44
Genomica Funzionale 1014 Febbraio 2014

Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Genomica  Funzionale  

10-­‐14  Febbraio  2014  

Page 2: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Topics  covered  

-­‐  Metabolic  Engineering;  

-­‐  Concept  of  Metabolomics;  

-­‐  Metabolomic  plaAorms  (LC-­‐MS,  GC-­‐MS,  NMR,  ICP-­‐MS  etc);    -­‐  Set  up  of  a  metabolomic  protocol  and  database;  

-­‐  ApplicaLons  in  plant-­‐/food  science  field;  

-­‐  BioinformaLcs  applied  to  Metabolomic  data.  

Page 3: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Preliminary  DefiniLons  

•  Metabolomics –  “Newly” emerging field of 'omics' research –  Comprehensive and simultaneous systematic determination of metabolite levels in

the metabolome and their changes over time as a consequence of stimuli (J.K.  Nicholson,  1999)

•  Metabolome –  Refers to the complete set of small-molecule metabolites –  Dynamic

•  Metabolites –  Intermediates and products of metabolism –  Examples include antibiotics, pigments, carbohydrates, fatty acids and amino acids –  Primary and secondary metabolites

•  Metabonomics –  Technique allowing determination of cell metabolomic changes, induced by

phenology/physiology or stress-related responses (S.  Oliver,  2002)

Page 4: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Metabolomics  

Metabolome  Reflects  the  State  of  the  Cell,  Organ  or  Organism  

n  Change  in  the  metabolome  is  a  direct  consequence  of  protein  acLvity  changes    •  Not  necessarily  true  for  genomic,  proteomic  or  transcriptomic  changes  

n  Disease,  environmental  factors,  Drugs,  etc.,  perturbs  the  state  of  the  metabolome    •  Provides  a  system-­‐wide  view  of  the  organism  or  cell’s  response  

Page 5: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

•  The first paper was titled, “Quantitative Analysis of Urine Vapor

and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971.

•  The name metabolomics was coined in the late 1990s (the first paper using the word metabolome is Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. (1998). Systematic functional analysis of the yeast genome.

•  Many of the bioanalytical methods used for metabolomics have been adapted (or in some cases simply adopted) from existing biochemical techniques.

•  Human Metabolome project – first draft of human metabolome in 2007

•  Aracyc – first plant metabolic database in 2010

History  

Page 6: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

 Modeling  Approaches  in  metabolomics  

•  Top  down  (data-­‐driven):    –  Omic-­‐approach.,  with  determina<on  of  large  sets  of  data  in  a  specific  condi<on  (for  

instance,  responses  to  bio<c  or  abio<c  stresses).  –  The  system  is  dissected  in  sub-­‐systems.      

•  BoWom  up  (experimental  hypothesis-­‐driven):    –  Starts  with  few  elementary  components  according  an  experimental  hypothesis  

interconnec<ng  all  of  them.  –  Data  integra<ons  proceeds  step-­‐by-­‐step  in  order  to  generate  model  in  which  

experimental  elements  are  combined  with  literature  etc.    

Page 7: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

 Metabolomic  plaAorm  sensiLvity  

Page 8: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Data gathering (I)

•  Four main points in Analysis of metabolomics data : –  Efficient and unbiased –  Separation of analytes –  Detection –  Identification and quantification

Page 9: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

•  Separation Techniques –  Gas Chromatography (GC)‏ –  Capillary Electrophoresis (CE)‏ –  High Performance Liquid Chromatography (HPLC)‏ –  Ultra Performance Liquid Chromatography (UPLC)

•  Detection Techniques –  Nuclear Magnetic Resonance Spectroscopy (NMR)‏ –  Mass Spectrometry (MS)‏

Data gathering (II)

Page 10: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Uses  of  mass  spectrometer  

Ø Used  in  industry  and  academia  for  both  rouLne  and  research  purposes.  Brief  summary  of  the  major  mass  spectrometric  applicaLons:    

• Biotechnology:  the  analysis  of  metabolites,  proteins,  pepLdes,  oligonucleoLdes  

• PharmaceuLcal:  drug  discovery,  combinatorial  chemistry,  pharmacokineLcs,  drug  metabolism      • Clinical:  neonatal  screening,  hemoglobin  analysis,  drug  tesLng        • Environmental:  PAHs,  PCBs,  water  quality,  food  contaminaLon      • Geological:  oil  composiLon    

Page 11: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Mass  spectrometry  for  biochemists        

Ø Accurate  molecular  weight  measurements:      

§ confirmaLon  of  sample,  determinaLon  of  purity  of  a  molecule,  metabolic  profiling,  metabolite  purificaLon,  verifying  amino  acid  subsLtuLons,  detecLon  of  post-­‐translaLonal  modificaLons,  calculaLng  number  of  disulphide  bridges  .  

Ø   ReacLon  monitoring:  

§ to  monitor  enzyme  reacLons,  chemical  modificaLon,  protein  digesLon  

Ø   Amino  acid  sequencing:  

§ sequence  confirmaLon,  de  novo  characterisaLon  of  pepLdes,  idenLficaLon  of  proteins  by  database  searching  with  a  sequence  “tag”  from  a  proteolyLc  fragment  

Ø   OligonucleoLde  sequencing:  

§ the  characterizaLon  or  quality  control  of  oligonucleoLdes  

Ø   Protein  structure:  

§ protein  folding  monitored  by  H/D  exchange,  protein-­‐ligand  complex  formaLon  under  physiological  condiLons,  macromolecular  structure  determinaLon  

Page 12: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Separation Technique – GC (I)

•  Mostly in Organic Chemistry •  Require chemical

derivatization •  Mobile and stationary phase

Page 13: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Separation Technique – GC (I)

Kind  of  autosamplers:    -­‐  Liquid    -­‐  Sta<c  head-­‐space  by  syringe  

technology  -­‐  Dynamic  head-­‐space  by  transfer-­‐line  

technology  

 

-­‐  Solid-­‐phase  microextrac<on  (SPME)  

Page 14: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

•  Biochemistry and analytical chemistry •  Wide range analytes •  Mobile and stationary phase •  Retention time

Separation Technique – HPLC (I)

Page 15: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

HPLC compared to UPLC

Page 16: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Detection Technique - MS

•  To identify and to quantify metabolites

•  Serves to both separate and to detect

•  Mass to charge ratios •  Using electron beam •  Ion source, mass

analyzer and detector

Page 17: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

SPECIFIC  MS  DEFINITIONS  (I)  

-­‐  M/Z:  between  the  mass  of  a  given  ion  and  the  number  of  elementary  charges  that  it  carries;      -­‐  MONOISOTOPIC  MASS:  the  monoisotopic  mass  is  the  mass  of  the  isotopic  peak  whose    elemental  composi<on  is  composed  of  the  most  abundant  isotopes  of  those  elements;      -­‐  AVERAGE  MASS:  The  average  mass  is  the  weighted  average    of  the  isotopic  masses  weighted  by  the  isotopic  abundances;                  -­‐  MASS  SPECTRUM:  an  intensity  vs  m/z    (mass-­‐to-­‐charge  ra<o)    plot.        

Page 18: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

 -­‐  Accurate  mass:  the  experimentally  measured  mass  value;    -­‐  Exact  mass:  the  calculated  mass  based  on  adding  up  the  masses  of  each  atom  in  the  molecule;      -­‐  Atomic  mass:  mass  of  a  par<cle/molecule.  Each  element  is  determined  rela<ve  to  Carbon  having  a  mass  of  exactly  12.0000;      -­‐  Mass  defect:  the  difference  between  the  mass  of  the  individual  components  of  the  nucleus  alone,  and  the  mass  of  the  bound  nucleus        -­‐  Mass  error  =  (exact  mass)  –  (accurate  mass)  •  Mass  error  in  parts  per  million  (ppm)  =  (mass  error)  (exact  mass)  X  106  

SPECIFIC  MS  DEFINITIONS  (II)  

Page 19: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

-­‐MASS  RESOLUTION:  resolu<on  measures  of  the  ability  to  dis<nguish  two  peaks  of  slightly  different  mass-­‐to-­‐charge  ra<os  ΔM,    in  a  mass  spectrum  (R  =  M/dM);                              -­‐ SENSITIVITY:  func<on  of  analyte  concentra<on  or  amount.    

SPECIFIC  MS  DEFINITIONS  (III)  

Page 20: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Sample    introducLon  

IonizaLon  Minimize  collisions,  interferences  

Separate  masses  

Count  ions  Collect  results  

Mass  spectrometry  IntroducLon  

Page 21: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Overview  of  Mass  Spectrometry  

Mass Spectrum

Mass  Analyzer  

Ioniza<on   M+/Fragmenta<on Sample  Molecule  (M)

 ProtonaLon          :    M  +  H+                MH              CaLonizaLon      :    M  +  Cat+          MCat+  DeprotonaLon:    MH                M-­‐  +  H+  Electron  EjecLon:    M              M+.  +  e-­‐  Electron  Capture:      M  +  e-­‐              M-­‐.      

Mechanism  of  Ioniza<on  

Page 22: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

MS  divided  into  3  fundamental  parts  

Mass  spectrometer  

Data  system  

IonizaLon  source  e.g.  electrospray(ESI),  Atmospheric  pressure  chemical  (APCI),  Matrix  assisted  laser  Desorp<on(MALDI)  

Analyser  Mass  to  charge,m/z  e.g.  quadrupole,  Time  of  flight,  magnet,  FT-­‐ICR  

Detector  e.g.  photomul<plier,  Microchannel  plate,  Electron  mul<plier  Orbitrap  

Page 23: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Working  of  Mass  Spectrometry  

Ø   Divided  into  three  fundamental  parts:  § IonizaLon  source  §   Analyzer  §   Detector  

Ø Sample  is  introduced  in  the  ionizaLon  source  where  they  are  ionized.              (  It  is  easier  to  manipulate  ions  than  neutral  molecules).  

Ø Ions  separated  according  to  their  mass  to  charge  raLo  in  the  analyzer.  The  separated  ions  are  detected  and  this  signal  sent  to  a  data  system  where  the  m/z  raLos  are  stored  together  with  their  relaLve  abundance  for  presentaLon  in  the  format  of  a  m/z  spectrum.        

Page 24: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Ø In  posiLve  ionizaLon  mode,  a  trace  of  formic  acid  is  oben  added  to  aid  protonaLon  of  the  sample  molecules.  

Ø In   negaLve   ionizaLon  mode   a   trace   of   ammonia   soluLon   or   a   volaLle   amine   is  added  to  aid  deprotonaLon  of  the  sample  molecules.    

Ø Proteins   and   pepLdes   are   usually   analyzed   under   posiLve   ionisaLon   condiLons  and  saccharides  and  oligonucleoLdes  under  negaLve  ionisaLon  condiLons.  

Ø In  all  cases,  the  m/z  scale  must  be  calibrated  by  analyzing  a  standard  sample.  

PosiLve  or  NegaLve  IonizsaLon?    §  If  the  sample  has  funcLonal  groups  that  readily  accept  a  proton  (H+)  then  

posiLve  ion  detecLon  is  used  e.g.  amines  R-­‐NH2  +  H+  ®  R-­‐NH3+  as  in  proteins,  pepLdes  

§   If  the  sample  has  funcLonal  groups  that  readily  lose  a  proton  then  negaLve  ion  detecLon  is  used    e.g.  carboxylic  acids  R-­‐CO2H  ®  R-­‐CO2–  and  alcohols  R-­‐OH  ®  R-­‐O–  as  in  saccharides,  oligonucleoLdes  

PosiLve  or  negaLve  ionisaLon?  

Page 25: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Sample  ionizaLon  methods  Ø The   ionisaLon  methods  used   for   the  majority  of  biochemical   analyses  are  

§   Electrospray  IonisaLon  (ESI)    

§ Matrix  Assisted  Laser  DesorpLon  IonisaLon  (MALDI).  

Other  IonisaLon  methods  include:    

§ Atmospheric  Pressure  Chemical  IonisaLon  (APCI)  

§ Chemical  IonisaLon  (CI)  

§ Electron  Impact  (EI)  

§ Fast  Atom  Bombardment  (FAB)  

§ Field  DesorpLon  /  Field  IonisaLon  (FD/FI)  

§ Thermo  spray  IonisaLon  (TSP)  

   

Page 26: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

•  Matrix  Assisted  Laser  DesorpLon  IonisaLon  (MALDI)  (F.  Hillenkamp,  M.  Karas,  R.  C.  Beavis,  B.  T.  Chait,  Anal.  Chem.,  1991,  63,  1193)  deals  well  with  thermolabile,  non-­‐vola<le  organic  compounds  especially  those  of  high  molecular  mass  and  is  used  successfully  in  biochemical  areas  for  the  analysis  of  proteins,  pepLdes,  glycoproteins,  oligosaccharides,  and  oligonucleoLdes.    

 •  It  is  rela<vely  straighcorward  to  use.  The  mass  accuracy  depends  on  the  type  and  

performance  of  the  analyser  of  the  mass  spectrometer,  but  most  modern  instruments  should  be  capable  of  measuring  masses  to  within  0.01%  of  the  molecular  mass  of  the  sample,  at  least  up  to  ca.  40,000  Da.  

•  MALDI  is  based  on  the  bombardment  of  sample  molecules  with  a  laser  light  to  bring  about  sample  ionisaLon.  The  sample  is  pre-­‐mixed  with  a  highly  absorbing  matrix  compound  for  the  most  consistent  and  reliable  results,  and  a  low  concentra<on  of  sample  to  matrix  works  best.  

•  The  matrix  transforms  the  laser  energy  into  excitaLon  energy  for  the  sample,  which  leads  to  spufering  of  analyte  and  matrix  ions  from  the  surface  of  the  mixture.  In  this  way  energy  transfer  is  efficient  and  also  the  analyte  molecules  are  spared  excessive  direct  energy  that  may  otherwise  cause  decomposi<on.  Most  commercially  available  MALDI  mass  spectrometers  now  have  a  pulsed  nitrogen  laser  of  wavelength  337  nm.  

Matrix  Assisted  Laser  DesorpLon  IonisaLon    

Page 27: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

"Somehow,  a  peak  seems  to  have  appeared."  Tanaka  reported  at  the  weekly  Monday  team  meeLng  on  February  2nd,  1985,  half  a  year  aber  the  project  had  started.      

Six  O'clock  in  the  Evening  on  October  9th  2002    News  arrived  saying  that  Koichi  Tanaka  had  won  the  Nobel  Prize  in  Chemistry  2002    On  October  9th,  the  Royal  Swedish  Academy  of  Sciences  announced  their  decision  to  award  the  Nobel  Prize  in  Chemistry  2002  to  three  people  for  their  development  of  methods  for  idenLficaLon  and  structure  analyses  of  biological  macromolecules.  -­‐  Koichi  Tanaka  (at  the  Lme  :  Life  Science  Laboratory  Assistant  Manager  of  Shimadzu  CorporaLon),  Prof.  John  B.  Fenn  (Virginia  Commonwealth  University,  USA)  and  Prof.  Kurt  Wuthrich  (Swiss  Federal  InsLtute  of  Technology)      

Page 28: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

IonizaLon  in  MALDI  

Ø IonizaLon  is  separated  into  two  divisions  §   primary  ion  formaLon  

 iniLal  ions  formed  during  laser  pulse  

frequently  matrix  molecules  

§ secondary  ion  formaLon  

 ions  formed  during  subsequent  reacLons    

 may  be  matrix-­‐matrix    reacLons  or  matrix-­‐analyte  reacLons  

Ø ResulLng  analyte  ions  are  usually  § protonated  § CaLonized    §   radical  caLons  

Page 29: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

PosiIve  ionisaIon  MALDI  m/z  spectrum  of  a  pepIde  mixture  using  alpha-­‐cyano-­‐4-­‐hydroxycinnamic  acid  as  matrix  

Page 30: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

MALDI in small molecule analyses

67  Isoprenoids  (PDA)  

lycopene  

prolycopene  

Page 31: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Ø Generate  analyte  ions  in  solu<on  before  the  analyte  reaches  the  mass  spectrometer.    Ø The  LC  eluent  is  sprayed  (nebulized)  into  a  chamber  at  atmospheric  pressure  in  the  presence  of  a  strong  electrosta<c  field  and  heated  drying  gas.  Ø The  electrosta<c  field  causes  further  dissocia<on  of  the  analyte  molecules.    Ø The  heated  drying  gas  causes  the  solvent    in  the  droplets  to  evaporate.  As  the  droplets  shrink,  the  charge  concentra<on  in  the  droplets  increases.  Ø Eventually,  the  repulsive  force  between  ions  with  like  charges  exceeds  the  cohesive  forces  and  ions  are  ejected  (desorbed)  into  the  gas  phase.  Ø These  ions  are  afracted  to  and  pass  through  a  capillary  sampling  orifice  into  the  mass  analyzer.  

Electron  Spray  IonizaLon(ESI)  (J.  Fenn,  J.  Phys.  Chem.,  1984,  88,  4451)  

Page 32: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Ø The  micro  droplet  shrinks  due  to  solvent  evaporaLon  The  resulLng  increase  in  charge  density  of  the  droplet,  forces  the  charged  analyte  ion  out  of  the  soluLon  before  the  droplet  breaks  up.  

Ø Electrospray  ionizaLon  can  produce  mulLply  charged  ions  with  the  number  of  charges  tending  to  increase  as  the  molecular  weight  increases.    

“The  Taylor  Cone”  

Electron  spray  ionizaLon  (ESI)  

Page 33: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

ESI  applicaLon  for  polar  molecules  

Page 34: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Ø In  APCI,  the  LC  eluent  is  sprayed  through  a  heated  (typically  250°C  –  400°C)  vaporizer  at  atmospheric  pressure.    Ø The  heat  vaporizes  the  liquid.  The  resul<ng  gas-­‐phase  solvent  molecules  are  ionized  by  electrons  discharged  from  a  corona  needle.  Ø The  solvent  ions  then  transfer  charge  to  the  analyte  molecules  through  chemical  reac<ons  (chemical  ioniza<on).  Ø The  analyte  ions  pass  through  a  capillary  sampling  orifice  into  the  mass  analyzer.  

Atmospheric  pressure  chemical  ionizaLon  (APCI)  

Page 35: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

APCI  applicaLon  to  profile  non  polar  compounds  

Page 36: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Atmospheric pressure photoionization(APPI)

Ø Atmospheric  pressure  photoioniza<on  (APPI)for  LC/MS  is  a  rela<vely  new  technique.  Ø   As  in  APCI,  a  vaporizer  converts  the  LC  eluent  to  the  gas  phase.  A  discharge  lamp  generates  photons  in  a  narrow  range  of  ioniza<on  energies.  Ø   The  range  of  energies  is  carefully  chosen  to  ionize  as  many  analyte  molecules  as  possible  while  minimizing  the  ioniza<on  of  solvent  molecules.  Ø The  resul<ng  ions  passthrough  a  capillary  sampling  orifice  into  the  mass  analyzer.  

Page 37: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

APPI  applicaLon  in  lipidomics  

Page 38: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

ESI/APCI  Benefits  

Ø Good  for  charged,  polar  or  basic  compounds  

Ø Permits   the   detecLon   of   high-­‐mass   compounds   at   mass-­‐to-­‐charge   raLos   that   are   easily   determined   by   most   mass  spectrometers  (m/z  typically  less  than  2000  to  3000).  

Ø Best  method  for  analyzing  mulLply  charged  compounds.  

Ø Very   low   chemical   background   leads   to   excellent   detecLon  limits  (ESI).  

Ø Can   control   presence   or   absence   of   fragmentaLon   by  controlling  the  interface  lens  potenLals.  

Ø CompaLble  with  MS/MS  methods.  

Page 39: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

ESI/APCI  LimitaLons  

Ø MulLply   charged   species   require   interpretaLon   and  mathemaLcal  transformaLon  (can    be  difficult  someLmes).  

Ø  Complementary.   Not   good   for   uncharged,   non-­‐basic,   low-­‐polarity  compounds  (ESI;  e.g.  steroids).  

Ø  Very   sensiLve   to   contaminants   such   as   alkali   metals   or   basic  compounds.  

Ø  RelaLvely  low  ion  currents  Ø  RelaLvely  complex  hardware  compared  to  other  ion  sources  

       Mass  range  

Ø  Low-­‐high  Typically  less  than  200,000  Da.  

Page 40: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Flavonoids  

“Common”  func<ons  -­‐   An<oxidant  

-­‐   Protec<on  from  UV/aging  

 -­‐  Preven<on  of  lipid  oxida<on  

           

-­‐  Scavenging  of  free  radicals  

Natural  Sources  -­‐   Fruits  (berries)  -­‐   Wine  and  juices  

-­‐ Stroke  preven<on  -­‐   An<cancer  ac<vity    

-­‐   Synergic  and  benefic  effects  with    vitamins  A,  C  and  E  

-­‐  Fer<lity  preserva<on  

“In  animal”  func<ons  

“In  plant”  func<ons  -­‐   Photo-­‐quenching  

       

-­‐   Insect/animal  afrac<on    -­‐  Symbio<c  interac<ons  

Page 41: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Flavonoid  biosynthesis  

Winkel-Shirley, 2001 Jaakola et al., 2001

Cocciolone et al., 2002 Farzad et al., 2003

Page 42: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

1.  Structural genes

-­‐   Maize  (P1)  (Cocciolone  et  al.,  05)  

5-­‐fold  

2.  Regulatory  genes  

Metabolic  engineering  of  flavonoids  

-­‐  Tomato  (STS)  (Schijlen  et  al.,  06)  

-­‐  Tomato  (CHI)  (Muir  et  al.,  00)  

HPLC  of  flavonoids  in  processed  tomatoes  

60-­‐fold  

-­‐   Tomato  (LC/C1)  (Bovy  et  al.,  02)  

20-­‐fold  

-­‐  Canola  (STS)  (Husken  et  al.,  05)  360ug/gm  

Page 43: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

The  Purple  Tomato  

Butelli  et  al.,  08  

Construct  and  fruit  phenotype  

HPLC  of  anthocyanins  

In  vivo  experiments  

Page 44: Genomica)Funzionale) · • The first paper was titled, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography”, by Robinson and Pauling in 1971

Ripening-­‐phenotype  in  purple  tomatoes