23
General quantum quenches in the transverse field Ising chain Tatjana Puškarov and Dirk Schuricht Novi Sad, 23.12.2015 Institute for Theoretical Physics Utrecht University

General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

General quantum quenches in the transverse field Ising chain

Tatjana Puškarov and Dirk Schuricht

Novi Sad, 23.12.2015

Institute for Theoretical PhysicsUtrecht University

Page 2: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Non-equilibrium dynamics of isolated quantum systems

1. Consider an isolated many-particle quantum system

2. Take it out of equilibrium

3. Let the system evolve

4. Observe what happens:

• does the system thermalise/does it relax?

• how can we describe the steady state?

• how do the observables behave?

Page 3: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Ultracold atoms in optical lattices

Bloch, Dalibard & Zwerger, RMP, 2008

Simulation of solid-state models:

atoms

optical lattice

electrons

crystal lattice

• control of tuneable parameters: lattice type, dimensionality, interactions

• parameters tuneable in time • almost perfect isolation from the environment

JILA BEC87Rb BEC SF to MI transition Greiner et al., Nature, 2002

Page 4: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Quantum Newton’s cradle

Kinoshita, Wenger & Weiss, Nature, 2006

• 1D tubes with 40-250 87Rb atoms

• initially momentum eigenstate with

• essentially unitary time evolution

±k

Page 5: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Quantum Newton’s cradle

Kinoshita, Wenger & Weiss, Nature, 2006

3D1D

• no thermalisation in 1D • thermalisation after ~3 collisions in 3D

� = 18t = 15⌧

� = 3.2t = 25⌧

� = 14t = 25⌧

t = 0⌧

t = 2⌧

t = 4⌧

t = 9⌧

Page 6: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Relaxation following sudden quenches

• pre quench:

• quench:

• post quench:t0

g

gi

gfH(gi), | (0)i

H(gf), | (t)i = e�iH(gf )t| (0)i

gi ! gf

decomposition in terms of post-quench Hamiltonian eigenstates

| (t)i = e�iH(gf )t| (0)i =X

n

hn| (0)ie�iEnt|ni

Observables:

h (t)|O| (t)i =X

m,n

h (0)|mihn| (0)ihn|O|miei(En�Em)t

interference of oscillating phases

Consider a system with a tuning parameter gH(g)

Page 7: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Relaxation following quenches

Full system AUB:

• initial state is a pure state the system never relaxes as a whole

• density matrix

• observables AB

| i

⇢(t) = | (t)ih (t)|

h (t)|O| (t)i = tr [⇢(t)O]

lim

t!1lim

L!1

h (t)|OB | (t)ih (t)| (t)i = const

Subsystem B:

• A (infinite) acts as a bath for B (finite) the system relaxes locally

• density matrix

• observables

⇢B(t) = trA⇢(t)

Page 8: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Relaxation following quenches

• energy is the only local integral of motion

• Gibbs ensemble

A

BCan we express in terms of a statistical ensemble?⇢B(1)

⇢G =

1

ZGexp

�� �H

Generic systems

Deutsch, PRA, 1991

thermalisation

Integrable systems

• additional local integrals of motion

• generalised Gibbs ensemble Rigol et al., PRL, 2007

⇢GGE =

1

ZGGEexp

�X

n

�nIn

!

Lagrange multipliers full set of local integrals of motion[H, In] = [Im, In] = 0tr (⇢GGEIn) = h 0|In| 0i

relaxation

Page 9: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

General quantum quenches

t⌧0

g

gi

gf

Consider a system with a tuning parameter gH(g)

Initial system: t < 0

H(gi)

| 0i

Post-quench system:H(gf)

| (t)i = e�iH(gf )(t�⌧)| (⌧)i

t > ⌧

Page 10: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

General quantum quenches

t⌧0

g

gi

gf

Consider a system with a tuning parameter gH(g)

Initial system: t < 0

H(gi)

| 0i

Post-quench system:H(gf)

| (t)i = e�iH(gf )(t�⌧)| (⌧)i

t > ⌧

Page 11: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

General quantum quenches

t⌧0

g

gi

gf

Consider a system with a tuning parameter gH(g)

Initial system: t < 0

H(gi)

| 0i

Post-quench system:H(gf)

| (t)i = e�iH(gf )(t�⌧)| (⌧)i

t > ⌧

Page 12: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

General quantum quenches

t⌧0

g

gi

gfsudden quench

cosine quench

linear quench

“general” quench

Consider a system with a tuning parameter gH(g)

Initial system: t < 0

H(gi)

| 0i

Post-quench system:H(gf)

| (t)i = e�iH(gf )(t�⌧)| (⌧)i

t > ⌧

Page 13: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

General quantum quenches

t0

g

gi

gf

⌧ t0

g

gi

gf

⌧ ! 0 ⌧ ! 1

Compare the duration of quench to the timescales in the system: gap in the system, interaction energies

• sudden limit • the change is too fast for the system

to react in intermediate times • it only notices the final value of the

quench parameter

• adiabatic limit • the change is slow enough for the

system to follow in the ground state of each intermediate Hamiltonian

Page 14: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Transverse Field Ising chain

H = �J

NX

i=1

��x

i

�x

i+1 + g�z

i

g = 0 : g = 1 :

| ### . . . #i| """ . . . "i

| !!! · · · !i

g

0 1 1FM PM

PM to AFM transition in an ultracold atom system

Simon et al., Nature, 2011

Sachdev, Sengupta & Girvin, PRB, 2002

Response of the system to a quantum quench

Meinert et al., PRL, 2013

Page 15: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Transverse Field Ising chain

H = �J

NX

i=1

��x

i

�x

i+1 + g�z

i

1) Jordan-Wigner transformation

2) Fourier transformation

3) Bogoliubov transformation

�zi = 1� 2c†i ci

�x

i

=Y

j<i

(1� 2c†j

cj

)(c†i

+ ci

)

⌘k = ukck � ivkc†�k

⌘†k = ukc†k + ivkc�k

H =X

k

"k

✓⌘†k⌘k � 1

2

"k = 2Jp

1 + g2 � 2g cos k

"k

k� = 2J |1� g|

Page 16: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Global general quench in TFI chain

H(t) = �J

NX

i=1

��x

i

�x

i+1 + g(t)�z

i

t0

g

gi

gf

Each instantaneous Hamiltonian can be diagonalised as

⌘k,t = uk,tck,t � ivk,tc†�k,t

H(t) =X

k

"k,t

✓⌘†k,t⌘k,t �

1

2

"k,t = 2Jp

1 + (g(t))2 � 2g(t) cos k

How to relate the infinitely many instantaneous Hamiltonians?

Page 17: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Global general quench in TFI chain

Cast the dynamics into the Bogoliubov coefficients: ck(t) = uk(t)⌘k + ivk(t)⌘†�k

i@

@tck(t) = [ck, H]

i@

@tc†k(t) = [c†k, H]

Explicit time dependance from Heisenberg equations of motion:

i@

@t

✓uk(t)v⇤�k(t)

◆=

✓Ak(t) Bk

Bk �Ak(t)

◆✓uk(t)v⇤�k(t)

Ak(t) = 2

�g(t)� cos k

Bk = 2 sin kDuring quench

@2

@t2y(t) +

Ak(t)

2 +B2k ± i

@

@tAk(t)

�y(t) = 0

Post quench@2

@t2y(t) + !2

ky(t) = 0

sudden vs linear quench

Page 18: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Transverse magnetisation Mz(t) = h�z(t)i

During quench Post quench

⇠ t�3/2

Stationary values • behaviour during the quench depends on the quench duration

• behaviour after the quench general - algebraic decay with internal oscillations

• GGE constructed from the post-quench mode occupation numbers

Page 19: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Two-point correlation functionsC(x, t) = hO(x, t)O(0, t)i � hO(t)i2

• initially correlations only within the system correlation length

• state acts as a source of entangled quasiparticles

• quasiparticles propagate classically through the system

• onset of correlations at t⇤ ⇡ x

2v

⇠0

| 0i

light-conet

0x

C(x, t) 6= 0

C(x, t) = 0x > 2vt

x < 2vt

Cheneu et al, Nature, 2012

Calabrese & Cardy, PRL, 2006

Page 20: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Two-point correlation functionsC(x, t) = hO(x, t)O(0, t)i � hO(t)i2

Cheneu et al, Nature, 2012Langen et al, Nature Phys 2013

Page 21: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Transverse two-point correlation function⇢zn(t) =

⌦�zi (t)�

zi+n(t)

⇠ t�3

• algebraic decay with internal oscillations

• light-cone effect and Lieb-Robinson bound observable

n = 10 n = 20 n = 30 n = 40 n = 50

n = 60 n = 70 n = 80 n = 90 n = 100

Time evolution of the transverse two-point correlation function for various separations

Page 22: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

Transverse two-point correlation function⇢zn(t) =

⌦�zi (t)�

zi+n(t)

C(x, t) = hO(x, t)O(0, t)i � hO(t)i2

t

0x

C(x, t) 6= 0

C(x, t) = 0x > 2vt

x < 2vt

20 40 60 80 100

5

10

15

20

25

30

0.0002

0.0004

0.0006

0.0008

0.0010

Modification of the quasiparticle picture:

• at any time during the quench the quasiparticles propagate with their instantaneous velocity

• for general quenches the quasiparticles will not be created just at but over the quench time

t

t = 0⌧

Page 23: General quantum quenches in the transverse field Ising chainprodanvc/seminari/Tatjana Puskarov.pdf · Transverse Field Ising chain H = J XN i=1 x i x i+1 + g z i 1) Jordan-Wigner

• Isolated 1D systems show non-trivial non-equilibrium dynamics

• Local observables in the system relax (GGE)

• Two-point functions allow for observation of the light-cone effect

• General quenches add additional features compared to the sudden case

• TFIC: quenching across the critical point (Kibble-Zurek mechanism, DPT)

Summary and outlook

Karra

sch

& Sc

huric

ht,

PRB

, 201

3