Geodetic Deformation Analysis

  • Upload
    yasemin

  • View
    247

  • Download
    0

Embed Size (px)

Citation preview

  • 7/24/2019 Geodetic Deformation Analysis

    1/51

    GEODETIC DEFORMATION

    ANALYSISShort Lecture Notes for Graduate Students

    CneytAydn(YTU-GeodesyDivision)

  • 7/24/2019 Geodetic Deformation Analysis

    2/51

    ii

    CONTENTS

    PREFACE..................................................................................................................................... iii

    1. INTRODUCTION........................................................................................................1

    2. GLOBALTEST............................................................................................................ 4

    2.1 TestingWholeNetworkMethodI...........................................................................42.2 TestingWholeNetworkMethodII..........................................................................82.3 TestingWholeNetworkforNonIdenticalCase.................................................... 102.4 TestingaPartofaNetwork...................................................................................11

    3. TESTINGOBJECTPOINTS ....................................................................................... 14

    3.1 TestingObjectPointsinAbsoluteDeformationNetworks ................................... 143.2 Localization ............................................................................................................ 173.2.1 LocalizationwithGausseliminationmethod........................................................ 173.2.2 Localizationwithimplicithypothesismethod....................................................... 203.2.3 Localizationinabsolutedeformationnetworks....................................................22

    4. SENSITIVITYANALYSIS ........................................................................................... 23

    4.1 GlobalSensitivityAnalysis ..................................................................................... 234.1.1 OptimizationCriteria ............................................................................................. 234.1.2 Minimumdetectabledisplacement ...................................................................... 25

    4.2 SensitivityAnalysisinAbsoluteDeformationNetworks .......................................26

    5. INTERPRETATION MODELS .................................................................................... 30

    5.1 KinematicModel....................................................................................................305.1.1 Singlepointmodelforanobjectpointsmovement.............................................315.1.1.1 ModelI ...................................................................................................................315.1.1.2 ModelII ..................................................................................................................325.1.1.3 ModelIII................................................................................................................. 325.1.2 Singlemodelforwholeobjectpointsmovement ................................................ 345.1.3 Testingmodelparameters.....................................................................................355.1.4 Modeltest.............................................................................................................. 365.2 StrainAnalysis........................................................................................................ 375.2.1 Definition ............................................................................................................... 375.2.2 Strainmodellingingeodeticdeformationanalysis............................................... 41

    APPENDIXA:GLOSSARY ........................................................................................................... 45

    APPENDIXB:THRESHOLDVALUES(Fandtdistributions) .......................................................47

  • 7/24/2019 Geodetic Deformation Analysis

    3/51

    iii

    PREFACE

    This short lecture notes aims to give some fundamental subjects in geodetic

    conventionaldeformationanalysis.IthasbeenwrittenforgraduatestudentswhotakeError

    Theory and Parameter Estimation andAdjustment Computation courses in their Geodesydepartments. For reading the notes, it is highly recommended to have knowledge on

    geodetic network adjustment solutions, especially tracemin, partial tracemin and Stransformation.

    Theupdatedversionwithnumericalexamplesandliteraturereviewwillappearsoon.Yourcommentsonthelecturenoteswillbeappreciated.

    C.Aydn

    stanbul,July2014

    ([email protected])

  • 7/24/2019 Geodetic Deformation Analysis

    4/51

  • 7/24/2019 Geodetic Deformation Analysis

    5/51

    1

    1. INTRODUCTION

    Becauseofactingforces,aphysicalbodymaydisplacefromx1initialpositiontox2

    presentpositionintimein3Dspace.Thedisplacementvector

    d=x2x1 (1.1)

    consistsoftwoparts

    relativepart,

    nonrelativepart.

    The relative part, the socalled rigid body displacement, represents translation and

    rotation.Theyarerelativebecausetheychangedependingonwhereweareobserving

    thebodyfrom.For instance,abodymaynotmoveorrotateforanobservermoving

    androtatingalongthesamedirectionsimultaneouslywiththebody.Thenonrelative

    part, on the other hand, does not depend on the observer position. This part

    representsshapechange,i.e.deformation.

    Engineeringbuildings,suchasdams,bridges,tunnelsetc.,ortheEarthscrustare

    suchbodiesaffectedbysomephysicalforcesallthetime.Monitoringtheirresponses

    totheforces isanessentialtasknotonlyforunderstandingthebodymechanismbut

    also for taking someprecautionsbeforeanypossibledamage.The responses,which

    are monitored as aforementioned displacements, are very small compared to the

    bodysize.Geodeticmethodsandinstrumentsmayovercomethisproblemsufficiently

    havingprovidedmilimeteraccuracy inpositioningof thestationsdistributed ineven

    largeareas,andtherefore,todaytheyare indispensable incrustalandconstructional

  • 7/24/2019 Geodetic Deformation Analysis

    6/51

    2

    deformationstudies.Althoughgeodeticdeformationanalysis isnowaround30years

    old and there are plenty of approaches, techniques, methods etc., the surveying

    principle is the same. For monitoring the bodies (the objects as commonly

    pronouncedingeodesy),weestablishadeformationnetwork.Therearetwotypesof

    deformationnetwork,

    absolutedeformationnetworks,

    relativedeformationnetworks.

    An absolute deformation network consists of two parts; 1) reference points and 2)

    object points. The reference points are established in a stable region, the socalled

    referenceblock,whereastheobjectpointsare locatedatsomespecificplacesofthe

    objectsuchthattheyareabletocharacterizethe investigateddynamicalpropertyof

    the object itself. Both point groups are predefined in absolute networks. Or, if the

    reference points and object points are defined after deformation analysis or

    depending on a prior information beforehand, we call such deformation networks

    absoluteones.On theotherhand, ifadeformationnetworkmaynotbepartitioned

    intotwopartsbeforehand,thistypeofnetworkiscalledrelativedeformationnetwork.

    Before realization of a deformation network, a practitioner knows naturally

    (intuitivelyordependingonpreanalysisof thestudiedarea)whichpart isreference

    blockandwhichpartisobject.However,afterrealizationweshouldtestwhetherthe

    referenceblockhasundergoneanydeformationornot.Inotherwords,thereference

    pointsarenotexact inadeformationnetwork.Therefore, in theory,alldeformation

    networks are (should be!) described as relative ones unless verifying the referencepoints by some statistical tests based on the corresponding deformation

    measurements.

  • 7/24/2019 Geodetic Deformation Analysis

    7/51

    3

    Fig.1.1.Configurationofanabsolutedeformationnetwork

    Inthatcoursewemainlyconcentrateonconventional(geometrical)deformation

    analysis for absolute and reference deformation networks, i.e., global test and

    localizationprocedures;sensitivityanalysistoderivethecapacityofourdeformation

    networks;kinematicmodelstoderivevelocityand/oraccelerationofthebodieswhich

    moveintimeaswellasstrainanalysistointerpretethedeformationofanobject.

    Object

    ReferencepointsReferencepoints

  • 7/24/2019 Geodetic Deformation Analysis

    8/51

    4

    2. GLOBAL TEST

    Globaltestisrealizedfortwoaims;tolearn(orverify)

    whetherwholenetworkhasundergoneanydeformationornot,

    whether a part of the network (for instance, reference points) has any

    deformationornot.

    By global test it is not possible to answer if the corresponding points have

    translatedor rotatedasablock (remember thesekindofdisplacementsare relative

    changes),thereforetheaimissometimesexpressedasfollows;

    To learn whether the correspondingpart has somepoints whose coordinates

    havesignificantchanges.

    2.1 Testing Whole Network-Method I

    Weheredesiretotestifawholenetworkhasanydeformationornot.Letourc

    dimensional deformation network with u=cp coordinate unknowns of p points be

    measured in two periods. Applying traceminimum solution to each period

    observations,supposethatweget

    iiTixxi ii yPAQx = , iixxQ = T1TiiTiiiTi )()( GGGGAPAAPA += + (i=1,2) (2.1a)

    aswellas

    iiii yxAv = , iiiTi

    2i,0 /f)(s vPv= (i=1,2) (2.1b)

  • 7/24/2019 Geodetic Deformation Analysis

    9/51

    5

    where

    Ai : niudesignmatrixwithrankAi=ur,

    iixxQ : uucofactormatrixoftheunknowns,

    Pi : niniweightmatrixoftheobservations

    iy : ni1(diminished)observationvector,

    ()+ : denotespseudoinverse,

    iv : ni1residualvector,

    2i,0s : aposteriorivarianceofunitweight,

    ni : numberofobservations,

    r : numberofdatumparameters,

    fi : degreesoffreedom(fi=niu+r)and

    GT : rucoefficientmatrixofconstraintequations(datum

    matrix)todefinethedatumofthenetwork.

    Using the solutions given in Eq. (2.1a), the displacement vector d and its

    cofactormatrix ddQ areobtainedas

    d=x2x1 ,2211 xxxxdd

    QQQ += (2.2)

    The test procedure depends on discriminating the following null hypothesis

    (H0)againstitsalternative(H1);

    H0:E(d)=0 vs. H1:E(d)0 (2.3)

    Forthis,wehavetwopossibleways;

    F(Fisher)test

    2(Chisquare)test.

  • 7/24/2019 Geodetic Deformation Analysis

    10/51

    6

    The test statistics (T) and the threshold values () of these two tests are given as

    follows:

    =

    =

    ==

    +

    +

    21h,

    2

    2d

    ddT

    2

    1f,h,2d

    ddT

    ,(h)~T

    F,f)F(h,~hs

    TF

    dQd

    dQd

    (2.4)

    where

    h : rank ddQ (seeNote2.1),

    f : totaldegreesoffreedom,i.e.,f=f1+f2,

    2ds : pooledvariancefactor(seeNote2.2),

    : totalsignificancelevel(TypeIerror)and

    2d : apriorivariancefactor(seeNote2.3).

    WesimplycomparethecorrespondingteststatisticTwithitsthresholdvalueinEq.

    (2.4).Thereistwopossibleoutcomesandresults;

    i) IfT

  • 7/24/2019 Geodetic Deformation Analysis

    11/51

    7

    Note2.2:Pooledvariancefactorisobtainedasfollows

    2ds =

    21

    22,02

    21,01

    ff

    sfsf

    +

    += 22

    T211

    T1 vPvvPv + =

    f

    However, to consider the pooled variance factor in Eq. (2.4), the ratio 2 1,0s / 2

    2,0s

    shouldbesmallerthan 1,f,f 21F thresholdvalue(Variancetest)*.Otherwise,wemay

    notputthepooledvarianceintoEq.(2.4);inotherwords,itmeansthattheperiods

    arenotproperforanycomparison.

    *)Thisisvalidif 2 1,0s isnumericallybiggerthan2

    2,0s .Otherwise,theratio 2

    2,0s / 2

    1,0s

    iscomparedwith 1,f,f 12F .

    Note2.3:Instatisticalpointofview,2test ismorepowerfulthanFtest. Inother

    words,theprobabilityofcorrectlyacceptingthealternativehypothesis(thepower

    ofthetest) in2test isbigger.However,itrequiresapreciseknowledgeonthea

    priorivariance 2d .Sinceitcanbederivedfromlongtimeexperienceonthedataof

    the surveying methods applied in the studied area, this requirement may not be

    ensuredalwaysorinashorttime.Therefore,commonlyFtestischosenbecauseit

    needsonlythevariancesfromthecurrentmeasurementsoftheperiods.Herafter,

    inthetestprocedureswewillconsideronlyFdistributedteststatistics.

    Note2.1:Ifbothperiodsareidentical,thenh=rank ddQ =urholds.

  • 7/24/2019 Geodetic Deformation Analysis

    12/51

    8

    2.2 Testing Whole Network-Method II

    Theprevious test statisticvaluesarededuced from the theoryof generalized

    linear hypothesis. In deformation analysis, there is a second method which

    substitutesthehypotheses implicitly intoacorrespondingGaussMarkoffmodel. It is

    calledthereforeimplicithypothesismethod.

    We may gather the separate adjustment models of the periods in a unique

    GaussMarkoffmodelas

    =

    2

    1

    2

    1

    2

    1E

    x

    x

    A0

    0A

    l

    l ,

    =

    2

    1

    P0

    0PP (2.5)

    NowwewillconsiderthenullhypothesisH0:E(d)=0orH0:E(x1)=E(x2) inmodel(2.5).Forthiswewritethefollowingmodel,which impliesthatthere isnoanydifference

    betweentwoperiods;

    H

    2

    1

    2

    1E x

    A

    A

    =

    l

    l ,

    =

    2

    1

    P0

    0PP (2.6)

    Note2.4:Foreachperiod,adjustmentprocedureshouldberealizedwithcommon

    approximate coordinates in the network. However this may not be ensuredeverytime because in some cases (for example in monitoring of landslides which

    maycausebigdisplacements)iterativeadjustmentisrequired;so,theapproximate

    coordinates inevitably changes in each iteration. For such cases, instead of using

    diminished coordinate unknown vectors (xi), adjusted coordinates of the periods

    shouldbeconsideredtoestimatethedisplacementvectorinEq.(2.2).

  • 7/24/2019 Geodetic Deformation Analysis

    13/51

    9

    Solvingmodel(25)wegetthefollowingquadraticform,whichisequivalentto

    thesumoftheweightedsumofthesquaredresidualsoftheperiods,

    22,02

    21,0122

    T211

    T1 sfsf +=+= vPvvPv (2.7)

    On the other hand, the solution of model (2.6), which has fH=f+ur degrees of

    freedom,resultsin

    HTHH Pvv= (2.8)

    If there is no any difference between two periods, the difference between two

    quadratic forms of the models, i.e., R=H, should go to zero. For this the test

    statisticfromtestingoflinearhypothesesissetasfollows

    T=2d

    HH

    hs

    R

    /f

    f)/(f)( =

    F(h,f) (2.9)

    becauseoffHf=ur=hand(/f)=2

    ds (Note2.2).Theteststatistic is identicalwiththe

    oneofFtestinEq.(2.4).So,thetestprocedureissimilar.

    Note 2.5: In each free adjustment method (tracemin, partial tracemin and

    minimumconstrained), we get a unique residual vector. Therefore, solution of

    model (2.6)mayberealizedbyany freeadjustmentmethod.Since theminimum

    constrainedsolutionisanormaladjustmentprocedure,itiseasytousethissolution

    intheimplicithypothesismethod.Forthis,arbitraryrcolumnsofthedesignmatrix

    inmodel(2.6)aredeletedbeforeadjustment.

  • 7/24/2019 Geodetic Deformation Analysis

    14/51

    10

    2.3 Testing Whole Network for Non-Identical Case

    A deformation network may be augmented or renovated with newer points in

    differentperiods. In that casewe should handlewithdifferent configurations in theperiodstobecompared.Tomakethemidenticaltherearetwopossibleways;

    i) Thecorrespondingperiodsareseparatelyadjustedusing theobservations

    connectingtheidenticalpointsinbothperiods.

    ii) The periods are readjusted such thatonly identical points in theperiods

    definethedatumofthenetwork.

    Thelatterismoreadvantageousbecausewedonotmodifythenetworkdesign.Letus

    considerthatourcdimensionaldeformationnetworkwithppointsisaugmentedwith

    k newer points in the second period and we have already their traceminimum

    solutions;

    Coordinates Cofactors

    1stPeriod 2ndPeriod 1stPeriod 2ndPeriod

    Identicalpoints1x (cp1) 2x (cp1) 11xxQ 22xx Q n2xx Q

    Newpoints nx (ck1) 2nxx Q nnxx Q

    Inthesecondperiod,newpointsshouldbeextractedfromthedatumdefinition.We

    may use Stransformation for doing this. Let c(k+p)r coefficient matrix of the

    constrainedequationsforthesecondperiodbehadthefollowingform

    2~x

    22x~x~Q

  • 7/24/2019 Geodetic Deformation Analysis

    15/51

    11

    )( TnTT

    2 GGG = (2.10)

    where TnG is the ckr datum submatrix for the new points. TakingTnG =0 above (in

    other words, new points are extracted from the datum definition) we set a new

    coefficientmatrix

    )( TT2 0GB = (2.11)

    WithEqs.(2.10)and(2.11),theStransformationmatrixiscomputedas

    T2

    12

    T222 )( BGBGIS = (2.12)

    UsingthematrixS2wedefineanewdatumforthesecondperiod

    S2 2~x =

    n

    2

    x

    x and TSQS 2x~x~2 22 =

    nn2n

    n222

    xxxx

    xxxx

    QQ

    QQ (2.13)

    The subvector x2 and the submatrix 22xxQ in Eq. (2.13) are now compatible

    with 1x and 11xxQ . Hence, both periods are identical and ready for comparison as

    usual.

    2.4 Testing a Part of a Network

    Our reference points should be stable because we define the cloud of these

    pointsasourobserver tomonitor theobject.We should thereforeverifywhetherthe reference points have undergone any deformation or whether they include any

    pointwhosecoordinateshavechangedsignificantly.Thisprocedureisoneofthemost

    importantstageinmonitoringoftheobject.

    Supposethatandrepresentpreferencepointsandp=ppobjectpoints,

  • 7/24/2019 Geodetic Deformation Analysis

    16/51

    12

    respectively.ThedisplacementvectordanditscofactormatrixQddinEq.(2.2)maybe

    writtenexplicitlyforthesepointgroupsasfollows

    =

    d

    dd ~

    ~ , Qdd=

    QQ

    QQ

    ~~

    ~~ (2.14)

    To test the reference points first we should define the network datumaccording to

    them.ThismayberealizedbythefollowingStransformation

    ==

    d

    ddSd , ddQ = S Qdd

    TS =

    QQ

    QQ (2.15)

    wherethetransformationmatrix S issetasfollows;

    T1T )( BGBGIS = with )( TTT

    = GGG and )( TT

    0GB = (2.16)

    Inthetest,thesubvector d andthesubmatrix Q inEq.(2.15)areused:Thetest

    statistichavingFdistribution,similartotheoneinEq.(2.4),isgivenasfollows

    f),F(hsh

    T2d

    T

    +

    = dQd

    (2.17)

    where h =hc(pp)=rank Q . The test statistic is compared with the threshold

    value 1f,,hF ;

    i) If T < 1f,,hF ,thenourreferencepointsareacceptedasstablewitherror.

    ii) If T 1f,,hF , there is at least one point whose coordinates has changed

    significantly. In that case, we should find the responsible point(s) and

    extract it(them)fromthereferencedefinition.Onepossiblewayforpoint

  • 7/24/2019 Geodetic Deformation Analysis

    17/51

    13

    detectionisaddingeachreferencepointonebyonetothepointcloudin

    Eq. (2.14) in each time and repeat the above test procedure for the

    remainingreferencepointsuntiltheteststatisticbecomessmallerthanthe

    corresponding thresholdvalue.Otherpossibleway isapplying localization

    procedure,whichisgiveninSection3.2.3.

    Note2.6:Thedegreesoffreedom h mustbebiggerthan0,i.e., h 1.Sincethere

    may be a significantly changed point among them, we should take into account

    h 2. This natural limitation gives information about the minimum number of

    referencepoints(p)foranetwork:Fromtheinequality,weget

    h =hc(pp)=cprcp+cp=cpr2.

    Thenweseethatpshouldbeequalto(2+r)/cinaworstcase.Thismeansthatour

    absolutedeformationnetworks(1,2or3D)shouldbedesignedsothatitconsistsof

    approximatelyatleast3referencepoints.

  • 7/24/2019 Geodetic Deformation Analysis

    18/51

    14

    3. TESTING OBJECT POINTS

    3.1 Testing Object Points in Absolute Deformation Networks

    As we mentioned previously, an absolute deformation network has twoparts;

    reference points and object points. The reference points should be verified by the

    globaltestgiveninSection2.2suchthattheycanbedefinedasobservertomonitor

    theobject.

    Letourreferencepointsbealreadyverifiedasstable.Then,eachobjectpoint

    may be tested to learnwhether its observed displacement relative to the reference

    pointsissignificantornotbyusingthefollowingteststatistic

    iT= 2

    d

    1T

    cs

    iiii

    dQd F(c,f) i=1,,p (3.1)

    where

    id : c1ithobjectpointsdisplacementvector,whichisthe

    correspondingsubvectoroftheobjectdisplacementvector d inEq.(2.15),

    ii Q : cccofactormatrixoftheithobjectpointdisplacements,

    whichisthecorrespondingsubmatrixoftheobjectcofactormatrix Q inEq.(2.15)and

    c : dimensionofthecorrespondingnetwork.

    EachteststatisticinEq.(3.1)iscomparedwiththethresholdvalue 1f,c,F ;

  • 7/24/2019 Geodetic Deformation Analysis

    19/51

    15

    i) Ifi

    T< 1f,c,F ,thecorrespondingdisplacementisnotsignificant.

    ii) Ifi

    T 1f,c,F , it is accepted that the corresponding displacement is

    significantwith1confidencelevel.

    Note 3.1: The above given test procedure is equivalent to relative confidence

    interval/ellipse/ellipsoid method applied in deformation analysis studies. For

    example, let us consider 2D cases: First, the displacement vector (i

    d ) of a

    correspondingpointisplottedonamapand,then,theconfidenceellipseobtained

    fromii

    Q (thisellipse iscalledrelative indeformationanalysis) iscenteredon

    theendpointofthedisplacementvector(seeFig3.1).Ifthedisplacementvectoron

    theplotremainsoutsideoftheellipse,thanthisdisplacementofthecorresponding

    pointissaidtobesignificantwiththepreassumedprobabilityofconfidencelevel.

    Fig3.1.Displacementvectorandrelativeconfidenceellipse

    Displacement

    vector

    Relative

    confidenceellipse

    Objectpoint

  • 7/24/2019 Geodetic Deformation Analysis

    20/51

    16

    For1Dnetworks,i.e.,levellingandgravitymonitoringnetworks,squarerootof

    the test statistici

    T in Eq. (3.1) becomes t (Student)distributed, because of the

    probabilitydistributionfunctionproperties,

    ii

    iiii

    i Qs

    |d|

    s

    QdT

    d

    2d

    12

    == t(f) (3.2)

    where

    id and iiQ : theithpointsdisplacementandits

    cofactor,respectively

    Note3.2: Ifourreferencepointsareverifiedasundeformed(stable)bytheglobal

    testinSection2.4,thisdoesnotmeanthatwealsoverifiedthattheyhasnotmoved

    in timeasablock. Itmeans that theobserveddisplacementsof theobjectpointswiththeabovetestingprocedurecarrytherelativeeffectofthereferencepointsif

    theyhasundergonearigidbodydisplacement.This factmaynotbeso important

    forsomestudies,for instance intectonic/velocitystudies,whicharemostlybased

    on some relative functions. However, for some cases, for example in damage

    monitoring of engineering buildings, it may be a problematic issue because an

    analysist may interprete mistakenly that the object is under a damaging force

    system. To be clear and not to cause a wrong or over interpretation, two

    different/independent relative blocks may be chosen in the studied area, if it is

    possible. Depending on these two relativetested blocks two different results are

    obtained for theobjectpoints.Thenwemaycheckourobjectsdisplacementsby

    comparing two results. Of course, there will be some statistical unbalancies

    between two results, but it may be ignorableeffect compared to early or wrong

    emergencyalarmforapossibledamage.

  • 7/24/2019 Geodetic Deformation Analysis

    21/51

    17

    The threshold value is then taken as 2/1f,1f,,1c tF = = which denotes percentage

    pointofthetdistribution.

    3.2 Localization

    Localization is a procedure to identify the points having significant coordinate

    changes.Mostly it isadapted inrelativedeformationnetworkstoseparatereference

    points and object points, however it may be used also in absolute deformation

    networkstodetectthedisturbingpoint(s)inthereferencepointset.

    Therearethreelocalizationmethodscommonlyappliedindeformationanalysis;

    i) Gausseliminationmethod

    ii) Implicithypothesismethod

    iii) Stransformationmethod

    Wediscussonlyfirsttwoofthemforrelativedeformationnetworks.Afterwards,the

    localizationprocedureinabsolutedeformationnetworksbyGausseliminationmethod

    isexplained.

    3.2.1 Localization with Gauss-elimination method

    Iftheglobaltestshowssignificantlychangedpointsinourrelativedeformation

    network,thenextstepisidentifyingorlocalizingthesepoints.Foreachpointinourc

    dimensionalnetworkwecomputethefollowingeffectvalues

    Ri= i1

    iiTi~

    P with =i AiA

    1iii

    ~~~~ dPPd + , (i=1,2,,p) (3.3)

    where

    i : c1reduceddisplacementvectoroftheithpoint,

  • 7/24/2019 Geodetic Deformation Analysis

    22/51

    18

    i~d : c1displacementvectoroftheithpoint

    ii~P : ccweightmatrixbelongingtotheithpoint(ithblock

    diagonalof += dd

    QP ),

    A~d : (cpc)1vectorofdisplacementsoftheremainingpoints

    denotedAnotincludingthepointiand,

    iA~P : c(cpc)weightmatrixbetweenpointiandthe

    remainingpoints(seeNote3.3).

    The point resulting in maximum effect value by Eq. (3.3) is accepted as

    significantly changed point. Let thispoint be thejthpoint. Then first object point isbeingdefined;

    ={j} (3.5)

    Nowweshoulddefinethedatumofournetworkdependingontheremaining

    p1 points. Let us denote these remaining points with B. Using the transformation

    matrixSBdefiningthedatumaccordingtothepointsB,weobtain

    =

    d

    ddS ~

    ~B

    B , BS QddTBS =

    QQ

    QQ

    ~~

    ~~

    B

    BBB , (3.6)

    OurnextaimistoinvestigatetheremainingpointsB.Iftheteststatistic

    Note3.3:Displacementvectorsandtheirweightmatricesused inEq.(3.3)maybe

    representedas

    =

    i~

    ~

    d

    dd A , Pdd

    += ddQ

    =

    iiiA

    iAAA

    ~~

    ~~

    PP

    PP (3.4)

  • 7/24/2019 Geodetic Deformation Analysis

    23/51

    19

    f),F(hsh

    ~~~T B2

    d

    BBBTB

    B =+

    B

    dQd , ( Bh =rank BB

    ~Q =rank ddQ c) (3.7)

    is smaller than the threshold value 1f,,hBF , the localization procedure is ended. The

    objectpointsandthereferencepointsarebeingseparatedalreadyas={j}and=B,

    respectively. Otherwise, it is decided that the group of points B has significantly

    changed point(s) and a new localization procedure is required. In that case, we

    consider B~d and BB

    ~Q asdand ddQ inEq.(3.4),

    B

    ~d

    d ,BB

    ~Q

    Qdd

    ,

    (3.8)

    and we search the point giving the maximum effect using Eq.(3.3) among the

    remainingp1points.Theprocedure isrepeateduntiltheglobaltestshowsnomore

    significantlychangedpoints.IneachlocalizationsteptheobjectpointsetinEq.(3.5)

    isaugmentedwiththeneweridentifiedpoints.

    For1Dnetworks, theeffectRi inEq. (3.3)maybecomputeddirectly:Let the

    displacementvectoranditsweightmatrixgivenbyEq.(3.4)bewrittenasfollows

    d=

    n

    1

    d~

    d~

    M , Pdd+= ddQ =

    nn1n

    n111

    P~P~

    P~P~

    L

    MOM

    L

    (3.9)

    ThemultiplicationdPddresultsin

    =dPdd=

    n

    1

    M , (3.10)

    Dividing the elements of the vector in (3.10) by the weights in (3.9) gives the

  • 7/24/2019 Geodetic Deformation Analysis

    24/51

    20

    correspondingeffect

    Ri=i/ iiP~ , (i=1,2,.,p) (3.11)

    Hence, for 1D networks, the computation burden of Eq. (3.6) is drastically being

    reduced.

    3.2.2 Localization with implicit hypothesis method

    Two periods GaussMarkov models are gained into a single GaussMarkov

    modelbyEq.(2.5)as

    =

    2

    1

    2

    1

    2

    1E

    x

    x

    A0

    0A

    l

    l ,

    =

    2

    1

    P0

    0PP

    OurhypothesisnowassumesthatthegroupofpointsA,whichdoesnotcontainthe

    suspected point i, has not deformed. This hypothesis may be implicity incorporated

    intotheaboveGaussMarkovmodelasfollows

    =

    2i

    1i

    A

    2i2A

    1i1A

    2

    1E

    x

    x

    x

    A0A

    0AA

    l

    l ,

    =

    2

    1

    P0

    0PP (3.12)

    Suppose that the solution of model (3.12) yields the weighted sum of the squared

    residuals iH)( iHTH )( Pvv= .Eachpointinthenetworkisattainedas i inmodel(3.12)in

    turn,andwegetpeffectsforthepointsinthenetworkasfollows

    Ri=( H )i , (i=1,2,,p) (3.13)

    IfRjbelongingtothejthpointistheminimumeffectvalueamongtheothers,thispoint

    isacceptedasthepointwithsignificantcoordinatechange.Itisourfirstobjectpoint:

  • 7/24/2019 Geodetic Deformation Analysis

    25/51

    21

    Thenwemaydefinetheobjectpointgroupas

    ={j} (3.14)

    Nowweshouldlearnwhethertheremainingp1points,denotedB,stillconsist

    ofanysignificantlychangedpoints.ForthisweusetheminimumdeficiencyRjtoset

    thefollowingteststatistic

    f),F(hsh

    R

    /f)(

    )/h(RT B2

    dB

    jBj

    B == (3.15)

    wherehB=fHfc=hc.IftheteststatisticinEq.(3.15)isbiggerthanthecorresponding

    thresholdvalue,i.e.

    TB 1f,,hBF , (3.16)

    weshould identify theresponsiblepoint(s)among thegroupofpointsB.For the ith

    pointofB,wesetourGaussMarkovmodelasfollows;

    =

    2

    1

    2i

    1i

    D

    222D

    11i1D

    2

    1E

    x

    x

    x

    x

    x

    A0A0A

    0A0AA

    il

    l ,

    =

    2

    1

    P0

    0PP (3.17)

    where

    D : denotesthepointsexcepttheithpointinB(D{i}=B)

    : showstheobjectpointidentifiedinthepreviouslocalizationstep(wedonotchangeoftheplaceofinEq.(3.17)duringthealllocalizationstepsanymore).

    Nowinthesecondlocalizationstep,eachpointinBisattainedasiinEq.(3.17)

    B

  • 7/24/2019 Geodetic Deformation Analysis

    26/51

    22

    by turnand theeffectsofallp1pointsarecomputedasrealizedbyEq. (3.13).The

    pointgivingminimumeffectistakenasthenewobjectpointandweupdateourobject

    pointdefinitioninEq.(3.14).Iftheglobaltest,whichissetaccordingtotheeffectof

    thepoint identified in that second localization step (hBbecomesh2c), showsmore

    suspectedpointsamong the remainingpoints, similarlywe continue localizing these

    points.Theprocedure isrepeateduntilthecorrespondingglobaltestshowsnomore

    significantlychangedpointinthenetwork.

    3.2.3 Localization in absolute deformation networks

    If the global test in Section 2.4 results in that our reference points is notstable,weshouldidentifythechangedpoint(s)amongthem.Onewayfordoingthisis

    applying localizationprocedureto thereferencepoints:Forthisweconsider d and

    Q belongingtothepreferencepointsinEq.(2.15)asdandQddin(3.4),

    d d , Q Qdd (3.18)

    andwestart localizationprocedurewithEq. (3.3) to identify theresponsiblepoint(s)

    among p reference points. The localization procedure is similarly realized until the

    correspondingglobal testshows thatremaining referencepointshavenoanypoints

    disturbing thestabilityofour reference.The identifiedpointsare removed from the

    referencepointsetandaddedtotheobjectpoints.

  • 7/24/2019 Geodetic Deformation Analysis

    27/51

    23

    4. SENSITIVITY ANALYSIS

    Sensitivity analysis is used to optimize a deformation network such that it

    becomes sensitive to the expected displacement, movement or deformation or to

    derive theminimum detectable displacement,movementordeformationparameter

    formeasuringthequalityofourdesign.

    In theory itcanbeadapted toallkindofchanges tobemonitored inastudiedarea,howeverweexpressitjustfordisplacementshere.

    4.1 Global Sensitiv ity Analysis

    4.1.1 Optimization Criteria

    ThehypothesesgivenbyEq.(2.3)isoriginallysetas

    H0:E(d)=0 vs. H1:E(d)0= (4.1)

    where

    : u1vectorofexpecteddisplacements.

    Because we are now at the design stage, we know that the alternative

    hypothesisH1inEq.(4.1)istrue.Inthatcase,secondteststatisticinEq.(2.4)followsanoncentral2distribution;

    )(h,'~T 22d

    ddT

    =+

    dQd (4.2)

  • 7/24/2019 Geodetic Deformation Analysis

    28/51

    24

    where is the noncentrality parameter computed from the vector of expected

    displacements asfollows;

    2d

    ddT

    =

    +Q

    (4.3)

    Once we obtain the noncentrality parameter in Eq. (4.3), the power of the

    global test, i.e., theprobabilityofcorrectyaccepting the truealternativehypothesis,

    maybecomputablefromthedistributionfunctionofthenoncentral2distribution,

    F(2= 2 1h, ;h,),as

    =1F(2= 2 1h, ;h,) (4.4)

    Thepowerofthetestmathematicallyincreaseswithincreasingnoncentrality

    parameterandwithdecreasingdegreesof freedomh. Itmeans that thepowerof

    ourtestwillbebetterformoreprecisenetworkand lesspoints (rememberthath is

    relatedwithnumberofpointsinanidenticalnetwork,i.e.h=ur=cpr).

    Instead of computing the power of the test by Eq. (4.4), the noncentrality

    parameteriscomparedwithanoncentralityparametergivingadesiredpowerofthe

    test 0 and significance level 0. This parameter is called lower bound of the non

    centralityparameter0(seeTable4.1).Ifthefollowinginequalityisfulfilled,

    0,h (4.5)

    thenetwork isdefinedassensitive to theexpecteddisplacements.Otherwise, the

    networkisredesignedsuchthatitbecomessensitive.

  • 7/24/2019 Geodetic Deformation Analysis

    29/51

    25

    Table4.1Somelowerboundofthenoncentralityparameters(0,h)for0=80and

    90%,0=5%and1h100

    h 0=80% 0=90%1 7.85 10.51

    2 9.64 12.65

    3 10.90 14.17

    4 11.94 15.415 12.83 16.47

    10 16.24 20.53

    20 20.96 26.13

    30 24.55 30.38

    40 27.56 33.9450 30.20 37.07

    100 40.56 49.29

    4.1.2 Minimum detectable displacement

    Forecastingthedirectionsofthedisplacementsiseasierthansettingthevector

    ofexpecteddisplacementsitself.Letthevector betheproductofascalefactor(b)

    andagivendirectionvector(g),

    =bg (4.6)

    SubstitutingEq.(4.6)intoEq.(4.3)andusingEq.(4.5)weobtain

    bmin=gQg

    +

    ddT

    h,0

    d (4.7)

    Thenwedefinetheminimumdetectabledisplacementvectorasfollows;

    min=bming (4.8)

    In some cases, even directions of the displacements are not be available. To

  • 7/24/2019 Geodetic Deformation Analysis

    30/51

    26

    obtaintheminimumdisplacementvectorinsuchacase,weusetheeigenvectormax

    belongingtothemaximumeigenvaluemaxofQdd.Thisresultsintheminimumvalue

    ofthescalefactor

    bmin=maxdd

    Tmax

    h,0

    d

    +

    Q= maxh,0d (4.9)

    Then, ifweconsiderEq.(4.9)inEq.(4.8),weobtainthedisplacementvectorwhichis

    justdetectableonthedirectionsoftheeigenvectorwithaspecifiedpowerofthetest

    0andsignificancelevel0.

    4.2 Sensitiv ity Analysis in Absolute Deformation Networks

    Let our object points be defined related to the reference points . The

    hypothesestotesteachobjectpointaresetfollows;

    H0:E( id )=0 , H1:E( id )0= i (4.10)

    whereiistheexpecteddisplacementvectoroftheithobjectpoint.

    LetusassumethatourteststatisticsetfordiscriminatingthehypothesesinEq.

    (4.10)is2distributed.Sinceweknowthatthealternativehypothesisistruenow,the

    Note4.1:Thedirectionvectorgforlevelingmonitoringnetworksconsistsof1for

    the uplifted points, 1 for the subsided points and 0 for stable points. In 2D

    networks (or in a horizontal plane) it includes cos and sin where is the

    forecastedazimuthofthedisplacementvectorofthecorrespondingpoint.

  • 7/24/2019 Geodetic Deformation Analysis

    31/51

    27

    teststatistichasanoncentral2distribution;

    iT= 2d

    1T

    iiii

    dQd

    2

    (c,i) (4.11)

    whereiisthenoncentralityparameter,

    i= 2d

    1T

    iiii

    Q

    . (4.12)

    Tolearnwhetherourexpecteddisplacementsfortheithpointisdetectableornot,thenoncentralityparameteriiscomparedwithitsboundaryvalue0,c;If

    i0,c (4.13)

    holds,thecorrespondingdisplacementissaidtobedetectablewiththecorresponding

    powerofthetest.

    To derive the minimum detectable displacement, we may follow the same

    methodologygivenintheprevioussection.Insteadofgivingtheformulaforaspecific

    direction, we consider the eigenvector of the maximum eigenvalue imax, of ii Q .

    SimilartoEq.(4.9),weobtain

    (bmin)i= imax,c,0d =( d imax, ) c,0 (4.14)

    With this scale factor, theminimumdetectabledisplacementvectorof the ithpoint

    becomes

    min)( i =(bmin)i imax, (4.15)

  • 7/24/2019 Geodetic Deformation Analysis

    32/51

    28

    where imax, istheeigenvectorbelongingtothemaximumeigenvalue imax, .

    Withtheabovementionedsimplestatistics intwopreviousnotes,one isable

    to speak about the capacity of the designed network. The cofactor matrices of

    displacements with respect to the reference points may easily be derived and the

    pooledvariancemaybeguesseddependingontheexperiencesbeforeanyrealization.

    Then theminimumdetectabledisplacementofanobjectpoint isabout3 timesof

    the semimajor axis of its relative confidence ellipse and displacements standard

    deviationin2Dand1Dnetworks,respectively.Ifourexpectationdoesnotmatchwith

    Note4.2:For2Dnetworks,firsttermoftherighthandofEq.(4.14),i.e.,d

    imax,

    ,

    is in fact the semimajor axis of the relative error ellipse of the ith point. Then,

    (bmin)i maybeconsideredasthesemimajoraxisoftherelativeerrorellipseforthe

    power of the test (we may call this ellipse relative power ellipse!). Furthermore,

    (4.15)showsthatminimumdetectabledisplacementisonthedirectionoverlapped

    withthedirectionoftherelativeerrorellipseoftheithpoint.Thenin2Dexamples,

    (bmin)i denotes the minimum detectable displacement magnitude of the

    correspondingpoint.Theboundaryvalue isobtainedas0,c=2=9.64for80%power

    of the test fromTable4.1. It means thatadisplacementwhose magnitude is3.1

    times of the semimajor axis of the relative confidence ellipse may be just

    detectable with 80% power of the test in an object point of an absolute

    deformationnetwork.

    For1Dnetworks, imax, becomesequaltothedisplacementscofactorvalueofthe

    correspondingpoint.FromTable4.1weread0,c=1=7.85for80%powerofthetest.Then it is clear that a displacement (upliftor subsidence)may bejust detectable

    with 80% power, if its magnitude is 2.8 times of the displacements standard

    deviation.

  • 7/24/2019 Geodetic Deformation Analysis

    33/51

    29

    thismagnitude, thenwemay redesignournetworksuch that itsobjectpointshave

    smaller ellipses or smaller standard deviations depending on the network type. For

    example, letusassumethatweexpect5mmverticalmovement inaregion,andour

    levelingnetworksobjectpoints relative toa referencepoint sethavearound2mm

    standarddeviationinaperiod.Thenthedisplacementsstandarddeviationisexpected

    as 22 =2,8mm.With80%power(ormore),theminimumdetectabledisplacementis

    around32,8=8.4mm.Itmeansthatwemaynotabletodetect5mmmovementwith

    80%powerofthetestusingthecorrespondingdesign.Forthatreason,weshouldplan

    additional observations or should measure the network with more precise levels to

    improve the precision of our points. Such an optimization is called trial and errormethod; but we may also set some analytical target functions to obtain a global

    solution to this optimization problem. This is called analytical optimization of

    deformation networks; however, nowadays, because of our improved computing

    capabilitiesbynormalPCs,trialanderrormethodsmaybemorepreferable.Theyare

    morerealisticbecausewemayproducetheproblemdependingonsomeexperiments

    whichwemayfacewithinreality.Inanalyticaltools,sometimes,ifwedonotconsider

    the constraints realistically (it is a little bit hard to consider all conditions

    mathematically!),thesolutionmaygofarawayfromtheglobalsolutionandstopata

    local one, which may mislead the practitioner, or, which may cause an another

    problemwaitingforadifferentsolution.

  • 7/24/2019 Geodetic Deformation Analysis

    34/51

    30

    5. INTERPRETATION MODELS

    Afterdefiningthereferencepointsinournetwork,wemayinvestigatetheobject

    pointsmovementsandstrainelementsofsomeobjectblockstointerpretethemotion

    andthedeformationoftheobject,respectively.Forthisweusekinematicmodeland

    strain model. In this section we briefly explain these models used in deformation

    analysis.

    5.1 Kinematic Model

    An object may change its position in time continuously related to a reference

    frame.Thismotionisexpressedbythefollowingwellknownequation

    x)t(t

    2

    1x)t(t)(t(t) 2000 &&& ++= (5.1)

    where

    t : currenttime,

    t0 : initialtime,

    (t) : current(present)position,

    )(t0 : initialposition,

    x& : velocityand

    x&& : acceleration.

    If theparameters )(t0 , x& and x&& areavailable,onemaypredict theobjects

    positioninanyperiodfromEq.(5.1).Reversely,ifwehavecoordinatesofthepointin

  • 7/24/2019 Geodetic Deformation Analysis

    35/51

    31

    differentperiods,wemayestimatetheparameterstocreateamodelfortheobjects

    movement. This is called kinematic model in deformation analysis. To satisfy

    redundancy inkinematicmodelling, thereshouldbeat least4periods.Hereafterwe

    assumethereforethatwehavem4periods.

    5.1.1 Single point model for an object points movement

    5.1.1.1 Model I

    Nowsupposethatweworkwitha1Dnetwork,orwewouldliketomodelonly

    onecomponentofapointamongitsothercomponents(asrealizedmostlyforNorth,

    East and Up components of a GNSS station). For this we set the following Gauss

    MarkovmodelfromEq.(5.1)havingtakenthe initialperiodast1andpartitioningthe

    initial(unknown)position )(t0 intotwopartsas )(t0 = + )(t1 ,

    =

    x

    x

    )t(t5.0)t(t1

    )t(t5.0)t(t1

    )t(t5.0)t(t1

    y

    y

    y

    E

    21m1m

    21212

    21111

    m

    2

    1

    &&

    &MMMM

    ,

    =

    1mm

    122

    111

    20

    Q00

    0Q0

    00Q

    L

    MOMM

    L

    L

    P (5.2)

    where

    iy : c1(diminished)coordinatecomponent(observation),( =iy )(t)(t 0i ),

    )(ti : coordinatecomponentintheithperiod,

    : unknownshiftparameter,

    x& : unknownvelocity,

    x&& : unknownacceleration,

    20 : apriorivarianceofunitweightand

    Qii : cofactorvalueofthecorrespondingcoordinate

    component.

  • 7/24/2019 Geodetic Deformation Analysis

    36/51

    32

    5.1.1.2 Model II

    Forcdimensionalnetworks,consideringmodel(5.2)maycauseoveroptimistic

    results because in that case we neglect the correlations between the coordinate

    components of a point. They are in fact highly correlated therefore they may be

    consideredinasingleGaussMarkovmodel

    =

    x

    x

    III

    III

    III

    y

    y

    y

    &&

    &MMMM

    21m1m

    21212

    21111

    m

    2

    1

    )t(t5.0)t(t

    )t(t5.0)t(t

    )t(t5.0)t(t

    E ,

    =

    1mm

    122

    111

    20

    Q00

    0Q0

    00Q

    P

    L

    MOMM

    L

    L

    (5.3)

    where

    iy : c1(diminished)coordinate(observation)vector( =iy )(t)(t 1i ),

    )(ti : c1coordinatevector,

    I : ccidentitymatrix,

    : c1unknownshiftparametervector,

    x& : c1vectorofunknownvelocities,

    x&& : c1vectorofunknownaccelerationsalongthecorrespondingaxes,

    20 : apriorivarianceofunitweightand

    iiQ : cccofactormatrixbelongingtothecorrespondingpointintheithperiod.

    5.1.1.3 Model III

    In some cases previous two models may not yield satisfactory estimates

    because of some unmodelled physical effects on the coordinates. They are mostly

  • 7/24/2019 Geodetic Deformation Analysis

    37/51

    33

    observed as periodic changes in time series of a points coordinate component as

    showninFig5.1.

    Ifwehaveapriorinformationabouttheperiodicalpartofthechanges,insteadofEq.(5.19)wemayconsider

    ++= x)t(t)(t(t) 00 & periodicpart (5.4)

    wheretheperiodicpartisalinearfunctionoftheeffectofthecorrespondingphysical

    sources. (Thepointsmovementmay includealsoanaccelerationpart;however, for

    simplicitywedropitinEq.(5.4))

    Fig5.1Coordinatechangesintimedomain

    Theperiodicitymayhappenhourly,daily,annuallyorsemiannuallydepending

    on the sources. They are commonly modelled using a1cos(2t/Tp)+a2sin(2t/Tp)

    function,whereTp istheknownperiod,a1anda2aretheunknownamplitutes.Letus

    consider thatourperiodicpartmaybemodelledwith this function:Then insteadof

    model(5.2)wemaysetthefollowingGaussMarkovmodel

    Periodicpart

    Observation

    Velocity

    Time

    Coordinate

  • 7/24/2019 Geodetic Deformation Analysis

    38/51

    34

    =

    2

    1

    pmpmm

    p2p22

    p1p11

    m

    2

    1

    a

    a

    x

    )/Tt2sin()/Tt2cos(t1

    )/Tt2sin()/Tt2cos(t1

    )/Tt2sin()/Tt2cos(t1

    y

    y

    y

    E &

    MMMMM ,

    =

    1mm

    122

    111

    20

    Q00

    0Q0

    00Q

    L

    MOMM

    L

    L

    P (5.5)

    where =iy )(t)(t 0i and it =tit1.

    5.1.2 Single model for whole object points movement

    Kinematicmodel (5.1)maybeestablished forallobjectpointsunderasingle

    model.Forp=ppobjectpoints inthenetwork,which ismeasuredmperiods,the

    GaussMarkovmodelforsuchamodellingiswrittenasfollows

    =

    x

    x

    III

    III

    III

    y

    y

    y

    &&

    &MMMM

    21m1m

    21212

    21111

    m

    2

    1

    )t(t5.0)t(t

    )t(t5.0)t(t

    )t(t5.0)t(t

    E ,

    =

    1xx

    1xx

    1xx

    20

    mm

    22

    11

    Q00

    0Q0

    00Q

    P

    L

    MOMM

    L

    L

    (5.6)

    where

    Note5.1:Inmostproblems,theperiodTpisnotavailableornotexact.Inthatcase,

    w=2/TpangularfrequencymaybeobtainedbyapplyingFastFouriertransformto

    theobservationsbeforehand.

  • 7/24/2019 Geodetic Deformation Analysis

    39/51

    35

    iy : cp1(diminished)coordinate(observation)vectorfortheithperiod( iy = 1i ),

    i : cp1coordinatevectoroftheithperiod;

    I : cpcpidentitymatrix,

    : cp1unknownshiftparametervector,

    x& : cp1vectorofunknownvelocities,

    x&& : cp1vectorofunknownaccelerations,

    20 : apriorivarianceofunitweightand

    iixxQ : cpcpcofactormatrixbelongingtotheobjectpointsin

    theithperiod.

    5.1.3 Testing model parameters

    Before publishing the kinematic model of an object point, we should test its

    parameters(mostlyvelocityandacceleration)tolearnwhethertheyaresignificantor

    not.Testingprocedureisthereforecalledsignificancytest.

    Let us consider that the velocity estimate x& with standard deviation xs & is

    desiredtobetested;forthiswesetthefollowinghypotheses

    H0:E( x&)=0 , H1:E( x&)0 (5.7)

    Thentheteststatisticfollowstdistribution

    xx s

    |x|

    T &&

    &

    = t(f) (5.8)

    where f is the degrees of freedom of the corresponding model. If xT& < 2/1f,t , the

    estimatedvalue x& isnotsignificant.Otherwise, itisacceptedthat ithasasignificant

    physicalmeaning.

  • 7/24/2019 Geodetic Deformation Analysis

    40/51

    36

    5.1.4 Model test

    There may exist different kinematic models for the timedependent

    observations. To verify which model fits better to the observations, we may apply

    modeltest:Forexample,letustakethemodel(5.2)andcallitmodel1.Itsalternative

    onemaybe themodelwithoutanaccelerationparameter, i.e.velocitymodel; letus

    callitmodel2.Fromeachmodelweestimatetheunknownsandobtaintheweighted

    squaresoftheresiduals;i.e.weobtain1and2quadraticformsindependently.The

    followingteststatisticfollowsFdistribution,withf2f1andf2degreesoffreedom,

    11

    1212M

    /f

    )f/(f)(T

    = F(f2f1,f2) (5.9)

    Note5.2:Foreachestimatedparameterthesametestingproceduregivenaboveis

    realized.Insignificantparametersmaybeextractedfromthecorrespondingmodel,

    and the estimation procedure is repeated having established the corresponding

    modelwiththeremainingsignificantparameters.Thiswillincreasetheredundancy,

    i.e. degrees of freedom, and will result in more precise estimation. In some

    applications,forexample inGNSSstudieswith longtimeseries,theredundancy is

    alreadybig, therefore, the testingproceduremay be unnecessary: Theestimated

    values and their standard deviations are declared, for example, as velocityits

    standarddeviation.This iscalledsometimesvelocitywith1sigmaerror: Ifwe

    have big redundancy, the accepted onedimensional tdistribution gets close to

    normaldistribution and this interval shows a confidence interval with about 40%

    probability. If we declare velocity with 2sigma error, from the normal

    distributionfunction,weunderstandthatthe intervalshowsaconfidence inverval

    withaprobabilitymorethan95%.

  • 7/24/2019 Geodetic Deformation Analysis

    41/51

    37

    where

    f1 : degreesoffreedomofmodel1and

    f2 : degreesoffreedomofmodel2.

    Wecompare MT withthethresholdvalue 1,,fff 112F :

    i) If MT < 1,,fff 112F , model 1 is not necessary. In other words, instead of

    accelerationandvelocityparameters, it isbetter toconsideronlyvelocity

    parameter.

    ii) MT 1,,fff 112F , model 1 fits better to the observations: Model 2 does not

    ensure the essential information to model the timedependent

    observations.

    Testingmodel1againstmodel2withtheabovementionedmodeltestpractically

    maybedonewiththeprevioussignificancytest: Iftheaccelerationssignificancytest

    fails, itmeans that, model 2 (themodel withonlyvelocity) should beconsidered to

    model the observations. But, at this point, we should remind that, statistically and

    theoretically, model test is more correct because the previous testing procedure

    neglectsthecorrelationsbetweentheestimatedparameters.

    Thegivenmodel testproceduremaybeapplied forcomparingdifferent typesof

    models,notonly forcomparing thevelocitymodelandvelocity+accelerationmodel:

    Weshouldjustcareaboutthatmodel1istobeattainedasanaugmentedmodelwith

    additionalparameterswhicharenotincludedinmodel2.

    5.2 Strain Analysis

    5.2.1 Definition

    Strain is defined as the ratio of increase or decrease in length to its original

  • 7/24/2019 Geodetic Deformation Analysis

    42/51

    38

    length.Itisanormalizedmeasurefordeformation.Forinstance,letusconsiderawire

    withL1=100m lengthhasextended toL2=100.02m; then theengineeringstrain, the

    socallednominalstrain,iscomputedasfollows

    = 5

    1

    12 102100

    10002.100

    L

    LL =

    =

    strain=20strain=20ppm.

    Thisstrainmaybedenotedas

    1L

    dL

    LengthOriginal

    ntDisplaceme==

    (5.10)

    On the other hand, scale factor , the socalled stretch ratio, is related with the

    engineeringstrainby

    =1+ (5.11)

    which is the one commonly used in geodesy to explain the deformations of the

    coordinateaxes,forexampleinsimilarityandAffinetransformations.

    In two dimensional, instead of a single strain measure, there exists a strain

    tensor,

    =

    =

    ydy/ydy/

    ydx/xdx/

    yyyx

    xyxxE (5.11)

    where

    dxanddy : displacementsofaparticleintheobjectinxandydirections.

    Since we assume the object is continuum, i.e. the object is full of homogeneous

    particles, the tensor elements in Eq. (5.11) represent the deformation of the whole

  • 7/24/2019 Geodetic Deformation Analysis

    43/51

    39

    object. There are some other quantities obtained from the elements of this strain

    tensor,suchas,

    Dilation(meanstrain): mean=2

    1(xx+yy) (5.12a)

    Pureshear: pure=2

    1(xxyy) (5.12b)

    Simpleshear: simple=2

    1(xy+yx) (5.12c)

    Totalshear: shear= 2simple2pure + = ( )2yxxy2yyxx )()(

    2

    1++ (5.12d)

    Differentialrotation: =2

    1(yxxy) (5.12e)

    Inearthsciences, insteadofthestrain tensorE,symmetricalstrain tensor sE ,

    whichisderivedfromEq.(5.11),isused;

    =

    +

    +=

    yy

    xx

    yyyxxy

    yxxyxx

    s 2/)(

    2/)(

    simple

    simpleE (5.13)

    To show the object deformation in 2D, principal strain components, i.e., the

    eigenvaluesof sE arederivedfrom(5.13)

    )4)((2

    1 2simple

    2yyxxyyxxmax +++= =mean+shear (5.14a)

  • 7/24/2019 Geodetic Deformation Analysis

    44/51

    40

    )4)((2

    1 2simple

    2yyxxyyxxmin ++= =meanshear (5.14b)

    withthedirectionofthemaximumprincipalaxis,clockwisefromxaxis(seeNote5.3),

    = =

    yyxx

    simple2atan2

    1

    pure

    simpleatan2

    1 (5.14c)

    max shows the greatest change while min is the smallest change of length per unit

    length.TheyareplottedonthecentroidoftheobjectasshowninFig5.1.Thenegative

    sign of any component shows contraction whereas positive sign denotes extensionthroughthecorrespondingdirection.

    Fig.5.1.Principalstraincomponents

    x

    |max|

    |min|

    max0 max>0,min0 max,min

  • 7/24/2019 Geodetic Deformation Analysis

    45/51

    41

    5.2.2 Strain modell ing in geodetic deformation analysis

    Fortheithobjectpointhavingdxianddyidisplacements,wemaywrite

    dxi=tx+xxxi+xyyi and dyi=ty+yxxi+yyyi (5.15)

    whicharethefundamentalequationsformodellingstrainofthecorrespondingobject.

    Inadditionto4strainparameters(xx,xy,yx,yy)wehavetwotranslationparameters

    tx and ty in Eq. (5.15), therefore, to obtain these 6 parameters, mathematically we

    needatleast3points.

    For modelling strain of the studied object, the structural properties of the

    objectshouldbeknownpriorily.Fromsuchaprior information theobject isdivided

    into the different blocks as demonstrated in Fig 5.2. For each block we consider

    differentstrainmodel(seeNote5.4).

    Note5.3:Theprincipleofcomputationoftheprincipalstrainangle issimilarto

    theoneofcomputationofazimuth:First,2=atan(simple/pure)=aisobtained;i)if

    simple>0andpure>0,=a/2,ii)ifsimple>0andpure

  • 7/24/2019 Geodetic Deformation Analysis

    46/51

    42

    Fig5.2.Objectblocksandtheirprincipalstraincomponents

    Nowsuppose thatourobjectconsistsofoneblock; thenallobjectpointsare

    includedinasinglestrainmodel.Forthis,ourGaussMarkovmodelissetasfollows

    =

    yy

    yx

    xy

    xx

    y

    x

    pp

    pp

    11

    11

    p

    p

    1

    1t

    t

    yx0010

    00yx01

    yx0010

    00yx01

    dy

    dx

    dy

    dx

    E MMMMMMM E{d}=Mx (5.16a)

    withthe2p2pmatrixofweightsofdisplacements,

    Note5.4:Objectblocksshouldbeconsideredatthedesignstagesothateachblock

    has its own object points characterizing the deformation to be monitored. An

    attempt for deciding object blocks considering only the observed displacements

    mayyieldwronginterpretations.

    Afterstrainmodelling

    Object

    Beforerealization

    BlockI

    BlockII

    Object

  • 7/24/2019 Geodetic Deformation Analysis

    47/51

    43

    P=

    1

    dydy

    dydxdxdx

    dydydxdydydy

    dydxdxdxdydxdxdx

    20

    pp

    pppp

    m1p111

    p1p11111

    QQQ

    QQQ

    QQQQ

    MMO

    L

    L

    P= 20 Q (5.16b)

    where

    dandQ : vectorofdisplacementsanditscofactormatrix

    belongingtotheobjectpoints,respectively,fromEq.(2.15),

    M : 2p6coefficientmatrixand

    x : 61unknownparametervector.

    Solving model (5.16) by leastsquares method, the parameter vector x is

    estimatedandsowegetstrainparametersxx,xy,yxandyyfortheobject.Byusing

    themtheprincipalstrainparametersinEq.(5.14)areobtainedandtheyareplottedon

    thecentroidoftheobjectunderconsiderationasshowninFig5.3.

    Fig5.3Principalstrainparametersforanobject

    Formoreblocks,theirindependentstrainmodelsmaybeconsideredinasingle

    GaussMarkov model: For instance, for two object blocks (Block I and Block II) we

    Object

  • 7/24/2019 Geodetic Deformation Analysis

    48/51

    44

    establishthefollowingGaussMarkovmodel;

    =

    II

    I

    II

    I

    II

    I

    E x

    x

    M

    M

    d

    d

    ,

    1

    2

    0II

    II

    = IIIII

    III

    QQ

    QQ

    P (5.17)

    Fromthesolutionofmodel(5.17),weobtainxIandxIIparametervectorsincludingthe

    blocksstrainparameters.

  • 7/24/2019 Geodetic Deformation Analysis

    49/51

    45

    APPENDIXA:GLOSSARY

    Absolutedeformationnetwork:Mutlakdeformasyona

    Acceleration:vme

    Block:Blok

    Confidencelevel:Gvendzeyi

    Contraction:Klme

    Constraintequations:Kouldenklemleri

    Currentperiod:Mevcutperiyot

    Currenttime:Mevcutzaman

    Deformation:Deformasyon

    Degreesoffreedom:Serbestlikderecesi

    Diminishedobservation:Kltlm l

    Directionvector:Ynvektr

    Displacement:Yerdeiim

    Extension:Genileme

    Gausseliminationmethod:Gausseliminasyonyntemi

    Globaltest:Globaltest

    Identical:Edeer

    Identitymatrix:Birimmatris

    Implicithypothesis

    method:Kapalhipotezyntemi

    Initialperiod:Balangperiyodu

    Initialtime:Balangzaman

    Kinematicmodel:Kinematikmodel

    Localization:Yerelletirme

    Lowerboundofthenoncentralityparameter:D merkezlikparametresininsnrdeeri

    Minimumdetectabledisplacement:Belirlenebilirenkkyerdeiim

    Minimumconstrained:Zorlamasz

    Monitoring:zleme

    Modeltest:Modeltesti

    Noncentral:Merkezselolmayan

    Noncentralityparameter:D merkezlikparametresi

    Nonidentical:Edeerolmayan

    Object:Nesne

  • 7/24/2019 Geodetic Deformation Analysis

    50/51

    46

    Objectblock:Objeblou

    Objectpoint:Objenoktas

    Partialtraceminimum:Ksmiizminimum

    Period:PeriyotPooledvariancefactor:Birletirilmi varyansarpan

    Powerofthetest:Testgc

    Principalstrainparameters:Asalgerinimparametreleri

    Referenceblock:Referansblou

    Referencepoint:Dayanaknoktas

    Relativeconfidenceellipse:Balgvenelipsi

    Relativedeformationnetwork:Baldeformasyona

    Rotation:Dnklk

    Quadraticform:Kareselbiim

    Sensitivity:Duyarllk

    Shiftparameter:Sfreki

    Significancelevel:Yanlmaolasl

    Significancytest:Anlamllktesti

    Significant:Anlaml

    Stable:Duraan

    Strain:Gerinim

    Straintensor:Gerinimtensr

    Subsidence:kme

    Teststatistic:Testbykl

    Thresholdvalue:Karlatrmadeeri

    Traceminimum:Tmizminimum

    Translation:teleme

    Undeformed:Deformeolmam

    Uplift:Ykselme

    Velocity:Hz

  • 7/24/2019 Geodetic Deformation Analysis

    51/51

    APPENDIXB:THRESHOLDVALUES(Fandtdistributions)

    TableB1.ThresholdvaluesforFdistribution(*)for=5%(Fa,b,1)

    *)SquarerootofFvaluefora=1andbinthefirstrowyieldstb,1/2

    1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    161.45 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96 4.35 4.17 4.08 4.03 4.00 3.98 3.96 3.95 3.94

    199.50 19.00 9.55 6.94 5.79 5.14 4.74 4.46 4.26 4.10 3.49 3.32 3.23 3.18 3.15 3.13 3.11 3.10 3.09

    215.71 19.16 9.28 6.59 5.41 4.76 4.35 4.07 3.86 3.71 3.10 2.92 2.84 2.79 2.76 2.74 2.72 2.71 2.70

    224.58 19.25 9.12 6.39 5.19 4.53 4.12 3.84 3.63 3.48 2.87 2.69 2.61 2.56 2.53 2.50 2.49 2.47 2.46

    230.16 19.30 9.01 6.26 5.05 4.39 3.97 3.69 3.48 3.33 2.71 2.53 2.45 2.40 2.37 2.35 2.33 2.32 2.31

    233.99 19.33 8.94 6.16 4.95 4.28 3.87 3.58 3.37 3.22 2.60 2.42 2.34 2.29 2.25 2.23 2.21 2.20 2.19

    236.77 19.35 8.89 6.09 4.88 4.21 3.79 3.50 3.29 3.14 2.51 2.33 2.25 2.20 2.17 2.14 2.13 2.11 2.10

    238.88 19.37 8.85 6.04 4.82 4.15 3.73 3.44 3.23 3.07 2.45 2.27 2.18 2.13 2.10 2.07 2.06 2.04 2.03

    240.54 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.39 2.21 2.12 2.07 2.04 2.02 2.00 1.99 1.97

    241.88 19.40 8.79 5.96 4.74 4.06 3.64 3.35 3.14 2.98 2.35 2.16 2.08 2.03 1.99 1.97 1.95 1.94 1.93

    248.01 19.45 8.66 5.80 4.56 3.87 3.44 3.15 2.94 2.77 2.12 1.93 1.84 1.78 1.75 1.72 1.70 1.69 1.68

    250.10 19.46 8.62 5.75 4.50 3.81 3.38 3.08 2.86 2.70 2.04 1.84 1.74 1.69 1.65 1.62 1.60 1.59 1.57

    251.14 19.47 8.59 5.72 4.46 3.77 3.34 3.04 2.83 2.66 1.99 1.79 1.69 1.63 1.59 1.57 1.54 1.53 1.52

    251.77 19.48 8.58 5.70 4.44 3.75 3.32 3.02 2.80 2.64 1.97 1.76 1.66 1.60 1.56 1.53 1.51 1.49 1.48

    252.20 19.48 8.57 5.69 4.43 3.74 3.30 3.01 2.79 2.62 1.95 1.74 1.64 1.58 1.53 1.50 1.48 1.46 1.45

    252.50 19.48 8.57 5.68 4.42 3.73 3.29 2.99 2.78 2.61 1.93 1.72 1.62 1.56 1.52 1.49 1.46 1.44 1.43

    252.72 19.48 8.56 5.67 4.41 3.72 3.29 2.99 2.77 2.60 1.92 1.71 1.61 1.54 1.50 1.47 1.45 1.43 1.41

    252.90 19.48 8.56 5.67 4.41 3.72 3.28 2.98 2.76 2.59 1.91 1.70 1.60 1.53 1.49 1.46 1.44 1.42 1.40

    253.04 19.49 8.55 5.66 4.41 3.71 3.27 2.97 2.76 2.59 1.91 1.70 1.59 1.52 1.48 1.45 1.43 1.41 1.39

    b

    a