13
Journal of the Korean Chemical Society 2003, Vol. 47, No. 5 Printed in the Republic of Korea 447 : * (2003. 8. 22 ) Generalized Two-Dimensional (2D) Correlation Spectroscopy: Principle and Its Applications Young Mee Jung* and Seung Bin Kim Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Korea (Received August 22, 2003) . , (infrared, IR), (near-infrared, NIR), (Raman) (fluorescence) X-ray , X-ray (XAS), (chromatography) , , , (perturbation) . 2D hetero-spectral correlation analysis , , , . , , , . . : , , , ABSTRACT. Generalized 2D correlation spectroscopy has been applied extensively to the analysis of spectral data sets obtained during the observation of a system under some external perturbation. It is used in various fields of spec- troscopy including IR, Raman, UV, fluorescence, X-ray diffraction, and X-ray absorption spectroscopy (XAS) as well as chromatography. 2D hetero-spectral correlation analysis compares two completely different types of spectra obtained for a system under the same perturbation. Because of the wide range of applications of this technique, it has become one of the standard analytical techniques for the analytical chemistry, physical chemistry, biochemistry, and so on, and for studies of polymers, biomolecules, nanomaterials, etc. In this paper, we will introduce the principle of generalized 2D correlation spectroscopy and its applications that we have studied. Keywords: Two-Dimensional (2D) Correlation Spectroscopy, Protein, Polymer, Thin Film, Nanoparticle ” [generalized two- dimensional(2D) correlation spectroscopy] ( , wavelength, frequency wavenumber) . 1-5 , 3 . 1986 Isao Noda 6

Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

Journal of the Korean Chemical Society2003, Vol. 47, No. 5Printed in the Republic of Korea

ral data

of spec-

s well

obtained

come one

and for

zed 2D

���� ��� � ��: � � ��

���*����������� ���

(2003. 8. 22 )

Generalized Two-Dimensional (2D) Correlation Spectroscopy: Principle and Its Applications

Young Mee Jung* and Seung Bin KimDepartment of Chemistry, Pohang University of Science and Technology, San 31,

Hyojadong, Pohang 790-784, Korea(Received August 22, 2003)

� �. “��� ��� �� ���”� �� �� ��� �, ��� (infrared, IR), ���� (near-infrared,

NIR), �� (Raman) !� (fluorescence) ���"� #$� X-ray %&, X-ray ' ��� (XAS), ()*+,-

. (chromatography) /0 �123 45"� #$� 67, 89, :7, ;<� =� >? @A� B�C �D EF

(perturbation) #-0G H� IJKL �MN O)P ���Q) >RS �TN UVW XYZ [\ ]�>. S =

� �D EF #-0G H� _`Z >? a IJKLN 2D hetero-spectral correlation analysisW Wbcd) >RS

�T �, ef @g, h��, ijk� /N UVW XYZ [\ ]�>. �l >RS �TN m1< no0 “���

��� �� ���”� @A, �M, h��, ij@g e�� UV0 O)P pqr s4t ur "� #$� v

�w ijxy UV0 �z {�| s�t u>. } ~o� “��� ��� �� ���”N �A� , >RS m

1<r } ���N UV| ]�Q) ��ch� S>.

���: ��� �����, ��g, h����, ijk�

ABSTRACT. Generalized 2D correlation spectroscopy has been applied extensively to the analysis of spect

sets obtained during the observation of a system under some external perturbation. It is used in various fields

troscopy including IR, Raman, UV, fluorescence, X-ray diffraction, and X-ray absorption spectroscopy (XAS) a

as chromatography. 2D hetero-spectral correlation analysis compares two completely different types of spectra

for a system under the same perturbation. Because of the wide range of applications of this technique, it has be

of the standard analytical techniques for the analytical chemistry, physical chemistry, biochemistry, and so on,

studies of polymers, biomolecules, nanomaterials, etc. In this paper, we will introduce the principle of generali

correlation spectroscopy and its applications that we have studied.

Keywords: Two-Dimensional (2D) Correlation Spectroscopy, Protein, Polymer, Thin Film, Nanoparticle

“��� ��� �� ���” [generalized two-

dimensional(2D) correlation spectroscopy]� IJKL

N �x| a �N �� IJKL B(�| ��,

wavelength, frequency � wavenumber)N �) i

��� ����>.1-5 �, a�N �� IJKL B

) �N ��� IJKL ��0 IJKLN �x�

3�� �0 i��>. 1986� Isao NodaW6 ��Q)

s�S “��� ��� �� ���”N x} ���

�447�

Page 2: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

448 �������

py.

��� ��x �� ��� (2D-NMR) ��0G 4�

2 >. ,¡i multiple-pulse excitation #-0G H�

�¢N �] £A0 B¤� ��� IJKLr e<c

� 2D-NMR ��r �� �_ ¥7 (picosecond range)

W NMRN I¦ �_ ¥7 (microsecond range)§>

© ª? �� ���0 �1t «>. �� ���N

��� �� IJKLr Hx ¬c­ �� �� �M

(cross-correlation analysis)� �D EF0 N® ¯C °

N �) B�c� F�C IJKL0 �12 >.

“��� ��� �� ���”� �� �� ��� �,

��� (infrared, IR), ���� (near-infrared, NIR), �

��/W4� (UV/Visible), �� (Raman) !� (fluorescence)

���"� #$� X-ray %&, X-ray ' ���(XAS),

()*+,-. (chromatography) /0 �123 45

"� #$� 67, 89, :7, ;<� =� >? @A

� B�C �D EF (perturbation) #-0G H� IJ

KL �MN O)P ���Q) >RS �TN UVW

XYZ [\ ]�>.7-21 �| ��, ��g ��N ���

V;, B<, `�, � ±�N UV� =� ef ��N

UV� 67 B� ;< B�0 NS h�� @gN V

; B�, � ²³ ´� �f ²³ /N h�� UV0

�µ¬c¶ �12h u>. ·¸�, ¹� “��� ��

� �� ���”r NMR ���0 �1S generalized

correlation NMR spectroscopy UVW \2 >.22 �l

>RS �TN m1< no0 “��� ��� �� �

��”� @A, �M, h��, ij@g e�� UV0

O)P pqr s4t ur "� #$� v�w ij

xy UV0 �z {�| s�t u>. ^S ¹�0 “

��� ��� �� ���”N O)P �� �Y� 4

72 h >RS �T0 m12h u>.23-29

“��� ��� �� ���”� �D EF #-0

G Bc� ��� IJKLr ���Q) º» §­¼

d) §½ ��� IJKL0G �¾t «� ¿1S

�§| Hr u>. ÀÁcÂi Ã»Ä u� Å| V

�® Æ uQÇ, È�S Å�N �� �É| �M�

Q) �� 5 �� � �Ê �1r Ë�t u>.

^S ÅN ®Mr �Ìc¶ t u3G IJKL ®

M0 O)P x%| s�t u>. Fig. 1� ���

�� IJKLr Hr u� ���C �Í7>.

} ~o� “��� ��� �� ���”N �A�

, >RS m1<r } ���N UV| ]�Q) ��

ch� S>.

� �

�� �� (Dynamic Spectrum). 3�D EF

� 4IÏ0 W®g n, �D B tN �� 45 5Ð

F�(Tmin-Tmax) �¾2� IJKL �x y(ν, t)N B�

| hÑc�. �D B t� ÒÒ 45� 2Ó�, 67,

89, :7, `8 / ¼3[ ÔÕ 4IÏ0G Ö� Wb

S @A� R� × 7 u>. ­xG ν� °, Raman

shift, °Ø /� =� ���� B>. �D EFN Ù

qr Ú� 4IÏN F� IJKL� >�� =� �N >.

(1)

­xG (ν)� � 4IÏN xÛ IJKL (reference

spectrum)�>. �ÜS xÛ IJKLN �Ý� ÞÐZ

h�23 uÓ� ßÓ�, �D�� >�� =� �à

(average) IJKLQ) �N >.

(2)

��� áA 3Î h� xÛâ(t = Tref)r �Ýc­

xÛ IJKLr ²�t 7 u>. �, xÛâ� EF

� W®Óx ` (Tref → −ã), IJKL Ö� 4� â

(Tref = Tmin)�i äi� â (Tref = Tmin), �D EF0

N® _`S �_� �3� å (Tref → +ã) /� ×

7 u>. xÛâ� �æZ 0Q) �®g 7 u>.

� � �� ��. >� �É)G 45 Ùç (domain)

Q) Ö� F� IJKL�r ° ÙçQ) £A0

B¤r 4èT S>. 3Î IJKL B ν10G �¾

F� IJKL �x B�C � >�� =�

) £A0 B¤ >.

(3)

y ν t,( )y ν t,( ) y ν( ) for Tmin t Tmax≤ ≤–

0 otherwise

=

y

y ν( ) 1Tmax Tmin–------------------------ y ν t,( )

Tmin

Tmax

∫ dt=

y v1 t,( )Y1˜ ω( )

Y1˜ ω( ) y v1 t,( )e iωt–

dt∞–

∫=

Y1˜ Re

ω( ) iY1˜ Im

ω( )+=

Fig. 1. The general scheme for 2D correlation spectrosco

Journal of the Korean Chemical Society

Page 3: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

�� �� �� ���: �� � �� 449

£A0 ° ω� N 45-Né (time-dependent)

B ��N ° <�r NêS>. �� ¿¯c¶

� IJKL B ν20G F� IJKL �xC

N £A0 B¤N ëì (conjugate)>.

(4)

­xG, � ¯�0 ��� �� �x

� >�� =� �Nt u>.

(5)

­xG Ô� í <�C Φ(ν1, ν2)� Ψ(ν1, ν2)| îî

synchronous asynchronous �� IJKL�� S>.

sS N IJKL �¢0 �® ¬N �� �x

Éïr \cx0� 3Ñð� u>. ñ�G ¹�0

Noda� ¨© 5�c¶ ��� �� IJKLr Éït

u� O)P òhAór �Ycô>.1 � põ� £

A0 B¤0 Néc� ö� #$� Hilbert B¤0 x

÷| ahu>. ñ�G ��� �� IJKL� >�

øQ) Éï× u>.

Synchronous ��� �� IJKL� >� øQ) i

�ù u>.

(6)

­xG, � @A�C B tj0GN IJKL �

x>.

i=1, 2, 3,... (7)

Asynchronous ��� �� IJKL� >� øQ)

i�ù u>.

(8)

­xG ú� IJKL � N 45-Ùç

(time-domain) Hilbert B¤�>. �, ú� IJKL�

F� IJKLN î £A0 <�� ±π/2 �û �FS

�>.

(9)

Njk� Hilbert-Noda B¤ \üN j�� \� k�� ý

N <�0 ®Ü >.

(10)

��� �� �� (Hetero-spectral Correlation).

=� �D EF #-0G H� _`Z >? a IJK

LN �� �M� WØ þê)P Wb<r §­Û>.

ciN ��� (�| ��, ���)Q) H3[ F� I

JKL � _`Z >? ��� (�| ��, Raman)

Q) H3[ F� IJKL � ÿ� >. ,¡

d), ��� ��) �� IJKL� >�� =>.

(11)

ñ�G, �� =� �D EF #-0G a�N >?

���0 N® �¾ 4IÏN �m ¯�0 3Î �

½<� u>� a�N >? IJKL ¯�N �� �

É| ò u>.

� � �� ��� ��. ��� �� IJKL

� synchronous� asynchronous �� IJKLQ) V

< >. `!�C synchronous asynchronous IJK

LN �� Fig. 2� =� /h�Q) ,Ñ[>.

Synchronous IJKL� a IJKL �0 �mc�

�î�0 ���>. �î� ¬�0 u� .((peak)N

�x� ¼x T F� �¾ IJKL �x B�N auto-

correlation �0 �m >. �� .(� autopeak�h

��>. � .(N �x� IJKLN F� B� �7

| NêS>. �î� ��N ¬�0 i�i� cross peak

� a�N >? °0G �xN F4�C B�| Nê

S>. �¡S F4� B�� G) �� ��0 NS

�x B�N Wb<r NêS>. ^S cross peakN D

ÊW R���, �mc� a IJKL B0G �xW

� WcÂi � ���r i��h, DÊW ��

�� S IJKL B0G �x� Wc� ��0 >

? IJKL B0G �x� ���r NêS>.

Asynchronous IJKL� ÿ�î�0G cross peak

r WÓ�G synchronous IJKL�� �§�C �§

| s�S>. Cross peak� a ° ν1, ν20G �D E

F� W®Ó�G B�c� IJKL �xN æG� B

�| ò u>. �, >? a °0G �¾2� F�

y v1 t,( )

Y2*˜ ω( )

y v2 t,( )

Y2˜* ω( ) y v1 t,( )e+i ωt

dt∞–

∫=

Y2˜ Re

ω( ) iY2˜ Im

ω( )–=

y v1 t,( ) y v2 t,( )

Φ ν1 ν2,( ) iΨ ν1 ν2,( )+1

πT------ Y1 ω( )

0

∫ Y2* ω( )dω⋅=

Φ ν1 ν2,( ) 1T--- y

Tmin

Tmax∫ ν1 t,( ) y ν2 t,( )dt⋅=

1m 1–----------- yj ν1( ) yj ν2( )⋅

j 1=

m

∑=

yj νi( )

yj νi( ) y νi tj,( )=

Ψ ν1 ν2,( ) 1T--- y

Tmin

Tmax∫ ν1 t,( ) z ν2 t,( )dt⋅=

1m 1–----------- yj ν1( ) Njk yk ν2( )⋅

k 1=

m

∑⋅j 1=

m

∑=

z v2 t,( ) y v2 t,( )

z v2 t,( )dt1π---pν

y v1 t′,( )t′ t–

-----------------dt′∞–

∫=

Njk

0 if j k=

1 π k j–( )⁄ otherwise

=

y v1 t,( )y v2 t′,( )

X v1 v2,( ) x v1 t,( ) y v2 t′,( )⋅⟨ ⟩=

2003, Vol. 47, No. 5

Page 4: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

450 �������

,

-

C B�N ��| asynchronous IJKLQ)D� ò

u>. ñ�G, ci) §�� à ÅN F�C B�

W u3 cross peakQ) i��>� �� ci) §�

Ó� Ôs� Ã»Ä u� Å�Ç ²� �®bN W|

WÄ6>. Noda0 N® s� asynchronous IJKL

N cross peaksQ)D� IJKL �xN æG� B�

| �c� �� >�� =>.1

(1) Asynchronous cross peaks� IJKLN �� �

�0 ¬�ch (ν1> ν2) RN DÊ [Ψ(ν1, ν2) > 0]��,

�� ° ν1 ÅN �]�� ��KW ν2 §> �� �

�ý >.

(2) RN asynchronous cross peaks� IJKLN w

?� c�0 ¬�c� (ν1<ν2), �� ° ν1 ÅN �]

�� ��KW ν2§> �� ��ý >.

(3) �N asynchronous cross peaks [Ψ(ν1, ν2) < 0]C

��, � 1, 2� ��W >.

(4) =� ¬�0 �mc� synchronous correlation

intensityW ��� [Φ(ν1, ν2)<0], Ë� 1, 2, 3� ��>.

(5) Asynchronous correlation �xW ��c� [Ψ(ν1,

ν2)=0], a �]�� ��KN ��ý� F40 �3�>.

(6) Synchronous correlation �xW 0�� [Φ(ν1, ν2)=

0], a �]�� ��KN ��ýN æG| �t «>.

��� �� ��� �

“��� ��� �� ���”N >RS m10 �

c­ 5�Z ��| c�, �� ¼3[ �D EF0 N

S �mr Ö�c� ��ÉN �â0G ��� ��õ

� 2D IR, 2D NIR, 2D Raman, 2D UV-Vis, 2D fluorescence

2D mass, 2D XAS /Q) i� u>. ^S �D E

FN �â0G 67-, 89-, 45-, :7-Né ���

�� ��� /� uQÇ ��� �� ���0 �12

� �D EF0� 3�S sS7 «>. } ~o0G�

3WÓN m1 �| ��ch� S>.: (1) ��g ��

� V;N 2D IR, 2D Raman, 2D hetero-spectral IR

Raman �� ��� UV, (2) 2D IRr �1S h��

��N V; UV, (3) 2D XAS, 2D Raman 2D hetero-

spectral XAS-Raman �� ���r �1S ij@gN

È< UV>.12,13,18

(1) ββββ-Lactoglobulin � � �� �� ���

�� ��� ��12

��g �� V; UV� ¼) ��� IJKLr �

1S #ê� I Ùç0 v�r ah uQi #ê� I Ù

çC 1650 cm−1 D� Ùç0G @N Å� ��c� o

sâr WÓh u>. ñ�G } UV� @ IJKLN

Ùq� «h ��g �� V; UV0 � �§| s

�c� #ê� III ÙçC 1350 - 1200 cm−10G ���

�� ���r �1cô>. Fig. 3� β-lactoglobulin

(BLG) 1! 1, 2, 3, 4, 5 w%N #ê� III ÙçN �

��� Raman IJKL�>. ��� IJKLQ)D

� 1313, 1285, 1258, 1245 cm−10G i�i� 4� Å

| �¾t uQÇ, Raman IJKLQ)D� 1319,

1292, 1277, 1245, 1211 cm−10G 5� Å| �¾t

u>. ���� Raman IJKL0G #ê� III Ùç�

BLGN �� V;| "�t u>.

Fig. 2. Schematic contour maps of synchronous (a) andasynchronous (b) 2D correlation spectra.

Journal of the Korean Chemical Society

Page 5: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

�� �� �� ���: �� � �� 451

,

ctral vari- (top).

Fig. 4(a)� BLG 1!N :7-Né synchronous 2D

IR �� IJKL� �î�0G "# power IJK

Lr §­Û>. Fig. 4(b)� �mc� synchronous 2D

Raman �� IJKL� power IJKLr §­Û>.

Fig. 4(a)N power IJKL0G, `f�C ��� IJ

KLN B�| §­¼� Å�� 1291, 1282, 1277, 1257,

1239, 1227, 1219, 1207 cm−10G �¾2 h, Fig. 4(b)

N power IJKL0G� Raman IJKLN B�|

§­¼� ÅW 1294, 1282, 1276, 1265, 1248, 1243

1228, 1212 cm−10G �¾2 >. �� ��� IJK

L0 �¾2Ó ß� BLGN �� V; ®Mr Wb$

S>. ÈZ, ��� IJKLQ)D� 1258 cm−10G

i�i� ��� Å� 1245 cm−10G i�i� Raman

ÅW WØ % �x B�| §­Û>. �� :7 B�0

N® BLGN unordered V;W ��g m&0 WØ %

Ùqr Ú�r ò u>.

Fig. 5(a)� BLG 1!N :7-Né asynchronous

2D IR �� IJKL�>. Asynchronous 2D IR ��

IJKL� a WÓ þê)P ²�| §­Û>. '�,

unordered V;0 xC 1258 cm−10G i�i� ÅW

1290 cm−1N β-turn, 1278 cm−1N α-helixes 1243�

1290 cm−1N β-sheet V; Å�� cross peaksr W[>.

(�, 1265 cm−10G i�i� ÅW 1238, 1227, 1208

cm−10G i�i� tyrosine (Tyr) )x0 xC Å�Fig. 3. IR (a) and Raman (b) spectra in the amide III regionof β-lactoglobulin in buffer solutions (1, 2, 3, 4, and 5 wt%).

Fig. 4. The synchronous 2D IR (a) and Raman (b) correlation spectra generated from concentration-dependent speations of β-lactoglobulin in buffer solutions. The power spectrum along the diagonal line in the synchronous spectrumSolid and dashed lines represent positive and negative cross peaks, respectively.

2003, Vol. 47, No. 5

Page 6: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

452 �������

5),

ent

ross

� cross peaksr W[>. ^S Noda0 N® s� Ë�

0 ñ� asynchronous 2D IR �� IJKLN cross

peaksN DÊ� :70 ñ? IJKLN B� æG|

>�� =� s�t u>1: (1258)→ (1238, 1227)→(1290, 1278, 1243, 1232, 1221, 1211)→ (1265) cm−1.

¬N æG0G �� :7 B�0 �®G� random

coil (1258 cm−1) V;N B�| §­Û>. �, :7 B

�0 �® @ ��� random coil V;) �*3[ BLG

N < D� ¯�N �Ê �1 B�W ú U�2

3 u>. ,å · % :7 B�0 �® 1238� 1227

cm−1N “exposed” β-sheet B�W �3ih �3G 1290

� 1278 cm−1N β-turn� 1232� 1221 cm−1N “buried”

β-sheet ÅN �x B�W F40 BS>. *Ó�Q)

Tyr )x ÅN �xW B�r ò u>.

Fig. 5(b)� BLG 1!N :7-Né asynchronous

2D Raman �� IJKL�>. Unordered V;0 xC

1245 cm−1N ÅW � >? Å�� cross peaks

r W[>. Asynchronous 2D Raman �� IJKLN

cross peakN DÊ)D� :70 ñ? IJKL B�N

æG| >�� =� s�t u>: (1245, 1225)→(1277, 1261)→ (1255, 1235)→ (1283, 1298, 1268)→ (1214)

cm−1. �, random coil V;W WØ �� Bch >? �

� V;N Å�� ¬0G +,S æG� F�c¶ B�

r ò u>.

BLG V; B�| �ÌZ -Zx ¬c­, 2D hetero-

spectral IR-Raman �� �Mr 47cô>. Fig. 6�

synchronous 2D hetero-spectral IR-Raman IJKLr

§­Û>. Synchronous 2D hetero-spectral IR-Raman I

JKL0G RN DÊ| WÓ� cross peak� a ÅW

G) =� ��.r i��h �N DÊ� a ÅW G

) >? ��.r i�/>. ñ�G �N DÊ| WÓ�

(1245, 1295), (1245, 1283), (1245, 1265), (1235, 129

(1235, 1283), (1235, 1265) cm−1N cross peaks0G 1245,

1235 cm−1N Å� 1295, 1283 1265 cm−1N Å��

G) >? �� V;0 xC2 �r ò u>. ,¡

i, RN DÊ| WÓ� (1245, 1256) cm−1N cross peak

Fig. 5. The asynchronous 2D IR (a) and Raman (b) correla-tion spectra constructed from the concentration-dependentspectral variations of β-lactoglobulin in buffer solutions.Solid and dashed lines represent positive and negative crosspeaks, respectively.

Fig. 6. The synchronous 2D IR-Raman heterospectral corre-lation spectrum generated from the concentration-dependspectral variations of β-lactoglobulin in buffer solutions.Solid and dashed lines represent positive and negative cpeaks, respectively.

Journal of the Korean Chemical Society

Page 7: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

�� �� �� ���: �� � �� 453

0G 1245 cm−1N Raman Å� 1256 cm−1N ��� Å

W G) =� �� V;C unordered form0 xCS ö

.r ò u>.

� UV ²�� ��g �� V; UV0 ��� �

� ��õN m1 Wb<r §­ ¼ QÇ, ÈZ ��

g UV0 ��Q) �1 2D hetero-spectral IR-Raman

�� �M� #ê� III Ùç0G i�i� ����

Raman Å�N �� �É UV0 O)P ½¾9r s�S>.

(2) ��� �� ���� ��� ��� �� ��

��13

Fig. 7(a)� Fig. 7(b)� îî poly(tert-butyl methacrylate)

(PtBMA) Langmuir-Blodgett (LB) I¦ 01 �N

67 W0 �S �D �¯ ��� IJKL�>. a

�¡[ ��â� 1147 cm−10G i�i� ÅN B�W

a �0G G) >2>� ö�>. � Ùç0G 0I�

2 (ester) x� �� ­¡ [F ���� ûG i

�iÓ� C-O 3� [F ��W WØ % x­| t ö

Q) x�cx no0, LB �0G ý� �_N �D�

� tert-butyl group 4N C-O ²³0 xC5r ò

u>. �0 �® I¦ 01 �0G 1147 cm−10G i�

i� ÅN B�� êêc>. Fig. 70G ^ ciN a�

¡[ È6� 1255 cm−10G i�i� doubletN ���

�xW >2>� ö�>. � Ùç� backbone� tert-

butyl xW U²2� D�N C-C-O 3� ��W i�

iÇ h�� !7 (conformation)0 �ÜZ 8�S D

��>.30-32 �, LB �� I¦ 01 �0G� !7W G

) >? V;| !<�r ò u>. xéN UV p

õ� h�� ��N 67 B�0 ñ? ý� �_0G

î xbx�N ��ýr �¾t «>. � UV0G

LB �� I¦ 01 �N ��"� #$� 67 B�0

�S h�� ��ý ��r ��� Û0G -Zx ¬

c­ ��� �� �Mr 47cô>. o9� } UV

0G H� ÅN ®Mr Table 10 :�cô>.13

Fig. 8� 1100-1400 cm−1 Ùç0G PtBMAN LB(a)

I¦ 01 (b) �N synchronous FTIR ��� IJ

KL�>. LB �0G WØ ;S autopeak� 1151 cm−1

0G, I¦ 01 �� 1168 cm−10G i��>. ���

�a C-O 3� [F0 NS Å) ®M >. WØ ;S

autopeak ¬�W >?< �ö� PtBMA !7W a Ò

=N �0G >>r ò u>. �, tert-butoxy xN %

`0 NS a WÓ �<gfN é�| Nêt u>.

^S cross peaksN !7W a �0G G) >? <, LB

�0G 1131 cm−1N Å� ¼) 1151 cm−1N Å� cross

peakr WÄ �� �É| i�/>. ,¡i, I¦ 01

�0G �� �� G) cross peakr !<ch u>.

�| ��, 1133 1168 cm−10G i�i� Å��

1100-1430 cm−1 ÙçN �� Å�� cross peakr WÓ

h u>. ,Ah, 1133 1168 cm−10G i�i� Å

� �N cross peakr §�� <, 1133 cm−10G i�i

� ÅN �x� Wci 1168 cm−10G i�i� ÅN

�x� ��S>. ciN È6� LB �0G 1151 cm−1

0G i�i� autopeak �xW >? Å�0 ÿ® ?/

Z % ör @ u>. �� LB �0G C-O xW ¼

) �D�C ��ýr ch u�r NêS>. ñ�G

tert-butoxy xW Ôg�Q) AØ23 u�r §­Û>.

��) I¦ 01 �0G 1168 cm−10G i�i�

Fig. 7. FTIR spectra of a 30 layers LB film (a) and a spin-coated film of PtBMA (1 wt%; 2000 rpm) (b) of PtBMA atvarious temperatures (room temp. 130oC).

2003, Vol. 47, No. 5

Page 8: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

454 �������

B (a) andeg-

autopeak �xW >? Å�0 ÿ® �5 · (x no

0, tert-butoxy xW ���Q) B AØ23 u>h @

u>.

¬N ²��r Ò³�Q) CD §�, I¦ 01 �N

h�� ¯E� G) FGc­ uh (interpenetration), LB

�� tert-butoxy xW (¶ AØ (strain)23 uh ¼ ¯

E�� S H �0 G) ���Q) é��r ò u>.

Fig. 9� 1100-1400 cm−1 Ùç0G PtBMAN LB(a)

I¦ 01 � (b) N asynchronous ��� IJKL

�>. Noda Ë�0 ñ�,1 ]:S I WÓ Å�N ý�

�_0 ñ? æG| ²�t u>.1 LB ��, 1131

cm−1 → (1393 cm−1, 1151 cm−1) æG) ðú�h, I¦

01 �� 1133 cm−1 → 1393 cm−1 → 1168 cm−1 æG

) ðúC>. ý� �_0 ñ? ��ý ðú.N 4�

� 1131 cm−10G i�i� backbone� U² C-C-O

C-C=O JK [F�Ç, � [F ��� C-O 3�

Table 1. Normalized intensities and assignments for PtBMA at room temperature

Wavenumber (cm−1)Assignments

Cast film on ZnSe LB film Spin-coated film

2976 (0.81) 2980 (0.74) 2978 (0.69) ν (CH3)1724 (1.72) 1728 (2.69) 1728 (2.49) ν (C=O)1396 1395 1395 CH3 bending of tert-butyla

1393 1393 1393 CH3 bending of α-methylb

1367(1.00) 1369(1.00) 1369(1.00) CH3 bending of tert-butyla

1272 1274 1273 ν (C-C-O) 1250 1255 1252 ν (C-C-O)

(1151)c (1168)c ν (C-O)1140 (2.00) 1147 (3.43) 1146 (2.67) ν (C-O)d

(1131)c (1133)c bending of bbC-C-O and bbC-C=Oe

Normalized intensities are in parentheses.aSee Reference 30.bThe assignment of CH3 bending of α-methyl was determined by the substitution of tert-butyl group with deuterium,[CH2CCH3COOC(CD3)3]n (spectrum not shown).

cDeconvoluted bands in 2D correlation analysis dAccording to the IR frequency calculation, this band is coupled with various bands.ethe bending mode of bbC-C-O and bbC-C=O bonds connected to the backbone and coupled with the C-O stretching mode

Fig. 8. The synchronous 2D correlation spectra constructed from the temperature-dependent spectral changes of Lspin-coated (b) films of PtBMA, respectively, in the 1100-1430 cm−1 region. Solid and dashed lines represent positive and native cross peaks, respectively.

Journal of the Korean Chemical Society

Page 9: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

�� �� �� ���: �� � �� 455

,

et

[F� L³23 u>. ^S LB �0G 1393 1151

cm−10G i�i� Å�� F40 BS>� ö�>. �,

67W M��0 ñ� a xbx�� F40 �_S>. �

ö� LB �0G tert-butoxy xW (¶ AØ23 u3

α-methyl x� � �_�r >4 ÌC4è Û>. I

¦ 01 �� C-O x (1168 cm−1)0 NG α-methyl x

(1393 cm−1)N ý� �_� YeS>. ÈZ, 1131 �

1133 cm−10G i�i� Å�� '�� ý� �_r §

­¼x no0 β- � ±�� ��� ur öQ) O�

>. ñ�G � �� ¼ EN ÿPQ� alkoxycarbonyl

xN %` �aN Ùqr Úr öQ) "Ö >. ,¡

d) � UV� PtBMA LB �� I¦ 01 �N ��

| ��� Û0G ��� ��� �� �Mr ½®

��Q) -R>.

(3) � � �� ���� ��� � !" #$ %

&'( )*18

} UV� X-� ' ��õ (X-ray absorption spectroscopy

XAS)r �1S LiN CoO0) `x��� Sk �m

N TU$ó UV0 ��� �� ��õr ��Q) �

14Vh W¥ ijk� UV0 ��� �� �MõN

Wb<r s4cô>.

Fig. 10� LiyCoO0G LiN `x��� Sk �mN

­¡ �É0G H� oxygen K-edge XAS IJKL�

>. 529� 532 eV X�A (peak)� îî O 1s→ O 2p�

O 2p→ Co 4sp � `�0 xC >. YW2� LiN

R (y)� 0.96 Z� × n oxygen K-edge XAS IJK

L� WØ (¶ BS>. · � RN Li� YW× n,

LiyCoO (y=1.30, 2.69) IJKLr Li0.96CoO IJKL

� ÿ�c� 531 eV ��0G i�i� a X�AN

���C �x�� BS>. Fig. 100G LiyCoO (y≠0

;[)N IJKL� energy shift| s�c� �� IJ

KL� 532 eV X�A| §­¼� Li2O IJKL� ¿

¯c>. �� XAS IJKL� LiN `x��� Sk �

m0G e<2� hf `®g É� (solid electrolyte

interface, SEI)N é�0 Ùqr Ú�>� ör \�®

Û>. ,¡i ��� XAS IJKL� Li2OW e<

>� ú�C Â| ¼Ó ß�>.Fig. 9. The asynchronous 2D correlation spectra constructedfrom the temperature-dependent spectral changes of LB (a)and spin-coated (b) films of PtBMA, respectively, in the1100-1430 cm−1 region. Solid and dashed lines representpositive and negative cross peaks, respectively.

Fig. 10. Normalized oxygen K-edge XAS spectra for thelectrochemical reaction of lithium with CoO during the firsinsertion (discharging) process. The lithium content (y in LiyCoO)is as indicated.

2003, Vol. 47, No. 5

Page 10: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

456 �������

LiN CoO0) `x��� Sk �mr �QV� T

U$ór �ÌZ -Zx ¬c­, LiyCoO0G LiN `

x��� Sk �mN :7-Né oxygen K-edge XAS

IJKL0 ��� �� ��õr �1cô>. Fig. 11(a)

� Fig. 11(b)� îî synchronous� asynchronous 2D

XAS IJKL�>. Synchronous 2D �� IJKLQ

)D�, (529, 532), (529, 537)� (529, 544) eV0G �

N DÊ| WÓ� cross peaks� 529 eVN X�A (oxygen

1s→ oxygen 2p level in CoO � `�)W ��c�

�� 532 eVN X�A (Li2O)� W�r §­Û>. R

N DÊ| WÓ� (532, 537)� (532, 544) eV0G i

�i� cross peaks� 532 eVN X�A �xW 537� 544

eVN X�A (SEI <�)�� F40 W�r §­Û>.

�, synchronous 2D �� �M� LiN CoO0) `x

��� Sk �m0G Li2OW e<5r §­Û>. �

²�� `x�� �m T]$ó� ^ ��S>.33 ÈZ,

��� IJKL (Fig. 10)0G �¾2Ó ß� 537�

544 eVN X�A�� ��� �� IJKL0G �Ì

Z �¾2 >. ñ�G ��� �� ��õ� IJKL

�®bN q�r WÄ6>.

Noda Ë�0 N®,1 asynchronous 2D �� IJKL

N cross peaksN D� >�� =� IJKL �x B

�N æG| ²�t u>. LiyCoO0 Sk2� LiN

R� Wt n 529 eV0G i�i� X�A (CoO)N

�xW �� ��ch _�3 532 eV0G i�i� X

�A (Li2O)N �xW WS>. ·¸�, 537 544 eV

0G i�i� X�A (SEI <�)N �x B�W WØ

�� �3�>. �, (537, 544) eV→ 529 eV→ 532 eV

.r ò u>.

Fig. 12� LiyCoO0 LiN `x��� Sk-"# �m

N Raman IJKLr §­Û>. Fig. 120G, 4�N

Raman ÅW 672(s), 605(w), 510(w), ,Ah 468(s) cm−1

0G �¾2 h, Li2ON xÛ IJKL� 521 cm−10

G F2g mode0 xC ÅW ;c¶ i�`>. LiyCoO

0G Sk2� LiN R� Wt n 672� 468 cm−10

Fig. 11. The synchronous (a) and asynchronous (b) 2D XAScorrelation spectra of the LiyCoO system during the firstinsertion process. Solid and dotted lines represent positiveand negative cross peaks, respectively.

Fig. 12. Raman spectra of the LiyCoO system during the firstinsertion-extraction process.

Journal of the Korean Chemical Society

Page 11: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

�� �� �� ���: �� � �� 457

-

G i�i� CoO0 ¥c� Raman ÅN �xW ��c

ô>. ñ�G >�� =� �m TU$ór ÌCt

u>: CoxOy+2yLi++2ye−� xCoo+yLi2O. �, LiyCoO

0 Li� Sk2� Co ijk�� Li2OW e<2h, �

�0 Li� "#2� ��0G� Co ijk�W ij

(xN CoO) >4 ï� >. ,¡i Raman IJKL

0G Li2O e<r ú ÌCt W « >.

CoO �0 LiN Sk �m TU$ór Ë�cx ¬

c­, LiyCoO (y = 0, 1.73, 2.20, 2.62)N Raman IJ

KL0 ��� �� ���r �1cô>. Fig. 13(a)�

Fig. 13(b)� îî synchronous� asynchronous 2D Raman

IJKL�>. Synchronous 2D IJKL0G �N D

Ê| WÓ� (468, 527)� (672, 527) cm−10G i�i

� cross peaks� 468� 672 cm−10G i�i� CoO

0 NS Raman ÅN �xW ��c� �� 527 cm−1

0G i�i� Li2O0 NS ÅN �x� WS>. (468,

672) cm−10G RN DÊ| WÓ� cross peak� 468�

672 cm−10G i�i� a ÅN �xW F40 ���

r §­Û>. ^S synchronous 2D �� IJKL�

672� 468 cm−10G i�i� CoO0 NS ÅN �x

W LiN Sk �m F� WØ (¶ B�r §­Û>.

527 cm−10G i�i� Li-O 3� [F ��N �xW

WS>. � ²�� CoO �0 LiN Sk �m ��

F� Li2OW e<5r a®Û>. ^S �� 2D XAS

²�� ^ ��S>. Asynchronous 2D �� IJKL

0G, asynchronous cross peaksN DÊ)D� >��

=� IJKL B�N æG| ²�t u>: 468 cm−1

→ 672 cm−1→ 527 cm−1. �, CoO ÅN �xW ��

��ch Li2O ÅN �xW �3G WS>.

CoO �0 Li Sk �m TU$ó� XAS� Raman

IJKL Å ¯�N ��<r ÌCcx ¬c­, =�

�¢| �1c­ 2D hetero-spectral XAS-Raman ��

���r �1cô>. Fig. 14(a)� synchronous 2D

hetero-spectral XAS-Raman �� IJKLr §­Û>.

synchronous 2D hetero-spectral XAS-Raman �� IJ

KLQ)D�(532 eV, 468 cm−1), (537 eV, 468 cm−1), (544

eV, 468 cm−1), (532 eV, 672 cm−1), (537 eV, 672 cm−1)

(544 eV, 672 cm−1)0G �N DÊ| WÓ� cross

peaks� 532, 537� 544 eV0G i�i� XAS X�A

� 468� 672 cm−10G i�i� CoO0 NS Raman

ÅW G) >? ��.r i��� ��, (532 eV, 527

cm−1), (537 eV, 527 cm−1)� (544 eV, 527 cm−1)0G R

N DÊ| WÓ� cross peaks� 527 cm−10G i�i

� Raman � 532, 537� 544 eV0G i�i� Li2O

� �� SEI <�0 NS XAS X�AW G) =�

��.r §­Û>.

Fig. 14(b)� asynchronous 2D XAS-Raman hetero

spectral �� IJKLr i�/>. 468 cm−10G i�

Fig. 13. The synchronous (a) and asynchronous (b) 2D Ramancorrelation spectra of the LiyCoO system during the firstinsertion process. Solid and dotted lines represent positiveand negative cross peaks, respectively.

2003, Vol. 47, No. 5

Page 12: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

458 �������

;

n

i� Raman ÅN �xW WØ �� ��ch �3G

672 cm−10G i�i� Raman ÅN �xW ��S>.

_�3 529 eV0G i�i� XAS X�AN �xW �

�ch 527 cm−10G i�i� Raman ÅN �x�

WS>. *Ó�Q) 532 eV0G i�i� XAS X�A

N �xW WS>. �, >�� =� æG| ²�t

u>: 468cm−1(CoO)→672cm−1(CoO)→529 eV(CoO)→527 cm−1(Li 2O) → 532 eV(Li2O). �� 2D XAS� 2D

Raman �� �MN ²�� ��S>. CoO0 xC

XAS X�A� Raman ÅN �xW �� ��ch, Li2O

0 xC a XAS X�A� Raman ÅN �xW W

S>. ^S F�S <�0 �c­ =� �D EF (�

| ��, Sk2� Li R)0 NS G) >? ���0

G XAS§> Raman� · �� �mc� ÿF4<

(asynchronicity)� é�S>. � UV ²�� CoO �

0 Li Sk �m TU$ó Ë�"� #$� XAS X�

A� Raman IJKLN Å ¯�N ��<r -b¼ 

h, ÈZ ��� �� ���N ijk� �MN Wb

<r ccô>.

“��� ��� �� ���”� N0 �� UV

"� #$� >RS �TN UV0 m1 WbS põQ

) � UVW \2h u>. ñ�G “��� �

�� �� ���”� @A, �M, h��, ij@g

e�� UV0 O)P pqr s4t ur "� #

$� v�w ijxy UV0 �z {�| s�t

u>. ¹�0 �Y O)P “��� ��� �� �

��”� , m10 �S UV�23-29 >� ~o0 ��c

h� S>.

� ~o� �y[þ��N adS�Ó (BK21) Ó�0 Nc­ UV 2 �.

� � � �

1. Noda, I. Appl. Spectrosc. 1993, 47, 1329.2. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.

Ozaki, Y. Appl. Spectrosc. 2000, 54, 236A.3. Noda, I. Appl. Spectrosc. 2000, 54, 994.4. Ozaki, Y.; Šašiæ, S.; Tanaka, T.; Noda, I. Bull. Chem.

Soc. Jpn. 2001, 74, 1.5. Ozaki, Y.; Noda, I. in Handbook of Vibrational Spec-

troscopy, Charlmers, J. M; Griffiths P. R. Eds, (JohWiely and Sons: Chichester, 2002), p.2123-2172.

6. Noda, I. J. Am. Chem. Soc., 1986, 111, 8116.7. Noda, I.; Liu, Y.; Ozaki, Y. J. Phys. Chem. 1996, 100,

8674.8. Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51,

526.9. Czarnecki, M. A.; Wu, P.; Siesler, H. W. Chem. Phys.

Lett. 1998, 283, 326.10. Schultz, C. P.; Fabian, H.; Mantsch, H. H. Biospectrosc.

1998, 4, 519.11. Ataka, K.; Osawa, M. Langmuir, 1998, 14, 951.12. Jung, Y. M.; Czarnik-Matusewicz, B. Ozaki, Y. J. Phys.

Chem. B 2000, 104, 7812.

Fig. 14. The synchronous (a) and asynchronous (b) 2D XAS-Raman hetero-spectral correlation spectra of the LiyCoO sys-tem during the first insertion process. Solid and dotted linesrepresent positive and negative cross peaks, respectively.

Journal of the Korean Chemical Society

Page 13: Generalized Two-Dimensional (2D) Correlation Spectroscopy: …cc.kangwon.ac.kr/~ymjung/jh2/sub3/doc/200304.pdf · 2009-12-15 · Journal of the Korean Chemical Society 2003, Vol

�� �� �� ���: �� � �� 459

,

13. Shin, H. S.; Jung, Y. M.; Lee, J.; Chang, T.; Ozaki, Y.;Kim, S. B. Langmuir, 2002, 18, 5523.

14. Shin, H. S.; Jung, Y. M.; Chang, T.; Ozaki, Y.; Kim, S.B. Vib. Spectrosc. 2002, 29, 79.

15. Jung, Y. M.; Shin, H. S.; Czarnik-Matusewicz, B.; Noda,I.; Kim, S. B. Appl. Spectrosc. 2002, 56, 1562.

16. Lee, J.; Shin, S. J. Phys. Chem. B, 2002, 106, 8796.17. Chae, B.; Lee, S. W.; Jung, Y. M.; Ree, M.; Kim, S. B.

Langmuir 2003, 19, 687.18. Choi, H. C.; Jung, Y. M.; Noda, I.; Kim, S. B. J. Phys.

Chem. B 2003, 107, 5806.19. Chen, L.; Carland, M. Appl. Spectrosc. 2003, 57, 33120. Chae, B.; Jung, Y. M.; Wu, X.; Kim, S. B. J. Raman

Spectrosc. 2003, 34, 451.21. Choi, H. C.; Jung, Y. M.; Kim, S. B. Appl. Spectrosc.

2003, 57, 850.22. Eads, C. D.; Noda, I. J. Am. Chem. Soc., 2002, 124,

1111.23. Šašiæ, S.; Muszynski, A.; Ozaki, Y. Appl. Spectrosc.

2001, 55, 343.

24. Šašiæ, S.; Ozaki, Y. Anal. Chem. 2001, 73, 2294.25. Morita, S.; Ozaki, Y.; Noda, I Appl. Spectroscopy 2001,

55, 161826. Jung, Y. M.; Shin, H. S.; Noda, I; Kim, S. B. Appl.

Spectroscopy 2002, 56, 156827. Jung, Y. M.; Noda, I; Kim, S. B. Appl. Spectroscopy

2003, 57, 557.28. Jung, Y. M.; Noda, I; Kim, S. B. Appl. Spectroscopy

2003, 57, 564.29. Jung, Y. M.; Noda, I; Kim, S. B. Appl. Spectroscopy

2003, 57, 850.30. OReilly, J. M.; Teegarden, D. M; Mosher, R. A. Mac-

romolecules 1981, 14, 1693.31. Grohens, Y.; Prudhomme, R. E.; Schultz, J. Macromol-

ecules 1998, 31, 2545.32. Grohens, Y.; Carriere, P.; Spevacek, J.; Schultz, J. Poly-

mer 1999, 40, 7033.33. Choi, H. C.; Lee, S. Y.; Kim, S. B.; Kim, M. G.; Lee

M. K.; Shin, H. J.; Lee, J. S. J. Phys. Chem. B 2002,106, 9252.

2003, Vol. 47, No. 5