63
Outline Introduction Constructing L´ evy Random Fields Inference Discussion & Future Work Generating L´ evy Random Fields Robert L Wolpert http://www.stat.duke.edu/rlw/ Department of Statistical Science and Nicholas School of the Environment Duke University Durham, NC USA ˚ Arhus University 2009 May 21–22 R L Wolpert Generating L´ evy Random Fields

Generating L©vy Random Fields

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Generating Levy Random Fields

Robert L Wolperthttp://www.stat.duke.edu/∼rlw/

Department of Statistical Scienceand

Nicholas School of the EnvironmentDuke University

Durham, NC USA

Arhus University2009 May 21–22

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Outline

IntroductionMotivation: Moving AveragesContinuous TimeLevy-Khinchine

Constructing Levy Random FieldsBare-Hands ConstructionElegant ConstructionMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure ConstructionExplicit Examples: St(α, β, γ, δ)

Inference

Discussion & Future Work

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Moving Averages

A common, flexible way to construct stationary time series(discrete-time stochastic processes):Begin w/ i.i.d. sequence ζi : i ∈ N (or maybe i ∈ Z), set

Xi :=∑

j

bjζi−j

Mean and covariance of Xi easy to compute;

OLS forecasting also easy (at least if b(z) :=∑q

j=0 bj zq−j is apolynomial with all its roots in the unit disk)

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Continuous Time

The obvious analog for continuous time would be to construct astochastic integral

Xt :=

∫ t

−∞b(t − θ) ζ(dθ)

for some random measure ζ(dθ) which is “i.i.d.” in that it:

assigns independent random variables to disjoint sets, and

assigns the same distribution to all translates ζ(t + B)

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Examples

Brownian Motion ζ(Bj)ind∼ No(δ|Bj |, σ

2 |Bj |)

Poisson RF ζ(Bj)ind∼ Po(λ |Bj |)

Gamma RF ζ(Bj)ind∼ Ga(a |Bj |, b)

Cauchy RF ζ(Bj)ind∼ Ca(0, γ|Bj |)

α-Stable RF ζ(Bj)ind∼ St(α, β, γ|Bj |, δ|Bj |)

Note these all make sense for Bj ⊂ Rd ...

Or on a topological group, with Haar measure |Bj |... Or on anyspace S with σ-finite measures a(Bj), γ(Bj), δ(Bj ), λ(Bj), σ2(Bj).

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Examples

Brownian Motion ζ(Bj)ind∼ No(δ|Bj |, σ

2 |Bj |)

Poisson RF ζ(Bj)ind∼ Po(λ |Bj |)

Gamma RF ζ(Bj)ind∼ Ga(a |Bj |, b)

Cauchy RF ζ(Bj)ind∼ Ca(0, γ|Bj |)

α-Stable RF ζ(Bj)ind∼ St(α, β, γ|Bj |, δ|Bj |)

Note these all make sense for Bj ⊂ Rd ...

Or on a topological group, with Haar measure |Bj |... Or on anyspace S with σ-finite measures a(Bj), γ(Bj), δ(Bj ), λ(Bj), σ2(Bj).

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Examples

Brownian Motion ζ(Bj)ind∼ No(δ|Bj |, σ

2 |Bj |)

Poisson RF ζ(Bj)ind∼ Po(λ |Bj |)

Gamma RF ζ(Bj)ind∼ Ga(a |Bj |, b)

Cauchy RF ζ(Bj)ind∼ Ca(0, γ|Bj |)

α-Stable RF ζ(Bj)ind∼ St(α, β, γ|Bj |, δ|Bj |)

Note these all make sense for Bj ⊂ Rd ...

Or on a topological group, with Haar measure |Bj |... Or on anyspace S with σ-finite measures a(Bj), γ(Bj), δ(Bj ), λ(Bj), σ2(Bj).

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Examples

Brownian Motion ζ(Bj)ind∼ No(δ(Bj ), σ

2 (Bj))

Poisson RF ζ(Bj)ind∼ Po(λ (Bj ))

Gamma RF ζ(Bj)ind∼ Ga(a (Bj), b)

Cauchy RF ζ(Bj)ind∼ Ca(0, γ(Bj ))

α-Stable RF ζ(Bj)ind∼ St(α, β, γ(Bj ), δ(Bj ))

Note these all make sense for Bj ⊂ Rd ...

Or on a topological group, with Haar measure |Bj |... Or on anyspace S with σ-finite measures a(Bj), γ(Bj), δ(Bj ), λ(Bj), σ2(Bj).

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Levy-Khinchine

The two requirements

ζ(A) ⊥⊥ ζ(B), ζ(t + B) ∼ ζ(B)

force strict limits on the probability distribution for ζ(B):The SP ζt := ζ

(

(0, t])

must have stationary independentincrements from an Infinitely Divisible (ID) distribution, soLevy-Khinchine ⇒

E[

e iω ζt

]

= exp

itδω−tω2σ2/2 + t

[

e iωu − 1]

ν(du)

for some drift δ ∈ R, diffusion σ2 ∈ R+, andLevy measure ν satisfying

R

(1 ∧ u2) ν(du) < ∞.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Examples of Levy Measures

Familiar examples with no Gaussian component (i.e., σ2 = 0):

Po(λ |Bj |) ν(du) = λδ1(du)

Ga(α |Bj |, β) ν(du) = αu−1e−βu1u>0 du

Ca(0, γ|Bj |) ν(du) = γπu−2 du

SαS(α, γ|Bj |) ν(du) = αγπ

Γ(α) sin πα2 |u|−α−1 du

St(α, β, γ|Bj |, δ|Bj |) ν(du) = αγπ

Γ(α) sin πα2 |u|−α−1(1 + β sgn u) du

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Poisson Representation

Let H(du ds) ∼ Po(

ν(du) ds)

on R × S for S = R or Rd or. . . ,

and let δ(ds) be a signed measure on S:

ζ(B) = δ(B) +

∫∫

R×B

u H(du ds)

= δ(B) +∑

σn∈B

υn

Sf (s)ζ(ds) =

Sf (s) δ(ds) +

f (σn) un,

where (υn, σn) = spt(

H(du ds))

(for details, see Wolpert+Ickstadt: 1998 Bka; 1998 Dey et al.,PN&SBS ; 2004 Inv Probs).

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Confession

Experts—

I lied a little about the representation, to make it look simpler.The expressions above will only converge if ν(du) satisfies

R

(

1 ∧ |u|)

ν(du) < ∞; (1)

this excludes the Cauchy and (for α ≥ 1) α-Stable cases.We can still construct ζ(B) under the weaker condition

R

(

1 ∧ u2)

ν(du) < ∞ (2)

once we introduce a “compensator function” h(u) below.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Confession

Experts—

I lied a little about the representation, to make it look simpler.The expressions above will only converge if ν(du) satisfies

R

(

1 ∧ |u|)

ν(du) < ∞; (1)

this excludes the Cauchy and (for α ≥ 1) α-Stable cases.We can still construct ζ(B) under the weaker condition

R

(

1 ∧ u2)

ν(du) < ∞ (2)

once we introduce a “compensator function” h(u) below.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Confession

Experts—

I lied a little about the representation, to make it look simpler.The expressions above will only converge if ν(du) satisfies

R

(

1 ∧ |u|)

ν(du) < ∞; (1)

this excludes the Cauchy and (for α ≥ 1) α-Stable cases.We can still construct ζ(B) under the weaker condition

R

(

1 ∧ u2)

ν(du) < ∞ (2)

once we introduce a “compensator function” h(u) below.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Levy-Khinchine Revisited

Let’s construct a stochastic process (and random field)

ζt := ζ(

(0, t])

, ζ[f ] :=

Sf (s)ζ(ds)

with ch.f.

E[

e iω ζt

]

= exp

itδω + t

[

e iωu − 1 − iωh(u)]

ν(du)

for a bounded Borel compensator h(u) = u + O(u2) andLevy measure ν satisfying

R

(1 ∧ u2) ν(du) < ∞.

Note[

e iωu − 1 − iωh(u)]

≤ cω(1 ∧ u2), so the ch.f. is OK.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Motivation: Moving AveragesContinuous TimeLevy-Khinchine

Levy-Khinchine Revisited

Let’s construct a stochastic process (and random field)

ζt := ζ(

(0, t])

, ζ[f ] :=

Sf (s)ζ(ds)

with ch.f.

E[

e iω ζt

]

= exp

itδω + t

[

e iωu − 1 − iωh(u)]

ν(du)

for a bounded Borel compensator h(u) = u + O(u2) andLevy measure ν satisfying

R

(1 ∧ u2) ν(du) < ∞.

Note[

e iωu − 1 − iωh(u)]

≤ cω(1 ∧ u2), so the ch.f. is OK.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Bare-Hands ConstructionFor “small” ǫ > 0,

ζǫt := δt +

∫∫

(−ǫ,ǫ)c×(0,t]u H(du ds) −

∫∫

(−ǫ,ǫ)c×(0,t]h(u) ν(du)ds

:= δǫt +

∫∫

(−ǫ,ǫ)c×(0,t]u H(du ds), δǫ := δ −

(−ǫ,ǫ)ch(u) ν(du)

ζt := limǫ→0

ζǫt = lim

ǫ→0

[

δǫt +∑

uj : |uj | > ǫ, sj ≤ t]

(3)

ujiid∼ νǫ(du)/νǫ

+ ⊥⊥ sjiid∼ Un(T), νǫ(du) := 1|u|>ǫν(du)

Note:

If∫ (

1 ∧ |u|)

ν(du) = ∞ then∑

uj doesn’t converge absolutely &typically δǫ → ±∞ as ǫ → 0... but limit (3) still OK

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Bare-Hands ConstructionFor “small” ǫ > 0,

ζǫt := δt +

∫∫

(−ǫ,ǫ)c×(0,t]u H(du ds) −

∫∫

(−ǫ,ǫ)c×(0,t]h(u) ν(du)ds

:= δǫt +

∫∫

(−ǫ,ǫ)c×(0,t]u H(du ds), δǫ := δ −

(−ǫ,ǫ)ch(u) ν(du)

ζt := limǫ→0

ζǫt = lim

ǫ→0

[

δǫt +∑

uj : |uj | > ǫ, sj ≤ t]

(3)

ujiid∼ νǫ(du)/νǫ

+ ⊥⊥ sjiid∼ Un(T), νǫ(du) := 1|u|>ǫν(du)

Note:

If∫ (

1 ∧ |u|)

ν(du) = ∞ then∑

uj doesn’t converge absolutely &typically δǫ → ±∞ as ǫ → 0... but limit (3) still OK

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Bare-Hands ConstructionFor “small” ǫ > 0,

ζǫt := δt +

∫∫

(−ǫ,ǫ)c×(0,t]u H(du ds) −

∫∫

(−ǫ,ǫ)c×(0,t]h(u) ν(du)ds

:= δǫt +

∫∫

(−ǫ,ǫ)c×(0,t]u H(du ds), δǫ := δ −

(−ǫ,ǫ)ch(u) ν(du)

ζt := limǫ→0

ζǫt = lim

ǫ→0

[

δǫt +∑

uj : |uj | > ǫ, sj ≤ t]

(3)

ujiid∼ νǫ(du)/νǫ

+ ⊥⊥ sjiid∼ Un(T), νǫ(du) := 1|u|>ǫν(du)

Note:

If∫ (

1 ∧ |u|)

ν(du) = ∞ then∑

uj doesn’t converge absolutely &typically δǫ → ±∞ as ǫ → 0... but limit (3) still OK

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

More Elegant Construction

Set H(du ds) := H(du ds) − ν(du ds) (Compensated Poisson) and:

ζt := δt +

R×(0,t]

(

u − h(u))

H(du ds) +

R×(0,t]h(u)H(du ds)

Well-defined because:

(

u−h(u))

1(0,t](s) ∈ Ψ0∧1 :=

f :

(1 ∧ |f (u, s)|) ν(du ds) < ∞

h(u)1(0,t](s) ∈ Ψ1∧2 :=

f :

(

|f (u, s)| ∧ |f (u, s)|2)

ν(du ds) < ∞

Musielak-Orlicz spaces

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

More Elegant Construction

Set H(du ds) := H(du ds) − ν(du ds) (Compensated Poisson) and:

ζt := δt +

R×(0,t]

(

u − h(u))

H(du ds) +

R×(0,t]h(u)H(du ds)

Well-defined because:

(

u−h(u))

1(0,t](s) ∈ Ψ0∧1 :=

f :

(1 ∧ |f (u, s)|) ν(du ds) < ∞

h(u)1(0,t](s) ∈ Ψ1∧2 :=

f :

(

|f (u, s)| ∧ |f (u, s)|2)

ν(du ds) < ∞

Musielak-Orlicz spaces

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

More Elegant Construction

Set H(du ds) := H(du ds) − ν(du ds) (Compensated Poisson) and:

ζt := δt +

R×(0,t]

(

u − h(u))

H(du ds) +

R×(0,t]h(u)H(du ds)

Well-defined because:

(

u−h(u))

1(0,t](s) ∈ Ψ0∧1 :=

f :

(1 ∧ |f (u, s)|) ν(du ds) < ∞

h(u)1(0,t](s) ∈ Ψ1∧2 :=

f :

(

|f (u, s)| ∧ |f (u, s)|2)

ν(du ds) < ∞

Musielak-Orlicz spaces

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (uncompensated) H(dx):

H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1)ν(A); for simple f =∑

aj1Aj ∈ L1,

H[f ] :=

Xf (x)H(dx) =

ajH(Aj )

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1)ν(Aj )

=

X

(

e iωf (x) − 1)

ν(dx), well-defined

∀ f ∈ Ψ0∧1:=

f :

X(1 ∧ |f (x)|) ν(dx) < ∞

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (uncompensated) H(dx):

H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1)ν(A); for simple f =∑

aj1Aj ∈ L1,

H[f ] :=

Xf (x)H(dx) =

ajH(Aj )

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1)ν(Aj )

=

X

(

e iωf (x) − 1)

ν(dx), well-defined

∀ f ∈ Ψ0∧1:=

f :

X(1 ∧ |f (x)|) ν(dx) < ∞

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (uncompensated) H(dx):

H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1)ν(A); for simple f =∑

aj1Aj ∈ L1,

H[f ] :=

Xf (x)H(dx) =

ajH(Aj )

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1)ν(Aj )

=

X

(

e iωf (x) − 1)

ν(dx), well-defined

∀ f ∈ Ψ0∧1:=

f :

X(1 ∧ |f (x)|) ν(dx) < ∞

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (fully compensated) H(dx):

H(dx) = H(dx)−ν(dx), H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1−iω)ν(A); for simple f =∑

aj1Aj ∈ L2,

H[f ] :=

Xf (x) H(dx) =

ajH(Aj)

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1 − iωaj)ν(Aj)

=

X

(

e iωf (x) − 1 − iωf (x))

ν(dx), well-defined

∀ f ∈ Ψ2:=

f :

X

(

|f (x)||f (x)|2)

ν(dx) < ∞

H[f ] ∈ Lp

(

(Ω,F ,P))

, .

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (fully compensated) H(dx):

H(dx) = H(dx)−ν(dx), H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1−iω)ν(A); for simple f =∑

aj1Aj ∈ L2,

H[f ] :=

Xf (x) H(dx) =

ajH(Aj)

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1 − iωaj)ν(Aj)

=

X

(

e iωf (x) − 1 − iωf (x))

ν(dx), well-defined

∀ f ∈ Ψ2:=

f :

X

(

|f (x)||f (x)|2)

ν(dx) < ∞

H[f ] ∈ Lp

(

(Ω,F ,P))

, .

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (fully compensated) H(dx):

H(dx) = H(dx)−ν(dx), H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1−iω)ν(A); for simple f =∑

aj1Aj ∈ L2,

H[f ] :=

Xf (x) H(dx) =

ajH(Aj)

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1 − iωaj)ν(Aj)

=

X

(

e iωf (x) − 1 − iωf (x))

ν(dx), well-defined

∀ f ∈ Ψ1∧2:=

f :

X

(

|f (x)|1 ∧ |f (x)|2)

ν(dx) < ∞

H[f ] ∈ Lp

(

(Ω,F ,P))

, .

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (fully compensated) H(dx):

H(dx) = H(dx)−ν(dx), H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1−iω)ν(A); for simple f =∑

aj1Aj ∈ L2,

H[f ] :=

Xf (x) H(dx) =

ajH(Aj)

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1 − iωaj)ν(Aj)

=

X

(

e iωf (x) − 1 − iωf (x))

ν(dx), well-defined

∀ f ∈ Ψp∧2:=

f :

X

(

|f (x)|p ∧ |f (x)|2)

ν(dx) < ∞

H[f ] ∈ Lp

(

(Ω,F ,P))

, 1 ≤ p ≤ 2.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Musielak-Orlicz for (fully compensated) H(dx):

H(dx) = H(dx)−ν(dx), H(dx) ∼ Po(

ν(dx))

on X ⇒

E[

e iωH(A)]

= e(e iω−1−iω)ν(A); for simple f =∑

aj1Aj ∈ L2,

H[f ] :=

Xf (x) H(dx) =

ajH(Aj)

log E[

e iωH[f ]]

=∑

j

(e iωaj − 1 − iωaj)ν(Aj)

=

X

(

e iωf (x) − 1 − iωf (x))

ν(dx), well-defined

∀ f ∈ Ψp∨2:=

f :

X

(

|f (x)|p ∨ |f (x)|2)

ν(dx) < ∞

H[f ] ∈ Lp

(

(Ω,F ,P))

, 2 ≤ p < ∞.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

More Generally... Rd -valued SII Random Field on R

p:

For d , p ∈ N and bounded h(u) = u + O(

|u|2)

on Rd , and suitable

(e.g. cpt’ly-spt’d or, more generally, Musielak-Orlicz) φ : Rp → R,

H(du ds) ∼ Po(

ν(du ds))

on Rd×R

p,

ζ[φ] := δ[φ] +

Rd+p

(

u − h(u)φ(s))

H(du ds) +

Rd+ph(u)φ(s)H(du ds)

= δ[φ] + limǫ→0

[

δǫ[φ] +∑

ujφ(sj) : |uj | > ǫ]

,

δǫ := δ[φ] −

B(ǫ)c×Rp

h(u)φ(s) ν(du ds)

May also replace Rp with any measurable space S

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

More Generally... Rd -valued SII Random Field on S:

For d ∈ N and bounded h(u) = u + O(

|u|2)

on Rd , and suitable

(e.g. cpt’ly-spt’d or, more generally, Musielak-Orlicz) φ : S → R,H(du ds) ∼ Po

(

ν(du ds))

on Rd×S,

ζ[φ] := δ[φ] +

Rd×S

(

u − h(u)φ(s))

H(du ds) +

Rd×Sh(u)φ(s)H(du ds)

= δ[φ] + limǫ→0

[

δǫ[φ] +∑

ujφ(sj) : |uj | > ǫ]

,

δǫ := δ[φ] −

B(ǫ)c×Sh(u)φ(s) ν(du ds)

May also replace Rp with any measurable space S

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

ILM Construction for nonnegative random fields:

Let ν(du ds) = ν(du|s)Π(ds) for nice Π(ds); thenu 7→ t = T (u|s) := ν((u,∞)|s) has inverse t 7→ u = T ←(t|s).Let τn be std. Poisson event times and:

sniid∼ Π(ds), un|sn := T ←(τn|sn)

δn[φ] := δ[φ] −

h(u)φ(s)1τn>T (u|s)ν(du ds)

then

ζ[φ] = limn→∞

δn[φ] +∑

j≤n

ujφ(sj )

The un are drawn in decreasing order! Very efficient.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

ILM Construction for nonnegative random fields:

Let ν(du ds) = ν(du|s)Π(ds) for nice Π(ds); thenu 7→ t = T (u|s) := ν((u,∞)|s) has inverse t 7→ u = T ←(t|s).Let τn be std. Poisson event times and:

sniid∼ Π(ds), un|sn := T ←(τn|sn)

δn[φ] := δ[φ] −

h(u)φ(s)1τn>T (u|s)ν(du ds)

then

ζ[φ] = limn→∞

δn[φ] +∑

j≤n

ujφ(sj )

The un are drawn in decreasing order! Very efficient.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Example: α-Stable Process on Rp

ν(du ds) = γαΓ(α) sin πα

2

π|u|−α−1

(

1 + β sgn u)

du ds

h(u) = sin u

δǫ = −γβ ×

tan πα2 +

2αΓ(α) sin πα2

π(α−1) ǫ1−α α 6= 12π

(1 − γe − log ǫ) α = 1

−γβ tan πα2 0 < α < 1

−∞ sgnβ 1 ≤ α < 2as ǫ → 0

νǫ+ =

2γ|T|Γ(α) sin πα2

π ǫα, uj

iid∼ ±Pa(α, ǫ), sj

iid∼ Un(T)

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Example: α-Stable Process on Rp

ν(du ds) = γαΓ(α) sin πα

2

π|u|−α−1

(

1 + β sgn u)

du ds

h(u) = sin u

δǫ = −γβ ×

tan πα2 +

2αΓ(α) sin πα2

π(α−1) ǫ1−α α 6= 12π

(1 − γe − log ǫ) α = 1

−γβ tan πα2 0 < α < 1

−∞ sgnβ 1 ≤ α < 2as ǫ → 0

νǫ+ =

2γ|T|Γ(α) sin πα2

π ǫα, uj

iid∼ ±Pa(α, ǫ), sj

iid∼ Un(T)

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Example: α-Stable Process on Rp

ν(du ds) = γαΓ(α) sin πα

2

π|u|−α−1

(

1 + β sgn u)

du ds

h(u) = sin u

δǫ = −γβ ×

tan πα2 +

2αΓ(α) sin πα2

π(α−1) ǫ1−α α 6= 12π

(1 − γe − log ǫ) α = 1

−γβ tan πα2 0 < α < 1

−∞ sgnβ 1 ≤ α < 2as ǫ → 0

νǫ+ =

2γ|T|Γ(α) sin πα2

π ǫα, uj

iid∼ ±Pa(α, ǫ), sj

iid∼ Un(T)

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Example: Fully-Skewed Cauchy (α=1, β=1, γ=1, δ=0)

With ǫ = 10−3 on t ∈ T = [0, 5],

ν(du ds) =2

πu−2 1u>0 du ds

νǫ+ = ν

(

(−ǫ, ǫ)c × T)

=2 |T|

π ǫ= 104/π ≈ 3183.1

δǫ = −2

π(1 − γe − log ǫ) ≈ −4.66677

Jǫ ∼ Po(νǫ+); (uj , sj)

iid∼ Pa(1, ǫ) ⊗ Un(T)

≈ (ǫ/Vj , 5Wj) for Vj ,Wjiid∼ Un(0, 1)

ζǫt = tδǫ +

Jǫ∑

j=1

uj1sj≤t

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Example: Fully-Skewed Cauchy (α = 1, β = 1) Process

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

Time

Jum

ps

3256 Jumps for α−Stable St(α = 1, β = 1, γ = 1, δ = 0), w/ ε = 0.001

0 1 2 3 4 5

01

23

4

Time

Pro

cess

Sin−compensated α−Stable Process St(α = 1, β = 1, γ = 1, δ = 0), w/ ε = 0.001, δε = −4.67

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Example: ILM for Fully-Skewed Cauchy

ν(du ds) =2

πu−2 1u>0 du ds

= ν(du|s)Π(ds) =2|T|

πu2du

1

|T|ds

T (u|s) := ν(

(u,∞)∣

∣s) =2|T|

πu, T ←(τn|sn) =

2|T|

πτn

δnt = −t

2

π

[

1 − γe + logπ

2|T|+ log τn

]

ζnt = δn

t +2|T|

π

n∑

j=1

1

τj

1sj≤t

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Bare HandsLess InelegantMusielak-Orlicz spaces for Poisson IntegralsMultivariate Random FieldsInverse Levy Measure (ILM) ConstructionExplicit Examples: St(α, β, γ, δ)

Amusing side-light...

Let τj be event times of standard Poisson process andlet σj = ±1 with equal probabilities; then the limits

X := (2/π) limn→∞

n∑

j=1

1

τj

− log n

∼ St(1, 1, 1, δ), δ =2

πlog

πe

2+ γe

Y := (2/π) limn→∞

n∑

j=1

σj

τj∼ St(1, 0, 1, 0) = Ca(0, 1)

exist even though neither sum converges absolutely!

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

InferenceThe likelihood function upon observing ζǫ

t : t ∈ T

(or, equivalently, (uj , sj) : |uj | > ǫ) for a somewhat uncertainνθ(du ds) = νθ(u, s) du ds is:

L(θ) = e−νθ

(

(−ǫ,ǫ)c×T

) Jǫ∏

j=1

νθ(uj , sj)

For a Subordinator St(α, 1, γ), the negative log likelihood for shapeα and jump rate λǫ := νǫ

+/|T| = (2γ/π)Γ(α) sin πα2 ǫ−α is given by:

ℓ(θ) := − log L(θ) = λǫ|T| − Jǫ log(αλǫ) + α

Jǫ∑

j=1

log(uj/ǫ)

Minimize ⇒ α = Jǫ/∑

log(uj/ǫ), λǫ = Jǫ/|T|

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

InferenceThe likelihood function upon observing ζǫ

t : t ∈ T

(or, equivalently, (uj , sj) : |uj | > ǫ) for a somewhat uncertainνθ(du ds) = νθ(u, s) du ds is:

L(θ) = e−νθ

(

(−ǫ,ǫ)c×T

) Jǫ∏

j=1

νθ(uj , sj)

For a Subordinator St(α, 1, γ), the negative log likelihood for shapeα and jump rate λǫ := νǫ

+/|T| = (2γ/π)Γ(α) sin πα2 ǫ−α is given by:

ℓ(θ) := − log L(θ) = λǫ|T| − Jǫ log(αλǫ) + α

Jǫ∑

j=1

log(uj/ǫ)

Minimize ⇒ α = Jǫ/∑

log(uj/ǫ), γ = πJǫǫα/2|T|Γ(α) sin πα

2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

How much approximation error?

For h(u) = u1|u|<1, set Aǫt := (−ǫ, ǫ) × (0, t];

ζt − ζǫt =

∫∫

Aǫt

u H(du ds) −

∫∫

Aǫt

h(u) ν(du)ds =

∫∫

Aǫt

uH(du ds)

is an L2-martingale with QV

〈ζ − ζǫ〉t =

∫∫

Aǫt

u2 ν(du ds) [ζ − ζǫ]t =

∫∫

Aǫt

u2 H(du ds)

or, for the α-stable St(α, β, γ, δ),

〈ζ − ζǫ〉t =2tαγ

π(2 − α)Γ(α) sin(

πα

2) ǫ2−α, or =

2tǫ

πfor Cauchy.

Doob ⇒ P[

|ζs − ζǫs | > c for any 0 < s ≤ t

]

≤2 t ǫ

π c2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

How much approximation error?

For h(u) = u1|u|<1, set Aǫt := (−ǫ, ǫ) × (0, t];

ζt − ζǫt =

∫∫

Aǫt

u H(du ds) −

∫∫

Aǫt

h(u) ν(du)ds =

∫∫

Aǫt

uH(du ds)

is an L2-martingale with QV

〈ζ − ζǫ〉t =

∫∫

Aǫt

u2 ν(du ds) [ζ − ζǫ]t =

∫∫

Aǫt

u2 H(du ds)

or, for the α-stable St(α, β, γ, δ),

〈ζ − ζǫ〉t =2tαγ

π(2 − α)Γ(α) sin(

πα

2) ǫ2−α, or =

2tǫ

πfor Cauchy.

Doob ⇒ P[

|ζs − ζǫs | > c for any 0 < s ≤ t

]

≤2 t ǫ

π c2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Example: PF Volumes for Sufriere Hills Volcano

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Soufriere Hills Volcano

View from MVO at sunset, 18 April 2007

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Where is Montserrat?

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

What’s there?

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

What’s been happening?

12

510

2050

100

200

PF volume v (m3)

Num

ber

Vj≥

v

2 5 1052 5 106

2 5 1072 5 108

2 5

Seems kind of linear, on log-log scale... remember that.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Pyroclastic Flow Volumes

PF’s exceeding 104 m3: Daily, 0–1.6 km runout

PF’s exceeding 105 m3: Weekly, 2–3.0 km runout

PF’s exceeding 106 m3: Quarterly, 4–6.0 km runout

PF’s exceeding 107 m3: Yearly, 4–6.0 km runout

PF’s exceeding 108 m3: Just one, unknown runout

PF’s exceeding 109 m3: None YET, but ...

Let’s make inference and predictions.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Pyroclastic Flow Volumes

PF’s exceeding 104 m3: Daily, 0–1.6 km runout

PF’s exceeding 105 m3: Weekly, 2–3.0 km runout

PF’s exceeding 106 m3: Quarterly, 4–6.0 km runout

PF’s exceeding 107 m3: Yearly, 4–6.0 km runout

PF’s exceeding 108 m3: Just one, unknown runout

PF’s exceeding 109 m3: None YET, but ...

Let’s make inference and predictions.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Pyroclastic Flow Volumes

PF’s exceeding 104 m3: Daily, 0–1.6 km runout

PF’s exceeding 105 m3: Weekly, 2–3.0 km runout

PF’s exceeding 106 m3: Quarterly, 4–6.0 km runout

PF’s exceeding 107 m3: Yearly, 4–6.0 km runout

PF’s exceeding 108 m3: Just one, unknown runout

PF’s exceeding 109 m3: None YET, but ...

Let’s make inference and predictions.

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Modeling Pyroclastic Flow

Cumulative Flow Volume: Zt ∼ St(α, β = 1, γt, δ = 0); Individual Flows exceeding ǫ: Vj ∼ Pa(α, ǫ); Initiation Angles: ϕj ∼ Un[0, 2π).

Likelihood Function:

L(α, γ) ∝ (α λǫǫα)Jǫ exp

[

− λǫT − α∑

j≤Jǫ

log Vj

]

= (α λǫ)Jǫ e−λǫT−αSǫ , where

Sǫ :=∑

j≤Jǫ

log(Vj/ǫ) and λǫ :=2 γ

π ǫαΓ(α) sin

πα

2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Modeling Pyroclastic Flow

Cumulative Flow Volume: Zt ∼ St(α, β = 1, γt, δ = 0); Individual Flows exceeding ǫ: Vj ∼ Pa(α, ǫ); Initiation Angles: ϕj ∼ Un[0, 2π).

Likelihood Function:

L(α, γ) ∝ (α λǫǫα)Jǫ exp

[

− λǫT − α∑

j≤Jǫ

log Vj

]

= (α λǫ)Jǫ e−λǫT−αSǫ , where

Sǫ :=∑

j≤Jǫ

log(Vj/ǫ) and λǫ :=2 γ

π ǫαΓ(α) sin

πα

2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Modeling Pyroclastic Flow

Cumulative Flow Volume: Zt ∼ St(α, β = 1, γt, δ = 0); Individual Flows exceeding ǫ: Vj ∼ Pa(α, ǫ); Initiation Angles: ϕj ∼ Un[0, 2π).

Likelihood Function:

L(α, γ) ∝ (α λǫǫα)Jǫ exp

[

− λǫT − α∑

j≤Jǫ

log Vj

]

= (α λǫ)Jǫ e−λǫT−αSǫ , where

Sǫ :=∑

j≤Jǫ

log(Vj/ǫ) and λǫ :=2 γ

π ǫαΓ(α) sin

πα

2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Modeling Pyroclastic Flow

Cumulative Flow Volume: Zt ∼ St(α, β = 1, γt, δ = 0); Individual Flows exceeding ǫ: Vj ∼ Pa(α, ǫ); Initiation Angles: ϕj ∼ Un[0, 2π).

Likelihood Function:

L(α, γ) ∝ (α λǫǫα)Jǫ exp

[

− λǫT − α∑

j≤Jǫ

log Vj

]

= (α λǫ)Jǫ e−λǫT−αSǫ , where

Sǫ :=∑

j≤Jǫ

log(Vj/ǫ) and λǫ :=2 γ

π ǫαΓ(α) sin

πα

2

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Likelihood Contours for Sufriere Hills Volcano Data

α

γ

0.50 0.55 0.60 0.65 0.70 0.75 0.80

1500

015

500

1600

016

500

1700

017

500

+

Log Likelihood for Subordinator St(α, β = 1, γ)

MLE: α = 0.65, γ = 16530.50

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Contours from the Computer Flow Model

8.6V=10

8.7V=10

8.8V=10

8.9V=10

9V=10

9.1V=10

Bramble Airport Ψ(⋅)↓

← Plymouth Ψ(⋅)

Angle/Volume combinations (ϕ,V ) outside loops cause disasters

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Risk Computation

P(t) = P[At least one PF > Ψ(ϕ) in t yrs | data]

= 1 −

∫∫

R2+

exp

[

−t λ

∫ 2π

0Ψ(ϕ)−α dϕ

]

π∗(α, λ) dα dλ

= 1 −Sǫ

Γ(Jǫ)

R+

[

1 + (t/T )Iǫ(α)]−Jǫ−1

αJǫ−1e−αSǫ dα

where

Iǫ(α) :=1

[Ψ(ϕ)/ǫ]−α dϕ

Approximate integration (by simulation) leads to:

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Estimated Risk of Catastrophic Flows

0 10 20 30 40 500.0

0.2

0.4

0.6

0.8

1.0

← P(t) at Bramble Airport

P(t) at Plymouth →

Time t (years)

P(t)

= P[

Cat

astro

phe

in t

yrs

| Dat

a ]

Probability of disaster in next t yearsR L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Ongoing Work & Extensions

Related papers on spatial & spat/temp Levy-based BNPReg’n models (w/ N Best, M Clyde, E ter Horst, L House,K Ickstadt, S Mukherjee, N Pillai, C Tu) and upcomingpapers (w/M Huber, M OConnell, Z Ouyang, D Woodard)

Posterior distributions in Bayesian models (RJ-MCMC)

Elicitation issues (w/ K Mengersen)

Consistency properties (w/ N Pillai)

Spatial Maximal fields (w/ D Nychka)

Perfect simulation of Levy (w/G Roberts)

Spatial Risk Models (Volcanoes! w/ J Berger, S Bayarri, etal.)

Need better/more output measures (movies, etc.— help!)

R L Wolpert Generating Levy Random Fields

OutlineIntroduction

Constructing Levy Random FieldsInference

Discussion & Future Work

Thanks!

to the Department of Mathematical Sciences at Alborg University,esp. Jesper Møller.

More details (references, this talk in .pdf, related work) areavailable from website

http://www.stat.duke.edu/∼rlw/or on request from

[email protected].

Thanks too to NSF, SAMSI, DSCR, MSO.

R L Wolpert Generating Levy Random Fields