83
Background: Low complexity Free groups automorphisms and tilings: An example Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions Generalizations General theory of unitary Pisot substitution The case of Pisot substitution in now well understood. Crowning the work of several people, a recent paper (Barge and Kwapisz) shows that, if the substitution satisfies the so-called ”strong coincidence condition”, the structure of the associated system is completely understood: discrete lines and planes Rauzy fractal symbolic dynamics All known Pisot substitutions satisfy the strong coincidence condition Pierre Arnoux Pavages, substitutions et automorphismes de groupe

General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

General theory of unitary Pisot substitution

I The case of Pisot substitution in now well understood.

I Crowning the work of several people, a recent paper (Bargeand Kwapisz) shows that, if the substitution satisfies theso-called ”strong coincidence condition”, the structure of theassociated system is completely understood:

I discrete lines and planes

I Rauzy fractal

I symbolic dynamics

I All known Pisot substitutions satisfy the strong coincidencecondition

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 2: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

General theory of unitary Pisot substitution

I The case of Pisot substitution in now well understood.

I Crowning the work of several people, a recent paper (Bargeand Kwapisz) shows that, if the substitution satisfies theso-called ”strong coincidence condition”, the structure of theassociated system is completely understood:

I discrete lines and planes

I Rauzy fractal

I symbolic dynamics

I All known Pisot substitutions satisfy the strong coincidencecondition

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 3: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

General theory of unitary Pisot substitution

I The case of Pisot substitution in now well understood.

I Crowning the work of several people, a recent paper (Bargeand Kwapisz) shows that, if the substitution satisfies theso-called ”strong coincidence condition”, the structure of theassociated system is completely understood:

I discrete lines and planes

I Rauzy fractal

I symbolic dynamics

I All known Pisot substitutions satisfy the strong coincidencecondition

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 4: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

General theory of unitary Pisot substitution

I The case of Pisot substitution in now well understood.

I Crowning the work of several people, a recent paper (Bargeand Kwapisz) shows that, if the substitution satisfies theso-called ”strong coincidence condition”, the structure of theassociated system is completely understood:

I discrete lines and planes

I Rauzy fractal

I symbolic dynamics

I All known Pisot substitutions satisfy the strong coincidencecondition

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 5: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

General theory of unitary Pisot substitution

I The case of Pisot substitution in now well understood.

I Crowning the work of several people, a recent paper (Bargeand Kwapisz) shows that, if the substitution satisfies theso-called ”strong coincidence condition”, the structure of theassociated system is completely understood:

I discrete lines and planes

I Rauzy fractal

I symbolic dynamics

I All known Pisot substitutions satisfy the strong coincidencecondition

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 6: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

General theory of unitary Pisot substitution

I The case of Pisot substitution in now well understood.

I Crowning the work of several people, a recent paper (Bargeand Kwapisz) shows that, if the substitution satisfies theso-called ”strong coincidence condition”, the structure of theassociated system is completely understood:

I discrete lines and planes

I Rauzy fractal

I symbolic dynamics

I All known Pisot substitutions satisfy the strong coincidencecondition

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 7: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

Discrete 2-planes in R4

??

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 8: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

Discrete 2-planes in R4

??

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 9: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

Possible generalizations

Unitary Pisot substitutions

I Non-unitary substitutions:p-adic component (Siegel)

I From substitutions to Pisotautomorphisms of free groups:recent results(A-Berthe-Hilion-Siegel)

I Non Pisot case: the firstexample

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 10: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

Possible generalizations

Unitary Pisot substitutions

I Non-unitary substitutions:p-adic component (Siegel)

I From substitutions to Pisotautomorphisms of free groups:recent results(A-Berthe-Hilion-Siegel)

I Non Pisot case: the firstexample

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 11: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

Possible generalizations

Unitary Pisot substitutions

I Non-unitary substitutions:p-adic component (Siegel)

I From substitutions to Pisotautomorphisms of free groups:recent results(A-Berthe-Hilion-Siegel)

I Non Pisot case: the firstexample

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 12: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

Possible generalizations

Unitary Pisot substitutions

I Non-unitary substitutions:p-adic component (Siegel)

I From substitutions to Pisotautomorphisms of free groups:recent results(A-Berthe-Hilion-Siegel)

I Non Pisot case: the firstexample

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 13: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

A remark on entropy

I The entropy of a toral automorphism is the sum of thelogarithms of the eigenvalues larger than 1.

I The entropy of the subshift of finite type associated to asubstitution is the logarithm of the largest eigenvalue.

I These coincide only in the Pisot case

I This hints to the necessity of considering exterior powers ofthe matrix A

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 14: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

A remark on entropy

I The entropy of a toral automorphism is the sum of thelogarithms of the eigenvalues larger than 1.

I The entropy of the subshift of finite type associated to asubstitution is the logarithm of the largest eigenvalue.

I These coincide only in the Pisot case

I This hints to the necessity of considering exterior powers ofthe matrix A

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 15: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

A remark on entropy

I The entropy of a toral automorphism is the sum of thelogarithms of the eigenvalues larger than 1.

I The entropy of the subshift of finite type associated to asubstitution is the logarithm of the largest eigenvalue.

I These coincide only in the Pisot case

I This hints to the necessity of considering exterior powers ofthe matrix A

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 16: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Low complexity and sturmian sequencesDiscrete lines in the planeGeneralizations: Hyperplanes, lines and Pisot substitutionsGeneralizations

A remark on entropy

I The entropy of a toral automorphism is the sum of thelogarithms of the eigenvalues larger than 1.

I The entropy of the subshift of finite type associated to asubstitution is the logarithm of the largest eigenvalue.

I These coincide only in the Pisot case

I This hints to the necessity of considering exterior powers ofthe matrix A

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 17: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A free group automorphism

σ automorphism of the free group F4:

1 7→ 2

2 7→ 3

3 7→ 4

4 7→ 41−1

Matrix M =

0 0 0 −11 0 0 00 1 0 00 0 1 1

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 18: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A free group automorphism

Characteristic polynomial X 4 − X 3 + 1Eigenvalues 1.01891± 0.602565i , −0.518913± 0.66661iNon Pisot!Expanding plane Pe ≡ CContracting plane Pc ≡ CAssociated projections πe , πc

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 19: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A free group automorphism

Characteristic polynomial X 4 − X 3 + 1Eigenvalues 1.01891± 0.602565i , −0.518913± 0.66661iNon Pisot!Expanding plane Pe ≡ CContracting plane Pc ≡ CAssociated projections πe , πc

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 20: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A free group automorphism

Characteristic polynomial X 4 − X 3 + 1Eigenvalues 1.01891± 0.602565i , −0.518913± 0.66661iNon Pisot!Expanding plane Pe ≡ CContracting plane Pc ≡ CAssociated projections πe , πc

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 21: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A free group automorphism

Characteristic polynomial X 4 − X 3 + 1Eigenvalues 1.01891± 0.602565i , −0.518913± 0.66661iNon Pisot!Expanding plane Pe ≡ CContracting plane Pc ≡ CAssociated projections πe , πc

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 22: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Projections of the canonical basis

-0.2 0.2 0.4 0.6 0.8 1 1.2

0.25

0.5

0.75

1

1.25

1.5

!e!e1"

!e!e2"

!e!e3"!e!e4"

-0.5-0.25 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

!c!e1"

!c!e2"

!c!e3"

!c!e4"

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 23: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms I

I Words as discrete lines in R4

I σ acts naturally on discrete lines in R4

I Map E1(σ) defined on space G1 of weighted sum of discretelines

I This is still 1-dimensional!

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 24: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms I

I Words as discrete lines in R4

I σ acts naturally on discrete lines in R4

I Map E1(σ) defined on space G1 of weighted sum of discretelines

I This is still 1-dimensional!

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 25: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms I

I Words as discrete lines in R4

I σ acts naturally on discrete lines in R4

I Map E1(σ) defined on space G1 of weighted sum of discretelines

I This is still 1-dimensional!

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 26: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms I

I Words as discrete lines in R4

I σ acts naturally on discrete lines in R4

I Map E1(σ) defined on space G1 of weighted sum of discretelines

I This is still 1-dimensional!

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 27: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms II

I i : s 7→ i(s) and j : t 7→ j(t)segments; define the orientedface i ∧ j as the oriented surface(s, t) 7→ i(s) + j(t).

I σ acts in a natural way on facesby taking i ∧ j toE1(σ)(i) ∧ E1(σ)(j)

I Map E2(σ) defined on space G2

of weighted sum of discretefaces

I The matrix of E2(σ) is positive!

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 2)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

1

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 28: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms II

I i : s 7→ i(s) and j : t 7→ j(t)segments; define the orientedface i ∧ j as the oriented surface(s, t) 7→ i(s) + j(t).

I σ acts in a natural way on facesby taking i ∧ j toE1(σ)(i) ∧ E1(σ)(j)

I Map E2(σ) defined on space G2

of weighted sum of discretefaces

I The matrix of E2(σ) is positive!

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (E2(σ)(0, 2 ∧ 4))

1

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 29: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms II

I i : s 7→ i(s) and j : t 7→ j(t)segments; define the orientedface i ∧ j as the oriented surface(s, t) 7→ i(s) + j(t).

I σ acts in a natural way on facesby taking i ∧ j toE1(σ)(i) ∧ E1(σ)(j)

I Map E2(σ) defined on space G2

of weighted sum of discretefaces

I The matrix of E2(σ) is positive!

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 2)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 3)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4) +πe (−e1 − e4, 1 ∧ 2)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4) +πe (−e1 + e4, 1 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (−e1 + e4, 1 ∧ 4)

1

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 30: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions of free group automorphisms II

I i : s 7→ i(s) and j : t 7→ j(t)segments; define the orientedface i ∧ j as the oriented surface(s, t) 7→ i(s) + j(t).

I σ acts in a natural way on facesby taking i ∧ j toE1(σ)(i) ∧ E1(σ)(j)

I Map E2(σ) defined on space G2

of weighted sum of discretefaces

I The matrix of E2(σ) is positive!

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 2)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 3)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4) +πe (−e1 − e4, 1 ∧ 2)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4) +πe (−e1 + e4, 1 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (−e1 + e4, 1 ∧ 4)

1

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 31: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions III: formalism

I We define the space of formal finite sums of weighted 2-faces(x, i ∧ j), with x ∈ Z4.

I The 2-dimensional extension E2(σ) is defined on this space by:E2(σ)(x, i ∧ j) :=∑li

m=1

∑ljn=1

(A(x) + f (P

(i)m ) + f (P

(j)m ), W

(i)m ∧W

(j)n

)I The matrix associated to E2(σ) is the exterior square of M:

0 0 0 1 0 00 0 0 0 1 01 0 0 0 0 00 0 0 0 0 10 1 0 1 0 00 0 1 0 1 0

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 32: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions III: formalism

I We define the space of formal finite sums of weighted 2-faces(x, i ∧ j), with x ∈ Z4.

I The 2-dimensional extension E2(σ) is defined on this space by:E2(σ)(x, i ∧ j) :=∑li

m=1

∑ljn=1

(A(x) + f (P

(i)m ) + f (P

(j)m ), W

(i)m ∧W

(j)n

)I The matrix associated to E2(σ) is the exterior square of M:

0 0 0 1 0 00 0 0 0 1 01 0 0 0 0 00 0 0 0 0 10 1 0 1 0 00 0 1 0 1 0

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 33: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions III: formalism

I We define the space of formal finite sums of weighted 2-faces(x, i ∧ j), with x ∈ Z4.

I The 2-dimensional extension E2(σ) is defined on this space by:E2(σ)(x, i ∧ j) :=∑li

m=1

∑ljn=1

(A(x) + f (P

(i)m ) + f (P

(j)m ), W

(i)m ∧W

(j)n

)I The matrix associated to E2(σ) is the exterior square of M:

0 0 0 1 0 00 0 0 0 1 01 0 0 0 0 00 0 0 0 0 10 1 0 1 0 00 0 1 0 1 0

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 34: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions III: formalism

I The matrix associated to E2(σ) is the exterior square of M:

0 0 0 1 0 00 0 0 0 1 01 0 0 0 0 00 0 0 0 0 10 1 0 1 0 00 0 1 0 1 0

I This matrix is positive!

I This is the correct generalization of the notion of substitution(seen as a positive free group endomorphism) in the non-Pisotcase

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 35: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions III: formalism

I The matrix associated to E2(σ) is the exterior square of M:

0 0 0 1 0 00 0 0 0 1 01 0 0 0 0 00 0 0 0 0 10 1 0 1 0 00 0 1 0 1 0

I This matrix is positive!

I This is the correct generalization of the notion of substitution(seen as a positive free group endomorphism) in the non-Pisotcase

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 36: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Geometric extensions III: formalism

I The matrix associated to E2(σ) is the exterior square of M:

0 0 0 1 0 00 0 0 0 1 01 0 0 0 0 00 0 0 0 0 10 1 0 1 0 00 0 1 0 1 0

I This matrix is positive!

I This is the correct generalization of the notion of substitution(seen as a positive free group endomorphism) in the non-Pisotcase

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 37: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A new substitution tiling of the plane

I by projection πe :

I A substitution rule on theexpanding plane

I That generates asubstitution polygonaltiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 38: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A new substitution tiling of the plane

I by projection πe :

I A substitution rule on theexpanding plane

I That generates asubstitution polygonaltiling

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 2)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 3)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 1 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4) +πe (−e1 − e4, 1 ∧ 2)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 3)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 2 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4) +πe (−e1 + e4, 1 ∧ 3)

2

2

Πee1

Πee2

Πee3

Πee4

πe (0, 3 ∧ 4)

E2(σ)→

2

2

Πee1

Πee2

Πee3

Πee4

πe (−e1 + e4, 1 ∧ 4)

1

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 39: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A new substitution tiling of the plane

I by projection πe :

I A substitution rule on theexpanding plane

I That generates asubstitution polygonaltiling

-4 4

-4

49 step

Πee1Πee2Πee3

Πee4

-4 4

-4

412 step

Πee1Πee2Πee3

Πee4

-4 4

-4

421 step

Πee1Πee2Πee3

Πee4

-4 4

-4

46 step

Πee1Πee2Πee3

Πee4

-4 4

-4

47 step

Πee1

Πee2Πee3

Πee4

-4 4

-4

48 step

Πee1Πee2Πee3

Πee4

-4 4

-4

43 step

Πee1Πee2Πee3

Πee4

-4 4

-4

44 step

Πee1

Πee2Πee3

Πee4

-4 4

-4

45 step

Πee1

Πee2Πee3

Πee4

-4 4

-4

40 step

Πee1Πee2Πee3

Πee4

-4 4

-4

41 step

Πee1Πee2Πee3

Πee4

-4 4

-4

42 step

Πee1Πee2Πee3

Πee4

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 40: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 41: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

An exact substitution tiling

I By replacing each face by the limit of its renormalization, oneobtains an exactly self-similar tiling, with fractal tiles.

I The fractal tiles are solutions of a graph-directed IFS given bythe substitution rule.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 42: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

An exact substitution tiling

I By replacing each face by the limit of its renormalization, oneobtains an exactly self-similar tiling, with fractal tiles.

I The fractal tiles are solutions of a graph-directed IFS given bythe substitution rule.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 43: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

5/09/06 1:40Nautilus_fract_patch_03.gif 932x738 pixels

Page 1 sur 1file://localhost/Users/pierrearnoux/Desktop/Nautilus_fract_patch_03.gif

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 44: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 45: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 46: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A discrete surface in R4

I The tiling lifts to a unique discrete surface in R4

I Discrete approximation of the expanding plane

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 47: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

A discrete surface in R4

I The tiling lifts to a unique discrete surface in R4

I Discrete approximation of the expanding plane

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 48: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

The discrete surface

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 49: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Duality

We can do exactly the same for the contracting plane:Define the dual map E 2(σ).It is also positive.Get dual substitution tiling and a dual self-similar tiling.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 50: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 51: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 52: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

5/09/06 1:41Conch_fract_patch_03.gif 926x734 pixels

Page 1 sur 1file://localhost/Users/pierrearnoux/Desktop/Conch_fract_patch_03.gif

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 53: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

NotationsExtensions of free group automorphismsPlane tiling

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 54: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Cut-and-project tiling

I The fractal tiles of the expanding tiling are solution of a GIFS.

I The vertices of the contracting tiling are solution of a GIFS.

I After projection on the expanding space, we can observe avery much curious phenomenon:

I The second IFS is the opposite of the first!

I These polygonal tilings are cut-and-project tilings.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 55: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Cut-and-project tiling

I The fractal tiles of the expanding tiling are solution of a GIFS.

I The vertices of the contracting tiling are solution of a GIFS.

I After projection on the expanding space, we can observe avery much curious phenomenon:

I The second IFS is the opposite of the first!

I These polygonal tilings are cut-and-project tilings.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 56: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Cut-and-project tiling

I The fractal tiles of the expanding tiling are solution of a GIFS.

I The vertices of the contracting tiling are solution of a GIFS.

I After projection on the expanding space, we can observe avery much curious phenomenon:

I The second IFS is the opposite of the first!

I These polygonal tilings are cut-and-project tilings.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 57: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Cut-and-project tiling

I The fractal tiles of the expanding tiling are solution of a GIFS.

I The vertices of the contracting tiling are solution of a GIFS.

I After projection on the expanding space, we can observe avery much curious phenomenon:

I The second IFS is the opposite of the first!

I These polygonal tilings are cut-and-project tilings.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 58: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Cut-and-project tiling

I The fractal tiles of the expanding tiling are solution of a GIFS.

I The vertices of the contracting tiling are solution of a GIFS.

I After projection on the expanding space, we can observe avery much curious phenomenon:

I The second IFS is the opposite of the first!

I These polygonal tilings are cut-and-project tilings.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 59: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Generalized Rauzy fractals

The window for the tiling of the expanding plane is the contractingRauzy fractal X c = ∪X c

i∧j .It can be obtained by projecting on the contracting plane thevertices of the discrete approximation to the expanding plane.It can also be obtained by renormalization of the projection of theimage of a patch of faces by the action of the dual map:

X c = lim M−n(πc(E∗2 (σ)n(U)))

the same property is true for the expanding Rauzy fractal.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 60: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

The window

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Sc (2 ∧ 1)

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Sc (1 ∧ 3)

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Sc (4 ∧ 1)

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Sc (3 ∧ 2)

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Sc (2 ∧ 4)

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Sc (4 ∧ 3)

-1 -0.5 0.5 1

-1

-0.5

0.5 Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

⋃i∧j∈Vc

Sc (i ∧ j)

Figure 21: Sc (i ∧ j)

29

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 61: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

renormalization and projection

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (1)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (2)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (2)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (3)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (3)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (4)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (4)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (5)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (6)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (6)c

-5 -4-3.5-3 2.5-2-1.5-1-0.50.511.522.533.54 5

-6

-5

-4

-3

-2-1.5

-1-0.5

0.51

1.52

2.53

4

5

E29 (θ)U (1)

c

-5 -4-3.5-3 2.5-2-1.5-1-0.50.511.522.533.54 5

-6

-5

-4

-3

-2-1.5

-1-0.5

0.51

1.52

2.53

4

5

E28 (θ)U (8)

c

-4.5-4-3.5-3 2.5-2-1.5-1-0.5 0.511.522.533.5

-3.5-3

-2.5-2

-1.5-1

-0.5

0.51

1.52

2.53

3.5

E27 (θ)U (7)

c

-4 -3 -2 -1 1 2 3 4

-5

-4

-3

-2

-1

1

2

3

4

5

6

E210 (θ)U (2)

c

32

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 62: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

renormalization and projection

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

E211 (θ)U (3)

c

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-7

-6

-5-4

-3-2

-1

1

2

3

4

5

6

E212 (θ)U (4)

c

-8 7 8

-8

78910

E213 (θ)U (5)

c

Figure 24:

-1 -0.5 0.5 1x

-1

-0.5

0.5

1y

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4

Πce1

Πce2

Πce3

Πce4! -1 -0.5 0.5 1

x

-1

-0.5

0.5

1y

-1 -0.5 0.5 1x

-1

-0.5

0.5

1y

Figure 25: 2 hexagonal patches of U (6)c

33

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 63: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

renormalization and projection

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

Xc (2 ∧ 1)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

Xc (1 ∧ 3)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

Xc (4 ∧ 1)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

Xc (3 ∧ 2)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

Xc (2 ∧ 4)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

Xc (4 ∧ 3)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Πce1

Πce2

Πce3

Πce4

⋃i∧j∈Vc

Xc (i ∧ 1)

Figure 10: Xc (i ∧ j)

12

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 64: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

The other window

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Se (ϕ (4 ∧ 3))

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Se (ϕ (2 ∧ 4))

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Se (ϕ (3 ∧ 2))

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Se (ϕ (4 ∧ 1))

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Se (ϕ (1 ∧ 3))

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Se (ϕ (2 ∧ 1))

-1 -0.5 0.5

-0.5

0.5Πee1

Πee2

Πee3

Πee4

Πee1

Πee2

Πee3

Πee4

Πee1

Πee2

Πee3

Πee4

Πee1

Πee2

Πee3

Πee4

Πee1

Πee2

Πee3

Πee4

Πee1

Πee2

Πee3

Πee4

Πee1

Πee2

Πee3

Πee4

⋃i∧j∈Ve

Se (ϕ (i ∧ j))

Figure 20: Se (ϕ (i ∧ j))

27

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 65: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Arithmetics: complex β-expansion

There is an associated complex β-expansion, whose domain is thegeneralized Rauzy fractal.In this expansion, any complex number can be written in a(almost) unique way:

∞∑n=N0

εnµn

where µ is the small complex eigenvalue of the matrix M, and εnbelongs to a finite set {0, f1, f2} and satisfies a Markov condition,related to the GIFS.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 66: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Symbolic dynamics

By taking the product of the corresponding Rauzy fractals:

X ci∧j × X e

k∧l

one obtains a partition of the torus T4.This partition gives a symbolic dynamics for the action of thematrix A which is a subshift of finite type.This is the first known explicit Markov partition for a non-Pisotirreducible automorphism of the torus.It is the natural extension of the β-expansion.

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 67: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Transversal dynamics

I Study the transversal flow of these tilings.

I Find a good symbolic dynamics for this R2-action

I Meaning unclear:

I pseudo-group of translations?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 68: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Transversal dynamics

I Study the transversal flow of these tilings.

I Find a good symbolic dynamics for this R2-action

I Meaning unclear:

I pseudo-group of translations?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 69: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Transversal dynamics

I Study the transversal flow of these tilings.

I Find a good symbolic dynamics for this R2-action

I Meaning unclear:

I pseudo-group of translations?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 70: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Transversal dynamics

I Study the transversal flow of these tilings.

I Find a good symbolic dynamics for this R2-action

I Meaning unclear:

I pseudo-group of translations?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 71: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Transversal dynamics

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (1)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (2)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (2)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (3)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (3)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (4)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (4)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (5)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

U (6)c

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

E2 (θ)U (6)c

-5 -4-3.5-3 2.5-2-1.5-1-0.50.511.522.533.54 5

-6

-5

-4

-3

-2-1.5

-1-0.5

0.51

1.52

2.53

4

5

E29 (θ)U (1)

c

-5 -4-3.5-3 2.5-2-1.5-1-0.50.511.522.533.54 5

-6

-5

-4

-3

-2-1.5

-1-0.5

0.51

1.52

2.53

4

5

E28 (θ)U (8)

c

-4.5-4-3.5-3 2.5-2-1.5-1-0.5 0.511.522.533.5

-3.5-3

-2.5-2

-1.5-1

-0.5

0.51

1.52

2.53

3.5

E27 (θ)U (7)

c

-4 -3 -2 -1 1 2 3 4

-5

-4

-3

-2

-1

1

2

3

4

5

6

E210 (θ)U (2)

c

32

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 72: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Classification problems

I Which automorphisms have positive E2(σ)?

I Do all of them define a fractal tiling?

I What of those with positive matrix A: can we get rid ofcancellations?

I In the general case, can we obtain results by grouping tiles(blocking)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 73: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Classification problems

I Which automorphisms have positive E2(σ)?

I Do all of them define a fractal tiling?

I What of those with positive matrix A: can we get rid ofcancellations?

I In the general case, can we obtain results by grouping tiles(blocking)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 74: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Classification problems

I Which automorphisms have positive E2(σ)?

I Do all of them define a fractal tiling?

I What of those with positive matrix A: can we get rid ofcancellations?

I In the general case, can we obtain results by grouping tiles(blocking)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 75: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Classification problems

I Which automorphisms have positive E2(σ)?

I Do all of them define a fractal tiling?

I What of those with positive matrix A: can we get rid ofcancellations?

I In the general case, can we obtain results by grouping tiles(blocking)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 76: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Arithmetic problems

I Can we get completely real examples?

I What can be said on the number system?

I Can we obtain good approximation in this way?

I Can we go beyond the algebraic case (generalized continuedfractions)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 77: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Arithmetic problems

I Can we get completely real examples?

I What can be said on the number system?

I Can we obtain good approximation in this way?

I Can we go beyond the algebraic case (generalized continuedfractions)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 78: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Arithmetic problems

I Can we get completely real examples?

I What can be said on the number system?

I Can we obtain good approximation in this way?

I Can we go beyond the algebraic case (generalized continuedfractions)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 79: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Arithmetic problems

I Can we get completely real examples?

I What can be said on the number system?

I Can we obtain good approximation in this way?

I Can we go beyond the algebraic case (generalized continuedfractions)?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 80: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Word problems

I Can we define a good structure of 2-dimensional wordscorresponding to the tilings (underlying lattice)?

I Can we define a reasonable notion of complexity?

I Can we define discrete dynamical systems (transversaldynamics)?

I Can we find an equivalent of sturmian sequences in thissetting?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 81: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Word problems

I Can we define a good structure of 2-dimensional wordscorresponding to the tilings (underlying lattice)?

I Can we define a reasonable notion of complexity?

I Can we define discrete dynamical systems (transversaldynamics)?

I Can we find an equivalent of sturmian sequences in thissetting?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 82: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Word problems

I Can we define a good structure of 2-dimensional wordscorresponding to the tilings (underlying lattice)?

I Can we define a reasonable notion of complexity?

I Can we define discrete dynamical systems (transversaldynamics)?

I Can we find an equivalent of sturmian sequences in thissetting?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe

Page 83: General theory of unitary Pisot substitution · Applications Low complexity and sturmian sequences Discrete lines in the plane Generalizations: Hyperplanes, lines and Pisot substitutions

Background: Low complexityFree groups automorphisms and tilings: An example

Applications

Quasi-crystals and Rauzy fractalsA complex number systemSymbolic dynamicsOpen problems

Word problems

I Can we define a good structure of 2-dimensional wordscorresponding to the tilings (underlying lattice)?

I Can we define a reasonable notion of complexity?

I Can we define discrete dynamical systems (transversaldynamics)?

I Can we find an equivalent of sturmian sequences in thissetting?

Pierre Arnoux Pavages, substitutions et automorphismes de groupe