129
GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit¨ at W¨ urzburg National University of Singapore 2009-01-28 P.Janotta & C.Gogolin | urzburg | 2009-01-28 1 / 44

Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT

Generalized Probabilistic Theories

Peter JanottaChristian Gogolin

Julius-Maximilians-Universitat Wurzburg

National University of Singapore

2009-01-28

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 1 / 44

Page 2: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT

Table of contents

1 Motivation and background

2 Assumptions and fundamental concept

3 Mathematical representation

4 Examples

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 2 / 44

Page 3: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Motivation and background

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 3 / 44

Page 4: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Quantum Mechanics works, but it is not well understood!

Niels Bohr (1885-1962)

“Jeder, der von sich behauptet, er habe die Quantenmechanikverstanden, hat uberhaupt nichts verstanden.”

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 4 / 44

Page 5: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Better understanding by generalization

GeneralizedProbabilistic

Theories

GeneralizedProbabilistic

Theories

QuantumMechanicsQuantumMechanics

StatisticalMechanicsStatisticalMechanics

density matrix

formalism

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 5 / 44

Page 6: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Better understanding by generalization

GeneralizedProbabilistic

Theories

GeneralizedProbabilistic

Theories

QuantumMechanicsQuantumMechanics

StatisticalMechanicsStatisticalMechanics

density matrix

formalism

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 5 / 44

Page 7: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Better understanding by generalization

GeneralizedProbabilistic

Theories

GeneralizedProbabilistic

Theories

QuantumMechanicsQuantumMechanics

StatisticalMechanicsStatisticalMechanics

density matrix

formalism

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 5 / 44

Page 8: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

Why Quantum Mechanics?

What are the alternatives?

Which properties of QM are genuine quantum?

Cloning is impossible in (almost) all non-classical GPTsBroadcasting is impossible in (almost) all non-classical GPTsTeleportation is possible in GPTs other that QM

How to generalize concepts like entanglement or entropy?

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 6 / 44

Page 9: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

Why Quantum Mechanics?

What are the alternatives?

Which properties of QM are genuine quantum?

Cloning is impossible in (almost) all non-classical GPTsBroadcasting is impossible in (almost) all non-classical GPTsTeleportation is possible in GPTs other that QM

How to generalize concepts like entanglement or entropy?

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 6 / 44

Page 10: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

Why Quantum Mechanics?

What are the alternatives?

Which properties of QM are genuine quantum?

Cloning is impossible in (almost) all non-classical GPTsBroadcasting is impossible in (almost) all non-classical GPTsTeleportation is possible in GPTs other that QM

How to generalize concepts like entanglement or entropy?

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 6 / 44

Page 11: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Motivation and background

Taking a new viewpoint gives new insights

What can we learn from the GPT framework?

Why Quantum Mechanics?

What are the alternatives?

Which properties of QM are genuine quantum?

Cloning is impossible in (almost) all non-classical GPTsBroadcasting is impossible in (almost) all non-classical GPTsTeleportation is possible in GPTs other that QM

How to generalize concepts like entanglement or entropy?

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 6 / 44

Page 12: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Assumptions and fundamental concept

I. Isolated systems

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 7 / 44

Page 13: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

An operational approach

Assumption

All one can learn about a given physical system is what one can learn byperforming measurements on it.

ω

? M 2

1

3

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 8 / 44

Page 14: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

An operational approach

Assumption

All one can learn about a given physical system is what one can learn byperforming measurements on it.

ω?

M 2

1

3

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 8 / 44

Page 15: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

An operational approach

Assumption

All one can learn about a given physical system is what one can learn byperforming measurements on it.

ω? M

2

1

3

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 8 / 44

Page 16: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

An operational approach

Assumption

All one can learn about a given physical system is what one can learn byperforming measurements on it.

ω

?

M 2

1

3

p1

p2

p3

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 8 / 44

Page 17: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

State

Definition

The state ω of a physical system is completely specified by giving theprobabilities for the outcomes of all measurements that can beperformed on it.In turn, specifying the state ω, specifies all these probabilities.

ω ⇐⇒

p1

p2

p3

p4

p5

. . .

“state space”

Ω = ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 9 / 44

Page 18: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Effects

Definition

Every measurement outcome is associated with an effect e.We write the probability to get this outcome when the system is in somestate ω as e(ω) ∈ [0, 1].

ω M 2

1

3

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 10 / 44

Page 19: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Effects

Definition

Every measurement outcome is associated with an effect e.We write the probability to get this outcome when the system is in somestate ω as e(ω) ∈ [0, 1].

ω M 2

1

3

p1

p2

p3

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 10 / 44

Page 20: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Effects

Definition

Every measurement outcome is associated with an effect e.We write the probability to get this outcome when the system is in somestate ω as e(ω) ∈ [0, 1].

ω M 2

1

3

e1(ω)

e2(ω)

e3(ω)

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 10 / 44

Page 21: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

A certain measurement outcome

Unit measure

For every physical system there is a special effect, the so called unitmeasure u, defined by

u(ω) = 1 ∀ ω ∈ Ω

“Is the system in one of its states?”

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 11 / 44

Page 22: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

A certain measurement outcome

Unit measure

For every physical system there is a special effect, the so called unitmeasure u, defined by

u(ω) = 1 ∀ ω ∈ Ω

“Is the system in one of its states?”

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 11 / 44

Page 23: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Mixed states

Assumption

Mixing two states ω1 and ω2 results in state that is a convex combination

ω = p ω1 + (1− p) ω1 ,

a so called mixed states.

Definition

State that can not be written as a convex combination of states arecalled pure or extremal.

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 12 / 44

Page 24: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Mixed states

Assumption

Mixing two states ω1 and ω2 results in state that is a convex combination

ω = p ω1 + (1− p) ω1 ,

a so called mixed states.

Definition

State that can not be written as a convex combination of states arecalled pure or extremal.

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 12 / 44

Page 25: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

. . . and everything becomes linear . . .

1 States must be represented by elements of a linear space A.

2 The state space ΩA ∈ A is convex and the extreme points of this setare the pure states.

3 Effects are linear functionals on the state space e : Ω→ [0, 1].4 The effects form a convex set EA in the dual space A∗.

ω ∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

p = e(ω) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 13 / 44

Page 26: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

. . . and everything becomes linear . . .

1 States must be represented by elements of a linear space A.

2 The state space ΩA ∈ A is convex and the extreme points of this setare the pure states.

3 Effects are linear functionals on the state space e : Ω→ [0, 1].

4 The effects form a convex set EA in the dual space A∗.

e(ω) = p e(ω1) + (1− p) e(ω2)

ω ∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

p = e(ω) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 13 / 44

Page 27: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

. . . and everything becomes linear . . .

1 States must be represented by elements of a linear space A.

2 The state space ΩA ∈ A is convex and the extreme points of this setare the pure states.

3 Effects are linear functionals on the state space e : Ω→ [0, 1].4 The effects form a convex set EA in the dual space A∗.

ω ∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

p = e(ω) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 13 / 44

Page 28: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

. . . and everything becomes linear . . .

1 States must be represented by elements of a linear space A.

2 The state space ΩA ∈ A is convex and the extreme points of this setare the pure states.

3 Effects are linear functionals on the state space e : Ω→ [0, 1].4 The effects form a convex set EA in the dual space A∗.

ω ∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

p = e(ω)

≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 13 / 44

Page 29: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

. . . and everything becomes linear . . .

1 States must be represented by elements of a linear space A.

2 The state space ΩA ∈ A is convex and the extreme points of this setare the pure states.

3 Effects are linear functionals on the state space e : Ω→ [0, 1].4 The effects form a convex set EA in the dual space A∗.

ω ∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

p = e(ω) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 13 / 44

Page 30: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Assumptions and fundamental concept

II. Joint systems

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 14 / 44

Page 31: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 32: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 33: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t

t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 34: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t

t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 35: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t

t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 36: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t

t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 37: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

No-signalling

Assumption

Local operations on disjoint subsystems commute.

ωAB

A B

t

t

O

M

M

O

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 15 / 44

Page 38: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Fiducial measurements

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement issufficient to uniquely specify a state.

ω ⇐⇒

p1

p2

p3

p4

p5

. . .

⇐=

p1

p2

p3

p4

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 16 / 44

Page 39: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Fiducial measurements

Fiducial measurements

Giving the probabilities for all outcomes of a fiducial measurement issufficient to uniquely specify a state.

ω

⇐⇒

p1

p2

p3

p4

p5

. . .

⇐=

p1

p2

p3

p4

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 16 / 44

Page 40: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Global state assumption

Assumption

Fiducial measurements on system A and B are sufficient to specify thestate of the joint system AB.

Global State Assumption

No-Signalling Principle=⇒ ωAB ∈ A⊗B

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 17 / 44

Page 41: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Global state assumption

Assumption

Fiducial measurements on system A and B are sufficient to specify thestate of the joint system AB.

Global State Assumption

No-Signalling Principle=⇒ ωAB ∈ A⊗B

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 17 / 44

Page 42: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Global state assumption

MB 2

1

3

MA2

1

3

ωA

A

ωB

B

ωAB

AB

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 18 / 44

Page 43: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Global state assumption

MB 2

1

3

MA2

1

3

ωA

A

ωB

B

ωAB

AB

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 18 / 44

Page 44: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Global state assumption

MB 2

1

3

MA2

1

3

ωA

A

ωB

B

ωAB

AB

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 18 / 44

Page 45: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Summary and consequences

Isolated systems:

Operational approach

Mixed statesω

ωAB

∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

Joint systems:

No-signalling

Global state

ωωAB ∈ ΩAB ⊂ A⊗B

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 19 / 44

Page 46: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Assumptions and fundamental concept

Summary and consequences

Isolated systems:

Operational approach

Mixed statesω

ωAB

∈ ΩA ⊂ A

e ∈ EA ⊂ A∗

Joint systems:

No-signalling

Global state

ωωAB ∈ ΩAB ⊂ A⊗B

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 19 / 44

Page 47: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Mathematical representation

I. Isolated systems

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 20 / 44

Page 48: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Linear space A

States ω are elements of a linear space A

Effects e are elements of its dual space A∗

Special properties for A of finite dimension:

A and A∗ are self dual

e(ω) can be regarded as a scalar product

A

ω

e

dim<∞∼= A∗

e

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 21 / 44

Page 49: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Linear space A

States ω are elements of a linear space A

Effects e are elements of its dual space A∗

Special properties for A of finite dimension:

A and A∗ are self dual

e(ω) can be regarded as a scalar product

A

ω

e

dim<∞∼=

A∗

e

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 21 / 44

Page 50: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Linear space A

States ω are elements of a linear space A

Effects e are elements of its dual space A∗

Special properties for A of finite dimension:

A and A∗ are self dual

e(ω) can be regarded as a scalar product

A

ω

e

dim<∞∼= A∗

e

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 21 / 44

Page 51: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Linear space A

States ω are elements of a linear space A

Effects e are elements of its dual space A∗

Special properties for A of finite dimension:

A and A∗ are self dual

e(ω) can be regarded as a scalar product

A

ω

e

dim<∞∼= A∗

e

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 21 / 44

Page 52: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =∑

i

pi ωi

∑i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 22 / 44

Page 53: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =∑

i

pi ωi

∑i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 22 / 44

Page 54: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =∑

i

pi ωi

∑i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 22 / 44

Page 55: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space Ω

The state space Ω is a convex set.

This means that all convex combinations

ω =∑

i

pi ωi

∑i

pi = 1, pi ≥ 0

are part of the state space Ω.

There is also a geometric interpretation of convexity. . .

All states ω on a strait line connecting ω1, ω2 ∈ Ω are part of Ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 22 / 44

Page 56: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 23 / 44

Page 57: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 23 / 44

Page 58: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 23 / 44

Page 59: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 23 / 44

Page 60: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 23 / 44

Page 61: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Possible state spaces

Ω can have an infinite number of extremal states

Bond of the state space must not bend to the inside

No holes allowed

Must be connected

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 23 / 44

Page 62: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

u(ω) = 1 ∀ ω ∈ Ω

Extra dimension for the unit measure

State space in a hyperplane normal to u

A∗

Ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 24 / 44

Page 63: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

u(ω) = 1 ∀ ω ∈ Ω

Extra dimension for the unit measure

State space in a hyperplane normal to u

A∗

Ω

u

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 24 / 44

Page 64: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Choosing the unit measure u

Next step to define a theory is to choose a unit measure:

u(ω) = 1 ∀ ω ∈ Ω

Extra dimension for the unit measure

State space in a hyperplane normal to u

A

Ω

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 24 / 44

Page 65: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Positive cone A+

Positive linear combinations of states ω ∈ Ω construct a positive coneA+ ⊂ A

On the other hand:

Ω := ω ∈ A+|u(ω) = 1

AA+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 25 / 44

Page 66: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Positive cone A+

Positive linear combinations of states ω ∈ Ω construct a positive coneA+ ⊂ AOn the other hand:

Ω := ω ∈ A+|u(ω) = 1

AA+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 25 / 44

Page 67: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Positive dual cone A∗+

It’s dual cone A∗+ ⊂ A∗ is the set of e satisfying:

e(ω) ≥ 0 ∀ ω ∈ Ω

The convex set EA ⊂ A∗+ of effects e is given by:

EA :=e ∈ A∗+

∣∣∣∣ supω∈Ω

e(ω) ≤ 1

A∗

A∗+

EA

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 26 / 44

Page 68: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Positive dual cone A∗+

It’s dual cone A∗+ ⊂ A∗ is the set of e satisfying:

e(ω) ≥ 0 ∀ ω ∈ Ω

The convex set EA ⊂ A∗+ of effects e is given by:

EA :=e ∈ A∗+

∣∣∣∣ supω∈Ω

e(ω) ≤ 1

A∗

A∗+ EA

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 26 / 44

Page 69: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Measurements

Definition

A measurement apparatus M is represented by a set of effects e eachcorresponding to one possible outcome e.

M = e∑e∈M

e = u

Carrying out a measurement maps a state ω to a normalizedprobability distribution pe with pe = e(ω)The probability pany to get any outcome is:

pany =∑

pe =∑

e(ω) = u(ω) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 27 / 44

Page 70: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Measurements

Definition

A measurement apparatus M is represented by a set of effects e eachcorresponding to one possible outcome e.

M = e∑e∈M

e = u

Carrying out a measurement maps a state ω to a normalizedprobability distribution pe with pe = e(ω)

The probability pany to get any outcome is:

pany =∑

pe =∑

e(ω) = u(ω) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 27 / 44

Page 71: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Measurements

Definition

A measurement apparatus M is represented by a set of effects e eachcorresponding to one possible outcome e.

M = e∑e∈M

e = u

Carrying out a measurement maps a state ω to a normalizedprobability distribution pe with pe = e(ω)The probability pany to get any outcome is:

pany =∑

pe =∑

e(ω) = u(ω) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 27 / 44

Page 72: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Mathematical representation

II. Joint systems

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 28 / 44

Page 73: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Joint systems

Global State Assumption

No-Signalling Principle=⇒ AB+ ⊂ A⊗B

AB+ is bounded by:

A+ ⊗min B+ ⊆ AB+ ⊆ A+ ⊗max B+

A particular theory must specify the positive cone AB+.

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 29 / 44

Page 74: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Joint systems

Global State Assumption

No-Signalling Principle=⇒ AB+ ⊂ A⊗B

AB+ is bounded by:

A+ ⊗min B+ ⊆ AB+ ⊆ A+ ⊗max B+

A particular theory must specify the positive cone AB+.

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 29 / 44

Page 75: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Joint systems

Global State Assumption

No-Signalling Principle=⇒ AB+ ⊂ A⊗B

AB+ is bounded by:

A+ ⊗min B+ ⊆ AB+ ⊆ A+ ⊗max B+

A particular theory must specify the positive cone AB+.

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 29 / 44

Page 76: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Joint systems

Global State Assumption

No-Signalling Principle=⇒ AB+ ⊂ A⊗B

AB+ is bounded by:

A+ ⊗min B+ ⊆ AB+ ⊆ A+ ⊗max B+

AB+

A particular theory must specify the positive cone AB+.

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 29 / 44

Page 77: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB

ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 78: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB

ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 79: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB⊗

ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 80: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB⊗

ωA1 ⊗ ωB

1

ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 81: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB⊗

ωA1 ⊗ ωB

1 ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 82: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB⊗

ωA1 ⊗ ωB

1 ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 83: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB⊗

ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

⊗min

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 84: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

Tensor products

ωA ωB⊗

ωA1 ⊗ ωB

2

ωA2 ⊗ ωB

1 ωA2 ⊗ ωB

2

⊗min

Minimal tensor product:

A+ ⊗min B+ = ConvexSpanωA ⊗ ωB

The same must hold for effects:

A+ ⊗max B+ =ωAB ∈ A⊗B

∣∣ωAB(eA ⊗ eB) ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 30 / 44

Page 85: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=ωAB ∈ AB+

∣∣uAB(ω) = 1

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, uA, uB and AB+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 31 / 44

Page 86: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=ωAB ∈ AB+

∣∣uAB(ω) = 1

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, uA, uB and AB+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 31 / 44

Page 87: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=ωAB ∈ AB+

∣∣uAB(ω) = 1

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, uA, uB and AB+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 31 / 44

Page 88: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=ωAB ∈ AB+

∣∣uAB(ω) = 1

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, uA, uB and AB+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 31 / 44

Page 89: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=ωAB ∈ AB+

∣∣uAB(ω) = 1

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, uA, uB and AB+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 31 / 44

Page 90: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Mathematical representation

State space ΩAB of joint systems

Unit measure uAB of the joint system uAB := uA ⊗ uB

State space ΩAB of the joint system:

ΩAB :=ωAB ∈ AB+

∣∣uAB(ω) = 1

ΩA ⊗min ΩB

ΩA ⊗max ΩB

seperable

entangled

A particular physical theory is given by a particular choice of:

A+, B+, uA, uB and AB+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 31 / 44

Page 91: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Examples

I. Classical probability theory

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 32 / 44

Page 92: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical probability theory

State space Ωclass is a probability simplex

The extremal states ωi form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3Ω2

uA ?⇒ Unique decomposition of mixed states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 33 / 44

Page 93: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical probability theory

State space Ωclass is a probability simplex

The extremal states ωi form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3Ω2

uA ?⇒ Unique decomposition of mixed states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 33 / 44

Page 94: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical probability theory

State space Ωclass is a probability simplex

The extremal states ωi form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3Ω2

uA ?⇒ Unique decomposition of mixed states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 33 / 44

Page 95: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical probability theory

State space Ωclass is a probability simplex

The extremal states ωi form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3Ω2

uA

?⇒ Unique decomposition of mixed states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 33 / 44

Page 96: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical probability theory

State space Ωclass is a probability simplex

The extremal states ωi form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3Ω2

uA ?

⇒ Unique decomposition of mixed states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 33 / 44

Page 97: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical probability theory

State space Ωclass is a probability simplex

The extremal states ωi form a basis of A

ω1 ω2

e1 e2

e1

e3

e2

Ω1

Ω3Ω2

uA ?⇒ Unique decomposition of mixed states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 33 / 44

Page 98: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical joint systems and measurement

For classical systems ΩA ⊗min ΩB is equal to ΩA ⊗max ΩB

Consequently there are no entangled states

Extremal effects ei connected to corresponding extremal states ωi:

ei(ωj) ∝ δij

Systems is in a particular pure state all the time.

Mixed states are only a effective representation due a lack ofknowledge

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 34 / 44

Page 99: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical joint systems and measurement

For classical systems ΩA ⊗min ΩB is equal to ΩA ⊗max ΩB

Consequently there are no entangled states

Extremal effects ei connected to corresponding extremal states ωi:

ei(ωj) ∝ δij

Systems is in a particular pure state all the time.

Mixed states are only a effective representation due a lack ofknowledge

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 34 / 44

Page 100: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical joint systems and measurement

For classical systems ΩA ⊗min ΩB is equal to ΩA ⊗max ΩB

Consequently there are no entangled states

Extremal effects ei connected to corresponding extremal states ωi:

ei(ωj) ∝ δij

Systems is in a particular pure state all the time.

Mixed states are only a effective representation due a lack ofknowledge

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 34 / 44

Page 101: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical joint systems and measurement

For classical systems ΩA ⊗min ΩB is equal to ΩA ⊗max ΩB

Consequently there are no entangled states

Extremal effects ei connected to corresponding extremal states ωi:

ei(ωj) ∝ δij

Systems is in a particular pure state all the time.

Mixed states are only a effective representation due a lack ofknowledge

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 34 / 44

Page 102: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Classical joint systems and measurement

For classical systems ΩA ⊗min ΩB is equal to ΩA ⊗max ΩB

Consequently there are no entangled states

Extremal effects ei connected to corresponding extremal states ωi:

ei(ωj) ∝ δij

Systems is in a particular pure state all the time.

Mixed states are only a effective representation due a lack ofknowledge

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 34 / 44

Page 103: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Examples

II. Quantum Mechanics

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 35 / 44

Page 104: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 105: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 106: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 107: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 108: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 109: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 110: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Quantum Mechanics

Linear space A is the Hilbert space of density matrices

A+ is the set of selfadjoint, positive semi-definite matrices

Quantum Mechanics is a self-dual theory: A∗+∼= A+

Effects e are applied to states ρ using the Hilbert-Schmidt-Product:

e(ρ) = tr(e† ρ)

The unit measure u is the identity 1

Ω is given by matrices with trace one, since:

u(ρ) = tr(1 ρ) != 1

Infinite number of extremal states ρex with tr(ρ2ex) = 1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 36 / 44

Page 111: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

The Bloch sphere

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 37 / 44

Page 112: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

The Bloch sphere

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 37 / 44

Page 113: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

The Bloch sphere

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 37 / 44

Page 114: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Joint systems in QM

For QM the positive cone AB+ is again the set of hermitian positivesemi-definite matrices

This specifies the tensor product

It lies strictly between minimal and maximal tensor product:

ΩA ⊗min ΩB ⊂ ΩABqm ⊂ ΩA ⊗max ΩB

Entangled states ρAB not maximally correlated

Mixed states in subsystems of pure entangled joint states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 38 / 44

Page 115: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Joint systems in QM

For QM the positive cone AB+ is again the set of hermitian positivesemi-definite matrices

This specifies the tensor product

It lies strictly between minimal and maximal tensor product:

ΩA ⊗min ΩB ⊂ ΩABqm ⊂ ΩA ⊗max ΩB

Entangled states ρAB not maximally correlated

Mixed states in subsystems of pure entangled joint states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 38 / 44

Page 116: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Joint systems in QM

For QM the positive cone AB+ is again the set of hermitian positivesemi-definite matrices

This specifies the tensor product

It lies strictly between minimal and maximal tensor product:

ΩA ⊗min ΩB ⊂ ΩABqm ⊂ ΩA ⊗max ΩB

Entangled states ρAB not maximally correlated

Mixed states in subsystems of pure entangled joint states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 38 / 44

Page 117: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Joint systems in QM

For QM the positive cone AB+ is again the set of hermitian positivesemi-definite matrices

This specifies the tensor product

It lies strictly between minimal and maximal tensor product:

ΩA ⊗min ΩB ⊂ ΩABqm ⊂ ΩA ⊗max ΩB

Entangled states ρAB not maximally correlated

Mixed states in subsystems of pure entangled joint states

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 38 / 44

Page 118: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Examples

III. The Gbit

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 39 / 44

Page 119: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Building a GPT from scratch

ΩA =ω =

(ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = 1

, ωij ≥ 0

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 40 / 44

Page 120: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Building a GPT from scratch

A

+

=ω =

(ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = c

, ωij ≥ 0

A

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 40 / 44

Page 121: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Building a GPT from scratch

A+ =ω =

(ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = c, ωij ≥ 0

A+

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 40 / 44

Page 122: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Building a GPT from scratch

A+ =ω =

(ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = c, ωij ≥ 0

u =(

1/2 1/21/2 1/2

)

u(ω) = tr(u† ω) != 1

u

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 40 / 44

Page 123: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Building a GPT from scratch

ΩA =ω =

(ω11 ω12

ω21 ω22

)∣∣∣∣ ω11 + ω12 = ω21 + ω22 = 1, ωij ≥ 0

ω1 =(

0 10 1

)ω2 =

(0 11 0

)

ω3 =(

1 00 1

)ω4 =

(1 01 0

)WA

Ω1

Ω3

Ω4

Ω2

u

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 40 / 44

Page 124: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Effects of the Gbit

e(ω) = tr(e† ω) =∑ij

eij ωij

∈ [0, 1] ∀ ω ∈ ΩA, e ∈ EA

ω1 : 0 ≤ e21 + e22 ≤ 1ω2 : 0 ≤ e12 + e21 ≤ 1ω3 : 0 ≤ e11 + e22 ≤ 1ω4 : 0 ≤ e11 + e12 ≤ 1

e1 = 14

(−1 31 1

)e2 = 1

4

(1 13 −1

)e3 = 1

4

(1 1−1 3

)e4 = 1

4

(3 −11 1

)

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 41 / 44

Page 125: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Effects of the Gbit

e(ω) = tr(e† ω) =∑ij

eij ωij ∈ [0, 1] ∀ ω ∈ ΩA, e ∈ EA

ω1 : 0 ≤ e21 + e22 ≤ 1ω2 : 0 ≤ e12 + e21 ≤ 1ω3 : 0 ≤ e11 + e22 ≤ 1ω4 : 0 ≤ e11 + e12 ≤ 1

e1 = 14

(−1 31 1

)e2 = 1

4

(1 13 −1

)e3 = 1

4

(1 1−1 3

)e4 = 1

4

(3 −11 1

)

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 41 / 44

Page 126: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

Effects of the Gbit

e(ω) = tr(e† ω) =∑ij

eij ωij ∈ [0, 1] ∀ ω ∈ ΩA, e ∈ EA

ω1 : 0 ≤ e21 + e22 ≤ 1ω2 : 0 ≤ e12 + e21 ≤ 1ω3 : 0 ≤ e11 + e22 ≤ 1ω4 : 0 ≤ e11 + e12 ≤ 1

e1 = 14

(−1 31 1

)e2 = 1

4

(1 13 −1

)e3 = 1

4

(1 1−1 3

)e4 = 1

4

(3 −11 1

)

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 41 / 44

Page 127: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT | Examples

States and effects

WA

e3

e4

e2

e1

Ω1

Ω3

Ω4

Ω2

u

- 1

"#######2

01

"#######2

- 1

"#######2 0

1

"#######2

0

1

2

1

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 42 / 44

Page 128: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT

Thank you for your attention!

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 43 / 44

Page 129: Generalized Probabilistic Theories - cgogolin.de · GPT Generalized Probabilistic Theories Peter Janotta Christian Gogolin Julius-Maximilians-Universit at Wurzburg National University

GPT

Literatur

[1] Howard Barnum, Jonathan Barrett, Matthew Leifer, and AlexanderWilce.A generalized no-broadcasting theorem, 2007.

[2] Howard Barnum, Jonathan Barrett, Matthew Leifer, and AlexanderWilce.Teleportation in General Probabilistic Theories, 2008.

−→ Beamer slides: http://www.cgogolin.de

P.Janotta & C.Gogolin | Wurzburg | 2009-01-28 44 / 44