49
Genes, Development, and Evolution (Back to the beginning)

Genes, Development, and Evolution ( Back to the beginning)

Embed Size (px)

Citation preview

Page 1: Genes, Development, and Evolution ( Back to the beginning)

Genes, Development, and Evolution

(Back to the beginning)

Page 2: Genes, Development, and Evolution ( Back to the beginning)

Genes, Development, and Evolution

Key Concepts

• Development Involves Distinct but Overlapping Processes

• Changes in Gene Expression Underlie Cell Differentiation in Development

• Spatial Differences in Gene Expression Lead to Morphogenesis

• Gene Expression Pathways Underlie the Evolution of Development

• Developmental Genes Contribute to Species Evolution but Also Pose Constraints

Page 3: Genes, Development, and Evolution ( Back to the beginning)

Development in Multicellular Organisms

Multicellular Organisms made of differentiated cells undergo development after fertilization.

Fertilization may occur in a variety of ways.

For many Fungi, once the hyphae of two strains come in contact, their cells fuse, creating the zygote (2n). Generally this develops into the diploid fruiting body that releases spores. Few cells differentiate to produce the spore-producing cells. (2nn)

When spores germinate, hyphae (collectively known as mycelium) radiate out in a circular pattern of undifferentiated haploid cells.

Page 4: Genes, Development, and Evolution ( Back to the beginning)

Development in Multicellular Organisms

More complex organisms such as plants and animals have a much more complex development.

Page 5: Genes, Development, and Evolution ( Back to the beginning)

Development Involves Distinct but Overlapping Processes

As a zygote develops, the cell fate of each undifferentiated cell drives it to become part of a particular type of tissue.

Experiments in which specific cells of an early embryo are grafted to new positions on another embryo show that cell fate is determined during development.

Determination is influenced by changes in gene expression as well as the external environment.

Determination is a commitment; the final realization of that commitment is differentiation.

Differentiation is the actual changes in biochemistry, structure, and function that result in cells of different types.

Page 6: Genes, Development, and Evolution ( Back to the beginning)

Development Involves Distinct but Overlapping Processes

Development—the process by which a multicellular organism undergoes a series of changes, taking on forms that characterize its life cycle.

After the egg is fertilized, it is called a zygote.

In its earliest stages, a plant or animal is called an embryo.

The embryo can be protected in a seed, an egg shell, or a uterus.

Four processes of development:

• Determination sets the fate of the cell

• Differentiation is the process by which different types of cells arise

• Morphogenesis is the organization and spatial distribution of differentiated cells

• Growth is an increase in body size by cell division and cell expansion

Page 7: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.1 Development (Part 1)

Predict the point of each of the processes of development:

Page 8: Genes, Development, and Evolution ( Back to the beginning)

Fertilization occurs-A wave of Ca2+ release during the cortical reaction- part of the process that prevents polyspermy, the zygote is formed.

Page 9: Genes, Development, and Evolution ( Back to the beginning)

Figure 47.8x Cleavage in a frog embryo- the resulting mass of cells (bottom right) is called the Morula.

Page 10: Genes, Development, and Evolution ( Back to the beginning)

Figure 47.8d Cross section of a frog blastula – essentially the morula with a cavity known as the blastocoel

Page 11: Genes, Development, and Evolution ( Back to the beginning)

Figure 47.20 Fate maps for two chordates

Page 12: Genes, Development, and Evolution ( Back to the beginning)

Table 47.1 Derivatives of the Three Embryonic Germ Layers in Vertebrates

Page 13: Genes, Development, and Evolution ( Back to the beginning)

Development Involves Distinct but Overlapping Processes

Page 14: Genes, Development, and Evolution ( Back to the beginning)

Development Involves Distinct but Overlapping Processes

Determination is followed by differentiation—under certain conditions a cell can become undetermined again.

It may become totipotent—able to become any type of cell, including extraembryonic cells (placental). Most plant cells are totipotent. Differentiated animal cells can be manipulated to be totipotent (used in cloning).

Pluripotent - cells in the blastocyst embryonic stage retain the ability to form all of the cells in the body.

Multipotent—they produce cells that differentiate into a few cell types. Multipotent stem cells differentiate “on demand.”

Stem cells in the bone marrow differentiate in response to certain signals, which can be from adjacent cells or from the circulation.

Page 15: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.4 Cloning a Mammal (Part 1)

Page 16: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.6 Two Ways to Obtain Pluripotent Stem Cells

Page 17: Genes, Development, and Evolution ( Back to the beginning)

Changes in Gene Expression Underlie Cell Differentiation in Development

Major controls of gene expression in differentiation are transcriptional controls.

While all cells in an organism have the same DNA, it can be demonstrated with nucleic acid hybridization that differentiated cells have different mRNAs.

Two ways to make a cell transcribe different genes:

• Asymmetrical factors that are unequally distributed in the cytoplasm may end up in different amounts in progeny cells

• Differential exposure of cells to an external inducer

Page 18: Genes, Development, and Evolution ( Back to the beginning)

Changes in Gene Expression Underlie Cell Differentiation in Development

Polarity—having a “top” and a “bottom” may develop in the embryo.

The animal pole is the top, the vegetal pole is the bottom.

Polarity can lead to determination of cell fates early in development.

Polarity was demonstrated using sea urchin embryos.

If an eight-cell embryo is cut vertically, it develops into two normal but small embryos.

If the eight-cell embryo is cut horizontally, the bottom develops into a small embryo, the top does not develop.

Page 19: Genes, Development, and Evolution ( Back to the beginning)

Changes in Gene Expression Underlie Cell Differentiation in Development

In sea urchin eggs, a protein binds to the growing end (+) of a microfilament and to an mRNA encoding a cytoplasmic determinant (RNA or protein).

As the microfilament grows toward one end of the cell, it pulls the mRNA along.

The unequal distribution of mRNA results in unequal distribution of the protein it encodes.

This results in cells with different fates.

Page 20: Genes, Development, and Evolution ( Back to the beginning)

Concept 14.2 Changes in Gene Expression Underlie Cell Differentiation in Development

Induction refers to the signaling events in a developing embryo.

Cells influence one another’s developmental fate via chemical signals and signal transduction mechanisms.

Exposure to different amounts of inductive signals can lead to differences in gene expression.

Page 21: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.9 Induction during Vulval Development in Caenorhabditis elegans

Page 22: Genes, Development, and Evolution ( Back to the beginning)

Concept 14.2 Changes in Gene Expression Underlie Cell Differentiation in Development

Induction involves the activation or inactivation of specific genes through signal transduction cascades in the responding cells.

Example from nematode development:

Much of development is controlled by the molecular switches that allow a cell to proceed down one of two alternative tracks.

Page 23: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Pattern formation—the process that results in the spatial organization of tissues—linked with morphogenesis, creation of body form

Spatial differences in gene expression depend on:

• Cells in body must “know” where they are in relation to the body.

• Cells must activate appropriate pattern of gene expression.

Page 24: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Positional information comes in the form an inducer, a morphogen, which diffuses from one group of cells to another, setting up a concentration gradient.

To be a morphogen:

• It must directly affect target cells

• Different concentrations of the morphogen result in different effects

Page 25: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

The “French flag model” explains morphogens and can be applied to differentiation of the vulva in C. elegans and to development of vertebrate limbs.

Vertebrate limbs develop from paddle-shaped limb buds—cells must receive positional information.

Cells of the zone of polarizing activity (ZPA) secrete a morphogen called Sonic hedgehog (Shh). It forms a gradient that determines the posterior–anterior axis.

Page 26: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.12 The French Flag Model

Page 27: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Programmed cell death—apoptosis—is also important.

Many cells and structures form and then disappear during development.

Sequential expression of two genes called ced-3 and ced-4 (for cell death) are essential for apoptosis.

Their expression in the human embryo guides development of fingers and toes.

Page 28: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

The fruit fly Drosophila melanogaster has a body made of different segments.

The head, thorax, and abdomen are each made of several segments.

24 hours after fertilization a larva appears, with recognizable segments that look similar.

The fates of the cells to become different adult segments are already determined.

Page 29: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Several types of genes are expressed sequentially to define the segments:

• Maternal effect genes set up anterior–posterior and dorsal–ventral axes in the egg. (Uneven production & distribution lead to polarity.)

Page 30: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Segmentation genes determine properties of the larval segments; determine boundaries and polarity.

Three classes of genes act in sequence:

• Gap genes organize broad areas along the axis

• Pair rule genes divide embryo into units of two segments each

• Segment polarity genes determine boundaries and anterior–posterior organization in individual segments

Page 31: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Hox genes are expressed in different combinations along the length of the embryo; determine what organ will be made at a given location

They determine cell fates within each segment and direct cells to become certain structures, such as eyes or wings.

Hox genes are homeotic genes that are shared by all animals.

Page 32: Genes, Development, and Evolution ( Back to the beginning)

Spatial Differences in Gene Expression Lead to Morphogenesis

Clues to hox gene function came from homeotic mutants.

Antennapedia mutation—legs grow in place of antennae.

Bithorax mutation—an extra pair of wings grow.

Page 33: Genes, Development, and Evolution ( Back to the beginning)

Gene Expression Pathways Underlie the Evolution of Development

Discovery of developmental genes allowed study of other organisms.

The homeobox is also present in many genes in other organisms, showing a similarity in the molecular events of morphogenesis.

Evolutionary developmental biology (evo-devo) is the study of evolution and developmental processes.

Page 34: Genes, Development, and Evolution ( Back to the beginning)

Gene Expression Pathways Underlie the Evolution of Development

Principles of evo-devo:

• Many groups of animals and plants share similar molecular mechanisms for morphogenesis and pattern formation.

• The molecular pathways that determine different developmental processes operate independently from one another— called modularity.

Page 35: Genes, Development, and Evolution ( Back to the beginning)

Gene Expression Pathways Underlie the Evolution of Development

• Changes in location and timing of expression of particular genes are important in the evolution of new body forms and structures.

• Development produces morphology, and morphological evolution occurs by modification of existing developmental pathways—not through new mechanisms.

Page 36: Genes, Development, and Evolution ( Back to the beginning)

Gene Expression Pathways Underlie the Evolution of Development

Through hybridization, sequencing, and comparative genomics, it is known that diverse animals share molecular pathways for gene expression in development.

Fruit fly genes have mouse and human orthologs(genes traced to a common ancestor) for developmental genes.

These genes are arranged on the chromosome in the same order as they are expressed along the anterior–posterior axis of their embryos—the positional information has been conserved.

Page 37: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.15 Regulatory Genes Show Similar Expression Patterns

Page 38: Genes, Development, and Evolution ( Back to the beginning)

Concept 14.4 Gene Expression Pathways Underlie the Evolution of Development

Certain developmental mechanisms, controlled by specific DNA sequences, have been conserved over long periods during the evolution of multicellular organisms.

These sequences comprise the genetic toolkit, which has been modified over the course of evolution to produce the diversity of organisms in the world today.

Page 39: Genes, Development, and Evolution ( Back to the beginning)

Gene Expression Pathways Underlie the Evolution of Development

In an embryo, genetic switches integrate positional information and play a key role in making different modules develop differently.

Genetic switches control the activity of Hox genes by activating each Hox gene in different zones of the body.

The same switch can have different effects on target genes in different species, important in evolution.

Page 40: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.16 Segments Differentiate under Control of Genetic Switches (Part 1)

Page 41: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.16 Segments Differentiate under Control of Genetic Switches (Part 2)

Page 42: Genes, Development, and Evolution ( Back to the beginning)

Gene Expression Pathways Underlie the Evolution of Development

Modularity also allows the timing of developmental processes to be independent—heterochrony.

Example: The giraffe’s neck has the same number of vertebrae as other mammals, but the bones grow for a longer period.

The signaling process for stopping growth is delayed—changes in the timing of gene expression led to longer necks.

Page 43: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.17 Heterochrony in the Development of a Longer Neck

Page 44: Genes, Development, and Evolution ( Back to the beginning)

Developmental Genes Contribute to Species Evolution but Also Pose Constraints

Evolution of form has not been a result of radically new genes but has resulted from modifications of existing genes.

Developmental genes constrain evolution in two ways:

• Nearly all evolutionary innovations are modifications of existing structures.

• Genes that control development are highly conserved.

Page 45: Genes, Development, and Evolution ( Back to the beginning)

Developmental Genes Contribute to Species Evolution but Also Pose Constraints

Genetic switches that determine where and when genes are expressed underlie both development and the evolution of differences among species.

Among arthropods, the Hox gene Ubx produces different effects.

In centipedes, Ubx protein activates the Dll gene to promote the formation of legs.

In insects, a change in the Ubx gene results in a protein that represses Dll expression, so leg formation is inhibited.

Page 46: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.19 A Mutation in a Hox Gene Changed the Number of Legs in Insects

Page 47: Genes, Development, and Evolution ( Back to the beginning)

Developmental Genes Contribute to Species Evolution but Also Pose Constraints

Wings arose as modifications of existing structures.

In vertebrates, wings are modified limbs.

Organisms also lose structures.

Ancestors of snakes lost their forelimbs as a result of changes in expression of Hox genes.

Then hindlimbs were lost by the loss of expression of the Sonic hedgehog gene in limb bud tissue.

Page 48: Genes, Development, and Evolution ( Back to the beginning)

Figure 14.20 Wings Evolved Three Times in Vertebrates

Page 49: Genes, Development, and Evolution ( Back to the beginning)

Developmental Genes Contribute to Species Evolution but Also Pose Constraints

Many developmental genes exist in similar form across a wide range of species.

Highly conserved developmental genes make it likely that similar traits will evolve repeatedly: Parallel phenotypic evolution.