26

94

Z15

0.10

769

0.00

13

0.30

178

0.00

42

4.47

977

0.06

73

0.08

632

0.00

18

1761

22

17

00

21

1727

12

16

73

33

97Z1

6 0.

1038

3 0.

0011

0.

3003

9 0.

0037

4.

3002

5 0.

0543

0.

0969

8 0.

0019

16

94

20

1693

18

16

93

10

1871

35

10

0Z1

7 0.

1060

4 0.

0012

0.

2990

7 0.

0040

4.

3723

1 0.

0601

0.

0880

0 0.

0018

17

32

20

1687

20

17

07

11

1705

33

97

Z18

0.10

395

0.00

12

0.25

550

0.00

32

3.66

178

0.04

82

0.05

284

0.00

14

1696

20

14

67

17

1563

11

10

41

26

86Z1

9 0.

1061

9 0.

0036

0.

2844

3 0.

0049

4.

1644

5 0.

1370

0.

0818

6 0.

0018

17

35

60

1614

25

16

67

27

1590

34

93

Z20

0.10

662

0.00

14

0.30

480

0.00

39

4.48

036

0.06

34

0.08

766

0.00

16

1742

23

17

15

19

1727

12

16

98

31

98*

indi

cate

s met

amor

phic

zirc

on.

Page 96: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-81-

Chapter 3 Supplementary Material

Supp

lem

enta

ry T

able

2. U

-Pb

mon

azite

dat

a fr

om th

e Fo

wle

r Dom

ain

Rad

ioge

nic

Rat

ios

Age

(Ma)

S

pot

207 P

b/20

6 Pb

206 P

b/23

8 U20

7 Pb/

235 U

207 Pb

/206 Pb

20

6 Pb/

238 U

207 P

b/23

5 U%

Con

B

AC

18M

10.

0986

30.

0011

0.29

168

0.00

383.

9742

10.

0523

1598

2016

5019

1629

1199

M2

0.10

223

0.00

230.

3342

90.

0054

4.72

004

0.10

8316

6541

1859

2617

7119

97M

30.

1053

40.

0011

0.31

967

0.00

424.

6517

70.

0609

1720

1917

8820

1759

1195

M4

0.10

309

0.00

110.

3030

30.

0040

4.31

522

0.05

6116

8119

1706

2016

9611

98M

50.

1024

40.

0010

0.31

024

0.00

404.

3903

20.

0567

1669

1917

4220

1711

1197

M6

0.10

486

0.00

120.

3209

90.

0042

4.64

990

0.06

3417

1220

1795

2117

5811

97M

70.

1068

70.

0016

0.30

522

0.00

434.

5066

20.

0757

1747

2817

1721

1732

1499

M8

0.10

697

0.00

180.

3128

80.

0045

4.62

412

0.08

2317

4830

1755

2217

5415

93M

90.

1040

60.

0014

0.31

055

0.00

434.

4643

50.

0695

1698

2517

4321

1724

1397

M10

0.10

526

0.00

120.

3047

70.

0041

4.43

258

0.06

0717

1920

1715

2017

1811

100

M11

0.10

312

0.00

110.

3544

70.

0047

5.04

903

0.06

7416

8119

1956

2218

2811

99M

120.

1039

60.

0011

0.30

288

0.00

404.

3491

90.

0575

1696

1917

0620

1703

1198

M13

0.10

751

0.00

110.

3221

80.

0043

4.78

443

0.06

3617

5819

1800

2117

8211

100

M14

0.10

573

0.00

110.

3296

40.

0044

4.81

412

0.06

4317

2719

1837

2117

8711

98M

150.

1031

20.

0010

0.31

999

0.00

424.

5580

00.

0591

1681

1817

9021

1742

1198

M16

0.10

268

0.00

150.

3224

20.

0045

4.57

212

0.07

2616

7326

1802

2217

4413

97M

170.

1151

80.

0013

0.33

059

0.00

445.

2596

90.

0720

1883

2018

4121

1862

1210

1M

180.

1026

20.

0010

0.32

313

0.00

434.

5802

00.

0599

1672

1918

0521

1746

1110

0M

190.

1020

70.

0012

0.31

674

0.00

434.

4652

90.

0622

1662

2117

7421

1725

1299

M20

0.10

549

0.00

130.

3209

50.

0044

4.67

628

0.06

8517

2323

1794

2117

6312

101

BA

C41

M1

0.10

214

0.00

110.

2926

60.

0038

4.12

897

0.05

5216

6320

1655

1916

6011

99M

20.

1022

80.

0011

0.28

824

0.00

384.

0725

80.

0537

1666

1916

3319

1649

1198

M3

0.10

171

0.00

110.

2921

30.

0038

4.10

458

0.05

4816

5620

1652

1916

5511

100

M4

0.10

199

0.00

100.

3005

00.

0039

4.23

377

0.05

3816

6118

1694

1916

8110

102

M5

0.10

131

0.00

100.

2985

20.

0039

4.17

764

0.05

3316

4818

1684

1916

7010

102

M6

0.10

125

0.00

100.

3004

70.

0039

4.20

265

0.05

3416

4718

1694

1916

7510

103

M7

0.10

088

0.00

110.

2917

10.

0038

4.06

530

0.05

4516

4020

1650

1916

4711

101

M8

0.10

308

0.00

110.

2985

80.

0039

4.25

187

0.05

5216

8019

1684

1916

8411

100

M9

0.10

206

0.00

100.

2957

20.

0039

4.16

982

0.05

3816

6219

1670

1916

6811

100

M10

0.10

045

0.00

110.

2938

80.

0039

4.07

851

0.05

4416

3320

1661

1916

5011

102

M11

0.10

244

0.00

100.

3026

50.

0040

4.28

258

0.05

5716

6918

1705

2016

9011

102

M12

0.10

258

0.00

100.

3037

10.

0040

4.30

387

0.05

6216

7118

1710

2016

9411

102

M13

0.10

230

0.00

110.

3067

40.

0041

4.33

466

0.05

8916

6620

1725

2017

0011

103

M14

0.10

284

0.00

110.

3024

90.

0040

4.29

729

0.05

6416

7619

1704

2016

9311

102

M15

0.10

300

0.00

100.

2966

20.

0039

4.22

043

0.05

5416

7919

1675

1916

7811

100

M16

0.10

272

0.00

100.

2949

10.

0039

4.18

436

0.05

4816

7419

1666

1916

7111

100

M17

0.10

245

0.00

100.

2977

80.

0039

4.21

426

0.05

5416

6919

1680

1916

7711

101

M18

0.10

305

0.00

110.

2960

00.

0039

4.21

289

0.05

5216

8019

1671

1916

7711

99M

190.

1015

30.

0011

0.29

153

0.00

394.

0886

30.

0552

1652

2016

4919

1652

1110

0M

200.

1032

40.

0011

0.30

053

0.00

404.

2857

10.

0562

1683

1916

9420

1691

1110

1M

210.

1017

20.

0011

0.29

220

0.00

384.

1062

40.

0547

1656

2016

5319

1656

1110

0M

220.

1026

10.

0011

0.29

617

0.00

394.

1984

80.

0555

1672

1916

7219

1674

1110

0M

230.

1021

50.

0010

0.29

629

0.00

384.

1815

90.

0537

1664

1916

7319

1670

1110

1M

240.

1029

10.

0011

0.30

298

0.00

404.

3076

40.

0584

1677

2017

0620

1695

1110

2M

250.

1033

10.

0011

0.28

244

0.00

374.

0312

50.

0536

1684

2016

0418

1641

1195

Page 97: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-82-

Chapter 3 Supplementary Material

Rad

ioge

nic

Rat

ios

Age

(Ma)

S

pot

207 P

b/20

6 Pb

206 P

b/23

8 U20

7 Pb/

235 U

207 Pb

/206 Pb

20

6 Pb/

238 U

207 P

b/23

5 U%

Con

M

260.

1026

40.

0011

0.29

305

0.00

374.

1555

00.

0533

1672

1916

5719

1665

1099

M27

0.10

283

0.00

110.

2933

10.

0037

4.16

733

0.05

3016

7619

1658

1916

6810

99M

280.

1005

40.

0011

0.27

946

0.00

353.

8817

10.

0511

1634

2015

8918

1610

1197

M29

0.10

165

0.00

110.

2851

80.

0036

4.00

500

0.05

2516

5520

1617

1816

3511

98M

300.

1019

60.

0011

0.28

524

0.00

364.

0181

90.

0525

1660

2016

1818

1638

1197

CO

L20D

M

10.

1043

70.

0011

0.30

711

0.00

404.

4272

90.

0581

1703

1917

2720

1718

1199

M2

0.10

315

0.00

110.

3024

10.

0040

4.30

852

0.05

6116

8219

1703

2016

9511

100

M3

0.10

206

0.00

110.

3017

10.

0040

4.25

291

0.05

6216

6219

1700

2016

8411

99M

40.

1026

60.

0011

0.31

147

0.00

414.

4165

80.

0578

1673

1917

4820

1716

1198

M5

0.10

318

0.00

110.

3022

60.

0040

4.30

759

0.05

7616

8220

1703

2016

9511

100

M6

0.10

309

0.00

100.

3009

30.

0040

4.28

506

0.05

5616

8118

1696

2016

9111

100

M7

0.10

242

0.00

110.

3043

00.

0041

4.30

464

0.05

8616

6820

1713

2016

9411

99M

80.

1035

80.

0012

0.30

861

0.00

424.

4152

60.

0616

1689

2117

3420

1715

1299

M9

0.10

365

0.00

110.

3070

70.

0041

4.39

617

0.05

8416

9019

1726

2017

1211

99M

100.

1039

20.

0011

0.30

720

0.00

414.

4097

00.

0596

1695

2017

2720

1714

1199

M11

0.10

307

0.00

110.

3092

70.

0041

4.40

309

0.05

8816

8019

1737

2017

1311

99M

120.

1050

90.

0011

0.30

995

0.00

414.

4995

10.

0593

1716

1917

4120

1731

1199

M13

0.10

303

0.00

110.

3225

70.

0043

4.59

041

0.06

2616

7920

1802

2117

4811

97M

140.

1036

20.

0011

0.31

373

0.00

424.

4899

40.

0597

1690

1917

5920

1729

1198

M15

0.10

489

0.00

160.

3031

00.

0043

4.39

120

0.07

3517

1227

1707

2117

1114

100

M16

0.10

386

0.00

110.

3041

30.

0041

4.36

285

0.05

9316

9420

1712

2017

0511

100

M17

0.10

269

0.00

100.

3047

00.

0040

4.32

165

0.05

6716

7318

1715

2016

9811

99M

180.

1042

50.

0011

0.30

350

0.00

404.

3699

20.

0575

1701

1917

0920

1707

1110

0M

190.

1044

60.

0011

0.30

835

0.00

414.

4486

00.

0588

1705

1917

3320

1721

1199

M20

0.10

585

0.00

120.

2950

40.

0040

4.31

336

0.06

1117

2921

1667

2016

9612

102

TAL2

0M

10.

1031

30.

0013

0.29

468

0.00

394.

1982

20.

0608

1681

2316

6519

1674

1210

0M

20.

1020

70.

0013

0.29

305

0.00

394.

1315

60.

0597

1662

2316

5719

1661

1210

0M

30.

1053

20.

0015

0.29

696

0.00

414.

3205

50.

0693

1720

2616

7620

1697

1310

0M

40.

1021

40.

0012

0.29

859

0.00

394.

2130

60.

0582

1663

2116

8419

1677

1110

0M

50.

1023

90.

0012

0.28

515

0.00

374.

0338

80.

0551

1668

2116

1719

1641

1110

0M

60.

1024

40.

0011

0.29

600

0.00

384.

1887

80.

0546

1669

1916

7219

1672

1110

0M

70.

1022

50.

0011

0.29

465

0.00

384.

1639

60.

0551

1665

2016

6519

1667

1110

0M

80.

1048

20.

0014

0.29

116

0.00

394.

2161

00.

0639

1711

2416

4720

1677

1210

1M

90.

1035

50.

0013

0.30

219

0.00

404.

3224

90.

0621

1689

2217

0220

1698

1210

0M

100.

1020

10.

0012

0.29

102

0.00

384.

1007

90.

0563

1661

2116

4719

1655

1110

0M

110.

1045

90.

0014

0.29

542

0.00

404.

2670

90.

0661

1707

2516

6920

1687

1310

0M

120.

1034

00.

0013

0.29

598

0.00

394.

2274

70.

0614

1686

2316

7120

1679

1210

0M

130.

1024

60.

0011

0.29

478

0.00

384.

1720

10.

0543

1669

1916

6519

1669

1110

0M

140.

1024

80.

0011

0.29

400

0.00

384.

1616

50.

0541

1670

1916

6219

1667

1110

0M

150.

1023

00.

0011

0.29

576

0.00

384.

1795

60.

0546

1666

1916

7019

1670

1110

1M

160.

1023

00.

0011

0.29

665

0.00

384.

1921

50.

0542

1666

1916

7519

1673

1110

0M

170.

1025

40.

0011

0.29

529

0.00

384.

1826

90.

0546

1671

1916

6819

1671

1110

0M

180.

1014

40.

0011

0.29

337

0.00

384.

1110

70.

0533

1651

1916

5819

1657

1110

1M

190.

1024

60.

0011

0.29

733

0.00

384.

2085

60.

0547

1669

1916

7819

1676

1110

2M

200.

1025

80.

0013

0.29

603

0.00

394.

1951

20.

0613

1671

2316

7220

1673

1210

1

Page 98: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-83-

Chapter 3 Supplementary Material

Sup

plem

enta

ry T

able

3.

Hf

isot

opic

dat

a Blic

hert

-Tof

t et

al,

1997

(1.

93x1

0-11 )

Sch

erer

et

al.,

200

1 (1

.865

x10-1

1 )Biz

zarr

o et

al.,

200

3 (1

.983

x10-1

1 )

Ana

lysi

s 17

6 Hf/17

7 Hf

1 S

.D.

176 Lu

/177 H

f 17

6 Yb/17

7 Hf

AG

EH

f iH

f2S

D

T DM

(Ga)

T D

MCru

stal

(Ga)

H

f iH

f

T DM

(Ga)

T D

MCru

stal

(Ga)

H

f iH

f

T DM

(Ga)

T D

MCru

stal

(Ga)

C

OL2

0D1-

07

0.28

1710

0.

0000

34

0.00

0710

0.

0187

82

1872

0.

2816

84

4.7

2.38

2.

07

2.21

0.

2816

85

3.3

2.15

2.

33

0.28

1683

5.

9 2.

02

2.12

C

OL2

0D1-

12

0.28

1601

0.

0000

20

0.00

0462

0.

0125

70

1768

0.

2815

85

-1.2

1.

40

2.20

2.

50

0.28

1586

-2

.6

2.28

2.

63

0.28

1585

-0

.1

2.15

2.

40

CO

L20D

1-13

0.

2817

01

0.00

0016

0.

0010

88

0.02

7873

19

52

0.28

1659

5.

8 1.

12

2.11

2.

21

0.28

1661

4.

3 2.

18

2.33

0.

2816

58

7.0

2.05

2.

12

CO

L20D

1-17

0.

2815

77

0.00

0016

0.

0009

56

0.02

6964

20

67

0.28

1538

4.

2 1.

12

2.26

2.

40

0.28

1539

2.

6 2.

34

2.53

0.

2815

37

5.5

2.20

2.

30

CO

L20D

1-16

0.

2816

40

0.00

0014

0.

0006

48

0.01

7734

18

37

0.28

1617

1.

5 0.

98

2.16

2.

38

0.28

1617

0.

1 2.

24

2.51

0.

2816

16

2.7

2.11

2.

29

CO

L20D

1-19

0.

2816

53

0.00

0011

0.

0010

20

0.02

7623

17

45

0.28

1618

-0

.6

0.77

2.

17

2.44

0.

2816

19

-1.9

2.

24

2.57

0.

2816

17

0.5

2.11

2.

35

CO

L20D

1-20

0.

2816

84

0.00

0021

0.

0007

46

0.01

9943

17

89

0.28

1658

1.

9 1.

47

2.11

2.

33

0.28

1659

0.

5 2.

18

2.45

0.

2816

57

3.0

2.05

2.

23

CO

L20D

1-21

0.

2816

95

0.00

0012

0.

0008

50

0.02

1709

19

55

0.28

1662

5.

9 0.

84

2.10

2.

20

0.28

1663

4.

4 2.

18

2.32

0.

2816

61

7.2

2.05

2.

11

CO

L20D

1-22

a 0.

2817

07

0.00

0019

0.

0014

29

0.04

3272

19

76

0.28

1651

6.

0 1.

33

2.12

2.

21

0.28

1653

4.

5 2.

19

2.33

0.

2816

50

7.3

2.06

2.

12

CO

L20D

1-22

b 0.

2816

24

0.00

0026

0.

0002

14

0.00

6210

19

76

0.28

1616

4.

8 1.

82

2.16

2.

29

0.28

1616

3.

2 2.

24

2.42

0.

2816

15

6.1

2.10

2.

19

CO

L20D

1-24

0.

2816

69

0.00

0012

0.

0007

34

0.02

0215

17

69

0.28

1644

0.

9 0.

84

2.13

2.

37

0.28

1644

-0

.5

2.20

2.

49

0.28

1643

2.

0 2.

07

2.28

C

OL2

0D1-

25

0.28

1629

0.

0000

14

0.00

0606

0.

0155

38

1698

0.

2816

09

-2.0

0.

98

2.18

2.

50

0.28

1610

-3

.3

2.25

2.

62

0.28

1608

-0

.9

2.12

2.

40

CO

L20D

1-28

0.

2816

60

0.00

0023

0.

0008

31

0.02

5168

19

62

0.28

1628

4.

9 1.

61

2.15

2.

27

0.28

1629

3.

3 2.

22

2.40

0.

2816

27

6.1

2.09

2.

18

CO

L20D

2-31

0.

2816

12

0.00

0012

0.

0008

45

0.02

3362

18

36

0.28

1582

0.

3 0.

84

2.21

2.

46

0.28

1583

-1

.2

2.29

2.

59

0.28

1581

1.

4 2.

15

2.36

C

OL2

0D2-

33

0.28

1683

0.

0000

19

0.00

0682

0.

0177

08

1707

0.

2816

60

0.0

1.33

2.

11

2.38

0.

2816

61

-1.3

2.

18

2.50

0.

2816

60

1.1

2.05

2.

28

CO

L20D

2-34

0.

2816

39

0.00

0014

0.

0007

55

0.02

1398

17

99

0.28

1612

0.

5 0.

98

2.17

2.

42

0.28

1613

-0

.9

2.25

2.

54

0.28

1612

1.

6 2.

11

2.32

C

OL2

0D2-

36

0.28

1578

0.

0000

23

0.00

0986

0.

0270

58

1749

0.

2815

44

-3.1

1.

61

2.27

2.

60

0.28

1545

-4

.5

2.34

2.

73

0.28

1543

-2

.0

2.20

2.

50

CO

L20D

2-37

0.

2810

86

0.00

0018

0.

0006

50

0.01

6833

28

14

0.28

1050

4.

6 1.

26

2.89

2.

94

0.28

1051

2.

4 2.

99

3.11

0.

2810

49

6.5

2.81

2.

81

CO

L20D

2-39

0.

2817

65

0.00

0019

0.

0009

03

0.02

3428

17

30

0.28

1734

3.

2 1.

33

2.01

2.

20

0.28

1735

1.

8 2.

08

2.31

0.

2817

33

4.3

1.96

2.

11

CO

L20D

2-40

0.

2809

37

0.00

0015

0.

0006

45

0.01

7581

31

31

0.28

0897

6.

9 1.

05

3.08

3.

05

0.28

0898

4.

4 3.

19

3.23

0.

2808

96

8.9

3.00

2.

91

CO

L20D

2-42

0.

2815

96

0.00

0013

0.

0009

41

0.02

6535

17

87

0.28

1563

-1

.6

0.91

2.

24

2.54

0.

2815

64

-2.9

2.

32

2.66

0.

2815

62

-0.4

2.

18

2.44

C

OL2

0D2-

43

0.28

1701

0.

0000

24

0.00

0830

0.

0225

13

1730

0.

2816

73

1.0

1.68

2.

09

2.33

0.

2816

74

-0.3

2.

17

2.45

0.

2816

72

2.1

2.04

2.

24

CO

L20D

2-44

0.

2816

37

0.00

0015

0.

0001

67

0.00

4867

16

89

0.28

1631

-1

.4

1.05

2.

14

2.45

0.

2816

32

-2.8

2.

22

2.58

0.

2816

31

-0.4

2.

08

2.36

C

OL2

0D2-

47

0.28

1751

0.

0000

35

0.00

1461

0.

0391

99

1776

0.

2817

00

3.0

2.45

2.

06

2.24

0.

2817

02

1.7

2.13

2.

36

0.28

1699

4.

1 2.

01

2.15

C

OL2

0D2-

48

0.28

1127

0.

0000

20

0.00

0761

0.

0224

92

2378

0.

2810

91

-4.3

1.

40

2.84

3.

16

0.28

1092

-6

.2

2.94

3.

33

0.28

1090

-2

.8

2.77

3.

03

CO

L20D

2-51

0.

2811

00

0.00

0020

0.

0006

13

0.01

6637

28

41

0.28

1065

5.

9 1.

40

2.87

2.

89

0.28

1067

3.

6 2.

97

3.06

0.

2810

64

7.7

2.79

2.

76

CO

L20D

2-52

0.

2816

53

0.00

0017

0.

0008

47

0.02

1767

17

12

0.28

1625

-1

.1

1.19

2.

16

2.45

0.

2816

26

-2.5

2.

23

2.57

0.

2816

24

-0.1

2.

10

2.36

C

OL2

0D2-

54

0.28

1588

0.

0000

11

0.00

0536

0.

0150

54

1712

0.

2815

70

-3.1

0.

77

2.23

2.

57

0.28

1571

-4

.4

2.30

2.

70

0.28

1569

-2

.0

2.17

2.

47

CO

L20D

2-55

0.

2816

77

0.00

0015

0.

0008

04

0.02

2428

18

36

0.28

1648

2.

6 1.

05

2.12

2.

32

0.28

1649

1.

2 2.

20

2.44

0.

2816

47

3.8

2.07

2.

22

CO

L20D

2-56

0.

2816

33

0.00

0020

0.

0008

84

0.02

3029

17

84

0.28

1602

-0

.3

1.40

2.

19

2.45

0.

2816

03

-1.6

2.

26

2.58

0.

2816

01

0.9

2.13

2.

36

CO

L20D

2-57

0.

2816

65

0.00

0026

0.

0008

60

0.02

3749

17

83

0.28

1635

0.

9 1.

82

2.14

2.

38

0.28

1636

-0

.5

2.22

2.

50

0.28

1634

2.

0 2.

09

2.29

C

OL2

0D2-

58

0.28

1586

0.

0000

13

0.00

0736

0.

0183

92

1676

0.

2815

62

-4.2

0.

91

2.24

2.

61

0.28

1563

-5

.5

2.32

2.

74

0.28

1561

-3

.2

2.18

2.

51

CO

L20D

2-60

0.

2816

03

0.00

0013

0.

0007

86

0.02

0179

17

07

0.28

1577

-3

.0

0.91

2.

22

2.56

0.

2815

78

-4.3

2.

30

2.69

0.

2815

76

-1.9

2.

16

2.46

BA

C41

-02

0.28

1571

0.

0000

18

0.00

1344

0.

0381

87

1698

0.

2815

26

-5.0

1.

26

2.30

2.

68

0.28

1528

-6

.3

2.38

2.

80

0.28

1525

-3

.9

2.23

2.

58

BA

C41

-03

0.28

1635

0.

0000

27

0.00

2774

0.

0911

78

1725

0.

2815

41

-3.8

1.

89

2.30

2.

62

0.28

1544

-5

.0

2.38

2.

75

0.28

1538

-2

.8

2.24

2.

53

BA

C41

-05

0.28

1562

0.

0000

21

0.00

1293

0.

0347

22

1721

0.

2815

18

-4.7

1.

47

2.30

2.

68

0.28

1520

-6

.0

2.39

2.

81

0.28

1517

-3

.6

2.24

2.

58

Page 99: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-84-

Chapter 3 Supplementary MaterialBlic

hert

-Tof

t et

al,

1997

(1.

93x1

0-11 )

Sch

erer

et

al.,

200

1 (1

.865

x10-1

1 )Biz

zarr

o et

al.,

200

3 (1

.983

x10-1

1 )

Ana

lysi

s 17

6 Hf/17

7 Hf

1 S

.D.

176 Lu

/177 H

f 17

6 Yb/17

7 Hf

AG

EH

f iH

f2S

D

T DM

(Ga)

T D

MCru

stal

(Ga)

H

f iH

f

T DM

(Ga)

T D

MCru

stal

(Ga)

H

f iH

f

T DM

(Ga)

T D

MCru

stal

(Ga)

B

AC

41-0

7 0.

2816

85

0.00

0023

0.

0018

98

0.05

2416

17

27

0.28

1621

-0

.9

1.61

2.

18

2.45

0.

2816

23

-2.2

2.

25

2.57

0.

2816

19

0.1

2.12

2.

36

BA

C41

-08

0.28

1644

0.

0000

22

0.00

1959

0.

0582

21

1732

0.

2815

77

-2.3

1.

54

2.23

2.

54

0.28

1580

-3

.6

2.31

2.

66

0.28

1576

-1

.3

2.17

2.

45

BA

C41

-09

0.28

1710

0.

0000

24

0.00

0693

0.

0179

68

1722

0.

2816

87

1.3

1.68

2.

07

2.31

0.

2816

87

0.0

2.15

2.

43

0.28

1686

2.

4 2.

02

2.22

B

AC

41-1

1 0.

2816

91

0.00

0028

0.

0032

18

0.09

8705

17

18

0.28

1582

-2

.5

1.96

2.

25

2.54

0.

2815

86

-3.7

2.

32

2.66

0.

2815

79

-1.5

2.

19

2.45

B

AC

41-1

5 0.

2816

91

0.00

0025

0.

0014

43

0.04

0903

17

33

0.28

1642

0.

0 1.

75

2.14

2.

40

0.28

1644

-1

.3

2.22

2.

52

0.28

1641

1.

0 2.

08

2.31

B

AC

41-1

8 0.

2816

57

0.00

0022

0.

0012

02

0.03

6601

17

43

0.28

1616

-0

.7

1.54

2.

17

2.45

0.

2816

17

-2.1

2.

25

2.57

0.

2816

15

0.4

2.11

2.

36

BA

C41

-20

0.28

1695

0.

0000

23

0.00

1326

0.

0371

89

1739

0.

2816

50

0.4

1.61

2.

13

2.38

0.

2816

51

-0.9

2.

20

2.50

0.

2816

48

1.5

2.07

2.

29

BA

C41

-21

0.28

1705

0.

0000

47

0.00

2339

0.

0670

97

1738

0.

2816

25

-0.5

3.

29

2.17

2.

43

0.28

1628

-1

.8

2.25

2.

55

0.28

1623

0.

5 2.

12

2.34

B

AC

41-2

2 0.

2816

33

0.00

0019

0.

0016

34

0.05

1950

17

22

0.28

1578

-2

.6

1.33

2.

23

2.55

0.

2815

80

-3.9

2.

31

2.67

0.

2815

76

-1.5

2.

17

2.45

B

AC

41-2

6 0.

2817

28

0.00

0015

0.

0009

34

0.02

7874

17

39

0.28

1696

2.

0 1.

05

2.06

2.

28

0.28

1697

0.

7 2.

14

2.40

0.

2816

95

3.1

2.01

2.

19

BA

C41

-28

0.28

1570

0.

0000

31

0.00

2189

0.

0716

57

1750

0.

2814

95

-4.9

2.

17

2.35

2.

71

0.28

1497

-6

.2

2.43

2.

84

0.28

1493

-3

.8

2.29

2.

61

BA

C41

-29

0.28

1781

0.

0000

21

0.00

1307

0.

0371

67

1715

0.

2817

37

2.9

1.47

2.

01

2.20

0.

2817

39

1.6

2.08

2.

32

0.28

1736

4.

0 1.

96

2.12

B

AC

41-3

1 0.

2816

68

0.00

0054

0.

0020

93

0.05

8775

17

27

0.28

1597

-1

.8

3.78

2.

21

2.50

0.

2815

99

-3.1

2.

29

2.62

0.

2815

95

-0.7

2.

15

2.41

B

AC

41-3

2 0.

2816

24

0.00

0046

0.

0027

45

0.07

9886

17

46

0.28

1530

-3

.7

3.22

2.

31

2.64

0.

2815

33

-5.0

2.

39

2.76

0.

2815

27

-2.7

2.

25

2.54

B

AC

41-3

3 0.

2818

16

0.00

0083

0.

0035

04

0.10

0363

17

28

0.28

1697

1.

8 5.

81

2.09

2.

28

0.28

1701

0.

6 2.

16

2.39

0.

2816

94

2.8

2.03

2.

20

BA

C41

-36

0.28

1705

0.

0000

27

0.00

3210

0.

1004

15

1760

0.

2815

94

-1.1

1.

89

2.23

2.

49

0.28

1598

-2

.3

2.30

2.

60

0.28

1591

-0

.1

2.17

2.

39

BA

C41

-40

0.28

1719

0.

0000

43

0.00

1038

0.

0281

72

1724

0.

2816

84

1.2

3.01

2.

08

2.31

0.

2816

85

-0.1

2.

15

2.43

0.

2816

83

2.3

2.03

2.

22

B

AC

18-1

0 0.

2816

45

0.00

0081

0.

0006

00

0.01

7785

17

45

0.28

1624

-0

.4

5.67

2.

15

2.43

0.

2816

25

-1.7

2.

23

2.55

0.

2816

24

0.7

2.10

2.

33

BA

C18

-16

0.28

1244

0.

0003

10

0.00

0926

0.

0268

36

1766

0.

2812

12

-14.

5 21

.70

2.70

3.

31

0.28

1213

-1

5.9

2.80

3.

46

0.28

1211

-1

3.4

2.63

3.

19

BA

C18

-27

0.28

1770

0.

0000

19

0.00

1119

0.

0314

36

1730

0.

2817

32

3.1

1.33

2.

02

2.20

0.

2817

33

1.8

2.09

2.

32

0.28

1731

4.

2 1.

96

2.12

B

AC

18-3

5 0.

2816

90

0.00

0017

0.

0012

12

0.03

3733

17

58

0.28

1648

0.

8 1.

19

2.13

2.

37

0.28

1650

-0

.6

2.20

2.

49

0.28

1647

1.

9 2.

07

2.28

B

AC

18-3

7 0.

2816

84

0.00

0021

0.

0006

07

0.01

4142

17

23

0.28

1663

0.

5 1.

47

2.10

2.

36

0.28

1664

-0

.8

2.18

2.

48

0.28

1663

1.

6 2.

05

2.27

B

AC

18-3

8 0.

2816

76

0.00

0014

0.

0013

99

0.04

2245

17

33

0.28

1628

-0

.5

0.98

2.

16

2.43

0.

2816

30

-1.8

2.

23

2.55

0.

2816

27

0.6

2.10

2.

34

BA

C18

-43

0.28

1720

0.

0000

15

0.00

1192

0.

0343

73

1719

0.

2816

80

1.0

1.05

2.

09

2.33

0.

2816

81

-0.3

2.

16

2.44

0.

2816

79

2.1

2.03

2.

24

TA

L4-0

2 0.

2819

79

0.00

0008

0.

0019

15

0.05

4919

17

23

0.28

1914

9.

4 0.

57

1.77

1.

81

0.28

1916

8.

1 1.

84

1.91

0.

2819

12

10.4

1.

73

1.73

TA

L4-0

3 0.

2818

55

0.00

0017

0.

0035

54

0.12

2706

17

55

0.28

1733

3.

7 1.

19

2.03

2.

19

0.28

1737

2.

5 2.

10

2.29

0.

2817

29

4.7

1.98

2.

10

TAL4

-07

0.28

1772

0.

0000

17

0.00

0966

0.

0267

29

1749

0.

2817

39

3.8

1.19

2.

01

2.18

0.

2817

40

2.4

2.08

2.

29

0.28

1738

4.

9 1.

95

2.09

TA

L4-1

0 0.

2817

29

0.00

0014

0.

0006

82

0.02

0524

17

76

0.28

1705

3.

2 0.

98

2.05

2.

23

0.28

1706

1.

9 2.

12

2.35

0.

2817

05

4.4

1.99

2.

14

TAL4

-12

0.28

1698

0.

0000

11

0.00

0443

0.

0154

92

1671

0.

2816

83

0.0

0.77

2.

08

2.35

0.

2816

84

-1.3

2.

15

2.47

0.

2816

83

1.1

2.02

2.

26

TAL4

-15

0.28

1696

0.

0000

09

0.00

0475

0.

0157

42

1707

0.

2816

80

0.7

0.61

2.

08

2.33

0.

2816

81

-0.6

2.

15

2.45

0.

2816

80

1.8

2.03

2.

24

TAL4

-16

0.28

1709

0.

0000

11

0.00

0714

0.

0208

89

1693

0.

2816

85

0.6

0.77

2.

08

2.33

0.

2816

86

-0.8

2.

15

2.45

0.

2816

85

1.6

2.02

2.

24

TAL4

-18

0.28

1671

0.

0000

11

0.00

0743

0.

0219

85

1725

0.

2816

46

-0.1

0.

77

2.13

2.

40

0.28

1647

-1

.4

2.20

2.

52

0.28

1645

1.

0 2.

07

2.30

TA

L4-2

1 0.

2817

21

0.00

0010

0.

0007

38

0.02

0687

17

32

0.28

1696

1.

9 0.

70

2.06

2.

28

0.28

1697

0.

5 2.

13

2.40

0.

2816

95

3.0

2.01

2.

19

TAL4

-22

0.28

1752

0.

0000

13

0.00

1006

0.

0287

51

1747

0.

2817

18

3.0

0.91

2.

04

2.22

0.

2817

19

1.6

2.11

2.

34

0.28

1717

4.

1 1.

98

2.14

TA

L4-2

4 0.

2817

32

0.00

0016

0.

0011

25

0.03

6718

16

74

0.28

1695

0.

5 1.

12

2.07

2.

32

0.28

1696

-0

.8

2.14

2.

44

0.28

1694

1.

5 2.

01

2.23

TA

L4-2

7 0.

2817

93

0.00

0010

0.

0006

09

0.01

6045

16

77

0.28

1773

3.

3 0.

67

1.96

2.

15

0.28

1774

2.

0 2.

03

2.26

0.

2817

72

4.4

1.91

2.

06

Page 100: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-85-

Chapter 3 Supplementary Material

Blic

hert

-Tof

t et

al,

1997

(1.

93x1

0-11 )

Sch

erer

et

al.,

200

1 (1

.865

x10-1

1 )Biz

zarr

o et

al.,

200

3 (1

.983

x10-1

1 )

Ana

lysi

s 17

6 Hf/17

7 Hf

1 S

.D.

176 Lu

/177 H

f 17

6 Yb/17

7 Hf

AG

EH

f iH

f2S

D

T DM

(Ga)

T D

MCru

stal

(Ga)

H

f iH

f

T DM

(Ga)

T D

MCru

stal

(Ga)

H

f iH

f

T DM

(Ga)

T D

MCru

stal

(Ga)

TA

L4-2

8 0.

2817

23

0.00

0008

0.

0004

18

0.01

1802

17

23

0.28

1709

2.

1 0.

55

2.04

2.

26

0.28

1709

0.

8 2.

11

2.38

0.

2817

08

3.2

1.99

2.

17

TAL4

-29

0.28

1719

0.

0000

14

0.00

1345

0.

0353

76

1705

0.

2816

74

0.5

0.98

2.

10

2.35

0.

2816

76

-0.8

2.

17

2.47

0.

2816

73

1.5

2.04

2.

26

TAL4

-30

0.28

1708

0.

0000

08

0.00

0540

0.

0142

60

1720

0.

2816

90

1.4

0.57

2.

07

2.30

0.

2816

90

0.0

2.14

2.

42

0.28

1689

2.

4 2.

01

2.21

TA

L4-3

4 0.

2817

85

0.00

0009

0.

0006

73

0.01

9150

16

78

0.28

1763

3.

0 0.

66

1.97

2.

17

0.28

1764

1.

7 2.

04

2.29

0.

2817

62

4.0

1.92

2.

08

TAL4

-35

0.28

1743

0.

0000

12

0.00

0968

0.

0306

91

1690

0.

2817

11

1.4

0.84

2.

05

2.28

0.

2817

12

0.1

2.12

2.

39

0.28

1710

2.

5 1.

99

2.19

TA

L4-3

6 0.

2813

03

0.00

0019

0.

0009

27

0.02

9083

21

95

0.28

1263

-2

.6

1.33

2.

62

2.91

0.

2812

64

-4.3

2.

72

3.06

0.

2812

62

-1.2

2.

55

2.80

TA

L4-3

7 0.

2817

87

0.00

0017

0.

0005

60

0.01

5839

16

86

0.28

1768

3.

4 1.

19

1.97

2.

15

0.28

1769

2.

0 2.

03

2.27

0.

2817

68

4.4

1.91

2.

07

TAL4

-38

0.28

1711

0.

0000

14

0.00

0744

0.

0219

96

1701

0.

2816

86

0.8

0.98

2.

08

2.32

0.

2816

87

-0.5

2.

15

2.44

0.

2816

85

1.9

2.02

2.

23

TAL4

-39

0.28

1759

0.

0000

14

0.00

1390

0.

0440

41

1704

0.

2817

13

1.8

0.98

2.

05

2.26

0.

2817

14

0.5

2.12

2.

38

0.28

1711

2.

9 1.

99

2.18

TA

L4-4

0B

0.28

1716

0.

0000

14

0.00

1024

0.

0282

35

1730

0.

2816

81

1.3

0.98

2.

08

2.32

0.

2816

82

0.0

2.16

2.

43

0.28

1680

2.

4 2.

03

2.22

TA

L4-4

1 0.

2816

94

0.00

0013

0.

0007

96

0.02

3851

17

07

0.28

1667

0.

3 0.

91

2.10

2.

36

0.28

1668

-1

.1

2.17

2.

48

0.28

1667

1.

3 2.

04

2.27

TA

L4-4

2 0.

2816

99

0.00

0016

0.

0008

88

0.02

4323

17

12

0.28

1669

0.

4 1.

12

2.10

2.

35

0.28

1670

-0

.9

2.17

2.

47

0.28

1668

1.

5 2.

04

2.26

TA

L4-4

3 0.

2817

11

0.00

0020

0.

0007

20

0.01

9292

17

13

0.28

1687

1.

1 1.

40

2.07

2.

31

0.28

1688

-0

.2

2.15

2.

43

0.28

1686

2.

2 2.

02

2.22

TA

L4-4

4 0.

2818

82

0.00

0012

0.

0009

96

0.02

8547

17

27

0.28

1848

7.

1 0.

84

1.86

1.

95

0.28

1849

5.

8 1.

93

2.06

0.

2818

47

8.2

1.81

1.

87

TAL4

-45

0.28

1709

0.

0000

12

0.00

0372

0.

0118

14

1678

0.

2816

97

0.6

0.84

2.

06

2.32

0.

2816

97

-0.7

2.

13

2.44

0.

2816

96

1.7

2.00

2.

23

TAL4

-46

0.28

1731

0.

0000

12

0.00

0542

0.

0153

50

1703

0.

2817

13

1.8

0.84

2.

04

2.26

0.

2817

13

0.4

2.11

2.

38

0.28

1712

2.

9 1.

98

2.17

TA

L4-4

7 0.

2819

74

0.00

0010

0.

0009

41

0.02

9144

16

53

0.28

1943

8.

8 0.

70

1.74

1.

79

0.28

1945

7.

5 1.

80

1.89

0.

2819

43

9.8

1.69

1.

72

TAL4

-49

0.28

1674

0.

0000

11

0.00

1404

0.

0529

05

1731

0.

2816

26

-0.6

0.

77

2.16

2.

44

0.28

1628

-2

.0

2.24

2.

56

0.28

1625

0.

4 2.

10

2.34

TA

L4-5

0 0.

2817

41

0.00

0009

0.

0014

96

0.04

7299

17

15

0.28

1691

1.

3 0.

64

2.08

2.

31

0.28

1692

0.

0 2.

15

2.42

0.

2816

89

2.3

2.02

2.

22

TAL4

-51

0.28

1700

0.

0000

20

0.00

1573

0.

0457

26

1710

0.

2816

47

-0.4

1.

40

2.14

2.

40

0.28

1649

-1

.7

2.21

2.

52

0.28

1646

0.

7 2.

08

2.31

TA

L4-5

2 0.

2816

79

0.00

0007

0.

0007

39

0.02

0934

17

75

0.28

1653

1.

4 0.

51

2.12

2.

35

0.28

1654

0.

0 2.

19

2.47

0.

2816

53

2.5

2.06

2.

25

TAL4

-53

0.28

1831

0.

0000

12

0.00

1102

0.

0317

11

1695

0.

2817

94

4.5

0.84

1.

93

2.09

0.

2817

96

3.2

2.00

2.

20

0.28

1793

5.

5 1.

88

2.01

TA

L4-5

4 0.

2817

07

0.00

0011

0.

0007

08

0.01

9095

16

00

0.28

1685

-1

.6

0.77

2.

08

2.40

0.

2816

86

-2.9

2.

15

2.51

0.

2816

84

-0.6

2.

02

2.30

TA

L4-5

5 0.

2817

80

0.00

0014

0.

0005

95

0.01

5423

17

16

0.28

1760

3.

8 0.

98

1.98

2.

15

0.28

1761

2.

4 2.

05

2.27

0.

2817

59

4.8

1.92

2.

07

Page 101: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 102: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 4

This chapter is published as:

Howard, K.E., Hand, M., Barovich, K.M., Belousova, E.A., 2011. Provenance of late Paleoprotero-zoic cover sequences in the central Gawler Craton: exploring strati graphic correlati ons in east-ern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data. Australian Journal

of Earth Sciences, 58, 475-500.

Page 103: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 104: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-89-

A Howard, K.E., Hand, M., Barovich, K.M. & Belousova, E.A. (2011). Provenance of late Paleoproterozoic cover sequences in the central Gawler Craton: exploring stratigraphic correlations in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data. Australian Journal of Earth Sciences, v. 58 (5), pp. 475-500.

A NOTE:

This publication is included on pages 89-132 in the print copy of the thesis held in the University of Adelaide Library.

A It is also available online to authorised users at:

A http://dx.doi.org/10.1080/08120099.2011.577753

A

Page 105: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 106: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 107: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 5

This chapter is published as:

Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Cutt s, K.A., Belousova, E.A., 2011. U-Pb zir-con, zircon Hf and whole-rock Sm-Nd isotopic constraints on the evoluti on of Paleoproterozoic

rocks in the northern Gawler Craton. Australian Journal of Earth Sciences, 58, 615-638.

Page 108: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 109: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-137-

A Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Cutt s, K.A. & Belousova, E.A. (2011). U-Pb zircon, zircon Hf and whole-rock Sm-Nd isotopic constraints on the evolution of Paleoproterozoic rocks in the northern Gawler Craton. Australian Journal of Earth Sciences, v. 58 (6), pp. 615-638.

A NOTE:

This publication is included on pages 137-168 in the print copy of the thesis held in the University of Adelaide Library.

A It is also available online to authorised users at:

A http://dx.doi.org/10.1080/08120099.2011.594905

A

Page 110: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 111: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 112: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 6

Page 113: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 114: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-173-

INTRODUCTION

Since the North American conti nent is currently surrounded by thousands of kilome-tres of late Precambrian rift basins, parti cularly on its western margin, geologists have long speculated which conti nental fragments must have previously been positi oned adjacent to it during the Palaeo-Mesoproterozoic. Based on similariti es between event ti melines, recon-structi on models have suggested that Siberia, Balti ca, South China or Australia may have been att ached to North America (Laurenti a; 1 and references therein). However, recent pal-aeomagneti c data now suggest that Siberia and Balti ca were not positi oned adjacent to west-ern Laurenti a, but instead fi t best on its present day northern margins (2). This leaves Australia, Antarcti ca and South China as possibiliti es for the western landmass adjacent to North Amer-ica during the Proterozoic. There are three major confi gurati ons of the Australia-Antarcti ca-Laurenti a recon-structi on. The fi rst is SWEAT, which connects southwestern U.S.A. with east Antarcti ca and Australia positi oned adjacent to Canada. This model is largely based on the similariti es in Neoproterozoic strati graphy, as well as correla-ti ons of Grenvillian aged (1.3-1.1 Ga) orogenic

belts (1 and references therein). Alternati vely, the AUSWUS model places Australia adjacent to the southwestern Laurenti a (1 and refer-ences therein), while AUSMEX places Australia adjacent to Mexico (1 and references therein). The AUSWUS and AUSMEX models are largely based on correlati ons of 1.8-0.8 Ga basement provinces and inferred sedimentary provenance connecti ons between Laurenti a and Australia (1 and references therein). Another reconstruc-ti on, referred to as the “Missing Link” model, places South China between Australia-Antarc-ti ca and Laurenti a (1 and references therein). This reconstructi on is based upon similariti es in the ages of Neoproterozoic strati graphy be-tween Australia, Laurenti a and South China, and att empts to account for variati ons in the age and evoluti on of crustal provinces between Australia, Antarcti ca and Laurenti a. A signifi cant problem with these mod-els is that there is no obvious conti nuati on of the large belt of 1.48-1.35 Ga magmati sm, met-amorphism and deformati on along the south eastern margin of Laurenti a into the proposed conti guous conti nents. Given the scale of this Mesoproterozoic belt across Laurenti a, it seems likely that it would have conti nued into any conti guous domains adjacent to Laurenti a at ca 1.48-1.35 Ga.

Laurenti a and Australia share a widespread 1.45 Ga event within the Rodinian superconti nent

ABSTRACT

The arrangement of conti nental blocks within the Precambrian superconti nent of Rodinia is con-tenti ous. Currently several reconstructi on models juxtapose western Laurenti a with Australia, Antarcti ca, South China, Siberia or Balti ca. New geochronology reveals the existence of ca 1450 Ma magmati sm and metamorphism in Australia. It also builds upon an existi ng widespread data-set of ca 1450 Ma magmati c, Rb-Sr resetti ng, and Ar-Ar cooling ages from regions across eastern Proterozoic Australia. This 1450 Ma widespread tectonothermal event in Proterozoic Australia coincides with the ti ming of voluminous A-type granite emplacement and regional deformati on in southwestern Laurenti a. The intriguing similariti es in the evoluti on of southwestern Laurenti a and Proterozoic Australia lend support to reconstructi on models which place them adjacent dur-ing the Mesoproterozoic.

Page 115: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-174-

Chapter 6 1450 Ma tectonothermal event in Australia

In an att empt to constrain potenti al conti nental confi gurati ons in the Mesoproterozoic, Goodge et al. (3) highlighted the presence of a 1.44 Ga A-type graniti c boulder in a glacial moraine in east Antarcti ca, and the presence of ca 1.4 Ga detrital zircons from the Transantarcti c Moun-tains, suggesti ng these data consti tuted a posi-ti ve test for a SWEAT like confi gurati on at ca 1.45 Ga. Similarly, others (4) have interpreted Cathaysia, (southeastern China), as the conti n-uati on of the Laurenti an Mesoproterozoic belt due to the presence of 1.44-1.43 Ga granitoids and felsic volcanics in southern Cathaysia. In this study we present geochronology from petroleum and mineral explorati on drill holes in the Gawler Craton in southern Aus-tralia that intersect crystalline basement bur-ied beneath thick younger cover sequences. These drill holes provide evidence for ca 1.45 Ga magmati sm and high-grade metamorphism in southern Australia. We have also compiled a dataset of ca 1.5-1.4 Ga magmati sm, shear zone reacti vati on, cooling and isotopic resetti ng from across Proterozoic Australia. This interval also corresponded to rift basin development in northern Australia, and is further represented by the presence of 1.5-1.4 Ga detrital zircons in Mesoproterozoic-Palaeozoic sedimentary suc-cessions in Australia. The combined data point to widespread thermally dominated reworking of predominantly late Palaeoproterozoic (ca 1800-1600 Ma) lithosphere within Australia. We suggest that this record provides a strong case that Australia, rather than Antarcti ca, con-tains the conti nuati on of the Laurenti an 1.48-1.35 Ga granite-rhyolite province. The Austral-ian record therefore provides a broad-based geological framework for the Laurenti an conti -

nental arrangement in the Mesoproterozoic.

THE 1.45 GA RECORD IN AUSTRALIA

Southern Australia is mostly covered by thick Neoproterozoic to recent cover sequences that have only been penetrated by drill holes in a few places to provide samples of the underly-ing basement. LA-ICP-MS monazite dati ng from undeformed granite intersected in the northern Gawler Craton (Figure 1) gives interpreted mag-mati c crystallisati on ages of ca 1460-1440 Ma (Tables 1 & S2-S5). The geochemistry of the ca 1450 Ma granites indicate that they have a per-aluminous character, with steep LREE enriched patt erns and high Ga/Al values suggesti ve of A-type granites (Table S6). Sm-Nd isotopic data (initi al εNd values of -14 to -8.7, and depleted mantle model ages of 3040-2302 Ma) suggest the granites were derived predominantly from melti ng of existi ng crust (Table S7). In additi on, monazite from a migmati ti c bioti te-garnet-pla-gioclase-quartz gneiss from a nearby drill hole gives an age of 1444 ± 10 Ma (Figure 1, Tables 1 & S1). The drill holes that contain the 1.45 Ga magmati c and metamorphic rocks encompass a triangulated region of approximately 1000 km2. Overall in this part of southern Australia, there are less than 60 diamond drill holes in a region of 93,000 km2 that intersect basement. Excluding the 1.45 Ga rocks, the remaining drill holes contain a record of 1.78-1.70 Ga magma-ti sm, sedimentati on and metamorphism (5 and references therein). Given the paucity of drilling and the proporti on of drill holes that contain ca 1.45 Ga rocks it is likely that 1.45 Ga tectonism is more widespread than recorded. Elsewhere in the Gawler Craton there is evidence for tectonism at this ti me. In the

Drillhole Sample Rock Type Age Interpreted age Karkaro1 637614 undeformed Granite 1442 ± 9 Ma timing of crystallisation Karkaro1 637615 undeformed Granite 1463 ± 8 Ma timing of crystallisation

OBD8 163401 undeformed Granite 1458 ± 9 Ma timing of crystallisation 0BD9 163405 orthogneiss 1444 ± 10 Ma timing of metamorphism

Table 1. Summary of geochronology obtained in this study

Page 116: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-175-

Chapter 6 1450 Ma tectonothermal event in Australia

southwestern part of the craton, U-Pb zircon dati ng of pegmati te intersected by mineral ex-plorati on drilling yields an age of 1489 ± 4 Ma (6). On the western edge of the Gawler Craton in the Coompana Block, granites sampled in pe-troleum well Mallabie-1 at a depth of around 1400 metres give ages that range between 1505 ± 7 Ma (7) and 1455 ± 16 Ma (6). 40Ar/39Ar and

monazite data suggest that crustal-scale shear zones in the western Gawler Craton including the Karari, Tallacootra, Coorabie and Kalinjala Shear Zones (Figure 1), were reacti vated or un-derwent cooling at ca 1470-1450 Ma (8-11) at amphibolite to greenschist conditi ons. The pe-riod of structural reacti vati on and cooling also corresponded with widespread resetti ng of Rb-

Figure 1. A) Map showing the ca 1.45 Ga tectonic record in the Gawler Craton and locati ons for drill holes sampled in this study. Pegmati tes in drill hole Nundroo DDH2 intruded at 1.49 Ga (6), and granites in the Mallabie 1 drill hole intruded between 1.5 and 1.45 Ga (6, 7). The Karari, Tallacootra, Coorabie and Kalinjala Shear Zones underwent reacti vati on and/or cooling at ca 1.45 Ma (8-11). Rb-Sr whole isotopic systems in 1.63-1.58 Ga felsic magmati c rocks including the Hiltaba Suite, Gawler Range Volcanics, St Peters Suite and Nuyts Volcanics in the central and southern Gawler Craton underwent regional-scale resetti ng at ca 1.47 Ga (12, 13). B) C) and D) Concordia Plots for monazite grains from granite in drill holes Karkaro1 and OBD8. E) Concordia Plots for monazite grains from a migmati ti c bioti te-garnet-plagioclase-quartz gneiss in drill hole OBD9.

200 km

N

32°00’

30°00’

28°00’

34°00’

135°00’ 138°00’

Karari SZ

Talla

cootra

SZ

Coorabie SZ

132°00’

Karkaro 1

OBD 9OBD 8

Kalinjala SZ

Neoproterozoic-Cambrian Sequences/Cambrian-Ordovician OrogenesisGrenvillean Orogenic Belt with Neoproterozoic-recent cover sequences 1450 Ma Granites Hiltaba Suite (1595-1575 Ma)Gawler Range Volcanics (1595-1590 Ma)St Peter Suite and Nuyts Volcanics (1630-1610 Ma)Paleoproterozoic-Mesoarchean rock systems

1500

1460

1440

14201400

0.23

0.24

0.25

0.26

0.27

2.9 3.0 3.1 3.2 3.3 3.4

E OBD9 1643405 monazite

1560

1500

14201400

2.8 3.0 3.2 3.4 3.6

D OBD8 1643401 monazite

B Karkaro1 637614 monazite1500

14201400

0.22

0.23

0.24

0.25

0.26

0.27

2.8 2.9 3.0 3.1 3.2 3.3

C Karkaro1 637615 monazite

1580

14401400

1360

0.20

0.22

0.24

0.26

0.28

0.30

2.5 2.7 2.9 3.1 3.3 3.5 3.7

Weighted Mean1458 ± 9 Ma

(MSWD=0.33, n=29)

Weighted Mean1444 ± 10 Ma

(MSWD=0.40, n=22)

Weighted Mean1442 ± 9 Ma

(MSWD=0.21, n=20)

Weighted Mean1463 ± 8 Ma

(MSWD=0.60, n=0.93)

206Pb

/238U

207Pb/ 235U

0.23

0.24

0.25

0.26

0.27

0.28

207Pb/ 235U

207Pb/ 235U

207Pb/ 235U

206Pb

/238U

206Pb

/238U

206Pb

/238U

A

1380

1000 km

GC

N

1489 ± 4 Ma

Nundroo DDH2

1505 ± 7 Ma & 1455 ± 16 Ma

granite Mallabie 1

Page 117: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-176-

Chapter 6 1450 Ma tectonothermal event in Australia

Sr whole rock isotope systems in 1.63-1.58 Ga felsic igneous rock suites throughout the cen-tral Gawler Craton (Figure 1). The combined Rb-Sr isotopic whole rock dataset (n = 249) from these felsic suites form an “errorchron” corresponding to 1476 ± 4 Ma (12, 13). The ca 1.45 Ga thermal and structural reworking in the Gawler Craton appears to be part of a widespread system of reworking and resetti ng within Proterozoic Australia (Figure 2). In southwestern Australia, mafi c and inter-mediate magmati c rocks intersected by drilling in basement to the Terti ary Eucla Basin have U-Pb zircon magmati c ages of 1415 ± 7, 1408 ± 7 and 1407 ± 7 Ma respecti vely (14). In the Paterson Orogen, in central Western Australia, monzograniti c and granodioriti c rocks have zir-con U-Pb ages of 1453 ± 10 Ma and 1476 ± 10 Ma (15 and references therein). Further east within the Musgrave Province, monzograniti c magmati sm occurred at 1402 ± 4 Ma (16). In the eastern Mt Isa Province in northeastern Australia, the youngest phases of the Williams Batholith have a U-Pb age of 1493 ± 8 Ma (17). These late phases were approximately coeval with pegmati te intrusions at 1480 ± 14 Ma in the western Mt Isa Province (18). The limited record of ca 1450 Ma magmati sm from the Mt Isa Province appears to be part of a more ex-tensive magmati c system that has not yet been found in outcrop. This assessment is based on the presence of detrital zircons in modern day stream sediment from the eastern Mt Isa Prov-ince that contain a large proporti on (~ 14%) of 1.5-1.4 Ga zircon grains (19). Further evidence for thermal reworking in this part of Proterozo-ic Australia comes from ca 1.5-1.4 Ga 40Ar-39Ar

cooling ages from the Mt Isa and Georgetown Inliers (Tables 2 & S8). Elsewhere in Proterozoic Australia, nu-merous Rb-Sr total rock and mineral isochron ages between 1.5-1.4 Ga have been obtained from magmati c rocks that have U-Pb ages greater than 1.7 Ga (Tables 3 & S9). This sug-gests the existence of widespread, although spati ally dispersed, resetti ng that is dominated by thermal and fl uid-infi ltrati on eff ects as op-posed to tectonism with signifi cant deforma-ti on. The thermal reworking in northeastern Australia recorded by magmati sm, cooling ages and detrital zircons coincided with east-west directed rift basin development at ca 1.49 Ga in the lower Roper Supergroup in northern Aus-tralia (20 and references therein). Elsewhere in Proterozoic Australia, basins may have also formed at approximately this ti me. In the Gawl-er Craton, shales in the Cariewerloo Basin give a Rb-Sr whole rock age of ca 1.4 Ga, which has been interpreted to record the ti ming of di-agenesis (21). In Western Australia, the marine Bangemall Supergroup was deposited in two stages, the Edmund Group between 1.62-1.465 Ga and the Collier Group between ca 1.4-1.07 Ga (22). The Edmund Group is intruded by dol-erite sills at ca 1.465 and 1.07 Ga, suggesti ng it is older than 1.465 Ga, while it overlies the Gas-coyne Complex of which the youngest rocks are around ca 1.62 Ga (22 and references therein). The minimum age of the Collier Group is given by the intrusive 1.07 Ga dolerite sills, while ca 1.4 Ga detrital zircons populati ons within one of the sequences constrain the maximum dep-ositi onal age (22 and references therein).

Table 2. Summary of ca 1450 Ma 40Ar-39Ar cooling ages from Proterozoic Australia

Page 118: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-177-

Chapter 6 1450 Ma tectonothermal event in Australia

Mus

grav

e Pr

ovin

ce

Gaw

ler

Crat

on

Tasm

an Line

Geo

rgin

aBa

sin

Eucl

a Ba

sin

Geo

rget

own

Inlie

rTe

nnan

t Cre

ek

stat

e bo

rder

Sout

h N

icho

lson

Bas

in

Rope

r Su

perg

roup

Cari

ewer

loo

Basi

n

met

amor

phis

m

Maw

son

Crat

on

Bang

emal

l Bas

in

Mt I

sa

050

010

0015

0020

0025

0030

0035

00

n=44

715

.4%

n=3

376.

2%

Nor

ther

n A

mad

eus

Basi

nn=

789

4.7%

n=36

63.

3%

1453

± 1

0 M

a

1442

± 9

Ma

1463

± 8

Ma

1458

± 9

Ma

1415

± 7

Ma

1408

± 7

Ma

1407

± 7

Ma

<149

0 M

a

050

010

0015

0020

0025

0030

0035

00

n=10

445.

8%

n=29

513

.9%

1402

± 4

Ma

1476

± 1

0 M

a

1.5

-1.4

Ga

n=92

80.

8%

1480

± 1

4 M

a14

93 ±

8 M

a

Aru

nta

Prov

ince

Pate

rson

Oro

gen

Am

adeu

s Ba

sin

1471

± 1

4 M

a14

68 ±

12

Ma

1444

± 1

0 M

a

1457

± 2

2 M

a14

89 ±

4 M

a14

55 ±

16

Ma

1505

± 7

Ma

Figu

re 2

. The

dis

trib

uti o

n of

ca

1.45

Ga

even

ts in

Pro

tero

zoic

Aus

tral

ia. I

n ad

diti o

n to

the

Gaw

ler

Crat

on, c

a 1.

45 G

a fe

lsic

mag

mati

sm

is re

cord

ed in

the

Pate

rson

Oro

gen

(15

and

refe

renc

es th

erei

n),

Mus

grav

e Pr

ovin

ce (1

6), M

t Isa

Pro

vinc

e (1

7, 1

8) a

nd b

enea

th th

e Eu

cla

Basi

n (1

4 an

d re

fere

nces

ther

ein)

. Syn

chro

nous

bas

in d

evel

opm

ent o

ccur

red

in th

e M

cArt

hur

Basi

n (2

0), t

he C

arie

wer

loo

Basi

n (2

1) a

nd t

he B

ange

mal

l Sup

erba

sin

(22)

. 40A

r-39

Ar

cool

ing

ages

, Rb-

Sr m

iner

al c

oolin

g ag

es a

nd R

b-Sr

who

le r

ock

resetti

ng a

ges

of c

a 1.

5-1.

4 G

a oc

cur

in r

ocks

from

the

Mt

Isa

Prov

ince

(44

and

refe

r-en

ces

ther

ein,

51

and

refe

renc

es th

erei

n), G

eorg

etow

n In

lier (

45),

Aru

nta

Prov

ince

(46,

47

and

refe

renc

es th

erei

n, 4

8), T

anam

i (49

), an

d Te

nnan

t Cre

ek In

lier (

50).

Prob

abili

ty d

ensi

ty p

lots

sho

w d

etri

tal

zirc

on a

ges

from

Neo

prot

eroz

oic-

mid

Pal

aeoz

oic

(met

a)se

dim

enta

ry r

ocks

from

the

Cen

tral

ian

Supe

rbas

in (3

0 an

d re

fere

nces

the

rein

), an

d M

esop

rote

rozo

ic s

eque

nces

in t

he M

usgr

ave

Prov

ince

(24-

29).

Add

iti on

al a

ge h

isto

gram

s ar

e sh

own

for z

ircon

s sa

mpl

es fr

om m

oder

n da

y dr

aina

ge in

the

Gaw

ler C

rato

n (5

2) a

nd th

e M

t Isa

Pro

vinc

e (1

9). T

he g

rey

bars

spa

n 1.

5-1.

4 G

a. In

Ant

arcti

ca,

a m

orai

ne

host

ed g

raniti c

bou

lder

has

bee

n da

ted

at c

a 1.

44 G

a (3

) and

ca

1.45

Ga

detr

ital g

rain

s oc

cur i

n N

eopr

oter

ozoi

c-Pa

laeo

zoic

sed

imen

tary

uni

ts in

the

Tran

sant

arcti

c M

ount

ains

(3 a

nd re

fere

nces

ther

ein)

.

Page 119: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-178-

Chapter 6 1450 Ma tectonothermal event in Australia

In additi on to the evidence for rock forming and thermal reworking/isotopic reset-ti ng events, sedimentary sequences in central Australia ranging in age between mid-Meso-proterozoic and mid-Paleozoic contain a persis-tent record ca 1.45 Ga detrital zircons (Figure 2). These sequences include Mesoproterozoic units from the southern Arunta region and the Musgrave Province (23-29) as well as Neopro-terozoic to mid-Paleozoic units in the Central-ian Superbasin (30 and references therein). Although the ca 1.45 Ga detrital zircons in the Neoproterozoic to Paleozoic sequences may have undergone multi ple episodes of sedi-mentary recycling, the Mesoproterozoic meta-sedimentary rocks in the Musgrave Province were deposited in the interval 1.45-1.2 Ga (24-29), and are more likely to have been directly sourced from 1450 Ma rocks, with which they are now structurally interleaved (31). Never-theless, the presence of ca 1.45 Ga detrital zir-cons in sedimentary sequences across central Australia, coupled with evidence for rock-form-ing events, thermal reworking and isotopic re-setti ng supports the existence of a widespread ca 1.45 Ga event in Proterozoic Australia.

PROPOSED CONTINENTAL CONFIGURATION AT 1.45 GA

In previous studies, reconstructi on models connecti ng Australia and Laurenti a had been discounted because the 1.48-1.35

Ga Granite-Rhyolite Province appeared to stop abruptly where Australia connected with Lau-renti a (1, 4). However, as we now have a grow-ing dataset supporti ng a widespread ca 1.45 Ga tectonothermal event in Australia, these palaeogeographic reconstructi ons should be reconsidered for this ti me interval. At present, there are no reliable palaeo-magneti c constraints for Australia or Antarcti ca at ca 1.45 Ga. However, reliable palaeomagnet-ic constraints support an Australia-Laurenti a connecti on in a SWEAT-like confi gurati on dur-ing the early Mesoproterozoic at ca 1.595 Ga (32). Similarly, palaeomagneti cally supported reconstructi on models at 1.27 Ga are consist-ent with a SWEAT-like arrangement (2). Given the palaeomagneti c constraints, there is a compelling case for Mesoproterozoic correla-ti ons between Laurenti a and Australia. Previ-ous models (e.g. 3) have essenti ally ignored the record of ca 1.45 Ga tectonism in Proterozoic Australia. Although no in situ 1.45 Ga igneous rocks have been discovered in Antarcti ca, (3) suggested the existence of ca 1.45 Ga granites beneath the ice sheet. This is based on (1) the presence of a moraine-hosted 1.4 Ga gran-ite boulder in the upper Nimrod Glacier area which has A-type geochemical and isotopic characteristi cs and (2) ca 1.45 Ga detrital zir-cons in Neoproterozoic-Paleozoic sedimentary rocks in the Transantarcti c Mountains (3 and references therein). Additi onally there are rare

Table 3. Summary of ca 1450 Ma Rb-Sr and Sm-Nd resetti ng ages from Proterozoic Australia

Region Range of Ages (Ma) Type of Age No. ReferencesArunta 1473 & 1441 Sm Nd isochron (TR & minerals) 2 (46)Arunta 1406 1497 Rb Sr isochron (TR & minerals) 9 (47 and references therein)Arunta 1493 1401 Rb Sr muscovite 8 (48)Arunta 1492 Rb Sr biotite 1 (47 and references therein)Tanami 1473 & 1444 Rb Sr isochron (TR) 2 (49)

Tennant Creek 1473 Rb Sr isochron (TR) 1 (50)Mount Isa 1488 1400 Rb Sr isochron (TR & minerals) 4 (51 and references therein)Mount Isa 1470 1423 Rb Sr biotite & muscovite 5 (51 and references therein)

Georgetown 1488 1440 Rb Sr isochron (TR & minerals) 4 (45)

Page 120: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-179-

Chapter 6 1450 Ma tectonothermal event in Australia

Figure 3. A) Proposed reconstructi on model for Australia-Antarcti ca, Cathaysia and Laurenti a at ca 1.45 Ga. This reconstructi on shows a plau-sible conti nuati on of the Laurenti an 1.48-1.35 Ga Granite-Rhyolite Province into Proterozoic Australia. It also allows a feasible provenance con-necti on between Proterozoic Australia as a source region with the 1.49-1.47 Ga Belt Purcell Basin in Laurenti a and Mesoproterozoic sequences in south Cathaysia that contain detrital zircons with disti ncti vely Australian magmati c ages. The geological depicti on of Laurenti a is aft er (38). B) Reconstructi on model of (3), which places east Antarcti ca adjacent to the 1.48-1.35 Ga Granite-Rhyolite Province in southern Laurenti a, but does not take into considerati on the record of ca 1.45 Ga events in Australia.

Belt Basin

Granite - Rhyolite Province

3

1

2

1

2

3

3

3

3

1

1

1 1

1

2

2

2

2

2

Australia

Cathaysia

1

1(suspected)

1.61-1.49 Ga zircon

4

4

5

5

4

5

A

Australia

Goodge et al. 2008

(suspected)

B

Page 121: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-180-

Chapter 6 1450 Ma tectonothermal event in Australia

ca 1.5-1.4 Ga detrital zircons and monazites in Phanerozoic sediments and sedimentary rocks from central and western Antarcti ca (33, 34) providing some additi onal support for ca 1.45 Ga tectonism in Antarcti ca. Based on this re-cord (3) concluded that east Antarcti ca should be placed adjacent to the Laurenti an 1.55-1.35 Ga Granite-Rhyolite Province, suggesti ng the Antarcti c record provided a positi ve test for conti nental correlati on. In Laurenti a, the 1.48-1.35 Ga Granite-Rhyolite Province is an extensive belt which trends southwest to northeast from north-western Mexico to Ontario (35-37). The prov-ince is characterised by 1.48 to 1.35 Ga A-type granites and related anorthosites which also in-trude Paleoproterozoic crust further west along the belt (35-39). Associated with this event was structural reacti vati on and metamorphism (40, 41), accompanied by ca 1.4 Ga isotopic reset-ti ng and cooling (35). Further north in Lauren-ti a, up to 18 kms of sediment were deposited into the Belt-Purcell Basin during rift ing over the interval 1.47-1.4 Ga (42). Provenance stud-ies from this basin system suggest that material was derived in part from non-Laurenti an sourc-es that supplied 1.61-1.49 Ga zircon grains which correspond to the Laurenti an magmati c gap (43 and references therein). Previous stud-ies have suggested that the most plausible source region for this material was Proterozoic Australia as it contains rocks capable of supply-ing zircon grains in this age range (43 and refer-ences therein). In the context of an Australian connecti on with the Belt Purcell Basin, rift ing in northern Australia associated with the deposi-ti on of the lower Roper Group occurred at the same ti me. The evidence presented above for an extensive ca 1.45 Ga event in Proterozoic Aus-tralia signifi cantly strengthens the geological case that Laurenti a and Australia were conti gu-ous during the early to mid Mesoproterozoic (Figure 3), sharing a common history of Mes-

oproterozoic thermal reworking associated with magmati sm, metamorphism, structural reworking and isotopic resetti ng. Although we cannot defi niti vely preclude the confi gurati on proposed by (3) that places east Antarcti ca ad-jacent to the Laurenti an ca 1.45 Ga belt, the evidence of ca 1450 Ma tectonothermal acti v-ity from Australia is much more extensive than from Antarcti ca. Clearly, ice cover and access limit the availability of informati on from Antarc-ti ca. However the bulk of Proterozoic Australia is also obscured by thick cover. Therefore it is likely that the record of ca 1.45 Ga tectonism in Proterozoic Australian is more extensive than presently recorded, parti cularly from southern Australia where the record is largely restricted to sparse drill hole intersecti ons of basement. In light of the growing body of data which indicates the presence of a 1.45 Ga event in Proterozoic Australia and supports cor-relati on with Laurenti a, strict adherence to the SWEAT model places Australia too far north for a simple conti nuati on of the 1.48-1.35 Ga Gran-ite-Rhyolite Province in Laurenti a. Instead we suggest that a more plausible reconstructi on is to place Australia further south, adjacent to the 1.48-1.35 Ga Laurenti an Granite-Rhyolite Prov-ince (Figure 3). In the reconstructi on shown in Figure 3, we have placed the Gawler Craton ro-tated from its current positi on relati ve to the rest of Proterozoic Australia (32). Additi onally we suggest that Cathaysia was adjacent to west Laurenti a and Australia. This is based on the presence of 1.44-1.43 Ga felsic magmati c rocks on Hainan Island in South Cathaysia (4). Hainan Island also contains late Mesoproterozoic units that have detrital zircons with ages between 1.61-1.49 Ga. No local source rocks have been discovered for these zircons. However one pos-sibility is that the detrital zircons were derived from ca 1.6-1.5 Ga rocks from Proterozoic Aus-tralia, sharing a similar provenance with the older Belt Purcell Group in Laurenti a.

Page 122: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-181-

Chapter 6 1450 Ma tectonothermal event in Australia

CONCLUSIONS

A growing dataset of magmati sm, metamor-phism, cooling, isotopic resetti ng and shear zone reacti vati on at ca 1.45 Ga from regions across Australia suggests that a previously un-recognised widespread tectonothermal event occurred during the Mesoproterozoic. This event can be correlated with the large scale 1.48-1.35 Ga Granite-Rhyolite Province from southern Laurenti a, and suggests that Australia and Laurenti a may have been positi oned adja-cent during the Mesoproterozoic.

ACKNOWLEDGEMENTS

This work was supported by Australian Re-search Council Discovery Project DP1095456, Collins, Hand and Condie, “The enigmati c link between crustal growth and superconti nent formati on”. This contributi on forms TRAX re-cord number XXX.

REFERENCES1. Z. X. Li et al., Precambrian Research 160, 179 (2008).2. D. A. D. Evans, R. N. Mitchell, Geology 39, 443 (2011).3. J. W. Goodge et al., Science 321, 235 (2008).4. Z.-X. Li, X.-H. Li, W.-X. Li, S. Ding, Terra Nova 20, 154 (2008).5. K. E. Howard et al., Australian Journal of Earth Sciences 58, 615

(2011).6. C. M. Fanning, A. J. Reid, G. S. Teale, South Australia. Geological

Survey. Bulleti n 55, (2007).7. B. P. Wade, J. L. Payne, M. Hand, K. M. Barovich, Australian Jour-

nal of Earth Sciences 54, 1089 (2007).8. D. A. Foster, K. Ehlers, Journal of Geophysical Research-Solid

Earth 103, 10177 (1998).9. J. L. Thomas, N. G. Direen, M. Hand, Precambrian Research 166,

263 (2008).10. G. L. Fraser, P. Lyons, Precambrian Research 151, 160 (2006).11. G. M. Swain, M. Hand, J. Teasdale, L. Rutherford, C. Clark, Pre-

cambrian Research 139, 164 (2005).12. A. W. Webb et al., South Australia Department of Primary Indus-

tries and Resources. Report Book 82/86, 136 (1982).13. K. P. Stewart, J. Foden, South Australia Department of Primary

Industries and Resources. Report Book 2003/15, (2003).14. D. R. Nelson, Compilati on of geochronology data, June 2006 up-

date: Western Australian Geological Survey, (2005).15. L. Bagas, Precambrian Research 128, 475 (2004).16. C. L. Kirkland, M. T. D. Wingate, R. H. Smithies, Geochronology

Record 965: Geological Survey of Western Australia, (2011).17. R. W. Page, S. S. Sun, Australian Journal of Earth Sciences 45, 343

(1998).18. K. A. Connors, R. W. Page, Precambrian Research 71, 131 (1995).19. K. C. Condie, M. E. Bickford, R. C. Aster, E. Belousova, D. W. Scholl,

GSA Bulleti n 123, 951 (2011).20. M. J. Jackson, I. P. Sweet, R. W. Page, B. E. Bradshaw, The South Ni-

cholson and Roper Groups: evidence for the early Mesoprotero-zoic Roper Superbasin. B. E. Bradshaw, D. L. Scott , Eds., Integrated Basin Analysis of the Isa Superbasin using Seismic, Well-log and Geopotenti al Data: an Evaluati on fo the Economnic Potenti al of the Northern Lawn Hill Platf orm Australian Geological Survey Or-ganisati on Record 1999/19 (1999).

21. C. M. Fanning, R. B. Flint, W. V. Preiss, South Australia. Geological Survey. Quarterly Geological Notes 88, 11 (1983).

22. D. M. Marti n, A. M. Thorne, Precambrian Research 128, 385 (2004).

23. C. J. Carson et al., Northern Territory Geological Survey, Record 2009-001, (2009).

24. C. L. Kirkland, M. T. D. Wingate, S. Bodorkos, Compilati on of geochronology data: Geological Survey of Western Australia, (2008).

25. C. L. Kirkland, S. Bodorkos, M. T. D. Wingate, H. M. Howard, Ge-ochronology Record 760: Geological Survey of Western Australia, (2009).

26. C. L. Kirkland, M. T. D. Wingate, S. Bodorkos, H. M. Howard, Ge-ochronology Record 758: Geological Survey of Western Australia, (2009).

27. C. L. Kirkland, S. Bodorkos, M. T. D. Wingate, R. H. Smithies, P. M. Evins, Geochronology Record 767: Geological Survey of Western Australia, (2009).

28. C. L. Kirkland, S. Bodorkos, M. T. D. Wingate, R. H. Smithies, Ge-ochronology Record 797: Geological Survey of Western Australia, (2009).

29. B. P. Wade, D. E. Kelsey, M. Hand, K. M. Barovich, Precambrian Research 166, 370 (2008).

30. D. W. Maidment, I. S. Williams, M. Hand, Basin Research 19, 335 (2007).

31. B. P. Wade, PhD, University of Adelaide (2006).32. J. L. Payne, M. Hand, K. M. Barovich, A. Reid, D. A. D. Evans, in

Geological Society Special Publicati on. (2009), pp. 319-355.33. J. J. Veevers, A. Saeed, N. Pearson, E. Belousova, P. D. Kinny, Gond-

wana Research 14, 343 (2008).34. J. J. Veevers, A. Saeed, P. E. O’Brien, Sediment. Geol. 211, 12

(2008).35. J. L. Anderson, R. L. Cullers, Rocky Mountain Geology 34, 149

(1999).36. J. W. Goodge, J. D. Vervoort, Earth and Planetary Science Lett ers

243, 711 (2006).37. J. L. Anderson, E. E. Bender, Lithos 23, 19 (1989).38. S. J. Whitmeyer, K. E. Karlstrom, Geosphere 3, 220 (2007).39. J. V. Jones, S. A. Rogers, J. N. Connelly, Rocky Mountain Geology

45, 1 (2010).40. J. V. Jones, C. S. Siddoway, J. N. Connelly, Lithosphere 2, 119

(2010).41. M. W. Nyman, K. E. Karlstrom, E. Kirby, C. M. Graubard, Geology

22, 901 (1994).42. K. V. Evans, J. N. Aleinikoff , J. D. Obradovich, C. M. Fanning, Cana-

dian Journal of Earth Sciences 37, 1287 (2000).43. G. M. Ross, M. Villeneuve, Bulleti n of the Geological Society of

America 115, 1191 (2003).44. R. A. Spikings, D. A. Foster, B. P. Kohn, G. S. Lister, Tectonophysics

349, 327 (2002).45. L. P. Black, T. H. Bell, M. J. Rubenach, I. W. Withnall, Tectonophys-

ics 54, 103 (1979).46. J. Foden, J. Mawby, S. Kelley, S. Turner, D. Bruce, Precambrian Re-

search 71, 207 (1995).47. R. D. Shaw, L. P. Black, Australian Journal of Earth Sciences 38, 307

(1991).48. W. J. Collins, I. S. Williams, S. E. Shaw, N. A. McLaughlin, Precam-

brian Research 71, 91 (1995).49. R. W. Page, D. H. Blake, M. W. Mahon, BMR Journal of Australian

Geology & Geophysics 1, 1 (1976).

Page 123: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-182-

Chapter 6 1450 Ma tectonothermal event in Australia

50. L. P. Black, BMR Journal of Australian Geology & Geophysics 2, 111 (1977).

51. R. W. Page, T. H. Bell, Journal of Geology 94, 365 (1986).52. E. A. Belousova, A. J. Reid, W. L. Griffi n, S. Y. O’Reilly, Lithos 113,

570 (2009).53. J. L. Payne, M. Hand, K. M. Barovich, B. P. Wade, Australian Jour-

nal of Earth Sciences 55, 623 (2008).54. J. N. Aleinikoff et al., Geological Society of America Bulleti n 118,

39 (2006).55. D. Maidment, Australian Nati onal University (2005).56. S. E. Jackson, N. J. Pearson, W. L. Griffi n, E. A. Belousova, Chemical

Geology 211, 47 (2004).57. A. Michard, P. Gurriet, M. Soudant, F. Albarede, Geochimica Et

Cosmochimica Acta 49, 601 (1985).

Page 124: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-183-

Chapter 6 Supplementary Material

Methods

Basement rocks in the northern Gawler Craton are not exposed, so samples in this

study were taken from diamond drill holes that were completed as a part of regional

mineral exploration programs.

Analytical techniques for in situ U Pb monazite dating follow the method of Payne et

al. (53). Prior to analysis monazite grains were imaged prior to analysis via a back scattered

electron on a Phillips XL20 SEM at the University of Adelaide. U Pb isotopic analyses were

obtained using a New Wave 213nm Nd YAG laser in a He ablation atmosphere, coupled to

an Agilent 7500cs/7500s ICP MS at the University of Adelaide. U Pb fractionation was

corrected using the MAdel monazite standard (53) and the 44069 monazite standard (53,

54). Accuracy was checked with an in house monazite standard 94 222/Bruna NW (53, 55).

The 207Pb/206Pb monazite ages were used. Data were processed using the program “Glitter”

developed at Macquarie University, Sydney (56).

Whole rock geochemical analyses were undertaken at Amdel Limited, South

Australia.

Page 125: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-184-

Chapter 6 Supplementary Material

Table S1.

Drill core intervals and locations, and analytical methods undertaken on samples from thenorthern Gawler Craton, Australia.

Drillhole DetailsLocation

(GDA94, Z 53)Sample Sample Depth (m) Analyses

InterpretedLithology

Name No. Eastings Northings From To geochem mz Nd

Karkaro 1 3552 380270 6835938 637614 477.39 477.57 Granite

637615 479.70 480.01 Granite

OBD 8 1577 286298 6788087 660840 175.00 175.10 Orthogneiss

660841 175.10 175.20 Orthogneiss

1643400 175.25 175.84 Orthogneiss

1643401 180.00 180.40 Granite

OBD 9 1592 293375 6809107 1643403 389.30 389.80 Orthogneiss

660842 391.95 392.25 Orthogneiss

1643405 396.10 396.50 Orthogneiss

Page 126: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-185-

Chapter 6 Supplementary Material

Table S2.

U Pb monazite analyses for sample 1643405 from drill hole OBD9

Radiogenic Ratios Age (Ma)

207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s 207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s % Con

M14 0.09201 0.0011 0.24518 0.0035 3.11645 0.0469 1468 22 1414 18 1437 12 96

M16 0.09195 0.0011 0.25101 0.0036 3.18852 0.0493 1466 23 1444 19 1454 12 98

M15 0.09162 0.0011 0.24901 0.0036 3.15178 0.0472 1459 22 1433 18 1445 12 98

M18 0.09156 0.0010 0.25628 0.0037 3.24192 0.0474 1458 21 1471 19 1467 11 101

M17 0.09150 0.0012 0.25054 0.0036 3.16696 0.0497 1457 24 1441 19 1449 12 99

M10 0.09146 0.0011 0.24744 0.0035 3.12588 0.0466 1456 22 1425 18 1439 11 98

M6 0.09141 0.0011 0.25631 0.0036 3.23503 0.0475 1455 22 1471 19 1466 11 101

M3 0.09124 0.0011 0.25255 0.0035 3.18125 0.0458 1451 22 1452 18 1453 11 100

M4 0.09102 0.0010 0.25168 0.0035 3.16259 0.0450 1447 21 1447 18 1448 11 100

M9 0.09097 0.0011 0.25268 0.0036 3.17515 0.0485 1446 23 1452 19 1451 12 100

M20 0.09080 0.0011 0.25274 0.0036 3.16851 0.0480 1442 24 1453 19 1450 12 101

M11 0.09078 0.0011 0.25493 0.0037 3.19658 0.0479 1442 22 1464 19 1456 12 102

M13 0.09074 0.0012 0.24528 0.0035 3.07458 0.0489 1441 25 1414 18 1426 12 98

M12 0.09056 0.0011 0.24942 0.0035 3.12033 0.0460 1437 22 1436 18 1438 11 100

M22 0.09044 0.0013 0.25542 0.0037 3.18845 0.0518 1435 27 1466 19 1454 13 102

M28 0.09044 0.0012 0.25100 0.0037 3.13555 0.0496 1435 24 1444 19 1442 12 101

M23 0.09024 0.0011 0.24665 0.0035 3.07348 0.0454 1431 23 1421 18 1426 11 99

M25 0.09019 0.0011 0.25094 0.0036 3.12646 0.0477 1429 23 1443 19 1439 12 101

M8 0.09013 0.0010 0.25370 0.0036 3.15735 0.0457 1428 21 1458 18 1447 11 102

M7 0.09011 0.0011 0.25302 0.0035 3.14845 0.0470 1428 23 1454 18 1445 11 102

M19 0.08975 0.0012 0.25313 0.0037 3.13814 0.0495 1420 24 1455 19 1442 12 102

M2 0.08966 0.0011 0.25498 0.0035 3.15706 0.0458 1418 22 1464 18 1447 11 103

Page 127: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-186-

Chapter 6 Supplementary Material

Table S3.

U Pb monazite analyses for sample 1643401 from drill hole OBD8.

Radiogenic Ratios Age (Ma) 207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s 207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s % Con

M08 0.09324 0.0016 0.26601 0.0038 3.42576 0.0631 1493 32 1521 20 1510 14 102

M11 0.09277 0.0013 0.25684 0.0035 3.29091 0.0524 1483 27 1474 18 1479 12 99

M07 0.09268 0.0013 0.26502 0.0037 3.39324 0.0536 1481 26 1515 19 1503 12 102

M22 0.09236 0.0014 0.25313 0.0036 3.22917 0.0548 1475 29 1455 18 1464 13 99

M05 0.09228 0.0010 0.26538 0.0035 3.38310 0.0468 1473 21 1517 18 1501 11 103

M26 0.09205 0.0012 0.25346 0.0034 3.22235 0.0473 1468 24 1456 17 1463 11 99

M16 0.09204 0.0012 0.25667 0.0035 3.26322 0.0485 1468 24 1473 18 1472 12 100

M04 0.09199 0.0011 0.26690 0.0036 3.39192 0.0496 1467 23 1525 18 1503 11 104

M21 0.09198 0.0013 0.25550 0.0035 3.24594 0.0513 1467 26 1467 18 1468 12 100

M28 0.09191 0.0012 0.26723 0.0037 3.39221 0.0529 1465 26 1527 19 1503 12 104

M10 0.09190 0.0011 0.24259 0.0032 3.07985 0.0443 1465 24 1400 17 1428 11 96

M03 0.09176 0.0014 0.24858 0.0035 3.15056 0.0532 1462 29 1431 18 1445 13 98

M30 0.09173 0.0012 0.25394 0.0034 3.21835 0.0472 1462 24 1459 17 1462 11 100

M02 0.09164 0.0013 0.26189 0.0036 3.31515 0.0539 1460 28 1500 18 1485 13 103

M14 0.09164 0.0012 0.25167 0.0034 3.18568 0.0487 1460 25 1447 17 1454 12 99

M01 0.09151 0.0012 0.25853 0.0034 3.26793 0.0476 1457 24 1482 18 1474 11 102

M23 0.09150 0.0012 0.25005 0.0034 3.16056 0.0476 1457 25 1439 17 1448 12 99

M20 0.09150 0.0012 0.25291 0.0034 3.19696 0.0480 1457 24 1454 18 1456 12 100

M06 0.09134 0.0015 0.25889 0.0037 3.26603 0.0569 1454 30 1484 19 1473 14 102

M24 0.09131 0.0010 0.25611 0.0034 3.23027 0.0439 1453 21 1470 17 1465 11 101

M19 0.09125 0.0012 0.25557 0.0035 3.22135 0.0490 1452 25 1467 18 1462 12 101

M09 0.09124 0.0010 0.25297 0.0033 3.18811 0.0431 1452 21 1454 17 1454 10 100

M18 0.09102 0.0012 0.25105 0.0034 3.15673 0.0469 1447 24 1444 17 1447 11 100

M17 0.09079 0.0012 0.25189 0.0034 3.15948 0.0467 1442 24 1448 17 1447 11 100

M25 0.09066 0.0011 0.25325 0.0034 3.17113 0.0441 1439 22 1455 17 1450 11 101

M27 0.09066 0.0013 0.25428 0.0035 3.18401 0.0507 1439 27 1461 18 1453 12 101

M29 0.09062 0.0012 0.25295 0.0035 3.16612 0.0485 1439 25 1454 18 1449 12 101

M12 0.09050 0.0011 0.25901 0.0035 3.23811 0.0473 1436 24 1485 18 1466 11 103

M15 0.09030 0.0012 0.25066 0.0034 3.12649 0.0477 1432 25 1442 18 1439 12 101

Page 128: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-187-

Chapter 6 Supplementary Material

Table S4.

U Pb monazite analyses for sample 637614 from drill hole Karkaro 1. Data in grey italics areconsidered outliers and are not included in the age calculations or shown on the concordiaor weighted average plots.

Radiogenic Ratios Age (Ma)

207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s 207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s % Con

M12 0.09231 0.0010 0.25971 0.0037 3.30484 0.0476 1474 20 1488 19 1482 11 101

M11 0.09131 0.0010 0.25139 0.0036 3.16458 0.0463 1453 21 1446 19 1449 11 99

M03 0.09124 0.0010 0.23682 0.0035 2.97902 0.0435 1452 21 1370 18 1402 11 94

M19 0.09122 0.0010 0.25351 0.0037 3.18852 0.0459 1451 20 1457 19 1454 11 100

M16 0.09111 0.0010 0.25558 0.0037 3.21074 0.0460 1449 20 1467 19 1460 11 101

M02 0.09105 0.0009 0.25407 0.0037 3.18928 0.0456 1448 19 1459 19 1455 11 101

M04 0.09101 0.0010 0.25548 0.0037 3.20556 0.0462 1447 20 1467 19 1459 11 101

M08 0.09099 0.0010 0.24508 0.0036 3.07417 0.0451 1446 20 1413 18 1426 11 98

M13 0.09075 0.0010 0.25497 0.0037 3.19024 0.0462 1441 20 1464 19 1455 11 102

M14 0.09073 0.0010 0.24526 0.0035 3.06787 0.0441 1441 20 1414 18 1425 11 98

M15 0.09072 0.0010 0.25583 0.0037 3.19939 0.0463 1441 20 1469 19 1457 11 102

M06 0.09066 0.0009 0.25475 0.0037 3.18444 0.0460 1439 19 1463 19 1453 11 102

M10 0.09065 0.0010 0.25378 0.0037 3.17221 0.0462 1439 20 1458 19 1450 11 101

M20 0.09065 0.0010 0.25576 0.0037 3.19619 0.0470 1439 21 1468 19 1456 11 102

M07 0.09064 0.0010 0.25140 0.0037 3.14151 0.0467 1439 21 1446 19 1443 11 100

M05 0.09064 0.0010 0.25264 0.0037 3.15725 0.0459 1439 20 1452 19 1447 11 101

M18 0.09057 0.0010 0.25450 0.0037 3.17776 0.0464 1437 21 1462 19 1452 11 102

M17 0.09047 0.0011 0.25773 0.0038 3.21425 0.0487 1435 22 1478 19 1461 12 103

M01 0.09041 0.0010 0.25261 0.0037 3.14836 0.0460 1434 20 1452 19 1445 11 101

M09 0.09027 0.0010 0.25563 0.0038 3.18233 0.0481 1431 22 1468 19 1453 12 103

Page 129: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-188-

Chapter 6 Supplementary Material

Table S5.

U Pb monazite analyses for sample 637615 from drill hole Karkaro 1. Data in grey italics areconsidered outliers and are not included in the age calculations or shown on the concordiaor weighted average plots.

Radiogenic Ratios Age (Ma)

207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s 207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s % Con

M05 0.09796 0.0010 0.14500 0.0021 1.95854 0.0281 1586 19 873 12 1101 10 55

M07 0.09503 0.0010 0.26016 0.0038 3.40832 0.0484 1529 19 1491 19 1506 11 98

M29 0.09426 0.0010 0.27922 0.0040 3.62804 0.0518 1513 20 1587 20 1556 11 105

M28 0.09300 0.0010 0.25910 0.0037 3.32166 0.0472 1488 20 1485 19 1486 11 100

M08 0.09283 0.0009 0.25217 0.0037 3.22731 0.0460 1484 19 1450 19 1464 11 98

M13 0.09266 0.0009 0.24367 0.0034 3.11281 0.0424 1481 19 1406 18 1436 10 95

M16 0.09251 0.0009 0.25675 0.0036 3.27355 0.0447 1478 19 1473 18 1475 11 100

M25 0.09246 0.0009 0.26643 0.0038 3.39556 0.0475 1477 19 1523 19 1503 11 103

M21 0.09238 0.0009 0.25632 0.0037 3.26421 0.0457 1475 19 1471 19 1473 11 100

M03 0.09226 0.0010 0.26801 0.0039 3.40761 0.0492 1473 20 1531 20 1506 11 104

M01 0.09223 0.0010 0.24573 0.0036 3.12320 0.0454 1472 20 1416 19 1438 11 96

M04 0.09223 0.0009 0.26857 0.0039 3.41455 0.0484 1472 19 1534 20 1508 11 104

M09 0.09220 0.0009 0.27132 0.0039 3.44881 0.0489 1471 19 1548 20 1516 11 105

M06 0.09205 0.0009 0.27874 0.0040 3.53696 0.0502 1468 19 1585 20 1536 11 108

M18 0.09193 0.0009 0.25228 0.0035 3.19692 0.0436 1466 19 1450 18 1456 11 99

M02 0.09190 0.0009 0.27039 0.0039 3.42624 0.0481 1465 19 1543 20 1510 11 105

M10 0.09189 0.0009 0.28458 0.0041 3.60523 0.0511 1465 19 1614 21 1551 11 110

M14 0.09185 0.0009 0.25035 0.0035 3.16910 0.0436 1464 19 1440 18 1450 11 98

M15 0.09139 0.0009 0.23388 0.0033 2.94639 0.0403 1455 19 1355 17 1394 10 93

M19 0.09128 0.0009 0.22559 0.0032 2.83812 0.0393 1452 19 1311 17 1366 10 90

M12 0.09121 0.0009 0.25795 0.0036 3.24296 0.0446 1451 19 1479 19 1468 11 102

M26 0.09099 0.0009 0.26628 0.0038 3.33978 0.0473 1446 19 1522 20 1490 11 105

M23 0.09098 0.0010 0.26055 0.0037 3.26761 0.0464 1446 20 1493 19 1473 11 103

M24 0.09084 0.0009 0.25971 0.0037 3.25207 0.0455 1443 19 1488 19 1470 11 103

M30 0.09080 0.0009 0.25891 0.0037 3.24022 0.0454 1442 19 1484 19 1467 11 103

M27 0.09070 0.0009 0.26523 0.0038 3.31606 0.0469 1440 19 1517 19 1485 11 105

M20 0.09065 0.0009 0.25663 0.0036 3.20741 0.0436 1439 19 1473 18 1459 11 102

M22 0.08944 0.0009 0.26188 0.0038 3.22840 0.0452 1414 19 1500 19 1464 11 106

Page 130: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-189-

Chapter 6 Supplementary Material

Tabl

eS6

.

Maj

oran

dtr

ace

elem

enta

naly

sis

for

drill

core

sam

ples

from

the

nort

hern

Gaw

lerC

rato

n,A

ustr

alia

.n.

a.=

nota

naly

sed

b.d

=be

low

dete

ctio

nlim

it.

Sam

ple

Maj

ors

(Wt%

)RE

E(p

pm)

SiO

2Ti

O2

Al 2O

3Fe

2O3

MnO

MgO

CaO

Na 2

OK 2

OP 2

O5

LOI

LaCe

PrN

dSm

EuG

dTb

Dy

Ho

ErTm

YbLu

OBD

816

4340

059

0.9

177.

50.

123.

84.

62.

12.

80.

22.

065

110

1450

91.

66

1.0

5.5

0.9

2.6

0.4

2.2

0.3

OBD

816

4340

172

0.3

131.

90.

020.

80.

32.

67.

00.

11.

016

030

033

105

152.

49

1.3

6.0

0.9

2.5

0.3

1.9

0.3

OBD

916

4340

359

0.8

177.

40.

183.

10.

61.

37.

60.

12.

175

145

1760

112.

27

1.2

6.5

1.1

3.2

0.5

3.2

0.5

Kark

aro

6376

1472

0.2

142.

30.

020.

50.

43.

16.

30.

1n.

a.10

518

520

6413

1.4

91.

47.

51.

43.

50.

52.

70.

4

Kark

aro

6376

1572

0.2

141.

70.

020.

40.

52.

96.

70.

1n.

a.96

175

1960

111.

28

1.2

6.0

1.0

2.4

0.3

1.4

0.2

Det

ectio

nlim

it0.

010.

005

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.5

0.5

0.05

0.02

0.02

0.02

0.05

0.02

0.02

0.02

0.05

0.05

0.05

0.02

Sam

ple

Trac

e(p

pm)

Ag

As

BaBe

BiCd

CoCr

CsCu

Ga

Hf

InM

oN

bN

iPb

RbSb

ScSe

SnSr

TaTe

ThTl

UV

WY

ZnZr

OBD

816

4340

00.

2b.

d.43

5n.

a.b.

d.b.

d.65

705.

52.

027

n.a.

b.d.

0.9

1824

1622

0b.

d.15

b.d.

n.a.

255

n.a.

b.d.

201.

42

115

n.a.

2710

017

5

OBD

816

4340

10.

31.

558

0n.

a.0.

1b.

d.70

b.d.

1.8

5.0

17n.

a.b.

d.1.

118

b.d.

4727

0b.

d.b.

d.b.

d.n.

a.17

5n.

a.0.

214

51.

74

b.d.

n.a.

3227

260

OBD

916

4340

30.

30.

589

0n.

a.0.

10.

195

8548

.03.

026

n.a.

b.d.

2.2

2243

4335

0b.

d.15

0.5

n.a.

90n.

a.b.

d.37

2.1

310

0n.

a.32

115

145

Kark

aro

6376

14b.

d.0.

580

03.

0b.

d.0.

432

b.d.

1.5

1.5

257

b.d.

1.2

20b.

d.46

310

b.d.

b.d.

1.0

b.d.

76b.

d.b.

d.60

1.8

7b.

d.28

032

2920

0

Kark

aro

6376

15b.

d.2.

043

04.

5b.

d.0.

223

b.d.

2.2

2.5

266

b.d.

0.8

20b.

d.52

320

b.d.

b.d.

1.0

b.d.

62b.

d.b.

d.94

2.0

9b.

d.18

525

3017

0

Det

ectio

nlim

it0.

10.

520

0.5

0.1

0.1

0.2

200.

10.

50.

11

0.5

0.1

0.5

20.

50.

10.

55

0.5

100.

12

0.2

0.1

0.1

0.1

200.

10.

050.

520

Page 131: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-190-

Chapter 6 Supplementary Material

Table S7.

Sm Nd isotope data. (a) 143Nd/144Nd CHUR(0) = 0.512638, 147Sm/144Nd CHUR(0) = 0.1966. (b)TDM calculated using the single stage model of Michard et al. (57).

Drill hole Sample Rock typeSm

(ppm)Nd

(ppm)147Sm/144Nd 143Nd/144Nd 2 SE Nd(0)a eNd(T) TDM

b Age

OBD 08 660840 Orthogneiss 6.7 37.9 0.1079 0.511381 9 -24.5 -4.6 2305 1750 OBD 08 660841 Orthogneiss 12.0 89.5 0.0810 0.511179 8 -28.5 -2.5 2083 1750 OBD 08 1643400 Orthogneiss 7.4 40.5 0.1111 0.511431 12 -23.6 -4.4 2522 1750 OBD 08 1643401 Granite 11.2 81.0 0.0834 0.511162 9 -28.8 -7.8 2302 1450 OBD 09 660842 Orthogneiss 7.5 41.1 0.1147 0.511476 6 -22.6 -4.3 2316 1750 OBD 09 1643403 Orthogneiss 9.0 51.9 0.1052 0.511336 12 -25.4 -4.9 2309 1750

Karkaro 1 367614 Granite 13.0 68.7 0.1143 0.511138 10 -29.3 -14.0 2779 1450 Karkaro 1 367615 Granite 9.1 52.0 0.1056 0.511325 10 -25.6 -8.7 2332 1450

Page 132: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-191-

Chapter 6 Supplementary Material

Page 133: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-192-

Chapter 6 Supplementary Material

Table S8.

Ca 1450 Ma 40Ar 30Ar cooling ages from Proterozoic Australia.

Rock RegionCooling Age

(Ma)Type of Age Ref.

Biotite Schist, Tommy Creek Block Mount Isa 1481 ± 5 40Ar/30Ar biotite (44 and references therein)

Dolerite, Tommy Creek Block Mount Isa 1457 ± 5 40Ar/30Ar hornblende (44 and references therein)

Limestone, Mitakoodi Culmination Mount Isa 1400 ± 5 40Ar/30Ar white mica (44 and references therein)

Volcaniclastic, Boomarra Horst Mount Isa 1458 ± 6 40Ar/30Ar hornblende (44 and references therein)

Granite, Boomarra Horst Mount Isa 1408 ± 5 40Ar/30Ar biotite (44 and references therein)

Granite, Naraku Batholith Mount Isa 1454 ± 4 40Ar/30Ar biotite (44 and references therein)

Granite, Naraku Batholith Mount Isa 1493 ±8 40Ar/30Ar hornblende (44 and references therein)

Granite, Naraku Batholith Mount Isa 1435 ± 5 40Ar/30Ar biotite (44 and references therein)

Microgranite, Naraku Batholith Mount Isa 1436 ± 8 40Ar/30Ar biotite (44 and references therein)

Granite, Williams Batholith Mount Isa 1456 ± 2 40Ar/30Ar hornblende (44 and references therein)

Granite, Williams Batholith Mount Isa 1442 ± 7 40Ar/30Ar biotite (44 and references therein)

Granite, Williams Batholith Mount Isa 1446 ± 3 40Ar/30Ar biotite (44 and references therein)

Granite, Williams Batholith Mount Isa 1428 ± 8 40Ar/30Ar biotite (44 and references therein)

Biotite Schist, Williams Batholith Mount Isa 1405 ± 5 40Ar/30Ar biotite (44 and references therein)

Biotite Schist, Williams Batholith Mount Isa 1400 ± 5 40Ar/30Ar white mica (44 and references therein)

Granite, Williams Batholith Mount Isa 1435 ± 3 40Ar/30Ar biotite (44 and references therein)

Granite, Williams Batholith Mount Isa 1455 ± 2 40Ar/30Ar hornblende (44 and references therein)

Granite, Osborne, Cloncurry area Mount Isa ca 1465 40Ar/30Ar muscovite (44 and references therein)

Granite, Osborne, Cloncurry area Mount Isa ca 1465 40Ar/30Ar sericite (44 and references therein)

Ernest Henry Cu Au deposit, Cloncurry area Mount Isa ca 1478 40Ar/30Ar biotite (44 and references therein)

Mt Elliot, Cloncurry area Mount Isa ca 1496 40Ar/30Ar biotite (44 and references therein)

Wimberu Mount Isa ca 1476 40Ar/30Ar sericite (44 and references therein)

Albite pipe/ Gilded Rose Breccia Mount Isa ca 1488 40Ar/30Ar sericite (44 and references therein)

Granite, Wonga Granite Mount Isa 1425 ± 7 40Ar/30Ar biotite (44)

Granite, Kalkadoon Granite Mount Isa 1447 ± 8 40Ar/30Ar biotite (44)

Rhyodacite, Leichhardt volcanics Mount Isa 1426 ± 6 40Ar/30Ar biotite (44)

Granite, Kalkadoon Granite Mount Isa 1488 ± 2 40Ar/30Ar biotite (44)

Granite, Kalkadoon Granite Mount Isa 1483 ± 14 40Ar/30Ar hornblende (44)

Granite, Kalkadoon Granite Mount Isa 1444 ± 4 40Ar/30Ar biotite (44)

Granite, Kalkadoon Granite Mount Isa 1489 ± 12 40Ar/30Ar hornblende (44)

Granite, Kalkadoon Granite Mount Isa 1453 ± 7 40Ar/30Ar biotite (44)

Granite, Kalkadoon Granite Mount Isa 1470 ± 9 40Ar/30Ar biotite (44)

Granite, Kalkadoon Granite Mount Isa 1432 ± 3 40Ar/30Ar biotite (44)

Granite, One tree Granite Mount Isa 1419 ± 7 40Ar/30Ar hornblende (44)

Granite, Yeldham Granite Mount Isa 1496 ± 10 40Ar/30Ar biotite (44)

Amphibolite, Eastern creek volcanics Mount Isa 1430 ± 2 40Ar/30Ar hornblende (44)

Amphibolite, Eastern creek volcanics Mount Isa 1439 ± 5 40Ar/30Ar hornblende (44)

Granite, Sybella Granite Mount Isa 1444 ± 9 40Ar/30Ar biotite (44)

Einasleigh Metamorphics Georgetown ca 1444 40Ar/30Ar hornblende (45)

Robertson River Metamorphics Georgetown ca 1456 40Ar/30Ar muscovite (45)

Robertson River Metamorphics Georgetown ca 1478 40Ar/30Ar muscovite (45)

Page 134: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Table S9.

Ca 1450 Ma Rb Sr resetting ages from Proterozoic Australia. *Rb Sr isochron ages have beenrecalculated with 87Rb decay constant of 1.42 x 1011y. TR = Total Rock.

Rock RegionResetting Age

(Ma)Type of Age Ref.

Gabbro, Huckitta Bore Intrusion Arunta 1473 ± 134 Sm Nd isochron (minerals) (46)

Mafic amphibolites, Entia Gneiss Complex Arunta 1441 ± 152 Sm Nd isochron (TR & minerals) (46)

Pegmatites & metasomatic pods, Anmatjira Reynolds Range Arunta 1493 1401 Rb Sr muscovite (8 ages) (48)

Felsic rocks, Woolanga Bore, Strangways Ranges Arunta 1406 ± 80* Rb Sr isochron (TR) (47 and references therein)

Ultramafic rocks, Johannsen’s Mine, Strangways Ranges Arunta 1426 ± 37* Rb Sr isochron (TR) (47 and references therein)

Jinka Granite, Jervois Range area Arunta 1479 ± 23 Rb Sr isochron (TR & minerals) (47 and references therein)

Alaskitic granite/Unca Granite, Jervois Range area Arunta 1459 ± 10 Rb Sr isochron (TR & minerals) (47 and references therein)

Mica Schist/Bonya Schist, Jervois Range area Arunta 1492 Rb Sr biotite (47 and references therein)

Microgranodiorite xenolith in Harverson Granite Arunta 1497 ± 146 Rb Sr isochron (TR) (47 and references therein)

Wangala Granite Arunta 1490 ± 100 Rb Sr isochron (TR) (47 and references therein)

Wuluma Granitoid Arunta 1426 ± 81 Rb Sr isochron (TR) (47 and references therein)

Deformed Granite, Anmatjira Range Arunta 1424 ± 58 Rb Sr isochron (TR) (47 and references therein)

Mylonitic Gneiss, Redbank Thrust Zone Arunta 1480 ± 160 Rb Sr isochron (TR) (47)

Pollock Hill Formation Tanami 1444 ± 220* Rb Sr isochron (TR) (49)

Mount Webb Granite Tanami 1473 ± 21* Rb Sr isochron (TR) (49)

Cabbage Gum Granite Tennant Creek 1473 ± 54* Rb Sr isochron (TR) (50)

Kalkadoon Granite Mount Isa 1470 1423 Rb Sr biotite & muscovite (5 ages) (51 and references therein)

Argylla Formation, Argylla Range and Duck Creek Area Mount Isa 1400 ± 64 Rb Sr isochron (TR & minerals) (51 and references therein)

Argylla Formation, Mt Olive area Mount Isa 1488 ± 101 Rb Sr isochron (TR) (51 and references therein)

Sybella Microgranite Mount Isa 1427 ± 465 Rb Sr isochron (TR) (51)

Tuff samples from the Urquhart Shale, Mount Isa Group Mount Isa 1482 ± 52 Rb Sr isochron (TR) (51 and references therein)

Einasleigh Metamorphics, Stockmans Crossing Georgetown 1440 ± 70 Rb Sr isochron (TR) (45)

Robertson River Metamorphics, Stars Well Georgetown 1488 ± 35 Rb Sr isochron (TR) (45)

Robertson River Metamorphics, Bull Creek Georgetown 1468 ± 31 Rb Sr isochron (TR & minerals) (45)

Digger Creek Granite, Percyville Georgetown 1460 ± 40 Rb Sr isochron (TR) (45)

Page 135: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 136: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

Chapter 7

Page 137: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form
Page 138: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-195-

Conclusions

The fi rst major aim of this project was to investi gate the provenance of (meta)sedimentary sequences of the Gawler Craton, and integrate the informati on with existi ng data in order to bett er understand the potenti al paleogeographic setti ng of the Gawler Craton. A second goal was to constrain the ti melines of metamorphism and magmati sm in the western and northern Gawler Craton, and to match these events with other crustal blocks both within and external to Proterozoic Australia. Both of these aims helps to constrain paleogeographic reconstructi on models which seek to explain the development of Proterozoic Australia within a wider context.

Chapter 2 demonstrates that provenance studies using detrital zircon data should be complemented with Hf and Nd isotopic data, otherwise coincidental similariti es in zircon age populati ons could lead to matches with incorrect and disprovable source regions. The case study shows that Paleoproterozoic metasedimentary rocks in the eastern Gawler Craton have the detrital zircon age populati ons that would be expected from erosion of the proximal pre-existi ng Gawler Craton. A provenance study based on detrital zircon patt ern matching alone would conclude that the Gawler Craton was the source region to these metasedimentary rocks. However, whole rock Nd isotopic data show that the average Gawler Craton is too isotopically evolved to be considered a major source to the more juvenile metasedimentary sequences. Furthermore, Hf isotopic data indicate that ca 2000 Ma zircons from the Gawler Craton are signifi cantly more evolved than the ca 2000 Ma detrital zircons from the metasedimentary rocks. The combinati on of bulk rock Nd and Hf zircon data suggest that the Gawler Craton is not a viable source region for the metasedimentary packages, despite the striking similarity between detrital zircon ages and zircon crystallisati on events within

the craton. As well as the case study which highlights the signifi cance of Hf and Nd isotopic data in provenance studies, several more regional conclusions were obtained in Chapter 2. The depositi onal interval of the Corny Point Paragneiss, in the south eastern Gawler Craton, is constrained to the interval ca 1870 – 1850 Ma using detrital zircon ages coupled with post-depositi onal tectonism. The source region to these metasedimentary sequences must be capable of supplying slightly evolved (Nd (1850

Ma) = –1 to –5) sediments and detrital zircons with ages of 2000 Ma, 2450 Ma and 2510 Ma. In additi on, the source region must be able to supply isotopically juvenile (Hf = +2 to +5) ca 2000 Ma detrital zircon grains. The source region to these metasedimentary rocks is unknown at this ti me, but the ca 2000 Ma juvenile zircons are similar in age and compositi on to zircon grains derived from tuff aceous rocks in the Pine Creek Orogen in northern Australia.

Chapter 3 presents a provenance study on metasedimentary rocks from drill core in the Fowler Domain, western Gawler Craton. The maximum depositi onal ages from detrital zircon analyses are between ca 1760 – 1710 Ma. Minimum depositi onal ages of ca 1690 – 1670 Ma are given by metamorphic zircon and monazite ages. The sedimentary precursors were derived from an evolved and enriched intracrustal source region dominated by 1790 – 1710 Ma zircon forming events, suggesti ng derivati on from the Arunta Province of the North Australian Craton. The depositi onal ti ming and provenance characteristi cs of the Fowler Domain metasedimentary rocks are similar to other Paleoproterozoic basins from the Gawler Craton and the Curnamona Province, including the Mt Woods Domain, the northern Gawler Craton, the Wallaroo Group and the lower Willyama Supergroup. This suggests that widespread Paleoproterozoic depositi on throughout the South Australian Craton was predominantly sourced from

Page 139: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-196-

Chapter 7 Conclusions

the Arunta region of the North Australian Craton. If the Arunta region was the source to the Paleoproterozoic basin systems of the Gawler Craton and Curnamona Province, then a connecti on between the South Australian Craton and the North Australian Craton must have existed by at least 1760 to 1710 Ma.

Chapter 4 presents a provenance study on three (meta)sedimentary sequences from the central Gawler Craton. Previously the Eba, Labyrinth and Tarcoola Formati ons had all been thought to be Paleoproterozoic in age. However, the results show that each of three formati ons is not only diff erent in age but also were sourced from diff erent crustal domains. Provenance data from the Eba Formati on show that it is derived from a highly evolved source with a detrital zircon spectrum consisti ng only of Archean grains which give a maximum depositi onal age of ca 2540 Ma. The Eba Formati on may be either (1) Paleoproterozoic in age with derivati on solely from Archean Gawler Craton sources in isolati on from <2500 Ma source regions or (2) as preferred, Archean in age and a possible equivalent to metasedimentary rocks of the Sleaford and Mulgathing Complexes. Further constraints are needed to identi fy the ti ming of depositi on for the Eba Formati on. The ca 1715 Ma Labyrinth Formati on appears to be a correlati ve with other late Paleoproterozoic basins from the Gawler Craton. These were highlighted in Chapter 3 and include metasedimentary rocks of the northern Gawler Craton, Fowler Domain, Mt Woods Domain and Wallaroo Group. However, slightly more evolved isotopic Nd signatures and a greater proporti on of Archean detrital zircons suggest that the Labyrinth Formati on in comparison with other Paleoproterozoic sequences, was dominated by reworked Archean material. This Archean source material is consistent with derivati on from the Meso- to Neoarchean Gawler Craton, and is also consistent with derivati on from the unconformably underlying

Eba Formati on. Provenance data from the 1650 Ma Tarcoola Formati on show that it requires a felsic, isotopically juvenile source region and cannot be accounted for by derivati on of the average Archean Gawler Craton. Proterozoic rocks such as the proximal Tunkillia Suite of the central Gawler Craton, or the Warumpi Province of the North Australian Craton are possible source regions. The age and isotopic compositi on of the Tarcoola Formati on is similar to sequences in the Curnamona Province and also in northeastern Australia, suggesti ng the existence of a widespread basin system that received fi ll from a comparati vely juvenile felsic terrain.

Chapter 5 presents geochronology, geochemistry and isotopic Nd analyses on orthogneisses obtained from drill core in the northern Gawler Craton. U-Pb zircon dati ng on the orthogneisses suggests that they were emplaced at around 1780 – 1750 Ma. However, insuffi cient inherited grains were found to determine the age of the crust that they intruded. U-Pb dati ng on metamorphic zircon and monazite suggests that the orthogneisses underwent metamorphism between 1730 – 1710 Ma, consistent with the craton wide Kimban Orogeny. The northern Gawler Craton can now be shown to share similar ti melines of magmati sm, sedimentary depositi on and metamorphism with the Arunta Province of the North Australian Craton, suggesti ng that they may been conti guous and shared similar tectonic histories during the mid to late Paleoproterozoic. Another outcome of this study is that the orthogneisses of the northern Gawler Craton, in additi on to the previously proposed Arunta region, can now be considered as a possible source region for Paleoproterozoic basin sequences of the Gawler Craton and Curnamona Province menti oned in Chapters 3 and 4, which require an enriched felsic source region that can supply 1780 – 1750 Ma zircon grains.

Page 140: Geotectonics in the Gawler Craton: Constraints from ... · Geotectonics in the Gawler Craton: Constraints from geochemistry, U-Pb ... Thesis Outline ... These grani ti c rocks form

-197-

Chapter 7 Conclusions

Chapter 6 presents new ca 1450 Ma magmati sm and high-grade metamorphism from the northern Gawler Craton. This matches with a growing dataset of 1.45 Ga magmati sm, metamorphism, cooling, isotopic resetti ng and shear zone reacti vati on within Proterozoic Australia, suggesti ng the existence of a widespread 1.45 Ga tectonothermal event. Its plausible that this event could be an extension of the 1.48 – 1.35 Ga Granite – Rhyolite Province from southern Laurenti a, supporti ng reconstructi on models which place Proterozoic Australia and Laurenti a adjacent during the Mesoproterozoic.

Implicati ons for reconstructi on models including Proterozoic Australia

There are several implicati ons for Proterozoic reconstructi on models that can be made from the data presented in this thesis.

1. The provenance data from Paleoproterozoic rocks in the Gawler Craton suggest that the Gawler Craton was more or less assembled prior to ca 1.7 Ga.

2. The similariti es in magmati sm, metamorphism and sedimentary depositi on between the northern Gawler Craton and the Arunta Province, as well as provenance characteristi cs from 1.7 Ga sedimentary sequences of the Gawler Craton, suggest that the North Australian Craton and South Australian Craton were likely to be conti guous at ca 1.7 Ga.

3. The presence of a 1.45 Ga tectonothermal event in Proterozoic Australia suggests that Proterozoic Australia may have been positi oned adjacent to Laurenti a at 1.45 Ga.