12
1/18/2012 1 POPULATION GENOMICS OF 158 GENOMES OF DROSOPHILA MELANOGASTER Antonio Barbadilla Bioinformatics of Genetic Diversity Genomics, Bioinformatics and Evolution research group Departament de Genètica i Microbiologia Universitat Autònoma de Barcelona The problematic of population genetics is the description and explanation of genetic variation within and between populations Theodosious Dobzhansky Population genetics The golden age of the study of genetic variation Internacional Project (US National Human Genome Research Institute): Sequencing of a genetic reference panel of 192 wild lines of D. melanogaster Drosophila Genetic Reference Panel (DGRP): A Community Resource for the Study of Genotypic and Phenotypic Variation in model organism Trudy Mackay Stephen Richards Richard Gibbs

Genome Browser of genetic diversity in Drosophilabioinformatica.uab.cat/base/myimages/ProyectoMICINN/documentos... · Create a “test bench” for statistical methods used in

Embed Size (px)

Citation preview

1/18/2012

1

POPULATION GENOMICS OF

158 GENOMES OF DROSOPHILA MELANOGASTER

Antonio Barbadilla Bioinformatics of Genetic Diversity

Genomics, Bioinformatics and Evolution research group Departament de Genètica i Microbiologia

Universitat Autònoma de Barcelona

The problematic of population genetics is the description and explanation of genetic variation within and between populations

Theodosious Dobzhansky

Population genetics

The golden age of the study of genetic variation

Internacional Project (US National Human Genome Research Institute): Sequencing of a genetic reference panel of 192 wild lines of D. melanogaster

Drosophila Genetic Reference Panel

(DGRP): A Community Resource for the Study of Genotypic and Phenotypic Variation in model organism

Trudy Mackay

Stephen Richards

Richard Gibbs

1/18/2012

2

The Drosophila Genetic Reference Panel – DGRP

Sequencing of a D. melanogaster genetic reference panel of 192 wild-type inbred lines from a single natural population (Raleigh, North Carolina, USA)

The Drosophila Genetic Reference Panel – DGRP

192 lines which extensive information on complex trait phenotypes has been collected

DGRP – Sequencing strategies

Long reads (~500 bp)

Primary error: homopolymer

length determination

Short reads (~45 bp), Paired-

end. Primary error: substit. at

the ends of the reads

De-novo assembly

Identify large polymorphic

features (>20 bp)

Identify small polymorphic

features (<10 – 20 bp)

Mapping reads to the

Drosophila reference genome

(Mosaik)

1/18/2012

3

DGRP – Main Goals

1. Create a community resource for the association mapping of quantitative trait loci (QTLs)

2. Create a community resource containing the common sequence polymorphisms of Drosophila melanogaster (SNPs and structural variation)

3. Create a “test bench” for statistical methods used in QTL association mapping studies for traits affecting human diseases

Last Name First Name Email Address Proposed Analysis

Andolfatto Peter [email protected] Recombination rates

Anholt Robert [email protected] Olfactory behavior (mulitple odorants); molecular population genetics of odorant binding proteins

Arnosti David [email protected] Mathematical modeling of enhancers, testing quantitative predictions

Awadalla Philip [email protected]

Genome wide analysis of historical rates of recombination and gene conversion

Barbadilla Antonio [email protected] Create and maintain a Web server containing the high resolution sequence polymorphism map of each strain; participate in genome wide molecular population genetics analyses

Bergmann Casey [email protected]

TE insertion sites; Wolbachia infection status

Caellarts Patrick [email protected]

Quantitative morphological analyses of nervous system

Carbone Ignacio [email protected] Whole genome phylogenetic analyses

Clark Andrew [email protected] Immunity, metabolism

DeLuca Maria [email protected] Energy storage, metabolic rate, mitochondrial respiration

Dworkin Ian [email protected] Wing morphology

Eyre-Walker Adam [email protected]

Distribution of fitness effects of deleterious mutations

Fanara Juan Jose [email protected]

Larval olfactory behavior, development time, adult body size

Gleason Jennifer [email protected] Courtship song

Hasson Esteban [email protected]

Development time, body size and related traits, male genital morphology, oviposition preference

Houle David [email protected] Wing morphology (108 parameters)

Hughes Kimberly [email protected] Sperm precedence and male fertility

Jiggins Frank [email protected] Susceptibility/resistance to virus infection

Kreitman Martin [email protected] Molecular evolutionary genetics of trancription factor binding sites

Lazarro Brian [email protected] Resistance to bacterial infection (mulitple bacteria), endogenous microbiomes, metabolism, reproduction

Leips Jeff [email protected] Immune responses at different ages

Levine Joel [email protected] Circadian rhythms, cuticular hydrocarbons, social behaviors

Mackay Trudy [email protected]

Abdominal and sternopleural bristle number, pigmentation, locomotion (startle response, open field activity), sleep, aggression, EtOH sensitivity and tolerance, copulation latency, phototaxis, oxidative stress resistance, life span, starvation stress resistance, chill coma recovery, competitive fitness, geotaxis, modifiers of mutations, mutation accumulation, whole genome transcript profiling, eQTLs and systems genetics of complex traits analyses; most traits in multiple environments

Mackey Aaron [email protected]

Genome assemblies, SNP/indel identification

Mahaffey James [email protected] Appendage morphometrics

Mery Frederic [email protected]

Learning and memory

Mezey Jason [email protected]

Wing morphology

Otto Sarah [email protected] Signatures of disequilibrium and other signs of selective interference among loci (Hill-Robertson effects)

Petrov Dmitri [email protected]

TE insertion sites

Promislow Daniel [email protected]

Somatic mutation rates

Rollmann Stephanie [email protected] Molecular population genetics of ororant and taste receptor gene families; gustatory perception of sugars and aversive behavior to noxious food stimuli

Rozas Julio [email protected] Molecular evolutionary analyses of odorant binding protein cis-regulatory sequences using phylogenetic footprinting/shadowing methodologies

Sokolowski Marla [email protected]

larval and adult food related behaviors including food related locomotion, food intake, lipid, carbohydrate and protein levels, glucose and amino acid uptake, sucrose responsiveness and social feeding; all in environments varying in food deprivation, food quality and composition

Stephan Wolfgang [email protected]

Molecular population genomics of selective sweeps, signatures of adaptive evolution

Stone Eric [email protected] eQTL and systems genetics of complex traits analyses

Uyenoyama Marcy [email protected] Analysis of site frequency spectrum (SNPs and CNVs); analysis of whole genome linkage disequilibria; local scale variation in recombination rates

Wayne Marta [email protected] Ovariole number, sigma virus resistance and transmission, flight under field conditions

Wolfner Mariana [email protected]

variation in sperm competition (both males RNAi'd for individual Acps in mated to DGRP females, and DGRP males in mated to females RNAi'd for specific female reproductive tract proteins

Wu Louisa [email protected] Susceptibility/resistance to virus infection (Drosophila X virus, Drosophila C virus); differences in ability to phagocytose bacteria

Yarali Ayse [email protected]

Associative learning (reinforcement)

DGRP – The Consortium T. Mackay, S. Richards and R. Gibbs

DGRP – Our Task

1. Create and maintain a Genome

Browser containing the high-

resolution sequence

polymorphism map of D.

melanogaster

2. Genome-wide molecular

population genetic analyses

Population genomics

Description and explanation of patterns of nucleotide

variation at a large scale

Population genetics studies have been based on fragmentary and

non-random samples of the genome, providing a partial view, often

biased, of the population genetic processes

1/18/2012

4

Questions that can be solved with

a genome-wide perspective

• X vs autosomes. X-fast evolution?

Yes (Baines et al 2008)

No (Connalon 2007, Thornton et al. )

Regional Effect Centromere – Middle - Telomere on nucleotide variation

Role recombination, mutation, gene density on nucleotide variation and adaptive evolution

% genomes underlying natural selection, positive, balanced and negative according functional or structural region of genomes

X

Population Genomics Analyses

Raw data: 158 genomes D. melanogaster DGRP project (Freeze 1).

1/18/2012

5

Raw data: Outgruoup species

Data visualization: The Population Drosophila Browser (PopDrowser)

Data quality: Julien Ayroles

1/18/2012

6

0

200000

400000

600000

800000

1000000

1200000

2L 2R 3L 3R X

SNPs

#SNPs (all)

#SNPs (no-singletons)

#SNPs (all) #SNPs (no-singletons)

% no-singletons % singletons

2L 1073340 787498 73,37% 26,63%

2R 891243 645133 72,39% 27,61%

3L 1095397 772713 70,54% 29,46%

3R 1050901 741908 70,60% 29,40%

X 699821 454374 64,93% 35,07%

TOTAL 4810702 3401626 70,71% 29,29%

Eric Stone’s genotyper (JGIL)

Data analysis approaches

• Differently-sized non-overlapping sliding windows along chromosome arms (ranging from 50pb to 100kb)

•Specific and general patterns that follows genetic diversity (polymorphism and divergence) along the chromosome arms •Correlating them to other variables such as recombination rate, gene density, linkage disequilibrium, or structural regions

•Coding genes centred approach: Site (functional) classes of coding gene: coding (synonymous, non-synonymous) and non-coding (5’ and 3’UTR, intron, 5’ and 3’ intergenic).

•Nucleotide variation •Evidence of natural selection acting on each site class.

Polymorphism and divergence

1/18/2012

7

Patterns polymorphism and divergence along chromosome arms

PopDrowser -> http://popdrowser.uab.cat;

2L 2R 3L 3R X

Tel Cen Cent Tel Cen Cen Cen Tel Tel Cen

Patterns polymorphism and divergence along chromosome arms

• centromeric vs. non-centromeric regions within autosome arms • autosomes vs. X chromosome PopDrowser -> http://popdrowser.uab.cat;

Polymorphism / divergence and recombination

• centromeric vs. non-centromeric regions within autosome arms • autosomes vs. X chromosome PopDrowser -> http://popdrowser.uab.cat;

and the rate of recombination Site class Spearman’s ρ Prob

rec < 2 cM/Mb 0.471 p < 2.2 e-16

rec ≥ 2 cM/Mb -0.0044 p = 0.987

Gene centred approach: Polymorphism and divergence by site classes

1/18/2012

8

•Consistent pattern among and within chromosomes for both polymorphism and divergence as previously observed on smaller data set.

Polymorphism: π_Syn 4-fold> π _Intron > π _Intergenic > π _5’-3’UTR > π _Non-syn 0-fold Divergence: k_Syn 4-fold> k _Intron > k _Intergenic > k _5’-3’UTR > k _Non-syn 0-fold

Outgroup: D. yakuba

Polymorphism (π)

and

Divergence (k)

by site class

among regions

within

chromosome arms

and

X vs. Autosomes

Sum of squares

df F-value p-value

Autosomes

Recombination rate

0.00637 1 199.03 < 2.2e-16 ***

Region 0.00224 1 69.88 < 2.2e-16 ***

Divergence 0.0034 1 106.21 < 2.2e-16 ***

Gene density 0.0003 1 8.43 0.0037 **

Residuals 0.0591 1848

X

Recombination rate

0.0007 1 37.32 5.844e-10***

Divergence 0.0001 1 4.80 0.0290 * Region 0.0000 1 0.87 0.3522 Gene density 0.0000 1 0.61 0.4363 Residuals 0.0073 415

Anova of the regression model to test the effect of different genomic

variables on nucleotide variation. •Dependent variables: recombination rate, genomic region (centromere or

non-centromere), 4-fold divergence to D. yakuba and gene density

•Independent variable is π 4fold

1/18/2012

9

Allele

frequency

Time

1

0

Dinamics of substitutions of neutral mutations

Motoo Kimura

i

neut =

ki kneut

Ratio divergence = ω =

i neut

Ratio polymorphism =

Expected ratio according

neutral theory

ki kneut

= 4Nμ

k = μ

McDonald-Kreitman test (MKT)

μ i μ neut

=

4N μi 4N μneut

=

Allele

frequency

Time

1

0

Non-neutral substitutions

i neut

=

Expected ratio according

neutral theory

ki kneut

i neut

< ki kneut

Adaptive fixation (α ,

fraction of sites fixed

by adaptive selection)

i neut

> ki kneut

Weakly negative

selection

= 4Nμ

k = μ

McDonald-Kreitman test (MKT)

1/18/2012

10

i neut

=

Expected ratio according

neutral theory

Extended MKT

ki kneut

Standard MKT table

Site class Polym Div

0 (Neutral class) P0 D0

i (Selected class) Pi Di

Table of number of segregating sites by MAF category

Site class MAF < 5% MAF ≥ 5%

0 (Neutral class) P0 MAF < 5% P0 MAF ≥ 5%

i (Selected class) Pi MAF < 5% Pi MAF ≥ 5%

Estimated selection regimes

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

11% 12% 4% 73%d (strongly deleterious)

b (weakly deleterious)

f-γ (old neutral)

γ (new neutral)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

11% 12% 4% 73%d (strongly deleterious)

b (weakly deleterious)

f-γ (old neutral)

γ (new neutral)

Selection genome-wide

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

11% 12% 4% 73%d (strongly deleterious)

b (weakly deleterious)

f-γ (old neutral)

γ (new neutral)

Selection genome-wide

1/18/2012

11

●●●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●●●

●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●●●●

●●

0.0

00

0.0

04

0.0

08

0.0

12

p −

Nu

cle

otid

e D

ive

rsity

a)

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●●●

●●●

●●●●

●●

●●

●●●●●

●●●●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●

●●

●●●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●●●

●●

●●●

●●●●●●●

●●

●●●●●

●●

●●●●●●●

●●●

●●

●●

●●●●●●

●●

●●●●●●

●●

●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●

●●

●●

●●●●

●●

●●●●●●●

●●

●●

●●

●●●

●●●●●●●●

●●

●●●●

●●●●●

●●●●●●●●

●●

●●

●●●

●●●

●●●●●

●●●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●

●●

●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●●●

●●●●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●

●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

01

23

4

Re

co

mb

ina

tion

(cM

/Mb

)

●●●●●●

●●●

●●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●●●●

●●●●

●●

●●●●●●

●●

●●●●●

●●

●●

●●

●●

●●

Recombinationpi

●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●

●●●●●

●●●

●●

●●

●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●

●●●●●

●●●●

●●●●●

●●

●●

●●

●●●●

●●

●●

●●●●

●●●●●●●

●●

●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●●

●●

●●●●●

●●●●●●

●●●

●●●●●●●●●

●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●●

●●●●

●●●●

●●●●

●●●

●●●●

0.0

0.1

0.2

0.3

0.4

0.5

k −

Div

erg

en

ce

b)

●●●●

●●●

●●●●

●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●●●●

●●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●●●●

●●●●●

●●●●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●●

●●●●

●●

●●●●●●

●●

●●●

●●●

●●

●●

●●●●●●●●

●●●●●●

●●●●●●

●●●

●●●●●●

●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●

●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●●

●●●

●●

●●●●●

●●●●●●●●●

●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●

●●●

●●●

●●●

●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●

●●●●●●●●●●

●●●

●●●●●●

●●●●●

●●

●●

●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●●

●●●●●●

●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●

●●

●●

●●●●●

●●

●●●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●

●●

●●●●●●●●●

●●●●

●●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●

●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●

●●

●●●●●

●●●●

●●●●●●●●●

●●●

●●

●●

●●●●

●●

●●●

●●●●

●●●●

●●

●●●●●●

●●

●●●

●●●●●

●●

●●●●●●●

●●●●

●●●

●●●●

●●

●●●●●

●●●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●

●●●●●●●

●●●●

●●●●●●●●●

●●

●●●●

●●●●

●●●●●●●●

●●●●

●●

●●●

●●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

●●

●●

●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●

●●

●●●●●●

●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●●●●

●●●●●●●

●●

●●●●●●

●●●●●

●●●●●

●●●●●●●

●●●

●●●●

●●●

●●●

●●

●●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●

●●●

●●●●

●●

●●

●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●●●

●●●●●●●●●

●●

●●●●●●●

●●●

●●●

●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●●

●●●●●●

●●

●●●●●●●●●●●●●●

●●●●●●

●●●●●

●●●

●●

●●●

●●●●

●●

●●●●●●●●●●●

●●●●

●●●●●

●●

●●

●●

●●●●●●●●

●●●●

●●●●●●●

●●●

●●●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●●●●

●●●●

●●●

●●●●●●●●●●●

●●●●

●●●

●●●●●●●●●

●●●●

●●●●●●

●●●●

●●

●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●

●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●

●●●●●

●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●

●●●●

●●●●●

●●●●●●

●●

●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

● ●●

●●●

●●

●●●●

●●●●

●●●●●●●●●

●●●●

●●

●●

●●

●●

●●●●●

●●●●

●●

●●

●●●●●●●●●●●

●●●

●●●●●●

●●

●●

●●

●●●

●●●●

●●●●

●●

●●●●●●

●●●●●●

●●

●●●●●●●●●●

●●

●●●

●●●●●●●

●●

●●●●●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●●●

●●●●●

●●

●●●●●●●●●

●●

●●

●●●

●●

●●●●●●●

●●●●

●●●●●

●●

●●●●●●●

●●

●●

●●●

●●

●●●●●

●●

●●●●●

●●

●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●

●●●

●●

●●

●●

●●●●

●●●●●●●

●●●●●●

●●●●●

●●●●

●●●

●●●●

●●●●●●●

●●●●●

●●

●●

●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●

●●●●●

●●●

●●●

●●

●●

k dyakk dsim

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●●●

●●●

●●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

−5

−4

−3

−2

−1

01

Ratio P

ol/D

iv

2LTel Cent

c)

●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●●

●●

●●●●●●●

●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●●

●●●●●●

●●●●

●●

●●●●

●●●

●●●●

●●●

●●●

●●

●●

●●●

●●

●●●●

●●●●●●●●●●●●●●

●●

●●

2R Tel Cent

●●

●●●

●●●

●●

●●

●●●●●

●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●

●●

●●●●

●●●●

●●

●●●●

●●●●●●●●●

●●

●●

●●

●●●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

3L Tel Cent

●●

●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

3R Tel Cent

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●

●●●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●●●

●●●●●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●

●●

●●●

●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●

●●

●●●

●●

●●●●●

●●

●●●

●●

●●

●●●●

●●●●

●●●●●●●●

●●

●●

●●●●

●●●●●●●●

●●●●●

●●●●

●●

●●

●●

●●

●●●●

●●●

●●●●

●●●●●●●●●●●

●●●

●●

●●●●●●●

●●●●

●●●●

●●

X Tel Cent

α calculated aggregating for windows along chromosome arms on non-

synonymous sites (0fold)

Adaptive selection

2L 2R 3L 3R X

Tel Cen Cent Tel Cen Cen Cen Tel Tel Cen

α = 1 neutral region

α > 1 adaptive selection

α < 1 negative selection

α = 1

Significant MKT on individual coding genes (syn vs. non-syn)

Adaptive propensity and recombination Conclusions

The 158 genomes has allowed the

unprecedented opportunity to perform the most comprehensive nucleotide variation study done so far in any species

By means of a battery of comparative methods for polymorphism and divergence data we try to answer questions of fundamental interest in population genomics

1/18/2012

12

Conclusions

(1) The genome patterns of polymorphism and divergence differs manifestly

(i) centromeric vs. non-centromeric regions within autosome arms

(ii) autosomes vs. X chromosome

(2) Natural selection is pervasive along the D. melanogaster genome, and the relative importance of different selection regimes depends on both the site classes and the genome regions considered

(3) There exists a threshold value of recombination rate which defines the efficiency of selection for any genome region

(4) All evidence together supports the fast X-hypothesis Bioinformatics of Genetic Diversity Genomics, Bioinformatics and Evolution

Research group