102
Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research •Some slides taken from Hugues Hoppe

Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Embed Size (px)

Citation preview

Page 1: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Geometry Images

Xiang Gu

Harvard University

Steven J. Gortler

Harvard university

Hugues Hoppe

Microsoft Research

•Some slides taken from Hugues Hoppe

Page 2: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Background

• Modeling geometry with (triangular) meshes

• regular / iregular meshes

• current tecniques form semi-regular meshes

• typically: cut into disks

parametrize each disk

each disk is regular

all disks are iregular network

Page 3: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Advantages of Regularity

• Improved compression (implicit connectivity)

• Reduce tangent non-uniformity

• Better start for hirarchial resolution

Page 4: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Introduction

• Remesh into a completely regular structure

• geometry as 2D array of points

• more arrays for “surface signals”:– normals– colours– texture

• encode as RGB picture

Page 5: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 6: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 7: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

The General Algorithm

• Cut the mesh

• parametrize into an n*n square

• [x,y,z] <==> [R,G,B]

• encode using image compression algorithms

• other attributes - additional images

• implicit parametrization

Page 8: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Challenges

• Find a “good cut” (form a disk-like surface)

• Avoid “cracks in the cut” along the boundary

• Evenly distributing parametrization

• lossy compression - cut fusing

Page 9: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Creating The Geometry Image

Page 10: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

The Cut

• Cut = set of edges

• M = Original mesh M’ = New mesh

Page 11: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

mates

Split

• Split (non boundary) edges

• form “open cut” ’’ is a directed loop = edge of M’

Page 12: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Split - cont.

• Valence k ==> k replications

• valence 2 ==> “cut node”

Page 13: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Cut Path

• Path between 2 ordered cut nodes of ’

• mate to cut path

Page 14: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Parametrization

• (piecewise) linear map : [n * n] => [vM’]

• resample mesh at grid

• triangle interpolation

Page 15: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Parametrization

Page 16: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Boundary parametrization

• Map ’ ==> boundary of square

• cut nodes => on grid

• cut mates => same length

Page 17: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Boundary parametrization - cont.

• How is it done?– Allocate proportional length– redistribute

Page 18: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Boundary parametrization - cont.

• Avoid degeneracies:– no full triangle on 1 side (split middle)– break edges over corners (add vertex)

Page 19: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Interior parametrization

• Geometric stretch parametrization– minimize spacing on surface (parameters

distribute evenly)– P.V. Sander, J. Snyder, S.J. Gortler and H.

Hoppe. Texture mapping progressive meshes.

• Also serves as metric for mesh

Page 20: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Cutting

Page 21: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Initial Cut

• Fact:– genus 0 ==> 1 edge cut– genus g ==> 2g generator loops cut (that form

basis to surface’s fundamental group)

Page 22: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Find the cut - retractor algorithm

• Remove a seed triangle

• Repeatedly remove an edge adjacent to exactly 1 triangle and the triangle

• Repeatedly remove ‘dandling’ edges (vertices with degree 1 + the edge)

• do not change boundary (if exists)

Page 23: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Original mesh

Page 24: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Remove seed triangle

Page 25: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 26: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Remove edges and triangles

Page 27: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 28: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Iterate

Page 29: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 30: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 31: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 32: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 33: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 34: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 35: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 36: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 37: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 38: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 39: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 40: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 41: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 42: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 43: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 44: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 45: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 46: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 47: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 48: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 49: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 50: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 51: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 52: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 53: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 54: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 55: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 56: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 57: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Done: no triangles left (no faces)

Page 58: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Remove dandling edges

Page 59: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Iterate

Page 60: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 61: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 62: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 63: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 64: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 65: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 66: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 67: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 68: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

We are left with this:

Page 69: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Initial Cut

• Result of the algorithm:– generator loops (genus > 0)– one vertex (genus 0)

• if 1 vertex : add 2 more (adjacent)

Page 70: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Iterated Cut Augmentation

• Parametrize on unit circle (Floater)– M. Floater. Parametrization and smooth

approximation of surface triangulations.

• Find vertex with highest geometric stretch

• Find shortest path to boundary

• Add path to cut

• Stop when geometric stretch increases

• for genus 0: disregard original cut

Page 71: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 72: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 73: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 74: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 75: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 76: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 77: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 78: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 79: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 80: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Putting it all together

Page 81: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 82: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 83: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 84: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 85: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 86: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 87: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Rendering

Page 88: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 89: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 90: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 91: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 92: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 93: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 94: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Compression

Page 95: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 96: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 97: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Again this Crack!

Page 98: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe

Topological Sideband

• Table of nodes in • for each node, record:

– valence (k)– k coordinate pairs (s,t)

• Deduce ’ matching from the table

• “Fuse cut” using matchings

Page 99: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 100: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 101: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe
Page 102: Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe