44
Arkadi Berezovski Generalized thermomechanics with dual internal variables – 1 / 44 Generalized thermomechanics with dual internal variables Arkadi Berezovski Centre for Nonlinear Studies, Institute of Cybernetics Tallinn University of Technology, Tallinn, Estonia October, 2013

Generalized thermomechanics with dual internal variablesmemocs.univaq.it/wp-content/uploads/2013/11/rome-pre1.pdf · Arkadi Berezovski Generalized thermomechanics with dual internal

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 1 / 44

Generalized thermomechanics with dualinternal variables

Arkadi BerezovskiCentre for Nonlinear Studies, Institute of Cybernetics

Tallinn University of Technology, Tallinn, Estonia

October, 2013

Motivation

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 2 / 44

Microstructured solids

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 3 / 44

Thin-section photomicrograph of a concrete.

Microstructured solids

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 4 / 44

The microstructure of the roller ball, which is made of cast iron. The flakes of

graphite are surrounded by ferrite, the brown is the pearlite.

Microstructured solids

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 5 / 44

Shape-memory alloy Cu-Al-Ni.

Main problem

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 6 / 44

● Wave propagation in solids with microstructure

✦ Diagnostic tool for material characterization

✦ Non-destructive testing of constructions

✦ Impact phenomena

✦ Moving discontinuities in solids (cracks,phase-transition fronts)

Extension of continuum description

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 7 / 44

● Generalized continuum theoriesMindlin, Eringen, ...

● Multifield theoriesCapriz, Mariano, ...

● Internal variablesColeman-Gurtin, Rice, Maugin, ...

Governing equations

Motivation

❖ Main problem

❖ Extension ofcontinuumdescription

❖ Governingequations

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 8 / 44

● Phenomenology and/or homogenizationMindlin, Eringen, Capriz, ...

● Principle of virtual powerGermain, Maugin, dell’Isola, Mariano, ...

● Internal variablesColeman-Gurtin, Rice, Maugin, ...

Material thermomechanics

Motivation

Materialthermomechanics❖ Local balancelaws –Piola-Kirchhoff❖ Canonicalequations

❖ Notations❖ Inhomogeneousthermoelasticity ofconductors

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 9 / 44

Local balance laws – Piola-Kirchhoff

Motivation

Materialthermomechanics❖ Local balancelaws –Piola-Kirchhoff❖ Canonicalequations

❖ Notations❖ Inhomogeneousthermoelasticity ofconductors

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 10 / 44

● Balance of linear momentum

∂ρ0v

∂t

∣∣∣∣X

−∇R · T = f

● Balance of energy

∂H

∂t

∣∣∣∣X

−∇R · (Tv − Q) = 0

● Entropy inequality

∂S

∂t

∣∣∣∣X

+∇R · S ≥ 0, S = (Q/θ) + K

ρ0(x) is the matter density, T is the first Piola-Kirchhoff stress tensor, H = K + E,

K = 12

ρ0v2 is the kinetic energy per unit volume in the reference configuration, E is

the corresponding internal energy, Q is the material heat flux, f is body force, S is

the entropy per unit volume, θ is temperature, S is the entropy flux, and K is the

”extra entropy flux”.

Canonical equations

Motivation

Materialthermomechanics❖ Local balancelaws –Piola-Kirchhoff❖ Canonicalequations

❖ Notations❖ Inhomogeneousthermoelasticity ofconductors

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 11 / 44

● Balance of energy

∂(Sθ)

∂t

∣∣∣∣X

+∇R · Q = hint, hint := T : F −∂W

∂t

∣∣∣∣X

● Balance of linear momentum

∂P

∂t

∣∣∣∣X

−∇R · b = fint + fext + finh

● Clausius-Duhem inequality

Sθ + S∇Rθ ≤ hint +∇R · (θK)

Notations

Motivation

Materialthermomechanics❖ Local balancelaws –Piola-Kirchhoff❖ Canonicalequations

❖ Notations❖ Inhomogeneousthermoelasticity ofconductors

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 12 / 44

● Material momentum

P := −ρ0v · F

● Eshelby stress

b = − (L1R + TF) , L = K − W

● Material forces

finh :=∂L

∂X

∣∣∣∣expl

=

(1

2v2

)∇Rρ0 −

∂W

∂X

∣∣∣∣expl

fext := f · F, fint = T : (∇RF)T − ∇RW|impl

F is the deformation gradient, W is free energy per unit volume.

Inhomogeneous thermoelasticity ofconductors

Motivation

Materialthermomechanics❖ Local balancelaws –Piola-Kirchhoff❖ Canonicalequations

❖ Notations❖ Inhomogeneousthermoelasticity ofconductors

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 13 / 44

● Free energyW = W(F, θ, X)

● Equations of state

T =∂W

∂F, S = −

∂W

∂θ

● Material force and heat source

fint = fth = S∇Rθ,

hint = hth = Sθ

Inhomogeneous thermoelasticity ofconductors

Motivation

Materialthermomechanics❖ Local balancelaws –Piola-Kirchhoff❖ Canonicalequations

❖ Notations❖ Inhomogeneousthermoelasticity ofconductors

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 14 / 44

● Canonical equations (no body force)

∂(Sθ)

∂t

∣∣∣∣X

+∇R · Q = hth,

∂P

∂t

∣∣∣∣X

−∇R · b = fth + finh

Single internal variable

Motivation

Materialthermomechanics

Single internalvariable❖ Single internalvariable (Maugin,2006)

❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolution equationfor internal variable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 15 / 44

Single internal variable (Maugin, 2006)

Motivation

Materialthermomechanics

Single internalvariable❖ Single internalvariable (Maugin,2006)

❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolution equationfor internal variable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 16 / 44

● Free energyW = W(F, θ, α,∇Rα)

● Equations of state

T =∂W

∂F, S = −

∂W

∂θ, A := −

∂W

∂α, A := −

∂W

∂∇Rα

● Material force and heat source

fint = fth + fintr, hint = hth + hintr

Non-zero extra entropy flux

Motivation

Materialthermomechanics

Single internalvariable❖ Single internalvariable (Maugin,2006)

❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolution equationfor internal variable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 17 / 44

● Extra entropy flux (Maugin, 1990)

K = −θ−1A : α

● Canonical balance laws

∂P

∂t

∣∣∣∣X

−∇R · b = fth + fintr

∂(Sθ)

∂t

∣∣∣∣X

+∇R · Q = hth + hintr

● Thermal source terms

fth = S∇Rθ, hth = Sθ

Necessary modifications

Motivation

Materialthermomechanics

Single internalvariable❖ Single internalvariable (Maugin,2006)

❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolution equationfor internal variable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 18 / 44

● ”Internal force”

A ≡ −δW

δα:= −

(∂W

∂α−∇R ·

∂W

∂(∇Rα)

)= A −∇R · A

● Heat flux

S = θ−1Q, Q = Q − A : α

● Eshelby tensor

b = −(L1R + TF − A : (∇Rα)T)

● Intrinsic source terms

fintr = A : (∇Rα)T, hintr = A : α

Evolution equation for internal variable

Motivation

Materialthermomechanics

Single internalvariable❖ Single internalvariable (Maugin,2006)

❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolution equationfor internal variable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 19 / 44

● Dissipation inequality

Φ = hintr − S∇Rθ ≥ 0, hintr := A : α

● Isothermal case (θ = const)

A = kα

k ≥ 0 ⇒ Φ = kα : α ≥ 0

Example of evolution equation

Motivation

Materialthermomechanics

Single internalvariable❖ Single internalvariable (Maugin,2006)

❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolution equationfor internal variable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 20 / 44

● Free energy

W = W(..., α,∇Rα) = f (..., α) +1

2D(∇α)2

● ”Internal force”

A := −

(∂W

∂α−∇R ·

∂W

∂(∇Rα)

)= D∇2α − f ′(α)

● Ginzburg-Landau or Allen-Cahn equation

A = kα ⇒ kα = D∇2α − f ′(α)

Dual internal variables

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 21 / 44

Dual internal variables

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 22 / 44

● Free energy

W = W(F, θ, α,∇Rα, β,∇Rβ)

● Equations of state

T =∂W

∂F, S = −

∂W

∂θ, A := −

∂W

∂α, A := −

∂W

∂∇Rα,

B := −∂W

∂β, B := −

∂W

∂∇Rβ

Non-zero extra entropy flux

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 23 / 44

● Extra entropy flux

K = −θ−1A : α − θ−1B : β

● Canonical balance laws

∂P

∂t

∣∣∣∣X

−∇R · b = fth + fintr

∂(Sθ)

∂t

∣∣∣∣X

+∇R · Q = hth + hintr

Necessary modifications

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 24 / 44

A ≡ −δW

δα:= −

(∂W

∂α−∇R ·

∂W

∂(∇Rα)

)= A −∇R · A

B ≡ −δW

δβ:= −

(∂W

∂β−∇R ·

∂W

∂(∇Rβ)

)= B −∇R · B

● Heat flux

S = θ−1Q, Q = Q − A : α − B : β

● Eshelby tensor

b = −(L1R + TF − A : (∇Rα)T − B : (∇Rβ)T)

● Intrinsic force

fintr := A : ∇Rα + B : ∇Rβ

Evolution equations

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 25 / 44

● Dissipation inequality

Φ = hintr − S∇Rθ ≥ 0

● Isothermal case

Φ = hintr = A : α + B : β ≥ 0

● Evolution equations for internal variables

β

)=

(L11 L12

L21 L22

)(A

B

)

A nondissipative case

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 26 / 44

● Antisymmetric case (L12 = −L21, L11 = L22 = 0) ⇒

hintr = A : (L11A) + B : (L22B) = 0

● Evolution equations

β

)=

(0 L12

−L12 0

)(A

B

)

orα = L12B

β = −L12 A

Hyperbolic evolution equation

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables❖ Dual internalvariables❖ Non-zero extraentropy flux

❖ Necessarymodifications❖ Evolutionequations

❖ A nondissipativecase❖ Hyperbolicevolution equation

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 27 / 44

● Simple case

B = 0, B := −∂W

∂β= −β ⇒ B = −β

● Evolution equations

α = −L12β, β = −L12 A

● Hyperbolic evolution equation for the primary internalvariable

α = L12(L12A) = (L12L12)A

α = −(L12L12)

(∂W

∂α−∇R ·

∂W

∂(∇Rα)

)

= (L12L12) (A −∇R · A)

Generalized continua

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 28 / 44

Generalized continua

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 29 / 44

Continuousmedium

Localaction

Nonlocalaction

Generalized continua

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 30 / 44

Continuousmedium

Localaction

Simplematerials

Nonsimplematerials

Nonlocalaction

Nonlocal theory:Integral formulation

(Eringen 1976)

Generalized continua

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 31 / 44

Continuousmedium

Localaction

Simplematerials

Cauchycontinuum

(1823)

Nonsimplematerials

Higherordermedia

Highergrademedia

Nonlocalaction

Nonlocal theory:Integral formulation

(Eringen 1976)

Generalized continua

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 32 / 44

Continuousmedium

Localaction

Simplematerials

Cauchycontinuum

(1823)

Nonsimplematerials

Higherordermedia

Cosserat (1909)

Micromorphic(Eringen,

Mindlin 1964)

Highergrademedia

Second gradient(Mindlin & Eshel 1968)

Gradient of internalvariable (Maugin 1990)

Nonlocalaction

Nonlocal theory:Integral formulation

(Eringen 1976)

Source: S. Forest. Generalized continua. In: Encyclopedia of Materials: Science

and Technology. Updates. (Buschow, K., Cahn, R., Flemings, M., Ilschner, B.,

Kramer, E., Mahajan, S., eds.), pp. 1-7 (Elsevier, Oxford, 2005).

Higher order and higher grade theories

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 33 / 44

Higher order theories Higher grade theories

Multipolar theoryui , εij, ηijk = ε jk,i , ηijkl = εkl,ij , ...

Micromorphic theoryui, ψij, ηijk = ψjk,i

Second strain gradient theoryui , εij , ηijk = ε jk,i , ηijkl = εkl,ij

Microstretch theoryui, φi , χ

Strain gradient theoryui, εij, ηijk = ε jk,i

Micropolar theoryui , φi , κij = φj,i

Couple stress theoryui , εij , 2κij = ǫkljul,ki

Classical continuum theoryui, εij

Higher order and higher grade theories

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 34 / 44

Higher order theories Higher grade theories

Multipolar theoryui , εij, ηijk = ε jk,i , ηijkl = εkl,ij , ...

Micromorphic theoryui, ψij, ηijk = ψjk,i

Second strain gradient theoryui , εij , ηijk = ε jk,i , ηijkl = εkl,ij

Microstretch theoryui, φi , χ

Strain gradient theoryui, εij, ηijk = ε jk,i

Micropolar theoryui , φi , κij = φj,i

Couple stress theoryui , εij , 2κij = ǫkljul,ki

Classical continuum theoryui, εij

ψij = ui,j

Higher order and higher grade theories

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua❖ Generalizedcontinua❖ Generalizedcontinua❖ Higher order andhigher gradetheories

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 35 / 44

Higher order theories Higher grade theories

Multipolar theoryui , εij, ηijk = ε jk,i , ηijkl = εkl,ij , ...

Micromorphic theoryui, ψij, ηijk = ψjk,i

Second strain gradient theoryui , εij , ηijk = ε jk,i , ηijkl = εkl,ij

Microstretch theoryui, φi , χ

Strain gradient theoryui, εij, ηijk = ε jk,i

Micropolar theoryui , φi , κij = φj,i

Couple stress theoryui , εij , 2κij = ǫkljul,ki

Classical continuum theoryui, εij

ψij = ui,j

2φk = ǫijkuj,i

Micromorphic linear elasticity

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 36 / 44

Mindlin theory (Mindlin, 1964)

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 37 / 44

● Classical strain tensor

εij ≡1

2

(∂iuj + ∂jui

)

● Relative deformation tensor

γij ≡ ∂iuj − ψij

● Microdeformation gradient

κijk ≡ ∂iψjk

● Cauchy stressσij ≡

∂W

∂εij= σji

● Relative stressτij ≡

∂W

∂γij

● Double stressµijk ≡

∂W

∂κijk

Centrosymmetric, isotropic materials

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 38 / 44

● Cauchy stress

σij ≡∂W

∂εij= σji = λδijεkk + 2µεij + g1δijγkk + g2(γij + γji)

● Relative stress

τij ≡∂W

∂γij= g1δijεkk + 2g2εij + b1δijγkk + b2γij + b3γji

● Double stress

µijk ≡∂W

∂κijk

Equations of motion

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 39 / 44

● Equations of motion (no body forces)

ρuj = ∂i

(σij + τij

)

1

3ρ′d2

ijψik = ∂iµijk + τjk

ρ′d2ij is a microinertia tensor.

Two balance laws: balances of linear momentum at macro-and microscales.

Rearrangement

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 40 / 44

● Distortion ∂jui, microdeformation tensor ψji,microdeformation gradient κijk ≡ ∂iψjk

● Modified stresses

σ′ij ≡

∂W

∂(∂iuj), τ′

ij ≡∂W

∂ψij

The double stress remains unchanged.● Modified Cauchy stress

σ′ij ≡

∂W

∂(∂iuj)= λδij∂kuk + µ(∂iuj + ∂jui)+

+ g1δij(∂kuk − ψkk) + g2

(∂iuj − ψij + ∂jui − ψji

)+

+ b1δij(∂kuk − ψkk) + b2(∂iuj − ψij) + b3(∂jui − ψji)

Rearrangement

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 41 / 44

● Modified relative stress

τ′ij ≡

∂W

∂ψij= −g1δij∂kuk − g2(∂iuj + ∂jui)−

− b1δij(∂kuk − ψkk)− b2(∂iuj − ψij)− b3(∂jui − ψji)

● Equations of motion

ρuj = ∂iσ′ij,

1

3ρ′d2

ijψik = ∂iµijk − τ′jk

Microdeformation as an internal variable

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

❖ Mindlin theory(Mindlin, 1964)

❖ Centrosymmetric,isotropic materials

❖ Equations ofmotion

❖ Rearrangement

❖ Microdeformationas an internalvariable

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 42 / 44

● In the non-dissipative case, the evolution equation for theinternal variable α

α = (L12L12)A = (L12L12)

(−

∂W

∂α+∇ ·

∂W

∂(∇α)

)

● In terms of components of the microdeformation tensor ψij

(L12L12)−1ij ψik =

(−

∂W

∂ψjk+∇ ·

∂W

∂(∇ψjk)

)= ∂iµijk − τ′

jk

● Balance of microimomentum in Mindlin theory

1

3ρ′d2

ijψik = ∂iµijk − τ′jk

Conclusions

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 43 / 44

Conclusions

Motivation

Materialthermomechanics

Single internalvariable

Dual internalvariables

Generalizedcontinua

Micromorphic linearelasticity

Conclusions

Arkadi Berezovski Generalized thermomechanics with dual internal variables – 44 / 44

● Wave propagation in solids with microstructure

● Internal variable approach to generalizedthermomechanics

● Dual internal variables for microstructure influence

● Coupling between microdeformation andmicrotemperature