GENG2140 2010 Condition Number

Embed Size (px)

Citation preview

  • 8/8/2019 GENG2140 2010 Condition Number

    1/12

    1

    Ill-conditioned matrices

    Norm of a vector

    Norm of a matrix

    Condition number via matrix norm

    A.V. Dyskin, CRE, UWA GENG2140 Slide 49

    Estimation of errors in solving systems of

    linear algebraic equations

    Points to note

    There exist systems of linear equations that

    Theoretically have unique solution but

    Practically cannot be solved using a computer with thegiven accuracy

    Method of identification of such systems-condition number

    Determination of condition number

    A.V. Dyskin, CRE, UWA GENG2140 Slide 50

    Norm of a matrix

    Condition number

    Meaning of condition number

  • 8/8/2019 GENG2140 2010 Condition Number

    2/12

    2

    Detection of internal structureTransmitter/receiver

    lection.

    (1) (1)

    vp(1)=2.564 km/s, vs

    (1) =2.190 km/s

    vp(2)=3.552 km/s, vs

    (2) =3.034 km/s

    Transitionzone.

    Noref

    x2

    p , s

    vp(2), vs

    (2)Arrival times of the signals

    )2(

    2

    )1(

    1

    )2(

    2

    )1(

    1 22,22

    ss

    s

    pp

    pv

    x

    v

    xt

    v

    x

    v

    xt

    Arrival times: tp=1.343 s, ts=1.572 s

    A.V. Dyskin, CRE, UWA GENG2140 Slide 51

    572.1659.0913.0

    343.1563.0780.0

    21

    21

    xx

    xx

    vp - compressive wave velocity

    vs - shear wave velocity

    Equations

    The system

    (Forsythe, Malcolm and Moler, 1977)

    572.1

    343.1

    659.0913.0

    563.0780.0

    2

    1

    x

    x

    The exact answer is x= 1, 1

    A x b Ax= b

    A.V. Dyskin, CRE, UWA GENG2140 Slide 52

  • 8/8/2019 GENG2140 2010 Condition Number

    3/12

    3

    SolutionGaussian elimination with partial pivoting on a computer with =10, t=3:

    001.0

    72.1

    10

    01

    001.0

    573.1

    10

    0913.0

    001.0

    572.1

    10

    659.0913.0

    000001.0

    572.1

    001.00

    659.0913.0

    343.1

    572.1

    563.0780.0

    659.0913.0

    572.1

    343.1

    659.0913.0

    563.0780.0

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    Partial pivoting

    A.V. Dyskin, CRE, UWA GENG2140 Slide 53

    The solution: x*=(1.72, -0.001). The errore=x*-x=(-0.71, 1.001)

    is of the order of the true solution.

    Analysis of the Example

    Higher accuracy of computation can improve

    e s ua on. or ns ance, e so u on

    obtained on a computer with t=6 is: (1.00000,

    1.00000) which is very accurate.The residual is very small:

    A.V. Dyskin, CRE, UWA GENG2140 Slide 54

    Determinant is very small: det(A)=0.000913

    0023.0

    .bAxr

  • 8/8/2019 GENG2140 2010 Condition Number

    4/12

    4

    Counter-example

    The exact solution is x=(1, 1).

    035.0

    04.0

    03.0005.0

    01.003.0 1

    x

    x

    Gaussian elimination on a computer with =10, t=3:

    1

    1

    10

    01

    1

    03.0

    10

    003.0

    1

    04.0

    10

    01.003.0

    0283.0

    04.0

    0283.00

    01.003.0

    035.0

    04.0

    03.0005.0

    01.003.0

    11

    2

    1

    2

    1

    2

    1

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    A.V. Dyskin, CRE, UWA GENG2140 Slide 55

    The solution: x*=(1, 1) is very accurate.

    However, the determinant of the matrix is even less than in the Example.

    Images of unit vectors for the

    matrix from the Counter-exampleUnit vectors:

    0.04

    03.0005.0

    01.003.0A

    1

    0

    36

    72108

    144

    180

    216324

    o

    oo

    o

    o

    o

    o

    o

    0.02

    -0.04 -0.02 0 0.02 0.04

    0o

    36o72

    o

    108o

    144o

    180o

    max |Au|= 0.037min |Au|= 0.023

    v=Auu=(cos , sin ), o o

    A.V. Dyskin, CRE, UWA GENG2140 Slide 56

    252 288o o

    -0.04

    -0.02216o

    252o

    288o

    324

    max |Au|

    min |Au|

  • 8/8/2019 GENG2140 2010 Condition Number

    5/12

    5

    Images of unit vectors for thematrix from the Example

    Unit vectors:

    563.0780.0

    A

    0

    0.5

    1

    -0.8 -0.4 0 0.4 0.81

    0

    36

    72108

    144

    180oo

    o

    o

    o

    o

    o

    0o

    36o

    72o

    108o

    288o

    324o

    u=(cos , sin ),

    v=Au

    max |Au|= 1.48

    min |Au|= 1.6*10-6

    o o..

    A.V. Dyskin, CRE, UWA GENG2140 Slide 57

    -1

    -0.5252 288

    324o o

    144o

    180o

    216o

    252o

    max |Au|

    min |Au|

    6

    The condition number of a matrix

    x

    x

    x

    A

    0max

    xx

    A1

    max

    x

    x

    x

    A

    0min

    xx

    A1

    mincon

    , ,

    Matrices with high condition numbers are called ill-

    conditioned, otherwise they are called well-conditioned.

    (Here ||x|| denote a length of vector x.)

    A.V. Dyskin, CRE, UWA GENG2140 Slide 58

    Properties

    1. IfA is singular, 0min1

    xx

    A , hence, cond(A)=.

    2. cond(A)1 3. cond(cA)=cond(A) for any scalar c

  • 8/8/2019 GENG2140 2010 Condition Number

    6/12

    6

    Questions

    What does it mean "high condition number"?

    Is there a better (easier) way to compute the

    To answer these questions the notions ofnorm of vectorand

    norm of matrix are necessary.

    Norm of a vector, properties

    Norm of a matrix based on the vector norm

    A.V. Dyskin, CRE, UWA GENG2140 Slide 59

    Properties of matrix norm

    The condition number via matrix norm

    Meaning of the condition number

    Norm of a vector

    Norm of a vector x is a real number ||x|| such that:

    yxyx

    xx

    0

    xx

    )(

    scalarsallfor)(

    0)(

    0if0)(

    iv

    ccciii

    ii

    i

    n

    i

    ix1

    1

    x

    A.V. Dyskin, CRE, UWA GENG2140 Slide 60

    common

    vector

    norms:i

    ni

    n

    i

    i

    x

    x

    ,,1

    1

    2

    2

    max

    x

    x - Euclidian length

  • 8/8/2019 GENG2140 2010 Condition Number

    7/12

    7

    Examples

    1 1.5131.01 x

    1

    3

    1.0x

    31,3,1.0,1max

    32.31901.012

    1

    x

    x

    A.V. Dyskin, CRE, UWA GENG2140 Slide 61

    Although these three norms are different, the results are ofthe

    same order of magnitude. The chose of a particular norm is

    dictated by the convenience to perform the analysis.

    Norm of a matrix

    xAA max xAx 1 xx 0, ,

    The particular value of the matrix norm is determined by a

    particular chose of the vector norm. Thus, if

    n

    n

    aaa

    aaa

    22221

    11211

    nn

    A.V. Dyskin, CRE, UWA GENG2140 Slide 62

    nnnn aaa

    21

    t en

    There is no simple formula for Euclidean norm.

    j

    ijni

    i

    ijnj

    aa1

    ,,11

    ,,11max,max

  • 8/8/2019 GENG2140 2010 Condition Number

    8/12

    8

    Properties of matrix normFor any norm

    BABAiv

    cAccAiii

    ii

    AAi

    )(

    scalarsallfor)(

    00)(

    0if0)(

    (v) For any matrixA and vector x ||Ax|| ||A|| ||x||

    A.V. Dyskin, CRE, UWA GENG2140 Slide 63

    Moreover, there always exists a vector xA, such that ||AxA||= ||A|| ||xA||

    (vi) For any two matricesA andB ||AB|| ||A|| ||B||

    Example 1

    1035.0

    5.0121

    5.95.325.95.3max

    1115.0100135.132205.01max

    1132

    105.10

    1

    A

    A

    A.V. Dyskin, CRE, UWA GENG2140 Slide 64

    7

    7

    5.2

    5.4

    5.4

    max

    1132

    105.10

    1035.0

    5.0121

    max

    A

  • 8/8/2019 GENG2140 2010 Condition Number

    9/12

    9

    Example 2

    15.0121

    11

    5.0

    5.2

    5.1

    1

    1

    1

    105.10

    1035.0

    5.0121

    41111,

    1

    1,5.9,

    1132

    105.10

    .

    x

    xx

    A

    AA

    A.V. Dyskin, CRE, UWA GENG2140 Slide 65

    111111,3845.9,5.735.05.25.1

    311132

    xxxx

    AAAA

    Example 3

    1

    0

    1035.0

    5.0121

    11

    3

    2

    1

    0

    1035.0

    5.0121

    1,

    0

    0,5.9,

    1132

    105.10

    x

    xx

    A

    AA

    A.V. Dyskin, CRE, UWA GENG2140 Slide 66

    111111,5.915.9,5.935.132

    3

    .

    01132

    .

    xxxx

    AAAA

  • 8/8/2019 GENG2140 2010 Condition Number

    10/12

    10

    Condition number via matrixnorm

    xA 1

    Let y=A-1x, x=Ay. Then

    y

    yyx

    y

    yx AAA

    0

    00

    1

    min

    maxmax

    10

    min

    max

    )(cond

    AAA

    A

    Ay

    y

    y

    y

    A.V. Dyskin, CRE, UWA GENG2140 Slide 67

    Therefore1)(cond AAA

    Condition number for the matrix

    from Example and Counter-exampleThe Example

    6

    6

    1

    1

    1

    1

    1066.2)(cond

    1057.1,69.1,780000913000

    563000659000,

    659.0913.0

    563.0780.0

    A

    AAAA

    The Counter-example

    A.V. Dyskin, CRE, UWA GENG2140 Slide 68

    884.1)(cond

    1.47,04.0,3.3588.5

    8.113.35,

    03.0005.0

    01.003.0

    1

    1

    1

    1

    A

    AAAA

  • 8/8/2019 GENG2140 2010 Condition Number

    11/12

    11

    Estimation of errors in solvinglinear algebraic equations 1

    Ax=b

    1. Error in the right partA(x+x)=b+b

    x is the error in the solution, x. The error satisfies the systemAx=b

    bxbxbxbx AAAA ,11

    b

    b

    b

    b

    x

    x

    )(Cond1 AAA

    A.V. Dyskin, CRE, UWA GENG2140 Slide 69

    b

    b

    x

    x

    )(Cond A

    The condition number of a matrix is

    the magnification factor of the

    relative error.

    Estimation of errors in solving

    linear algebraic equations 2

    Ax=b

    2. Error in the matrix (A+A)x=bx is the error in the solution, x. The error satisfies the systemAx=b

    AAA 1bbx

    bbxbx 1 AAAA

    A.V. Dyskin, CRE, UWA GENG2140 Slide 70

    AAAA ononon

    bbx

    The condition number of a matrix is the magnification

    factor of the relative error.

  • 8/8/2019 GENG2140 2010 Condition Number

    12/12

    12

    Structure of this chapter

    Ill-conditioned systems

    and matrices

    Condition number

    Matrix normCondition number

    via matrix normVector norm

    A.V. Dyskin, CRE, UWA GENG2140 Slide 71

    Condition number as

    error multiplicator

    Summary Amongst systems of linear algebraic equations there exist

    such that amplify errors in the matrix or right hand parts -ill-conditioned systems

    -,slenderness of the image of a circle. Generally they arecharacterised by large condition number.

    The condition number is defined as

    x

    xx

    A

    A

    A1

    min

    max

    )(cond

    A.V. Dyskin, CRE, UWA GENG2140 Slide 72

    ropert es If detA=0, then cond(A)=; cond(A)1; cond(cA)=cond(A)

    Method of computation through matrix norm

    Meaning multiplication factor of errors in the right-handpart or the system.